
An Experimental Comparison of Event Driven and Multi-Threaded Sensor Node
Operating Systems

Cormac Duffy, John Herbert, Cormac Sreenan
Computer Science Department
University College Cork, Ireland

{c.duffy|j.herbert|c.sreenan}@cs.ucc.ie

Utz Roedig
InfoLab21

Lancaster University, UK
u.roedig@lancaster.ac.uk

Abstract

Two different operating system types are currently con-
sidered for sensor networks: event driven and multi-
threaded. This paper compares the two well -known op-
erating systems TinyOS (event driven) and MANTIS (multi-
threaded) regarding their memory usage, power consump-
tion and processing capabilities. TinyOS and MANTIS are
both ported to the DSYS25 sensor platform. Both operat-
ing systems are used to execute the same sensor network
application and the aforementioned parameters of interest
are measured. The results presented in this paper show for
which set of applications each operating system is prefer-
able.

1. Introduction

Currently, operating systems for sensor nodes follow ei-
ther one of two different design concepts, event-driven and
multi-threaded. In event-driven systems every action an op-
erating system has to perform is triggered by an event (e.g.
a timer, an interrupt indicating new sensor readings or an
incoming radio packet). The tasks associated with each
event are processed sequentially until the operating system
is idle and can be sent into an energy-efficient sleep state.
As events are processed in order, expensive context switch-
ing between tasks is not necessary. An example of such
an operating system is TinyOS [1]. The second approach
follows the multi-threaded operating system concept. The
operating system multiplexes execution time between the
different tasks, implemented as threads. While switching
from one thread to another, the current context has to be
saved and the new context must be restored. This consumes
costly resources in the constrained sensor node. An exam-
ple of such an operating system for sensor nodes is MAN-
TIS [2].
It is generally assumed that an event-driven operating

system is very suitable for sensor networks because few re-
sources are needed, resulting in an energy-efficient system
[1]. However, the exact figures are unknown and therefore
this paper quantifies precisely the resource usage. It is also
claimed that a multi-threaded operating system has com-
paratively better event processing capabilities in terms of
meeting processing deadlines [2]. Again, an in-depth anal-
ysis is currently missing and is therefore conducted. For
the comparisons, the event-based system TinyOS and the
multi-threaded system MANTIS both execute the same sen-
sor network applications on the DSYS25 [3] sensor plat-
form. Memory requirements, energy consumption patterns
and the event processing capabilities of the two operating
systems are investigated in this paper. The results presented
can be used to decidewhich type of operating system should
be used for a specific sensor network application. The re-
sults also show that for a number of application areas a
thread-based sensor network operating system is actually
feasible and even preferable.
Historically, there has been much debate on whether an

event-based or multi-threaded architecture is more efficient.
However, none of these discussions consider the sensor net-
work domain which dictates very specific constraints. Ex-
isting work targets only a subset of aspects investigated in
this paper. For example papers analyzing or describing one
specific operating system (e.g. [1, 2, 4]), or publications
comparing only one aspect (e.g. memory usage in [5]). As
each single existing analysis is based on different assump-
tions and experimental setups, it is not possible to extract
an objective comparison. For an objective comparison of
the operating systems, a complete study presented as in this
paper, is required. Due to space restrictions, existing related
work is not discussed in more detail.
The rest of the paper is organized as follows. Section 2

gives an overview of the operating systems TinyOS and
MANTIS. Section 3 describes the test application imple-
ment on our sensor nodes, for the comparative study. Sec-
tion 5 presents the experimental comparison of the operat-
ing systems. Section 7 concludes the paper.

Algorithm 1 TinyOS structure
1: component_A
2: task do(){...}
3: command X(){...}
4: event Y(){...}

5: int_A
6: ...
7: post_task(A)

8: TOSH_run_task()
9: while(TOSH_run_next_task())
10: TOSH_sleep()

2. Sensor Node Operating Systems

In order to compare the event driven and multi-threaded
operating system concepts, a well known and widely used
implementation of each is selected, namely TinyOS and
MANTIS.

TinyOS The operating system and specialized applica-
tions are written in the programming language nesC and are
organized in self-contained components. A simplified view
of this component structure is shown in Alg. 1. Components
consist of interfaces in the form of command and event
functions. Components are assembled together, connect-
ing interfaces used by components to interfaces provided
by others, forming a customized sensor application. The re-
sulting component architecture facilitates event-based pro-
cessing by implementing event-handlers and TinyOS tasks.
TinyOS tasks are deferred function calls and are placed in a
simple FIFO task-queue for execution (see Alg. 1, line 8).
TinyOS tasks are taken sequentially from the queue and are
run to completion. Once running, the TinyOS task can not
be interrupted (preempted) by another TinyOS task. Event-
handlers are triggered in response to a hardware interrupt
and are able to preempt the execution of a currently running
TinyOS task (see Alg. 1, line 5). Event-handlers perform
the minimum amount of processing to service the event.
Further non time-critical processing is performed within a
TinyOS task that is created by the event handler. After all
TinyOS tasks in the task queue are executed, the TinyOS
system enters a sleep state to conserve energy (see Alg. 1,
line 10). The sleep state is terminated if an interrupt occurs.

MANTIS Each task the operating system must support
can be implemented - using standard C - as a separate
MANTIS thread. A simplified view of this thread struc-
ture is shown in Alg. 2. A new thread is initialized and
thread processing is started (line 1). Processing might
be halted using the function mos_semaphore_wait when
a thread has to wait for a resource to become available
(line 3). An interrupt handler (line 4) using the function
mos_semaphore_post (line 5) is used to signal the waiting

Algorithm 2MANTIS structure
1: thread_A
2: while(running)
3: ...;mos_semaphore_wait(A1);...

4: int_A
5: ...;mos_semaphore_post(A1);...

6:dispatch_thread()
7: PUSH_THREAD_STACK()
8: CURRENT_THREAD = readyQ.getThread()
9: CURRENT_THREAD.state=RUNNING

10: POP_THREAD_STACK()

thread that the resource is now available and thread pro-
cessing is resumed. While a thread is waiting on a re-
source to become available, other threads might be acti-
vated or, if no other processing is required, a power sav-
ing mode is entered. Power saving is handled by a thread
called idle-task which is scheduled when no other threads
are active. Thread scheduling is performed within the ker-
nel function dispatch_thread shown in Alg. 2, line 6. This
function searches a data structure called readyQ for the
highest prioritized thread and activates it. When the dis-
patch_thread function is called, the current active thread is
suspended calling PUSH_THREAD_STACK (line 7) which
saves CPU register information. The highest priority thread
is then selected from the readyQ (line 8) and its register
values are restored by the POP_THREAD_STACK function
(line 10). Before the dispatch_thread function is called,
the readyQ structure is updated. Threads that are currently
sleeping or that are waiting on a semaphore (resource)
are excluded from the readyQ. The scheduling through the
dispatch_thread function can be initiated by two different
means. Dispatch_threadis called when a semaphore op-
eration is called (e.g. to let the current thread wait on a
resource). Dispatch_threadis also called periodically by a
time slice timer to ensure processing of all threads accord-
ing to their priority.

3. Evaluation Setup

For the evaluation, TinyOS and MANTIS are ported to
the DSYS25 [3] platform and measurement facilities are in-
tegrated in both operating systems (see [6], for more de-
tailed information on the evaluation setup) . To actually
perform the comparative evaluation, an abstract application
scenario is defined. Depending on a sensor node’s role
within this scenario (leaf node vs. forwarding node) and
the configuration of the scenario itself (high sensing task
vs. small sensing task), a node is stressed differently. The
performance of a single node, exposed to the different stress
situations is measured while using the two different operat-
ing systems. In the following paragraphs, the abstract ap-
plication scenario is motivated and described.

n=3

n=1
n=2

Figure 1. Binary Tree

Application Scenario In many cases, a sensor network is
used to collect periodically obtained measurement data at a
central point (sink or base-station) for further analysis. The
sensor nodes in such a network execute two major tasks.
First a sensor nodes perform a sensing operation and second
the node must forward the gathered data hop-by-hop to the
sink. The execution time of the sensing task will depend on
the nature of the physical phenomenon monitored and the
complexity of the algorithm used to analyze it. Therefore,
the position of the node in such a network and the complex-
ity of the sensing task define the operating system load of
the sensor node.
The complexity of the sensing operation depends on the

phenomenon monitored, the sensor device used and the
data preprocessing required. As a result, the operating sys-
tem can be stressed very differently. If, for example, an
ATMEGA128 CPU with a processing speed of 4Mhz is
considered, a simple temperature sensing task processed
through the Analog to Digital Converter can be performed
in less than a millisecond. If the same device is used in con-
junction with a camera, image processing might take up to
100ms [7] before a decision is made. Note that a long sens-
ing task can be split-up into several sub-tasks but in practice
this is not always possible[7].
The complexity of a packet forwarding operation de-

pends on the transceiver type, the MAC-layer and routing
protocols used. On the DSYS25 platform with a Nordic
transceiver approximately 4000 clock cycles are necessary
to read a packet from the transceiver, perform routing and
re-send the packet over the transceiver. The amount of
packet forwarding tasks depends obviously on the node un-
der consideration and the current network topology.

Topology It is assumed that a binary tree topology is
formed in the network (see Fig. 1). Depending on the po-
sition n in the tree, a sensor node might process varying
amounts of packets. In the experiments, the behavior of a
single node at all possible positions n is emulated and mea-
sured by applying the sensing pattern and network traffic as
described next.

Sensing Pattern A homogeneous activity in the sensor
field is assumed for the abstract application scenario. Each
sensor gathers data with a fixed frequency fs. Thus, ev-
ery ts = 1/fs a sensing task of the duration ls has to be
processed. The duration ls is variable between ls = 4000

OS Program Size (KB) Required RAM (B)
TinyOS 9 283
MANTIS 13.1 287

Table 1. Memory Usage

and ls = 400000 clock cycles depending on the type of
sensing task under consideration (Which corresponds to
1ms/100ms on a 4MHz CPU).

Traffic Pattern Depending on the position n of a node
in the tree, varying amounts of forwarding tasks have to
be performed. It is assumed that no time synchronization
among the sensors in the network exists. Thus, even if each
sensor produces data with a fixed frequency, data forward-
ing tasks are not created at fixed points in time. The ar-
rival rate λn of packets at a node at tree-level n is modeled
as a Poisson process. As the packet forwarding activity is
related to the sensing activity in the field, λn is given by:
λn = (2n

− 1) · fs. It is assumed that the duration (com-
plexity) lp of the packet-processing task, is lp = 4000 clock
cycles.

4. Memory Usage

The memory footprint of the operating system has to be
as small as possible. The more complex an application is
(with respect to memory requirements), the more likely a
more capable Memory/CPU chip will be required to host
the application.
In order to determine the memory usage of each oper-

ating system, we use the GNU project binary utility avr-
size. Avr-size is a flash image reader that outputs the pro-
gram size and static memory (global variables) required
by each operating system. However, the compilation pro-
cedure for both operating systems is somewhat different.
A specialized custom compiler (nesC) provided with the
TinyOS framework, exploits the component-based architec-
ture to include only components required by the applica-
tion’s wiring schema in the compiled program image. Fur-
thermore, the nesC compiler can deduce and remove any
unused component functions within the application. Thus,
to provide a fair memory comparison of both operating
systems, the MANTIS application and operating system is
stripped before compiling of all functionality that is not
used for the abstract application .

Results The results in Table 1 show that the MANTIS
operating system takes 30% extra programmable memory
space compared to the TinyOS operating system. It has to
be noted that both operating systems require additional flash
memory to cater for the stack which is not shown in Table 1.

Furthermore, the MANTIS scheduler dynamically allocates
a memory pool to store the stack and processor registers for
each thread.
The results show that both operating systems have very

similar memory requirements. Thus, conventional micro-
processors combining CPU and memory can normally hold
either of the investigated operating systems.

5. Event Processing

It is assumed that the packet-processing task within the
nodes has priority so that deadlines regarding packet for-
warding can be met. Thus, in the MANTIS implementa-
tion, the packet-processing task has a higher priority than
the sensing task. In the TinyOS implementation, no prior-
itization is implemented as this feature is not provided by
the operating system.
To characterize processing performance of the operating

system, the average task execution time Et of the packet
forwarding task, is measured. During the experiment, J
packet-processing times ej are recorded. To do so, the task
start time estart and the task completion time estop are mea-
sured and the packet-processing time is recorded as e =
estop − estart. The average task execution time Et is cal-
culated at the end of the experiment as: Et =

∑
ej/J . For

each tree position n, the experiment is run until J = 25000
packet-processing events are recorded.

Results In the experiment, the average task execution
time Et is determined for TinyOS and MANTIS support-
ing the abstract application scenario (see Fig. 2).
Where MANTIS is used, it can be observed that the av-

erage packet-processing time is independent of the sensing
task execution time. Furthermore, Et is also independent
from the position n of the node in the tree. The average
processing time increases slightly, under a heavy load. This
is due to the fact that under heavy load packet forwarding
tasks have to be queued (see Fig. 2 a)).
Where TinyOS is used, the average processing time for

the packet forwarding task Et depends on the length of the
sensing ls of the sensing task. In addition, under heavy
load the queuing effects of the packet forwarding tasks also
contribute somewhat to the average processing time (see
Fig. 2 b)).
The variance in the packet-processing time Et is also

recorded but not shown due to space restrictions. It has to be
noted that this variance is significantly smaller in MANTIS
than in TinyOS (e.g. with n = 8 and ls = 75ms, there is a
8.3ms variation of packet processing time in TinyOS com-
pared with a 0.4ms variation in MANTIS). Thus, MANTIS
is better able to support scenarios which require predictable
processing behavior.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 3 4 5 6 7 8

A
ve

ra
g
e
 P

ro
ce

ss
in

g
 T

im
e
 E

t (
m

s)

Tree Position [n]

MANTIS Et, ls=1ms
MANTIS Et, ls=5ms

MANTIS Et, ls=10ms
MANTIS Et, ls=25ms
MANTIS Et, ls=50ms
MANTIS Et, ls=75ms

MANTIS Et, ls=100ms

a) MANTIS

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 3 4 5 6 7 8

A
ve

ra
g
e
 P

ro
ce

ss
in

g
 T

im
e
 E

t (
m

s)

Tree Position [n]

TinyOS Et, ls=1ms
TinyOS Et, ls=5ms

TinyOS Et, ls=10ms
TinyOS Et, ls=25ms
TinyOS Et, ls=50ms
TinyOS Et, ls=75ms

TinyOS Et, ls=100ms

b) TinyOS

Figure 2. Average packet-processing time Et

The thread prioritization capability of MANTIS is
clearly visible in the experimental results. Packet process-
ing times are independent of the concurrently executed and
lower priority sensing task. In TinyOS, sensing and packet
forwarding task delays are coupled, and the influence of the
sensing activity on the packet forwarding activity is clearly
visible.

6. Energy Consumption

To evaluate power-efficiency, This study investigates the
available idle time in which low-power operations can be
scheduled. Thus the comparative effectiveness of specific
power management policies can be gauged on the amount
of potential low-power (idle) time available.
In the experiment, the abstract application scenario is ex-

ecuted by the sensor node running TinyOS or MANTIS.
The duration of the experiment T and the duration ik of
K idle time periods during the experiment is recorded. i
is defined as i = istop − istart . All idle periods ik are
summarized and the percentage idle time, It, the percent
of experiment time, in which the processor is idle, which
is calculated as follows: It = (

∑
ik/T) · 100. Again, for

each tree position n, the experiment is run until J = 25000
packet-processing events are recorded.

Results In the first experiment, the percentage idle time
It is determined for TinyOS and MANTIS supporting the
abstract application scenario. (see Fig. 3).

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8

P
e
rc

e
n
ta

g
e
 I
d
le

 T
im

e
 I

t (
%

 o
f
T

)

Tree Position [n]

MANTIS Ik, ls=1ms
MANTIS Ik, ls=5ms

MANTIS Ik, ls=10ms
MANTIS Ik, ls=25ms
MANTIS Ik, ls=50ms
MANTIS Ik, ls=75ms

MANTIS Ik, ls=100ms

a) MANTIS

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8

P
e
rc

e
n
ta

g
e
 I
d
le

 T
im

e
 I

t (
%

 o
f
T

)

Tree Position [n]

TinyOS Ik, ls=1ms
TinyOS Ik, ls=5ms

TinyOS Ik, ls=10ms
TinyOS Ik, ls=25ms
TinyOS Ik, ls=50ms
TinyOS Ik, ls=75ms

TinyOS Ik, ls=100ms

b) TinyOS

Figure 3. Percentage idle time It

The time spent in idle mode drops exponentially for both
operating systems with the increasing node position in the
tree described by the parametern. This behavior is expected
as the number of packet tasks increases accordingly. Less
obvious is the fact that the available idle time drops faster
in MANTIS than in TinyOS. The fast drop in idle time is
caused by the context switches in the MANTIS operating
system. The more packet forwarding tasks are created, the
more likely it is that a sensing task is currently running
when a packet interrupt occurs. Subsequently, a context
switch to the higher prioritized forwarding task is needed.
It is clearly visible that TinyOS is more energy efficient

than MANTIS; especially under a high system load.

7. Conclusion

Both operating systems fit on standard microprocessors
combining CPU and memory. However MANTIS uses
30% more space, but both systems are well within rea-
sonable bounds for today’s microprocessors. The experi-
mental results show that MANTIS is more predictable than
TinyOS. Specifically, the packet forwarding task execution
time in MANTIS has a low variation and is independent
of other activity such as the sensing task. Thus, MANTIS
would be preferable in situations that need deterministic and
timely processing. However, as the experiments show, the
MANTIS system is not as power-efficient as TinyOS. Thus,
TinyOS would seem preferable if energy consumption is
deemed to be of primary importance.
In general, the experiments confirm what one would ex-

pect. However, an interesting and not obvious fact is high-
lighted by the experiments. If the system is not loaded
(leaf node with n = 1 and a sensing task with the size of
ls = 1ms) a difference of only 0.1% in idle time is mea-
sured (compared to a difference of 6.9% under heavy load
with n = 8 and ls = 100ms). Thus, MANTIS would be
a good choice in cases where the sensor network is idle for
long periods and suddenly high activity is encountered that
requires timely processing of sensor information. For these
kinds of applications, MANTIS combines both important
sensor network design goals, i.e. energy efficiency and pre-
dictive behavior.

References

[1] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister, “System architecture directions for networked
sensors,” in ACM SIGOPS Operating Systems Review,
vol. 34, pp. 93–104, December 2000.

[2] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth,
B. Shucker, C. Gruenwald, A. Torgenson, and R. Han,
“MANTIS OS: An embedded multithreaded operat-
ing system for wireless micro sensor platforms,” ACM
kluwer Mobile Networks & Applications Journal, spe-
cial Issue on Wireless Sensor Networks, August 2005.

[3] A. Barroso, J. Benson, T. Murphy, U. Roedig,
C. Sreenan, J. Barton, S. Bellis, B. O’Flynn, and
K. Delaney, “Demo abstract: The DSYS25 sensor plat-
form,” in 2nd international conference on Embedded
networked sensor systems, pp. 314–314, November
2004.

[4] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a
lightweight and flexible operating system for tiny net-
worked sensors,” in 29th Annual IEEE International
Conference on Local Computer Networks, pp. 455–462,
November 2004.

[5] C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivas-
tava, “A dynamic operating system for sensor nodes,” in
3rd International Conference on Mobile Systems, Ap-
plications, and Services, pp. 117–124, June 2005.

[6] C. Duffy, U. Roedig, J. Herbert, and C. Sreenan, “A
performance analysis of TinyOS and MANTIS,” Tech.
Rep. CS-2006-27-11, University College Cork, Ireland,
November 2006.

[7] M. Rahimi, R. Baer, O. I. Iroezi, J. C. Garcia, J. Warrior,
D. Estrin, and M. Srivastava, “Cyclops: In situ image
sensing and interpretation in wireless sensor networks,”
in In proc. 3rd international conference on Embedded
Networked Sensor Systems,, pp. 192–204, November
2005.

