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ABSTRACT

The ponderomotive force is an important concept in plasma physics and, in particular, plays an important role
in many aspects of the theory of laser plasma interactions including current concerns like wakefield acceleration
and Raman amplification. The most familiar form of this gives a force on a charged particle that is proportional
to the slowly varying gradient of the intensity of a high frequency electromagnetic field and directed down the
intensity gradiant. For a field amplitude simply oscillating in time there is a simple derivation of this formula, but
in the more general case of a travelling wave the problem is more difficult. Over the years there has been much
work on this using Hamiltonian or Lagrangian averaging techniques, but little or no investigation of how well
these theories work. Here we look at the very basic problem of a particle entering a region with a monotonically
increasing electrostatic field amplitude and being reflected. We show that the equation of motion derived from
a widely quoted ponderomotive potential only agrees with the numerically computed orbit within a restricted
parameter range and that outside this range it shows features which are inconsistent with any ponderomotive
potential quadratic in the field amplitude. Since the ponderomotive force plays a fundamental role in a variety of
problems in plasma physics we think that it is important to point out that even in the simplest of configurations
standard theories may not be accurate.
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1. INTRODUCTION

The ponderomotive force, produced by a high frequency electromagnetic field whose intensity varies in space
over a scale length long compared to the particle oscillation amplitude in the wave, is a fundamental concept in
plasma physics that is widely used when considering laser-plasma interactions, but is by no means confined to
this part of the subject. With an electric field of the form

E = E0(r) cos(ωt) (1)

the familiar form of the ponderomotive force is

F = −1

4

q2

mω2
∇E2

0 (2)

where q and m are the particle charge and mass respectively. This formula holds for both electrostatic and
electromagnetic waves, but here we will be concerned only with longitudinal waves with the field and the spatial
variation of its amplitude in the x direction, for which a simple derivation of the formula can be given as follows.
Neglecting the spatial variation of the amplitude, the displacement of the particle from its mean position x0 due
to the wave is given by

x− x0 = − qE0

mω2
cos(ωt) (3)

and if we now take account of the spatial variation by making the approximation

E(x, t) =

[
E0(x0) + (x− x0)

dE0

dx

]
cos(ωt), (4)



use (3) and take the time average we get (2).

If we have a travelling wave with E = E0(x) cos(kx−ωt) then the problem becomes more difficult since there
is no simple solution for the particle displacement. One obvious way forward is to take the local solution

x = x0 + V t+ ξ (5)

with V an average velocity only varying over the long length scale, then neglect ξ in the argument of the cosine.
This leads to

ξ = − q

m(ω − kV )2
E (6)

and, if the procedure above is followed, an average force on the particle of − 1
4

q2

m(ω−kV )2∇E
2
0 .1 However, as

we shall see this is not a good approximation and later work concentrated on obtaining the force by more
sophisticated Hamiltonian or Lagrangian methods.2–5 These references are just a sample from a very extensive
literature on the subject, from which we will concentrate particularly on the work of Bauer, Mulser and Steeb4

since it gives an explicit formula relevant to our problem. The argument leading to their expression can be
paraphrased as follows. With a displacement ξ, the resultant change in potential energy is -ξE and if we assume

ξ = − q

m(ω − kV )2
E0 cos(kV t− ωt) (7)

E = E0 cos(kV t− ωt) (8)

the average potential energy becomes 1
2

q2

m(ω−kV )2E
2
0 and the average kinetic energy due to the oscillatory motion

is half of m
2

(
qE0

m(ω−kV )

)2
. The result is an average Lagrangian

L =
1

2
mV 2 − 1

4

q2

m(ω − kV )2
E2

0 . (9)

The standard Lagrange equation is now used to obtain the variation over the long time and space scales, the
result being

m
dV

dt
= − q2

4m

(ω − kV )(ω − 3kV )

(ω − kV )4 − 3
2

q2

m2 k2E2

dE2
0

dx
. (10)

Clearly there are approximations involved in the calculation of the average potential and kinetic energy, the
assumed particle displacement and velocity not being exact, so the question arises as to how well this formula
works. Despite the fact that it is a simple matter to integrate the equation for the exact particle orbit in the field
we describe, little or no work has, so far as we know, been done to verify the accuracy of the various expressions
for the ponderomotive force that have appeared in the literature. We shall do this for the very basic case of a
particle moving in an electrostatic travelling wave with a monotonic intensity profile and show that in certain
parameter ranges the motion is not described by the above equation and, indeed, cannot be predicted from any
averaged Lagrangian with a potential that is proportional to the square of the field intensity. This suggests that
it is necessary, in these regimes, to consider ponderomotive potentials to higher order in the field amplitude, a
problem we do not believe to have been considered in the previous literature.

2. NUMERICAL RESULTS

Here we look at particle orbits described by the equation

d2x

dt2
=

q

m
E0(x) cos(kx− ωt) (11)

with E0 varying on a scale much longer than the amplitude of the rapid oscillations of the particle. For convenience
we scale the variables with time in units of ω−1, E0(x) in terms of E0(0) and the length in units ofX0 = E0(0) q

mω2 ,
the oscillation amplitude of a particle with zero average velocity in the reference field. The scaled value of k is

k =
2πX0

λ
(12)



with λ the wavelength. The scaled version of (11) is then

d2x

dt2
= E0(x) cos(kx− t) (13)

where, for convenience, we retain the same notation for the scaled variables. For the most part we take the
scaled field to have an exponential dependence E0 = exp(−x

a ) and unless otherwise stated a scaled value of a
equal to 500. Our general conclusions are not sensitive to the exact profile used. We then look at the orbit of a
particle starting with velocity − 1√

2
at large x, the behaviour of this according to the basic ponderomotive force

equation (2) being reflection at x = 0 and outward motion just the reverse of the inward motion. If we take the

force to be given simply by − 1
4

q2

m(ω−kV )2∇E
2
0 in unscaled variables then there is a first integral

1

2
mω2V 2 − 2

3
mωkV 3 +
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4
mk2V 4 +
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4m
E2

0 = const. (14)

If this holds then it is clear that the asymptotic velocity in the outward direction is no longer the reverse of the
initial inward velocity unless k = 0. However, numerical integration, for the scaled value of k below a critical
value that we will discuss later, gives an exactly reversed velocity. This is given also by the equation (10), a
result that follows from the fact that it is obtained from a time independent Lagrangian that has a constant of
motion V ∂L

∂V − L which tends to 1
2mV

2 as E0 → 0. For scaled values of k up to around 0.45 the formula (10)
agrees well with the numerically averaged∗ exact solution as can be seen from Figure 1.

Figure 1. The average velocity from the numerical solution (red dots) and from the analytic formula (blue line)
for k = 0.45 as a function of position.

However, as we increase k the analytic formula runs into the problem that its denominator goes to zero and
the equation of motion encounters a singularity. A simple indication of the point at which this happens can
be found by noting that according to (10) dV

dt → 0 as V → ω
3k , or 1

3k in scaled units, so if V starts below this
value it can approach it but never cross it. On the other hand, by the argument already given, the asymptotic
outward velocity must be 1√

2
if the motion is described by a time independent Lagrangian. There is, therefore,

a contradiction if the scaled value of k exceeds
√
2
3 ≈ 0.47.

For values of k above
√
2
3 there is a regime in which the exact solution still behaves smoothly with asymptotic

velocity 1√
2
, suggesting that it can still be described by an averaged Lagrangian, but not that given by Bauer et

al. There is a range in which, as shown in Figure 2, the averaged velocity decreases along part of the outward
trajectory.

∗The details of the averaging procedure are given in the Appendix.



Figure 2. The average velocity from the numerical solution for k = 0.6.

Such behaviour can be given by (10), called “uphill acceleration” by Bauer et al., if the scaled V is between
1
3k and 1

k , but the average velocity can never cross from the uphill to downhill acceleration regimes in the way
that the numerical solution does. In general, if we have any potential quadratic in the electric field, so that the
Lagrangian is of the form,

L =
1

2
mV 2 + F (V )E0(x)2 (15)

then the equation of motion is
dV

dt
= − V F ′ − F

m+ F ′′E2
0

dE2
0

dx
. (16)

With a monotonic intensity profile the acceleration can only change sign if the denominator changes sign, in
which case the equation has a singularity, or if the numerator goes through zero. However, using the same
argument already given for the Bauer et al. formula, the velocity can tend asymptotically to the value at which
the numerator goes to zero if the intensity gradient is long enough, but never cross it. Another argument for
the impossibility of a Lagrangian with a potential of this form is that the invariant V ∂L

∂V − L is of the form
1
2mV

2 + (V F ′−F )E2
0 . For a given value of V this means that there must be a unique value of E2

0 , while in our
numerical solution the average velocity goes through the same value at different positions with different values
of E2

0 . That there is still an invariant associated with some more complicated form of Lagrangian is suggested
by comparing solutions with exponential and linear intensity dependence (the latter with E0 = 1 − x

1000 for
x < 1000, zero otherwise) and plotting the relation between E0 and V along the particle orbits, with the result
shown in Figure 3. We are currently seeking to extend averaged Lagrangian theory to include effects of higher
order in the field intensity.



Figure 3. The relation between the electric field amplitude and the average velocity for the exponential (red
circles) and linear (blue triangles) profiles, both with k = 0.6.

3. CONCLUSIONS

We have looked at a very basic problem concerning ponderomotive force, the orbit of a single particle being
reflected by an electrostatic wave with a monotonic intensity profile, comparing the numerical solution of the
equation of motion with the predictions of averaged Lagrangian theory. While we have concentrated on a
particular theory of the ponderomotive force given by Bauer et al., mainly because it gives an explicit formula
for the force relevant to our problem, the averaged ponderomotive potential is the same as that quoted by other
authors using a variety of methods. Our work shows that for small enough values of the wavenumber the analytic
theory and the numerical solution agree well, but that there are parameter ranges where the analytic formula
encounters a singularity. In some cases the orbit of a particle goes from a region with acceleration down the
wave intensity gradient to one where the acceleration is in the opposite direction. While the analytic theory
due to Bauer et al. can give such uphill acceleration, we show that it cannot give rise to a transition between
downhill and uphill acceleration along a single particle orbit. Indeed, we show that no Lagrangian with an
average potential which is quadratic in the electric field amplitude can produce such a transition. This leads us
to the conclusion that standard theories must, in some regimes, be extended to include higher order terms in the
field amplitude, a problem on which we are currently working. The ponderomotive force is a fundamental idea,
widely applied in plasma physics, so we believe that it is of interest to note that even in a very basic configuration
there are circumstances in which widely used theoretical models do not apply.

4. APPENDIX: NUMERICAL METHODS

The numerical calculations were carried out using Mathcad 15, but could easily be reproduced on Maple, Mathe-
matica or any other mathematical software with ordinary differential equation solvers. Both Adams and adaptive
Runge-Kutta routines were used and shown to give consistent results. In scaled units throughout, the particle
was started from x = 4000 and followed for 104 time steps, sufficient to follow the particle through reflection
and outwards to a sufficient distance for the electric field to be negligible and allowing us to test the symmetry
between outward and inward asymptotic speeds. Only part of the orbit near the reflection point is plotted, since
this is the region of most interest. Along the particle path, 105 data points were taken so that, if necessary,
it could be followed on the scale of the fast oscillations. The average velocity was calculated from a simple
average of the instantaneous velocities at 500 data points on either side of the point of interest. This made the
residual effects of the fast oscillations small, while being over a small enough region to represent a local average.
Changing the width of the averaging interval, but still within the range of a few hundred points on each side,
made no discernable difference to the plots.



ACKNOWLEDGMENTS

This work was supported by the UK Engineering and Physical Sciences Research Council grant EP/N028694/1
“Lab in a bubble” and the UK Science and Technology Facilities Council grant ST/G008248/1. All of the figures
were produced using Mathcad 15 on a standard desktop computer, and the data in the figures can be entirely
generated using the methods specified in the paper.

REFERENCES

[1] A. A. Vedenov, A . V. Gordeev and L. I. Rudakov, Plasma Phys. 9, 719 (1967)

[2] J.R. Cary and A.N. Kaufman, Phys. Rev. Lett. 39, 402 (1977)

[3] G.W. Kentwell, J. Plasma Phys. 34, 289 (1985)

[4] D. Bauer, P. Mulser and W.H. Steeb, Phys. Rev. Lett. 75, 4622 (1995)

[5] I.Y.Dodin and N.J.Fisch, Phys. Rev. E 77, 036402 (2008)


	Introduction
	 Numerical results
	 Conclusions
	 Appendix: Numerical methods

