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ABSTRCT: Significant quantities of perfluoroalkyl acids (PFAAs) are released to the 

environment from fluorochemical manufacturing processes in China which may lead 

to human exposure and health risks through crop bioaccumulation. This paper 

systematically studied the multi-media contamination and transport of PFAAs, 

followed by crop bioaccumulation and finally human exposure of PFAAs within a 10 

km radius around a mega-fluorochemical industrial park (FIP). Hotspots of 

contamination by PFAAs were found near the FIP and downstream of the effluent 

discharge point with the maximum concentrations of 641ng/g in agricultural soil, 640 

ng/g in wheat grain, 509 ng/g in maize grain and 4,862 ng/L in precipitation. As the 

distance increased from the FIP, PFAAs concentrations in all media showed a sharp 

initial decrease followed by a more gentle decline. Elevated PFAA concentrations in 

soil and grain were still present within a radius of 10 km of the FIP. The soil 

contamination was associated with the presence of PFAAs in irrigation water and 

precipitation.  In abiotic media, perfluorooctanoic acid (PFOA) was the dominant 

PFAA component. However due to bioaccumulation preference, short-chain 

perfluoroalkyl carboxylic acids (PFCAs), especially perfluorobutanoic acid (PFBA), 

became the major PFAA contaminants in grains of wheat and maize. The 

bioaccumulation factors (BAFs) for both grains showed a decrease with increasing 

chain length of PFAAs (approximately 0.5 log decrease per CF2 group). Compared to 

maize grain, wheat grain showed higher BAFs, possibly related to its higher protein 

content. The PFCA (C4-C8) concentrations in agricultural soil (on a log10 basis) and 

grain were found to show a significant linear positive correlation. Local human 



exposure of PFAAs via the consumption of contaminated grains represent a health 

risk for local residents, especially for toddlers and children.  

KEYWORDS: PFAAs; farmland soil; precipitation; crop bioaccumulation; human 

exposure 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1. Introduction 

Perfluoroalkyl acids (PFAAs) have been widely used in industrial processes and 

household products, including performance chemicals, lubricants, pesticides, 

surfactants and surface protectors, owing to their excellent chemical stability, high 

surface activity, with water and oil repellence (Giesy and Kannan, 2001; 2002). 

However, their persistence, bioaccumulation, potential toxicity and long-range 

transport make them contaminants of emerging concern (Lescord et al., 2015; Liu et 

al., 2015; Wang et al., 2015b). As a result of their widespread use and resulting 

emissions, PFAAs have been detected in numerous environmental compartments, 

such as air (Taniyasu et al., 2013), water (Wang et al., 2012), soil (Meng et al., 2015), 

sediment (Yeung et al., 2013), wildlife (Persson et al., 2013), plants	(Vestergren et al., 

2012) and even human tissues (Kannan et al., 2004). Furthermore, due to their 

mobility in both surface waters and the atmosphere, they have become primary modes 

of PFAA transportation with soil considered as one of the major sinks (Liu et al., 

2015). 

Manufacturing and use facilities often lead to pollution hotspots of PFAAs in 

surrounding environments (Xie et al., 2013; Liu et al., 2016a). Perfluorooctane 

sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are two of the most frequently 

detected PFAAs in the environment (Wang et al., 2015a). The discharge of wastes 

from a manufacturing facility in Alabama, in the USA, have led to high levels of 



PFOS (144 ng/L) and PFOA (598 ng/L) in the nearby Tennessee River	(Hansen et al., 

2002). Affected by a former manufacturing facility in Minneapolis-St. Paul, in the 

USA, PFAA levels in soil are still as high as 126 ng/g for PFOA and 28.2 ng/g for 

PFOS (Xiao et al., 2015). PFAAs have been detected in precipitation in regions 

associated with PFAA-related industries with reports of 152 ng/L in Weifang and 229 

ng/L in Tianjin, China (Zhao et al., 2013a; Shan et al., 2015). However, to date, a 

comprehensive assessment of multi-media distribution and transport of PFAAs 

around a manufacturing facility has yet to be carried out. 

A human health concern may arise from the accumulation of PFAAs in food crops. 

Previous studies have demonstrated that PFAAs can be taken up from contaminated 

soils, translocated and stored in different plant organs	(Stahl et al., 2009; Lechner and 

Knapp, 2011). Several experimental plots planted with maize, wheat and vegetables in 

PFAA-spiked or biosolids-amended soil have indicated a bioaccumulation potential of 

PFAAs. The bioaccumulation potential has been reported to vary with PFAA 

concentrations in soil, functional group and chain length, soil properties and plant 

species (Yoo et al., 2011; Blaine et al., 2013; Blaine et al., 2014; Wen et al., 2014; 

Krippner et al., 2015). However, to date, almost all studies on the bioaccumulation  

of PFAAs in plants have been carried out in controlled plots or nutrient solution 

experiments, which cannot accurately reflect the natural conditions in the ‘natural’ 

field. Risk assessments have confirmed that ingestion via diet is the most likely 

mechanism for significant exposure to PFAAs to humans	(D’Hollander et al., 2010; 

Vestergren et al., 2012). This could occur from the consumption of crops grown on 



PFAA contaminated soils or indirectly via carryover of PFAA contaminated fodder 

fed to animals raised as food for humans (Domingo, 2012; Kowalczyk et al., 2013).  

Restriction agreements on the production of PFAAs in Europe and America, such as 

the 2010/2015 PFOA Stewardship Program and Stockholm Convention, have led to a 

large number of PFAA-related industries transferred to developing countries 

including China to meet the continuing demands (USEPA, 2006; UNEP, 2009). One 

such site is the mega-fluorochemical industrial park (FIP) studied here, which is a 

production centre for PFAAs and fluoropolymers with an annual capacity of several 

hundred thousand tons (Wang et al., 2016). The FIP is located in an area with large 

tracts of farmland and scattered villages. Within a radius of 10km from the FIP, a 

previous study has investigated the distribution and transport of PFAAs in surface and 

ground water with the highest reported concentrations of 1.86 mg/L and 273 µg/L 

respectively (Liu et al., 2016b). However, to systematically investigate multi-media 

contamination and transport of PFAAs from the FIP, PFAAs in other major media 

including soil, precipitation and crops needs to be studied. These results can then be 

integrated with PFAAs present in local water bodies. Furthermore, the assessment of 

bioaccumulation of PFAAs in crops under weathered field conditions is of vital 

importance to produce a more accurate risk assessment. This study would provide an 

assessment of the multi-media transport of PFAAs from the FIP to soil followed by  

crop accumulation and consumption by local residents. 

The objectives of this study were, therefore, to examine the contamination and risk 

from PFAAs around the FIP with particular emphasis on (i) contamination patterns, 



composition changes and removal processes for PFAAs in different environmental 

compartments, (ii) analyzing the sources and transport of PFAAs, (iii) assessment of 

bioaccumulation in locally produced wheat and maize, and (iv) conducting a risk 

analysis for the environment regarding the soil and risk to human health from local 

grain. 

2. Materials and methods 

2.1. Sampling design and collection 

 

Fig.1 The map of the sampling locations for crop grain (wheat and maize), farmland 

soil and rainfall collection around the FIP in Huantai County. 

The study area surrounding the FIP is a major grain-producing region with large tracts 

of farmland and scattered villages, where wheat and maize provide the local staple 



food source. With the FIP in Huantai at the center, samples were collected in central 

areas (C) within a radius of 1km and in eight directions (East, E; Southeast, SE; South, 

S; Southwest, SW; West, W; Northwest, NW; North, N; Northeast, NE) and this was 

repeated with at increasing distances from the site of 2, 4, 7 and 10 km. The 44 

sample locations required the collection of mature wheat and maize grain and 

corresponding soil samples (Fig. 1). In addition, some agricultural soil samples in the 

transverse direction of the Dongzhulong River were also collected to study the 

influence of the contaminated river on PFAAs present in the soil. At each sampling 

site, wheat grains from 20 plants were randomly sampled from the center and four 

corners of an area of 10m × 10m, and mixed into one composite sample in June 2014. 

The corresponding rhizosphere soils (top 0-20cm) of these wheat plants were 

collected at the same time with a stainless steel trowel that had been rinsed with 

methanol and mixed into one composite sample. Maize grain and their corresponding 

soils were also sampled in the same way in October 2014. The collected grain 

samples were wrapped in aluminum foil and stored in clean paper bags. Large stones 

and roots were removed from the soil samples with methanol rinsed tweezers before 

being sealed in polypropylene (PP) bags. Furthermore, taking into account average 

wind direction and rainfall frequency, 20 rainwater samples from 6 precipitation 

events were collected in pre-cleaned PP bottles close to the FIP and with a radius of 

5km in the northeast, southeast, west and northwest during October to November in 

2014. Rainwater parameters, including pH, dissolved oxygen, conductance and 

salinity, were determined in situ using a HQd Portable and Benchtop Meter 



Configurator (HACH Company, USA) (Table S1). All collected samples including 

grain, soil and rainwater were stored in an icebox during transport. The site 

information and ambient description were also noted in Table S2. 

After arriving at the laboratory, grain samples were washed carefully with Milli-Q 

water followed by distilled water before freeze-drying at a temperature of -50 ℃ for 

48 h in a lyophilizer.	A sample of 100 g was then ground and homogenized in a knife 

mill Grindomix GM 200 and then stored separately at -20℃ before analysis. To 

avoid cross-contamination during grinding, the mill was rinsed with 20 mL of 

methanol after each use. The soil samples were transferred to PP boxes, dried in air, 

homogenized with a porcelain mortar and pestle, sieved with a 2 mm mesh, and stored 

in 250 mL PP bottles at room temperature until extraction. The total carbon (TC) and 

total nitrogen (TN) contents of the soil samples were determined using an Elemental 

analyzer (Table S3). The soil organic matter was measured using the Walkley–Black 

procedure (Nelson and Sommers, 1982) while pH was determined at a soil to 0.01 M 

CaCl2 solution ratio of 1:5 (w/v) (Table S3). Rainwater samples were allowed to stand 

for 24 h to settle any sediment and then 400 mL of supernatant was taken from each 

sample for analysis. All these rainwater samples were extracted within 1 week after 

arrival in the lab, and the remainder were stored at −20 °C for long-term reference. 

2.2 Standards and Reagents 

12 PFAAs in all samples were analyzed, including perfluorobutanoic acid (PFBA), 

perfluoropentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA), perfluorobutane 



sulfonate (PFBS), perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), 

perfluorohexane sulfonate (PFHxS), perfluorononanoic acid (PFNA), 

perfluorodecanoic acid (PFDA), perfluorooctane sulfonate (PFOS), 

perfluoroundecanoate acid (PFUdA), and perfluorododecanoic acid (PFDoA) and 9 

mass-labeled PFAAs, containing 13C4PFBA, 13C4PFHxA, 13C4PFOA,13C4PFNA, 

13C4PFDA, 13C4PFUdA, 13C2PFDoA, 18O2PFHxS and 13C4PFOS were purchased from 

Wellington Laboratories with purities of >98% (Guelph, Ontario, Canada). More 

detailed descriptions on standards and reagents are available in the Supporting 

Information.	

2.3 Extraction and cleanup 

The rainwater, soil and plant samples were extracted mainly by solid phase extraction 

(SPE) using methods with minor modifications described previously by Taniyasu et al. 

(2005), Loi et al. (2011) and Felizeter et al. (2012) (Supplementary Information). 

Individual PFAA were separated and quantified using Agilent 1290 Infinity HPLC 

System equipped with an Agilent 6460 Triple Quadrupole MS/MS System (Agilent 

Technologies, Palo Alto, CA, USA) in the negative electrospray ionization (ESI) 

mode. The detailed descriptions of extraction and instrumental analysis are available 

in the Supplementary Information and Table S4. 

2.4 Quality Assurance and Quality Control (QA/QC) 

In order to avoid cross contamination during field sampling in the outside of the 

bottles was washed with Milli-Q water after the samples were taken, wiped with clean 



paper towel and then kept in three-layers of sealed polyethylene bags. The soil 

samples were kept in three-layers of sealed PP bags while grain samples were kept in 

three-layers of sealed paper bags. Field blanks, transport blanks, procedure blanks and 

solvent blanks were carried out with every sample set to examine if any external 

contamination occurred during the sampling/extraction and analytical stages. The 

internal standard calibration curve consisting of a concentration gradient (0.01, 0.05, 

0.1, 0.5, 1, 5, 10, 50, and 100 ng/mL) of native standards, spiked with a 5 ng internal 

standard. This was prepared for quantification of the individual PFAA with 

coefficients (r2) for all target analytes exceeding 0.99. The limit of detection (LOD) 

and limit of quantification (LOQ) were defined as the peak of analyte that needed to 

yield a signal-to-noise (S/N) ratio of 3:1 and 10:1, respectively. When the 

concentrations of PFAAs in any extract that was greater than 100 ng/mL, the volume 

or amount of the samples would be reduced and the samples would be extracted again 

to fit the range of the calibration series. The different matrices were spiked with a 

standard solution and then analyzed to determine the recovery of each target PFAA. 

The matrix spike recoveries (MSRs) ranged from 79.0% to 109% for rainwater, 72 to 

93% for soil and 66 to 102% for plant material. Supplementary Information and Table 

S5 described detailed QA/QC information. 

2.5 Statistical and spatial analyses 

Statistical analysis was performed using SPSS Statistics V22.0 (SPSS Inc. Quarry 

Bay, HK). During the analysis, concentrations less than the LOQ were set to one-half 



of the LOQ, and those less than the LOD were assigned to values of LOD/ 2 (Bao 

et al., 2011). Spatial distributions of PFAAs were analyzed using the ArcMap module 

in ArcGIS V10.2 software (ESRI, Redland, CA, USA).  

2.6 Bioaccumulation Metrics and Daily Intake Estimation 

The bioaccumulation factors (BAFs), defined as ratios between the chemical 

concentration determined on a dry weight basis in the grain and corresponding soil, 

were calculated by Eq. (1) (Blaine et al., 2013). Due to the lower volatility of PFAAs 

at environmental, PFAAs entry into the stomata from the air was negligible and all 

these substances in grain were assumed to be derived from uptake through the roots. 

𝐵𝐴𝐹 = !"## !"#!$#%&'%("# !" !"#$% (!"/! !")
!"## !"#!$#%&'%("# !" !"#$ (!"/! !")

                           Eq. (1) 

𝐸𝐷𝐼 = !"#$% !"#$%&'()"# (!/! !") ×!"## !"#!$#%&'%("# !" !"#$% (!"/! !")
!"#$ !"#$!! (!")

      Eq. (2)                                          

The estimated daily intake (EDI,	ng/kg·bw/day) of PFAAs through the consumption 

of wheat and maize can be calculated based on averaging the intake dose by body 

weight by Eq. (2). Further details are contained in Table S6. Considering that body 

weights and consumption rates vary by age, the EDIs were estimated for four age 

groups: toddlers (2-5 years), children (6-10 years), teenagers (11-17 years), and adults 

(≥18 years).	As for the EDI calculation for residents with different radius from the 

FIP, the average concentrations of PFAAs in wheat and maize grain collected in that 

radius were used.  

3. Results and discussion 



3.1 Multi-media distribution and transport of PFAAs around the FIP 

3.1.1 Occurrence and distribution of PFAAs in farmland soil 

	

Fig. 2. The spatial distribution of ∑PFAAs and relative abundance of individual 

PFAA in farmland soil with the increase in distance from the FIP [(a) and (c)]; the 

decline curve of ∑PFAAs in farmland soil with distance from the polluted river (b).  

Note: CR represented contaminated riverfront along the wastewater river, the same as 

below. 

The concentration of the sum of PFAAs (∑PFAAs) ranged from 2.92 ng/g to 640 ng/g 

in agricultural soils (Table S7-S8). Of the PFAAs, PFOA was the dominant 

component with an average contribution of 86% of the ∑PFAAs, followed by C4-C7 

short-chain perfluoroalkyl carboxylic acids (PFCAs) including PFBA (4%), PFPeA 



(2.7%), PFHxA (2.50%) and PFHpA (1.2%). Long-chain PFCAs (C9-C12) and 

perfluoroalkane sulfonic acids (PFSAs) including PFBS, PFHxS and PFOS were only 

observed at low concentrations or below the MDL, which is most likely to be related 

to their limited production and application of these components in this region (Wang 

et al., 2014a; Wang et al., 2016). In most sampling locations, the concentration and 

composition of PFAAs in wheat soil showed no significant differences from those in 

maize soil. To the best of our knowledge, the maximum PFOA concentration in 

farmland soil (623 ng/g) reported in this study is the highest ever reported, which 

even exceeded soil receiving WWTP biosoilds as a soil amendment at 4.33-68 ng/g 

(Sepulvado et al., 2011). The spearman rank correlation analyses on the 12 PFAAs in 

agricultural soils showed that the concentrations of PFCAs, including PFBA, PFPeA, 

PFHxA, PFHpA, PFOA and PFNA, were strongly associated (p<0.01), indicating that 

these compounds came from similar sources (Tables S9–S10). Previous studies of the 

area have confirmed the FIP as the only point source in the area, which included not 

only PFCA production but also FP manufacturing and processing	(Liu et al., 2016b). 

Global source inventories demonstrated that release of PFCAs are largely attributed to 

these industrial processes	 (Wang et al., 2014b). Furthermore, the increasing 

concentrations of PFAAs in soil with proximity to the FIP also supported site as the 

principal source. 

 The contamination hotspots of PFAAs in soil were found near the FIP and the 

Dongzhulong River, which received wastewater from the FIP. As the distance 

increased from these sources, the levels of PFAAs in soil decreased with an 



exponential trend, showing a sharp initial decrease followed by a gentle decline. The 

average concentrations of ∑PFAAs in wheat soil within 1km from the FIP was up to 

88.7 ng/g, then sharply decreased by about 81% to 16.8 ng/g at 2km and further fell 

by 13.4% to 4.94 ng/g within the distance of 2-10km; while those in maize soil within 

1km was up to 91 ng/g, then reduced by 79% to 19 ng/g at 2km and then slowly 

decreased by 16% to 4.41 ng/g within the distance of 2-10km (Fig. 2a). For soil along 

the lateral direction from the Dongzhulong River, the concentration of ∑PFAAs also 

rapidly dropped by 95% (from 239 ng/g to 11.9 ng/g) within a distance of 200-750m, 

then declined by 1.3% to 8.79 ng/g within a distance of 750-3000m (Fig. 2b). 

Influenced by the presence of the FIP, even the lowest concentrations of ∑PFAAs 

detected at a distance of 10km were still above most reported soil concentrations in 

China (reviewed in Table S11). With the increasing distance from the FIP, the 

shorter-chained PFAAs (C4-C6) increased in proportion to PFOA (C8) due to their 

greater persistence and mobility in the environment (Ferrey et al., 2009; Ahrens et al., 

2010). PFAAs in agricultural soil may be associated with residues in local surface and 

ground waters, which also showed a similar decline in concentration and 

compositional change (Liu et al., 2016b). The confluence of the effluent from the FIP 

with the Xiaoqing River resulted in PFAAs concentrations that increased by orders of 

magnitude, while the concentrations in agricultural soil irrigated by the river also 

increased by about 12 times. It was noted that higher concentrations of PFAAs in the 

agricultural soil were found primarily on the downwind (i.e. west and northeast) side 

of the FIP, implying another likely contamination pathway through atmospheric 



emission, transport and local deposition (Davis et al., 2007) (Fig. S1). 

3.1.2 Pollution association of PFAAs in irrigation water and farmland soil 

 

Fig3. The relationship (a, b, c) between PFAAs, PFCAs and PFOA found in farmland 

soil and corresponding irrigation water and the differing profiles (d) of PFAAs in 

farmland soil and irrigation water. 

Note: Cirrigation
 represented concentrations of PFAAs in irrigation water; Csoil

 

represented concentrations of PFAAs in farmland soil.  

The contamination of PFAAs in local surface and ground water, which are mainly 

used as irrigation water for farmlands, have been investigated in a previous study. 

Combining these results, the contamination associated PFAAs in agricultural soils and 

irrigation water will be discussed further. For ∑PFAAs and several main PFAA 



components, there was a significant linear positive correlation between the logarithm 

of concentrations in agricultural soils and corresponding irrigation water (Fig. 3a, 3b 

and 3c). Thus, contaminated irrigation water was considered as an important input of 

PFAAs in agricultural soils. However, it is worth mentioning that the increases for 

longer-chain PFAAs yielded steeper slopes compared to those for shorter-chain 

homologues (	Fig. 3b, 3c; Table S12). This phenomenon can be explained by stronger 

adsorption to soil by longer-chain PFAAs	 (Higgins and Luthy, 2006). With higher 

aqueous solubilities and lower adsorption affinity	(Ferrey et al., 2009; Ahrens et al., 

2010), shorter-chained PFAAs present in irrigation water are more likely to leach 

through the soil profile compared to the more hydrophobic components. Therefore, 

short-chain PFAAs were present at lower proportions in agricultural soils than those 

in corresponding irrigation water (Fig. 3d).  

3.1.3 PFAAs levels and composition in precipitation 

 

Fig. 4 The concentrations (a) and composition (b) of PFAAs in rainwater collected 

near the FIP. 

As the most effective atmospheric removal mechanism for PFAAs	 (Taniyasu et al., 



2013), rainwater was collected to examine the importance of local precipitation as a 

source of soil contamination near the FIP. High levels of PFAAs were found in 

rainwater within 5km from the FIP with the concentrations of 60 to 4,862 ng/L (Fig. 

4a; Table S13). PFOA was predominant with the average relative abundance of 76%, 

followed by PFBA (8.9%), PFHpA (6.6%), PFHxA (4.1%) and PFPeA (4.1%) (Fig. 

4b). The maximum concentration of PFOA (2,752 ng/L) found here was the highest 

ever reported in precipitation, which far exceeded high values previously reported 

such as in Tianjin (107 ng/L) and Dalian (65.8 ng/L) of China, in Yokohama (95.3 

ng/L) of Japan, in Albany (23.9 ng/L) of the USA and in the northern regions (45.5 

ng/L) of Germany (reviewed in Table S14). These contamination levels of PFAAs 

were comparable to those in house dust (73-13,500 ng/g) and street dust (5-9,495 ng/g) 

around this FIP, which were likely from dry deposition	 (Su et al., 2016). The 

phenomenon confirmed that manufacturing and use facilities were important sources 

of resulting in PFAA hotspots (Barton et al., 2006; Zhao et al., 2013b). High levels of 

airborne PFAAs were inferred to mainly originate from the direct release from the FIP 

associated with particles	(Harada et al., 2006; Shan et al., 2015), which have limited 

long-ranged transport potential and are easily removed by precipitation (McMurdo et 

al., 2008; Mader, 2009). The spearman rank correlation analysis on 12 PFAA 

components in precipitation samples further confirmed the FIP as the dominant source 

of airborne PFAAs (Table S15). 

The levels of PFAAs in rainwater sharply reduced with distance from the FIP, 

especially for short-chained PFCAs and PFOA. The highest levels of PFAAs 



associated with precipitation occurred immediately around the FIP with an average 

concentration of 2,265 ng/L, but rapidly decreased by 45.2%-92.9% within only 5km. 

Other high concentrations of PFAAs in rainwater were found in the northeast (average 

1,241ng/L) and west (average 513ng/L) of the FIP, followed by those in southeast 

(average 315ng/L) and northwest (average 161ng/L). This would be expected on the 

basis of the prevailing wind in the area	(Barton et al., 2006). PFAAs levels in house 

and street dust around the FIP mainly from dry deposition followed a similar trend	

(Su et al., 2016). 

3.2 Crop grain contamination and bioaccumulation of PFAAs around the FIP 

3.2.1 Occurrence of PFAAs in wheat and maize grain around the FIP 



 

Fig. 5 Occurrence, distribution and composition of PFAAs in wheat and maize grain 

The concentrations of ∑PFAAs ranged from 2.92 ng/g to 640 ng/g in wheat grain and 

from 0.63 ng/g to 509 ng/g in maize grain within 10km of the FIP (Table S16-S17). 

Similar to the agricultural soil, the FIP was also identified as the predominant source 

of PFAA in grains based on the spearman rank correlation analyses (Table S18-S19). 

Unlike irrigation water, agricultural soil and precipitation, short-chained PFCAs 

(C4-C7) were the major PFAA components in wheat and maize grains, indicating 

there must be a bioaccumulation preference for these homologues	 (Krippner et al., 



2014; Wen et al., 2014). In the case of the grain, PFBA was the dominant form, 

representing 61.4% in wheat grain and 45.5% in maize grain of the total PFAAs (Fig. 

5d). Long-chained PFCAs (C9-C12) and PFSAs were only found in trace amounts or 

below the MDL. Compared to wheat grain, maize grain showed stronger 

bioaccumulation tendency for PFHxA and PFHpA. 

PFAAs concentrations in grains also showed a sharp decrease in a short distance from 

the FIP, followed by a gentle decline. The average concentrations of ∑PFAAs in wheat 

grain within 1km from the FIP were as high as 161 ng/g, rapidly reducing by 89.4% to 

17ng/g at 2km followed by slower decrease by 6.87% to 5.94 ng/g within the distance 

of 2-10km; while residues in maize grain within 1km were up to 76 ng/g, although 

falling sharply by 94.3% to 4.34ng/g at 2km with a further slower decline by 2.96% to 

2.09 ng/g within the distance of 2-10km (Fig. 5c). Contamination hotspots of ∑PFAAs 

present in grains were also associated with plants grown along the banks of the heavily 

polluted Dongzhulong River with average concentrations of 223 ng/g for wheat grain 

and 10.5 ng/g for maize grain. Within the study area, ∑PFAAs levels in wheat grain 

were typically 11.3 fold higher than those in maize grain (Fig. 5a, 5b), which may be 

attributed to	stronger PFAA bioaccumulation potential for wheat grain. 

3.2.2 Cop bioaccumulation rules of PFAAs around the FIP 



 

Figure 6. BAFs for several major PFCAs (a), correlations between log BAF and 

carbon chain length (b, c), and bioaccumulation equations of PFAAs (d-i). Means and 

standard errors are shown (n = 44). 

Soil properties such as organic matter content and pH across the study area were 

relatively similar (including both wheat and maize growing areas) (Table S1). The 

bioaccumulation factors (BAF) for ∑PFAAs in wheat grain were typically 11.6 times 

higher than those in maize grain (Fig. 6a). The phenomenon may be related to the 

higher protein contents in wheat gain (11.2%) than those in maize grain (3.8%). 

Previous studies have found the high affinity of PFAAs to proteins and further 

confirmed the effect of protein content on the accumulation of PFAAs in plants 



(Zhang et al., 2013; Bischel et al., 2011, 2010) (Wen et al., 2016). 

In the wheat and maize grain, total concentrations of shorter-chained PFCAs (C4-C7) 

were about 20-fold and 33-fold respectively larger than those of PFOA, despite the 

soil concentrations of PFOA being more than average 19 times that of the 

shorter-chained PFCA concentrations. The significant contrast of PFAA profiles in 

grain and soil were mainly caused by crop bioaccumulation preference for short-chain 

PFAAs. In fact, the BAF for wheat and maize grain showed a decreasing tendency 

with increasing chain length. PFBA (C4) showed the highest BAFs averaging 33.1 for 

wheat grain and 2.5 for maize grain while PFOA showed the lowest values averaging 

0.12 for wheat grain and 0.02 for maize grain. The log10 BAFs for wheat and maize 

grain were correlated with carbon chain length for several major PFCAs. The BAFs in 

both grains decreased by approximately 0.5 log units per CF2 group for these PFCAs 

(Fig. 6b, 6c). The higher BAFs for shorter-chain PFAAs may be related to their lower 

sorption by soil particles and smaller molecular size (Higgins and Luthy, 2006). This 

would have the effect of greater availability to the plants as well as to a higher 

mobility and translocation rate within the plants (Felizeter et al., 2012; Felizeter et al., 

2014; Krippner et al., 2014).  

The uptake and storage of PFAAs in wheat and maize grain unsurprisingly had a link 

with agricultural soil concentrations. For ∑ PFAAs and several main PFAA 

components, the logarithms of concentrations in agricultural soil and grain showed 

significant linear positive correlations (p<0.01) (Stahl et al., 2009). However, the 



slopes of soil-grain equations, which were closely associated with BAF, also showed 

a declining trend with the increase of carbon chain length. When soil concentration 

increased, a steeper slope for short-chain PFCAs would result in a greater 

concentration increase in grain. This can explain the proportional increase of 

short-chain homologues in grains with proximity to the FIP (Fig. 4d). Moreover, 

higher slopes in soil-wheat equations than soil-maize equations further confirmed 

stronger bioaccumulation potential for wheat grain. 

3.3 Risk assessment of PFAAs in soil and crop to human health and ecology 

Some high concentrations of PFOA in agricultural soil near the FIP and along the 

heavily polluted Dongzhulong River exceeded the predicted non-effect concentration 

(PNEC) of 160 ng/g (Amundsen et al., 2008), indicating a potential ecological risk to 

soil organisms. However, such soil levels were still much lower than the commonly 

used health risk thresholds (e.g. 16,000 ng/g for PFOA by the USEPA), indicating 

health risk via direct exposure of contaminated soil would be very low. However, an 

exposure pathway for PFAAs of greater concern for human health would be through 

the diet (Vestergren et al., 2012). In the study area, wheat and maize account for 73% 

and 7% respectively of staple food, and most local residents consume their grains 

from their own cereal crops (Bureau of Statistics of Shandong Province, China, 2015). 

The estimated daily intakes (EDIs) of PFAAs for different age groups via 

consumption of contaminated wheat and maize grain was calculated to assess health 

risks to local residents. 



For local residents, the EDIs of PFAAs through wheat consumption was about 83 

times higher than that through maize consumption (Table S21). The EDIs of major 

PFAA components via consumption of wheat and maize varied, depending on the 

distance and the age group of the residents living around the FIP (Table S22). 

Consistent with PFAAs distribution in grains, the highest EDIs of PFAAs for the 

different age groups occurred within 1km from the FIP and along the river receiving 

the wastewater discharge. For residents within 1 km from the FIP, the total exposure 

of ΣPFAAs via consumption of these grains were 1,219 ng/kg·bw/day for toddlers 

and 1,228 ng/kg·bw/day for children, followed by teenagers (934 ng/kg·bw/day) and 

adults (828 ng/kg·bw/day) (Table S22). As expected, for major components and 

∑PFAAs in all sampling locations, the EDI for toddlers and children were also 

comparable, but both higher than those for teenagers and adults. The higher food 

consumption per body weight for toddlers and children compared to teenagers and 

adults can explain this difference (Klenow et al., 2013). Similar results were also 

found in China from consumption of meat and eggs with PFOA EDIs of 15.9 to 19.7 

ng/kg·bw/day for toddlers and 7.75 to 10.5 ng/kg·bw/day for adults	 (Zhang et al., 

2010), and in Belgium through multiple foodstuffs with PFOA EDIs ranging from  

0.28 to 0.39 ng/kg·bw/day for children and 0.19 to 0.23 ng/kg·bw/day for adults	

(Klenow et al., 2013). 

As far as we are aware, the tolerable daily intake (TDI) values are only available for 

PFOA.	Compared to current recommended TDI values of 100 to 1,500 ng/kg·bw/day 

for PFOA proposed by several countries (Fig.4, Table S14), the EDI of PFOA via 



consumption of wheat and maize for residents in the study area are less than these 

thresholds. However, it is noteworthy that the EDI values via wheat and maize 

consumption for toddlers (72.3 ng/kg·bw/day), children (72.8 ng/kg·bw/day), 

teenagers (55.4 ng/kg·bw/day), adults (49.2 ng/kg·bw/day) within 1km from the FIP 

were close to the Health-based guide value (HBGV) (100 ng/kg·bw/day) for Germany 

(BfR, 2006) (Fig. 7). Besides consumption of wheat and maize grain, other exposure 

pathways exist. Groundwater is often used as a source of drinking water, and at this 

location PFOA levels in groundwater within a radius of 1km from the FIP were up to 

a orders of magnitude higher than Provisional Health Advisory (PHA) recommended 

by the USEPA (400ng/L)	(Liu et al., 2016b). Within 2km from the FIP, the EDIs of 

PFOA via dust ingestion and dermal absorption has also been estimated to be 26 

ng/kg·bw/day for toddlers, 10.5 ng/kg·bw/day for children, 5.52 ng/kg·bw/day for 

teenagers and 4.42 ng/kg·bw/day for adults	(Su et al., 2016). Moreover, consumption 

of contaminated vegetables and fruits, also grown in the area, although not studied 

here, may also contribute to the dietary load. When combined with these exposure 

pathways, the EDIs of PFOA for residents, especially toddlers and children, within 

1km from the FIP are likely to exceed the HBGV (100 ng/kg·bw/day) from Germany, 

indicating a high level of human health risk. Residents along the Dongzhulong River 

downstream of the FIP were exposed to the next highest health risk owing to the 

contaminated water and soil.  



 

Fig 7. Estimated daily intake (EDI) of PFOA via consumption of wheat and maize 

(ng/kg·bw/day) for various age groups. 

Note: current standard tolerable daily intake (TDI, ng/kg·bw/day) values are derived 

from ThayerandHoulihan (2002), BfR (2006), Benford et al. (2008) and COT (2009). 

The EDIs of PFOA via dietary intake from multiple food sources have been reported 

in China (7.75-10.5 ng/kg·bw/day)	(Zhang et al., 2010), Japan (0.72-1.3 ng/kg·bw/day) 

(Kärrman et al., 2009), Germany (2.9 ng/kg·bw/day) (Fromme et al., 2007), the US 

(0.82 ng/kg·bw/day) (Schecter et al., 2010), Norway (0.42 ng/kg·bw/day)	(Haug et al., 

2010) and Sweden (0.35-0.69 ng/kg·bw/day) (Vestergren et al., 2012). 

Unquestionably, the EDIs of PFOA (adults: 49.2 ng/kg·bw/day) reported in this study 

were higher than those values previously reported. Even at 10km away from the FIP, 

the EDIs of PFOA (adults: 3.51 ng/kg·bw/day) via the consumption of wheat and 



maize only were still comparable or higher than the upper limits of most reported EDI 

values, indicating the effective distance of the FIP on crops was at least 10km. These 

considerations are only for PFOA, which is only one component of the PFAA family. 

Crop bioaccumulation preference results in the EDIs of shorter chained PFCAs for 

residents being much higher than those for PFOA. However, the health risk of these 

short-chain homologues cannot be assessed due to shortage their TDI values. So 

health risks of PFAAs for local residents may go further than just PFOA. Moreover, 

PTFE production has been expanded in the FIP with an average annual growth rate of 

25% since 2001 (Wang et al., 2016). If without suitable substitutes for PFAAs in the 

production of most fluoropolymers or improvement in the ‘quality’ of local food 

sources, local residents may face continuous or even higher exposure. 

4. Conclusions and perspectives 

Overall, the results of this study indicated that: 

l The highest concentrations of ∑PFAAs in agricultural soil were observed near 

the FIP (max 402 ng/g) and along the banks of the FIP effluent dominated river 

(max 641 ng/g).  As the distance increased from these sources, PFAAs levels in 

soil showed a sharp initial decrease followed by a slower decline. Higher PFAAs 

concentrations in agricultural soil showed some correlation with the prevailing 

wind direction.  

l The use of contaminated irrigation water and the influence of contaminated 

precipitation are two of the dominant pollution pathways of PFAAs to 



agricultural soil. Longer-chained PFAAs in irrigation water were more 

susceptible to adsorption to soil particles. For precipitation, unprecedented levels 

of ∑PFAAs were found immediately near the FIP with an average concentration 

of 2265 ng/L, although they decreased significantly beyond 5km. In these abiotic 

media, PFOA (C8) was the predominant PFAA, followed by shorter-chained 

PFCAs (C4-C7). 

l A pollution signal from the FIP could be found as far away as 10 km within 

cereals with concentrations ranging from 2.92-640 ng/L in wheat grain to 

0.63-509 ng/L in maize grain. The hotspot distribution and decline process of ∑

PFAAs in grain were similar to those in soil. The shorter chain varieties such as 

PFBA (C4) were accumulated by these crops preferentially, accounting for an 

average of 61.4% in wheat grain and 45.5% in maize grain, followed by other 

short-chained PFCAs (C5-C7) and PFOA (C8). 

l The uptake and storage of PFAAs in wheat and maize grain showed a decreasing 

tendency with the increase of carbon chain length and the BAFs in both grains 

decreased by approximately 0.5 log units per CF2 group. The BAF of ∑PFAAs 

in wheat grain were on average 11.6 times higher than those in maize grain, 

which may be linked to higher protein contents in wheat gain. Significant linear 

positive correlations were found between the logarithms of PFCA (C4-C8) 

concentration in agricultural soil and grain. 

l High concentrations of PFOA in agricultural soil may lead to potential soil 



ecological risks. Consumption of contaminated grain grown within a radius of 

1km from the FIP and downstream of effluent dominated river could have 

impacts on human health. The group most at risk would be toddlers and children 

due to their weight relative to exposure. 

l Based on crop bioaccumulation preference for short-chained PFCAs, it may be 

worthwhile to consider whether it is desirable to substitute longer-chain PFAAs 

with shorter-chain compounds in industrial processes. Therefore, more 

toxicological studies on short-chained PFAAs are urgently needed for a more 

comprehensive assessment of health and ecological risks. Moreover, further 

consideration is also required for the potential hazards of aquatic products, 

livestock and poultry, and vegetables from these chemicals. 

l This study has linked the high local contamination with polluted wastewater 

leaving the FIP and airborne emissions. These sources could potentially be 

reduced with granular activated carbon wastewater treatment systems and an 

exhaust gas purification. In addition, non-fluorinated alternatives that are neither 

persistent nor toxic should be also developed to eliminate the PFAA risk from the 

source. 
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