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TOF-LisH-PLL motifs defines FOP family proteins; some members are involved in 

flagellum assembly. The critical role of FOP family protein FOR20 is poorly 

understood. Here, we report relative localisations of the four FOP family proteins in 

parasitic Trypanosoma brucei: TbRP2, TbOFD1 and TbFOP/FOP1-like are mature 

basal body proteins whereas TbFOR20 is present on pro- and mature basal bodies – 

on the latter it localises distal to TbRP2. We discuss how the data, together with 
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published work for another protist Giardia intestinalis, informs on likely FOR20 

function. Moreover, our localisation study provides convincing evidence that the 

antigen recognised by monoclonal antibody YL1/2 at trypanosome mature basal 

bodies is FOP family protein TbRP2, not tyrosinated α-tubulin as widely stated in the 

literature. Curiously, FOR20 proteins from T. brucei and closely related African 

trypanosomes possess short, negatively-charged N-terminal extensions absent from 

FOR20 in other trypanosomatids and other eukaryotes. The extension is necessary 

for protein targeting, but insufficient to re-direct TbRP2 to probasal bodies. Yet, 

FOR20 from the American trypanosome T. cruzi, which lacks any extension, localises 

to pro- and mature basal bodies when expressed in T. brucei. This identifies 

unexpected variation in FOR20 architecture that is presently unique to one clade of 

trypanosomatids.  

 

Keywords: Basal body; ciliogenesis; FOP; protein targeting; Trypanosoma brucei; YL1/2. 

 

 

Introduction 

 

In eukaryotic cells, cilia (or flagella) are often central to cell swimming, cell feeding, 

reproduction, and sensory perception. Length (cilia tend to be thought of as shorter), number 

(large numbers of cilia tend to be arrayed across cell surfaces whereas examples of 

flagellate protists with more than two flagella are fewer than taxa possessing one flagellum 

or two flagella), and principal mode of motion (an oar-like ciliary waveform versus more 

whip-like flagellar beating) are the obvious determinants commonly used for distinguishing 

cilia from flagella. Yet, these terms refer essentially to variants of the same organelle that 

have as their defining structure a microtubule axoneme (Moran et al. 2014). 

In the classic ‘9+2’ configuration, axonemes are composed of nine outer-doublet 

microtubules surrounding two singlet microtubules. Irrespective of the number of outer-

doublet microtubules present (structures with as few as three outer-doublets have been 

described (Prensier et al. 2008)), axoneme elongation occurs from a barrel-shaped 

microtubule organising centre (MTOC) or centriole, which in the context of flagellum 

assembly is better described as a basal body. De novo basal body biogenesis is known, but 

in many organisms a probasal body, or pro-centriole, comprised of triplet microtubules, 
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rather than doublets, is physically associated with a mature basal body (Fritz-Laylin et al. 

2016). Thus, in trypanosomatids, the flagellate parasitic protists featured in this work, 

probasal body-to-basal body maturation occurs when doublet microtubules extend from A- 

and B-tubules of the triplets of the probasal body, thereby forming the transition zone of the 

mature basal body (Vaughan and Gull 2015). The transition zone is capped at the distal end 

by a basal plate from which the axoneme proper subsequently extends by a process that, as 

in many other flagellate cells, is dependent upon an intraflagellar transport (IFT) system 

(Absalon et al. 2008; Davidge et al. 2006). Coincident with trypanosome probasal body 

maturation, biogenesis of two new probasal bodies and their association to either the newly 

matured basal body or the basal body matured in a previous cell cycle, also occurs 

(Vaughan and Gull 2015). 

Estimates derived from the proteomics of organelles isolated from diverse taxa 

suggest 200-300 different proteins are likely to be bona fide components of mature basal 

bodies (and their associated appendages) e.g. (Keller et al. 2005; Kilburn et al. 2007). Such 

estimates provide an interesting contrast with bioinformatics-based comparisons that 

indicate structural conservation and complexity of centriole/basal body symmetry across the 

breadth of eukaryotic evolution may be dependent upon only a handful of conserved 

proteins (Carvalho-Santos et al. 2011; Hodges et al. 2010). One basal body/centriole protein 

conserved in evolutionarily diverse flagellate eukaryotes is FOR20. 

The only recognisable architectural features of the small FOP-related protein of 20 

kDa (or FOR20) are also shared with other FOP family proteins (e.g. FOP, TONNEAU1 and 

OFD1), namely N-terminally localised TOF, LisH and ‘PLL’ motifs (Sedjai et al. 2010). The 

protein was initially described as present at the distal end of the basal body in the ciliate 

Tetrahymena thermophila (where it is known as Bbc20 (Kilburn et al. 2007)) and 

subsequently as a component of the granular pericentriolar satellites that surround the 

centrosome (a centriole-bearing MTOC) in animal cells (Fritz-Laylin and Cande 2010, Sedjai 

et al. 2010). FOR20 is required for assembly of the non-motile primary cilium that extends as 

a sensory antenna from the surface of many animal cell types (Sedjai et al. 2010). In such 

cells, primary cilium formation occurs following centrosome relocation from a normally 

central intracellular position to the cortical cytoskeleton and the maturation of the mother 

centriole to a basal body (Dawe et al. 2007) although how FOR20 contributes to primary 

cilium assembly is not certain. Experimental analysis by gene-specific RNA interference 

(RNAi) in the ciliate Paramecium indicates its FOR20 is a stable component of the ciliate 

basal body, rather than subject to turn over, and is required for basal body docking at the 

plasma membrane and/or transition zone maturation (Aubusson-Fleury et al. 2012). Similar 
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to Bbc20 in Tetrahymena and consistent with a proposed role in membrane docking, 

Paramecium FOR20 also localises to the distal end of both older (ciliated) and their 

associated non-ciliated, younger basal bodies (Aubusson-Fleury et al. 2012). 

 Generally speaking, FOP family proteins are found in flagellate eukaryotes, but not in 

organisms that lack a capacity to build a flagellum – acentriolar plants are the exception to 

this rule. In each of the taxa examined thus far, the FOP protein family is small in number 

(Azimzadeh et al. 2008; Hodges et al. 2010) and among flagellates the other family 

members are also centriolar and required for flagellum assembly  (André et al. 2014; 

Aubusson-Fleury et al. 2012; Sedjai et al. 2010; Singla et al. 2010). In acentriolar plant cells 

another FOP-related protein, TONNEAU1, is found; it is required for organisation of cortical 

microtubule arrays and interacts with the classic MTOC protein centrin (Azimzadeh et al. 

2008; Spinner et al. 2010). In kinetoplastid protists (which include the parasitic 

trypanosomatids), four proteins comprise the FOP family: three conserved family members, 

FOP/FOP1-like, FOR20 and OFD1, plus a lineage-specific protein known as TbRP2 in the 

African trypanosome Trypanosoma brucei (André et al. 2014). In this lineage-specific protein 

the TOF-LisH-PLL motif sequence lies, apparently uniquely, upstream of a tubulin cofactor C 

domain – although there is indication of a conserved requirement for a tubulin cofactor C 

domain-containing protein per se in flagellum assembly. Thus, TbRP2 is found at mature 

basal bodies and in T. brucei is required for assembly of a full-length flagellum and an intact 

axoneme (André et al. 2014; Stephan et al. 2007). Intriguingly, we reported recombinant 

TbRP2 is recognised by monoclonal antibody YL1/2 (André et al. 2014). YL1/2 is classically 

used to detect tyrosinated -tubulin in eukaryotic cells, including by many in the 

trypanosomatid community. There is no doubt that YL1/2 recognises T. brucei tyrosinated -

tubulin, but likely additional recognition of TbRP2 calls into question whether there is a 

mature basal body pool of tyrosinated -tubulin specifically recognised by YL1/2. 

Peculiarities of the kinetoplastid FOP family are not restricted to the presence of a 

lineage-specific family member: the only candidate orthologue of FOP, which in animal cells 

is required for ciliogenesis (Lee and Stearns 2013), is a protein we term FOP/FOP1-like and 

is required in T. brucei for assembly of an essential (lineage-specific) extra-axonemal 

structure, the paraflagellar rod, but has no discernible effect on axoneme assembly (André et 

al. submitted). Among African trypanosome species FOR20 is predicted to encode a protein 

possessing a predicted short N-terminal extension not seen in either other kinetoplastids or 

other eukaryotes. Here, we demonstrate the N-terminal extension predicted for T. brucei 

FOR20 is real, rather than an artefact of gene annotation, and essential but not sufficient for 

protein localisation to both pro- and mature basal bodies throughout the trypanosome cell 
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cycle. Interestingly, FOR20 from the distantly related American trypanosome T. cruzi, which 

lacks an N-terminal extension, is also targeted to pro- and mature basal bodies when 

expressed in T. brucei. Collectively, data presented here provide new insights into the 

functional diversification of the conserved, yet small FOP protein family, the spatial 

organisation of trypanosome basal body biogenesis, and provide further indication that 

TbRP2 is the basal body antigen specifically recognised by YL1/2. 

 

Results 

 

TbFOR20 is Present at Pro- and Mature Basal Bodies 

The T. brucei FOR20 orthologue is encoded by Tb927.11.3090. Expressed from an 

endogenous chromosomal locus as an N-terminal fusion with YFP, TbFOR20 is targeted to 

both pro- and mature basal bodies, with YFP fluorescence lying distal to the indirect 

immunofluorescence signal observed using monoclonal antibody BBA4 (Fig. 1A). BBA4 

recognises an unknown trypanosome antigen from the proximal end of pro- and mature 

basal bodies (Woodward et al. 1995); thus YFP::TbFOR20 localises to, or towards, the distal 

end of probasal bodies and is retained on mature basal bodies. In trypanosomatids, pro- and 

mature basal bodies are physically attached at their proximal ends to the mitochondrial 

genome (or kinetoplast) by a complex filament network, the tri-partite attachment complex 

(TAC), that traverses outer and inner mitochondrial membranes (Ogbadoyi et al. 2003); thus, 

the fluorescence from 6-diamidino-2-phenylindole (DAPI)-stained kinetoplasts lies proximal 

the BBA4-immunolabelled basal bodies. 

The relative position of YFP::TbFOR20 on mature basal bodies (Fig. 1B) was 

determined by dual fluorescence experiments with monoclonal antibody YL1/2, which 

recognises the C-terminal ‘D-D-F’ and ‘E-E-Y’ epitopes of mature basal body localised 

TbRP2 and/or tyrosinated α-tubulin, respectively (André et al. 2014; Wehland et al. 1984). 

Here we performed immunofluorescence analysis of detergent extracted cytoskeletons (Fig. 

1B) and isolated flagella (Fig. 2). On cytoskeletal images there was ambiguity as to whether 

YL1/2 lay distal, proximal or coincident with YFP::TbFOR20. Detergent and NaCl extraction 

of T. brucei cells yields axonemes plus associated paraflagellar rod, transition zone 

microtubules, and basal bodies. Analysis of flagella isolated by detergent and then NaCl 

extraction revealed spatial separation of YL1/2 immunofluorescence and YFP::TbFOR20 

signals, with the former lying proximal to YFP::TbFOR20 (Fig. 2A). In our earlier work (André 

et al. 2014) we proposed that at mature trypanosome basal bodies TbRP2 is an antigen 
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recognised by YL1/2. Given the spatial resolution of YL1/2 immunofluorescence and 

YFP::TbFOR20 signals we were able to further question the identity of the trypanosome 

antigen(s) recognised by YL1/2. Indirect immunofluorescence of isolated flagella using a 

specific anti-TbRP2 antibody (André et al. 2014) revealed that on mature basal bodies 

TbRP2 is also proximal to YFP::TbFOR20 (Fig. 2D), consistent with the idea that YL1/2 

recognises TbRP2 rather than tyrosinated α-tubulin. The final piece of experimental 

evidence that YL1/2 indeed specifically recognises TbRP2 as its basal body antigen is the 

observation that YL1/2 detects by immunoblot not merely recombinant TbRP2 (as we 

reported previously, André et al. 2014,) but also native TbRP2 from trypanosome extracts 

(Fig. 3). We return to this point in the Discussion. 

Analysis of cells from early stages of the cell division cycle, when maturation of the 

probasal body assembled in the previous cell cycle occurs and elongation of the new 

flagellum begins, indicated duplication of YFP::TbFOR20 fluorescence signals was 

coincident with new probasal body biogenesis and kinetoplast replication (Fig. 1C). 

Localisation of YFP::TbFOR20 to both pro- and mature basal bodies was then retained 

throughout the remainder of the cell cycle (data not shown). In terms of length and motif 

architecture full length TbFOR20 closely resembles a C-terminal truncated variant of TbRP2, 

TbRP2134-463::myc, which localises only to mature basal bodies in T. brucei (André et al. 

2014). To confirm pro- and mature basal body localisations for YFP::TbFOR20 was not an 

artefact of the N-terminal YFP tag, we also expressed in T. brucei TbFOR20 with a C-

terminal myc-epitope (TbFOR20::myc). Again, tagged protein was targeted to both pro- and 

mature basal bodies (Fig. 1D). Moreover, on isolated flagella TbFOR20::myc, as with 

YFP::TbFOR20, lies distal to TbRP2 (Fig. 2E). Collectively, our localisation data indicate 

neither the nature nor the position of the tag influence protein localisation. 

 

An N-terminal Extension Particular to FOR20 from African Trypanosome Species 

We looked for differences between TbFOR20, TbRP2, and the other two trypanosome 

proteins with coupled TOF-LisH motifs (TbOFD1, TbFOP/FOP1-like, which are both mature 

basal body proteins; Fig. 2B-C) that could offer insight into why only TbFOR20 is additionally 

targeted to probasal bodies, we noted (i) the distance from start methionine to the TOF motif 

is approximately twenty amino acids longer in the protein encoded by the TbFOR20 gene 

model and (ii) this short N-terminal extension, enriched for negatively charged amino acids, 

appeared to be unique to mammal-infective African trypanosome species. Thus, the start 

methionine for FOR20 orthologues from a taxonomically diverse range of flagellate 

eukaryotes, a free-living trypanosomatid relative, Bodo saltans, and for other 
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trypanosomatids, including the American trypanosome species T. cruzi and T. rangeli, plus 

their phylogenetically close relation T. grayi1 (Kelly et al. 2014), and different Leishmania 

species all lie immediately upstream of the TOF motif (Fig. 4). We checked whether in the 

gene models predicted for FOR20 from T. cruzi and L. major (where, along with T. brucei, 

genome assembly and annotation is possibly the most exhaustive) the start codon could 

have been called incorrectly, and that the open reading frame therefore extended upstream 

to an alternative start codon. We found no evidence to suggest that this was the case. 

Moreover, a near absence of introns in trypanosomatid genomes means examples of cis-

splicing are extremely rare. Thus, we believe the start codons predicted for FOR20 

orthologues from T. cruzi and Leishmania, and by inference other trypanosomatids, are 

correct. 

In TbFOR20, we also noted a methionine immediately upstream of the TOF motif that 

could conceivably provide the start codon for a shorter protein, although this downstream 

methionine is not present in the syntenic orthologues from two other African trypanosome 

species, T. congolense and T. vivax, for which nuclear genome sequences are available. 

Nonetheless, to confirm the authenticity of the predicted start codon for TbFOR20 we 

compared the localisation of C-terminally myc-tagged TbFOR20 variant translated from the 

downstream methionine (TbFOR201-21::myc) with the localisations of full length 

TbFOR20::myc and YFP::TbFOR20 (in which YFP was fused in frame with the upstream 

methionine). Despite expression from a strong, doxycycline-inducible procyclin transcription 

promoter, TbFOR201-21::myc did not localise to pro- or mature basal bodies, but instead 

accumulated throughout the cell body (Fig. 5A). Thus, the short N-terminal extension unique 

to FOR20 from mammal-infective African trypanosome species is essential for basal body 

targeting, and moreover its role in basal body targeting is not masked by fusion of TbFOR20 

at its N-terminus to YFP.  

To query the possible structural conformation adopted by the N-terminal extension, 

we submitted TbFOR20 to analysis at the Phyre2 web portal (Kelley et al. 2015). The α-

helical conformations of the TOF and LisH motifs were accurately predicted and an equally 

confident prediction of disorder was noted for the short trypanosome FOR20 N-terminal 

extension (Fig. 6). Limited site directed mutagenesis within TOF and LisH motifs of 

TbFOR20 revealed that both motifs were required for efficient basal body targeting. Three 

site-directed mutants were examined (E37A, F54A, Y88A; Fig. 7): for the E37A mutation 

overall protein expression levels were lower than for the other two site-directed mutants 

(Supp. Fig. 1B) and basal body targeting was completely abrogated (Fig. 7A). For F54A and 

                                                           
1 Although T. grayi is a parasite of African crocodiles. 
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Y88A mutations, where steady state accumulation of protein was much higher than for the 

E37A mutation, some protein was present at the basal/probasal body region (Fig. 7B-C) in 

detergent-extracted cytoskeletons although the localisation did not replicate the basal 

body/probasal body localisation seen for both YFP::TbFOR20 and TbFOR20::myc (Fig. 1) in 

that the typical two-dot basal/probasal body TbFOR20 signals were not seen. Instead a 

single focus or sometimes multiple foci of TbFOR20 fluorescence was observed; where a 

single TbFOR20 signal was seen this was often offset from the mature basal body signal of 

TbRP2. The images shown in Fig. 7 were captured using identical acquisition parameters. 

Since F54A and Y88A mutant proteins readily accumulated in the cytoplasm of intact cells 

the representative localisation data (Fig.7B-C) is also suggestive of inefficient protein 

targeting to pro- and mature basal bodies. 

 

TbFOR20 N-terminal Extension is Insufficient to Re-target TbRP2134-463::myc 

To investigate further the possible role of the extension in TbFOR20 and the orthologues 

from African trypanosome species closely related to T. brucei, we determined whether the 

addition of the N-terminal 21 amino acids from TbFOR20 to amino acids 2-133 of TbRP2 

would be sufficient to direct the protein chimera TbFOR2022-151::RP21/134-463::myc to both 

pro- and mature basal bodies in T. brucei – since TbRP2134-463::myc closely resembles 

TbFOR20 in length and motif architecture and incorporates efficiently into mature basal 

bodies (André et al. 2014). Despite efficient expression of protein, localisation to mature 

basal bodies only, was observed throughout the cell division cycle (i.e. at the start of the cell 

cycle when cells possess one flagellum, one probasal body, one nucleus and one 

kinetoplast (1K1N); following kinetoplast replication but pre-mitosis when cells possess two 

flagella, two probasal bodies and one nucleus (2K1N); and post-mitosis (2K2N)) (Fig. 5B). 

 

Heterologously Expressed T. cruzi FOR20 (with no Extension) Localises to Pro- and 

Mature Basal Bodies in T. brucei 

In a final set of targeting experiments we asked where in a T. brucei cell would a 

trypanosomatid FOR20 in which an N-terminal extension is not normally present be found 

when expressed heterologously. For this analysis we amplified by PCR the FOR20 open-

reading frame from T. cruzi (Sylvio X10 strain) and cloned the resulting amplicon into HindIII-

XhoI-digested expression plasmid pDEX377TbRP2::myc such that TcFOR20 would be 

expressed with a C-terminal myc-epitope tag in T. brucei. Dual immunofluorescence studies 
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with either BBA4 (Fig. 5C) or affinity-purified anti-TbRP2 antibodies (Fig. 5D) indicated that 

despite the absence of the N-terminal extension seen in TbFOR20, TcFOR20 is readily 

incorporated into pro- and mature basal bodies. The images shown in Fig. 5C-D are of 

detergent-extracted cytoskeletons, thereby confirming the stable incorporation of TcFOR20 

into T. brucei basal bodies. 

 

Discussion 

 

In a wider evolutionary context trypanosomatids and their free-living kinetoplastid relatives 

belong to the eukaryotic super group Excavata. Widely accepted as evolutionarily divergent 

unicellular eukaryotes (Akiyoshi and Gull 2013; Hampl et al. 2009; Katz and Grant 2015; 

Rogozin et al. 2009), cell shape and morphogenesis in these organisms is defined by a 

microtubule-based cytoskeleton. Extensive cytoskeletal remodelling and major alterations in 

cell morphology are observed during generally complex trypanosomatid life cycles (Sharma 

et al. 2008; Peacock et al. 2014) although changes in expression of just a single regulatory 

protein can control the developmental pattern of morphogenesis undertaken by T. brucei in 

its tsetse fly vector (Kolev et al. 2012). Gene duplication events and variations in the 

abundance of some individual cytoskeletal proteins also provide stage-specific regulation or 

life stage-relevant influences on trypanosome morphology (Hayes et al. 2014; Olego-

Fernandez et al. 2009; Portman and Gull 2014; Sunter et al. 2015; Vedrenne et al. 2002). 

Differences between trypanosomatids with respect to domain or motif architectures in a few, 

lineage-specific cytoskeletal proteins have also been reported (e.g. Vaughan et al. 2008). 

Identification of a curious N-terminal extension in FOR20 orthologues from mammal-infective 

African trypanosomes not evident in any other eukaryote and enriched in acidic amino acids, 

adds a further molecular variation to our understanding of the sculpture and evolution of 

trypanosomatid cytoskeletons. Yet, trypanosomatids also provide tractable models for 

studying cytoskeletal processes conserved widely in eukaryotic evolution. Flagellum 

assembly, structure and function provide prime examples of where trypanosomes provide a 

useful model system for interrogating conserved gene function (Broadhead et al. 2006; 

Vincensini et al. 2011).  

 

Probing FOR20 Function and Localisation 

FOR20 localisation and function was previously studied in the ciliate Paramecium tetraurelia 

(Aubusson-Fleury et al. 2012; Bengueddach et al. 2017). Differences in basal body 
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assembly and maturation processes between T. brucei and P. tetraurelia are potentially 

informative in questioning FOR20 function. In both Paramecium and trypanosomatids, a 

non-ciliated basal body is physically associated with a mature basal body from which an 

axoneme is extended. In ciliates, the basal body transition zone is present and docked at the 

plasma membrane, irrespective of whether the basal body is ciliated or not (Aubusson-

Fleury et al. 2012; Tassin et al. 2015). FOR20 is present at or immediately above the 

terminal plate (the most proximal boundary) of the ciliate transition zone of both ciliated and 

non-ciliated Paramecium basal bodies (Aubusson-Fleury et al. 2012). The distal region of 

the transition zone in non-ciliated basal bodies is subject to re-modelling coincident with the 

start of axoneme elongation (Aubusson-Fleury et al. 2012; Tassin et al. 2015). In contrast, T. 

brucei probasal bodies form orthogonal to their associated mature basal body. New probasal 

bodies form early in the cell cycle, coincident with maturation of the probasal body formed in 

the previous cell cycle, and re-orientate from orthogonal to parallel with the associated 

mature basal body prior to mitosis (~0.4 of a cell cycle later). Even when reoriented there is 

clearly a region of cytosol between the distal end of the probasal body and the flagellar 

pocket membrane (e.g. Höög et al. 2014; Lacomble et al. 2009). Following reorientation, the 

transition zone forms in the next cell cycle, as doublet microtubules extend from the triplet 

microtubule barrel (Vaughan and Gull 2015). Transition zone extension is accompanied by 

transitional fibre formation, membrane docking and continues with elongation of the 

axoneme proper (Lacomble et al. 2010; Woodward et al. 1995). In our view, early 

recruitment of TbFOR20 to the distal end of orthogonal trypanosome probasal bodies and 

the distance between the re-orientated probasal bodies and the plasma membrane argue 

against a direct role for little-understood FOR20 in basal body-membrane docking, or at least 

that a role for FOR20 in docking is not conserved in all flagellate eukaryotes. We also note 

there is no evidence of motifs or domains associated with protein-lipid/membrane interaction 

seen in FOR20 proteins. 

Additional to studying TbFOR20 localisation, we also subjected TbFOR20 to gene-

specific RNAi. Despite ~90% reduction in YFP::TbFOR20 detectable by immunoblot 

(Supplementary Material Fig. S1E), no morphology phenotype was discernible over the 

course of six successive cell cycles -  normally ample enough time for phenotypes to 

develop following RNAi against essential flagellum or basal body components. Failure to 

observe any RNAi phenotype may indicate that the small amount of FOR20 still produced is 

sufficient for normal cell function, a critical importance for TbFOR20 only in other life cycle 

stages – our experiments were all performed with cultured procyclic trypomastigotes, which 

normally replicate within a tsetse fly midgut – or functional redundancy. We note that a 

previous genome-wide survey of gene function also failed to elicit a TbFOR20 RNAi 
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phenotype in either procyclic or pathogenic bloodstream form T. brucei (Alsford et al. 2011). 

Further clues to the role(s) of FOR20 in flagellum assembly or function, however, perhaps 

comes from the localisation of FOR20 in Giardia intestinalis, another excavate protist. Here, 

hemagglutinin-tagged Giardia FOR20 localises along the length of paraflagellar dense rods 

associated with the cytoplasmic regions of axonemes that form anterior, posterior-lateral and 

immotile caudal flagella (Lauwaet et al. 2011). Using transmission electron microscopy, 

Hoeng et al. (2008) demonstrated the cytoplasmic regions of Giardia axonemes, which run 

for a considerable distance through the cytoplasm before exit from the cell body, do not 

correspond to elongated transition zones, but instead exhibit conventional ‘9+2’ architecture. 

Thus, localisation of FOR20 orthologues in both T. brucei and G. intestinalis are not 

consistent with conservation of a direct role for FOR20 in basal body-membrane docking. 

Given its small size and paucity of recognisable domain architecture (other than TOF-LisH 

motifs, which assume α-helical secondary structure and mediate protein oligomerisation 

(Mikolajka et al. 2006; Sedjai et al. 2010)), it appears unlikely that FOR20 exhibits any 

intrinsic enzymatic activity. FOR20 also stands alone among FOP family proteins in that the 

protein lacks extensive amino acid sequence and domain architecture downstream of N-

terminal TOF-LisH-PLL motifs. Conceivably, FOR20 acts as an adapter or linking protein for 

scaffolding and/or stabilisation of other proteins or complexes for flagellum assembly and/or 

basal body docking, albeit that protein function appears non-essential in procyclic T. brucei 

under standard culture conditions. 

 

On the Antigen Specificity of YL1/2 at the T. brucei Basal Body  

Our ongoing interests in characterising the functions of trypanosome FOP family proteins 

has seen us question the identity of the basal body antigen recognised by the monoclonal 

antibody YL1/2. For over 30 years, YL1/2 has been used as a marker for tyrosinated α-

tubulin in eukaryotic cells (Kilmartin et al. 1982). In trypanosomatids, YL1/2 has been used 

widely in studies defining critical events in cell morphogenesis and division (e.g. Sherwin et 

al. 1987; Wheeler et al. 2013). With cell shape so heavily dependent on a sub-pellicular 

microtubule corset remodelled and inherited in a semi-conservative manner (Sherwin and 

Gull 1989), YL1/2 is perfect for marking growth of new microtubules in which the C-terminal 

epitope of α-tubulin is recognisable prior to detyrosination. Yet, the prominent mature basal 

body signal observed in YL1/2 immunofluorescence of trypanosomatids presents a 

conundrum in that the centriole barrel is composed of mature microtubules and other anti-

tubulin antibodies do not yield an immunofluorescence focus comparable to the YL1/2 basal 

body signal. It was proposed that this YL1/2 basal body signal represents a dynamic pool of 
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tyrosinated α-tubulin awaiting IFT-mediated transport to the flagellar distal tip (Stephan et al. 

2007). In that regard, we note that the axoneme of new, elongating flagella in trypanosomes 

is also readily detected using YL1/2 (Sherwin et al. 1987). With our demonstration that YL1/2 

readily detects by immunoblot both recombinant TbRP2 (André et al. 2014) and native 

TbRP2 (this study), the notion that basal body localised YL1/2 detects tyrosinated α-tubulin 

must be called into question. Note we do not call into question the value of using YL1/2 to 

detect tyrosinated α-tubulin at other cellular locations in trypanosomatids. The caution that 

we encourage echoes caveats offered by Wehland and colleagues when they mapped the 

epitope specificity of YL1/2 in their seminal study (Wehland et al. 1984). 

 In questioning where along the length of pro- and mature basal bodies TbFOR20 is 

found, we have mapped the localisation of TbFOR20, TbOFD1 and TbFOP/FOP1-like 

proteins relative to basal body antigen recognised by YL1/2, which we believe is the fourth 

trypanosome FOP family protein TbRP2. Although one considers the transitional fibres 

where TbRP2 is found to be at the junction of the triplet to doublet microtubule basal body 

transition and attach to the base of the flagellar pocket membrane contributing to a physical 

ciliary gate (Garcia-Gonzalo and Reiter 2017), our immunofluorescence analysis of isolated 

flagella indicates TbRP2 proximal to TbFOR20 with no evidence of TbFOR20 re-localisation 

concomitant with transition zone elongation during pro- to basal body maturation. Returning 

to the original immunogold localisation of YL1/2 in T. brucei (Stephan et al. 2007) it is clear 

that there is extensive gold labelling at the level of the triplet microtubule barrel, consistent 

with the immunolocalisation data presented here. Collectively, relative localisations of the 

complete trypanosome FOP protein family can be summarised by the model shown in Fig. 8. 

The model highlights subtle, yet realistically functionally significant differences in the basal 

body localisations of trypanosome FOP family proteins. Future studies are likely to provide 

insight into whether these localisation differences are more broadly conserved and how they 

might relate to functional specialisation. 

 

Subtleties in TOF-LisH Motif-dependent Targeting of Centriolar Proteins 

The prediction of a short N-terminal extension for FOR20 orthologues from mammal-

infective African Trypanosoma species was intriguing, not least because it is among 

Leishmania species where the average length of orthologous coding sequences is predicted 

to be larger by ~15-20% than in other trypanosomatids (El-Sayed et al. 2005). Following 

initial annotations of the T. brucei nuclear genome, RNAseq analyses saw identification of an 

essential ‘small proteome’ and re-annotation of many trypanosome protein-coding genes, 

revealing alternative sites for trans-splicing (the mechanism by which the 5’-end of all 
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protein-coding transcripts are capped) and the use of alternative start codons (Ericson et al. 

2014; Kolev et al. 2010; Nilsson et al. 2010; Siegel et al. 2010). Thus, it was necessary to 

confirm the presence of a candidate N-terminal extension in TbFOR20 and exclude the use 

of a potential downstream start methionine. Our analyses revealed that the extension is 

essential for localisation of TbFOR20 at pro- and mature basal bodies, but its function in 

ensuring protein targeting is not masked by the presence of a large (~28 kDa), globular N-

terminal YFP tag. 

The TOF-LisH motif combination is a conserved, if seldom used, feature of centriolar 

proteins. In mammalian cells inappropriate use of TOF-LisH targeting can have pathological 

consequences (Lelièvre et al. 2008). Thus, there is wider interest in understanding how 

TOF-LisH motif combinations mediate centriolar localisation. The cryptic nature of how the 

TbFOR20 N-terminal extension contributes to pro- and mature basal body targeting, 

combined with the observation that TcFOR20, which naturally lacks any N-terminal 

extension, readily localises to T. brucei pro- and mature basal bodies indicate there remains 

much to learn regarding how TOF-LisH motif combinations, and additional motif elements, 

contribute to the targeting of different proteins to distinct basal body sites. Successive C-

terminal deletions of TbRP2 all target myc-epitope tagged proteins to mature trypanosome 

basal bodies providing the TOF-LisH motifs remain intact (André et al. 2014). This suggests 

a principal functional role of these motifs is to confer protein targeting. RNAi phenotypes of 

T. brucei FOP family proteins show no discernible overlap, and proteomic screening has not 

identified any other FOP family member as an interacting or near neighbour protein to 

TbRP22. These observations emphasise a likely importance of molecule-specific interactions 

in underpinning the use of this efficient targeting determinant to eukaryotic basal bodies. 

 

Methods 

 

Cell culture: Procyclic T. brucei (cell line 927smox; Poon et al. 2012; Lister strain 427) were cultured 

in SDM-79 medium containing 10% v/v heat-inactivated foetal bovine serum, as described previously 

(Brun and Schönenberger, 1979). Constitutive expression of YFP- and myc epitope-tagged proteins 

occurred in a 427 genetic background. TbFOR20::myc proteins (full length and without the N-terminal 

extension) were also expressed in a 927smox background. 927smox is genetically modified to 

express a tetracycline-repressor protein and T7 RNA polymerase, meaning these cells are amenable 

to inducible gene expression or RNAi. The TbRP2 RNAi mutant (on a 927smox background) was 

generated as described previously (André et al. 2014). TbFOR20 RNAi was also induced on a 

                                                           
2 Qi X et al. in preparation. 
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927smox background. TbFOR2022-151::RP21/134-463::myc (sub-cloned as described below) and 

TcFOR20::myc were constitutively expressed in a 427 background. Cells were transfected and stable 

transformants selected using blasticidin (10 g ml-1) or hygromycin B (50 g ml-1) according to 

standard methods (McCulloch et al. 2004).  

 Plasmid constructs: For constitutive expression of YFP-tagged TbFOR20 and TbOFD1 

(André et al. 2016) from endogenous chromosomal loci amplicons corresponding to XbaI-XhoI 

digested partial open reading frames and XhoI-BamHI-digested upstream intergenic regions were 

sub-cloned in three-way ligations into XbaI-BamHI-digested pEnT6B-Y (Kelly et al. 2007). For 

expression of myc epitope-tagged TbFOR20 variants and TcFOR20, open reading frames minus the 

stop codon were PCR amplified using forward and reverse priming oligonucleotides synthesised with 

HindIII and XhoI restriction sites at the 5’ end, respectively. HindIII-XhoI-digested PCR amplicons 

were then ligated with HindIII-XhoI-digested pDEX377TbRP2::myc (André et al. 2014). To prepare a 

chimeric gene for expression of the first 21 amino acids of TbFOR20 fused to amino acids 2-133 of 

TbRP2 a two-step PCR strategy was used. Using gDNA template, forward primer 5’-

ggcgagagtcctttaacgcacccgaggcgactacaacctaccaagcgaagg-3’ and reverse primer 

5’ttaggatccgctattggcacccgccgcgcccggtg-3’ (BamHI site italicised) was used to amplify coding 

sequence for amino acids 2-133 of TbRP2 preceded in frame by amino acids 11-21 of TbFOR20. The 

resulting PCR amplicon was purified and used as template for a second PCR using the same reverse 

primer as PCR 1, but with a new forward primer, 5’-

cgcaagcttatggaggaaagggaggagggagaggtgcggcgagagtcctttaacgc (HindIII site underlined), to create 

coding sequence with the amino acids 1-10 from TbFOR20 also added. The resulting purified PCR 

amplicon was digested with BamHI and HindIII and ligated with HindIII-XhoI-digested 

pDEX377TbRP2::myc, thereby creating pDEX377TbFOR2022-151::RP21/134-463::myc. For TbFOR20 RNAi the 

open reading frame was sub-cloned into BamHI-HindIII-digested p2T7177 (Wickstead et al. 2002). 

NotI-digested constructs with genes encoding C-terminal myc-tagged proteins or TbFOR20 RNAi 

insert were transfected as described above. All plasmids were sequenced using ABI prism 

sequencing technology (Source Bioscience). 

 Microscopy and immunoblotting: For fluorescence microscopy, cells were settled onto 

glass coverslips and either fixed directly with paraformaldehyde (3.7 % w/v in PBS) or extracted for 

0.5 min with PEME containing 1% v/v NP-40 prior to fixation. For preparation of isolated flagella, 

exponentially growing cells were harvested and cytoskeletons extracted on ice for 10 minutes in 

PEME 1% v/v NP-40. Cytoskeleton pellets were harvested and flagella extracted twice on ice for 10 

minutes in PEME 1M NaCl; flagella were collected by centrifugation after each extraction (13000 g, 30 

min, 4°C), before settling onto glass coverslips. Fixed preparations were decorated for indirect 

immunofluorescence with the monoclonal antibodies BBA4 or YL1/2 as described previously 

(Woodward et al. 1995 and Sherwin et al. 1987, respectively) and decoration with the anti-myc 

monoclonal antibody was performed following the instructions of the supplier (Myc, Abcam). Cells 

were imaged at 60x magnification using either an Applied Precision DeltaVision Microscope and a 

Roper Scientific Photometrics Cool SNAP HQ camera or for the images shown in Fig. 2D-E a 
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LSM880 Laser Scanning Confocal microscope (Zeiss). Expected sizes of all tagged proteins 

expressed in the study were confirmed by immunoblotting (Supp. Fig. 1); 10% acrylamide gels were 

used for SDS-PAGE prior to protein transfer onto Hybond P membranes (GE Healthcare).  
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Figure Legends 

Figure 1. Localisation of TbFOR20. (A) Localisation of YFP::TbFOR20 at pro- and mature 

basal bodies in procyclic T. brucei; the main panel images show detection in detergent-

extracted cytoskeletons of YFP::FOR20 distal to the antigen detected by monoclonal 

antibody BBA4. The inset shows YFP::FOR20 localises only to basal bodies in intact cells. 

6-Diamidino-2-phenylindole (DAPI) was used to detect nuclear DNA (N) and the 

mitochondrial genome (or kinetoplast, K) to which pro- and mature basal bodies are 

physically attached. (B). YFP::FOR20 localisation in detergent-extracted cytoskeletons in 

comparison with the mature basal body antigen(s) detected by monoclonal antibody YL1/2. 

(C) Duplication of YFP::FOR20 signals coincides with maturation of the existing probasal 

body and the biogenesis of new probasal bodies during kinetoplast replication (as denoted 

by the ‘domed’ kinetoplast; Gluenz et al. 2011). (D) Localisation of TbFOR20::myc at pro- 

and mature basal bodies in detergent-extracted procyclic T. brucei. Formaldehyde fixed 

cytoskeletons and whole cells (not shown) were decorated for indirect immunofluorescence 

using anti-myc monoclonal primary antibody. Scale bars in all main panels indicate 5 µm and 

in the inset of (A) 1 µm.  
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Figure 2. Localisation of T. brucei FOP family proteins on isolated flagella. Spatial resolution 

of indirect immunofluorescence signals for (A) YL1/2 from TbYFP::FOR20, (B) polyclonal 

anti-RP2 from TbYFP::OFD1, (C) anti-RP2 from TbYFP::FOP, (D) BBA4 and anti-RP2 from 

TbYFP::FOR20, (E) BBA4, anti-RP2, and TbFOR20::Myc. Main panel scale bars, 5 µm. 
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Figure 3. Immunoblot detection of TbRP2 by monoclonal antibody YL1/2. (A) Detection of 

TbRP2 depletion in procyclic TbRP2 RNAi mutants by immunoblot. The left-hand 

immunoblot shows detection of both TbRP2 (predicted mass 50.6 kDa) and tyrosinated α-

tubulin (predicted mass 49.8 kDa) from whole cell extracts (2 x 106 cell equivalents loaded 

per lane) by YL1/2; proteins were separated by SDS-PAGE using a 10 % polyacrylamide 

gel. The right-hand immunoblot shows the depletion of TbRP2 from TbRP2 RNAi mutants 

using polyclonal, affinity-purified antibodies raised against recombinant TbRP2. Cells were 

induced for RNAi for 48 h before preparation of cell lysates (RNAi+ lanes). (B) Immunoblot 

detection of recombinant TbRP2 by YL1/2; the amount of recombinant protein loaded per 

lane is indicated; reproduced from André et al. (2014) under the terms of a Creative 

Common Attribution 3.0 unported licence. 
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Figure 4. An N-terminal extension unique to FOR20 proteins from T. brucei and closely 

related African trypanosome species. (A) Evolutionary relationships between trypanosomatid 

species. (B) Clustal Omega alignment of amino acid sequences for FOR20 orthologues from 

kinetoplastid protists and other, evolutionary diverse flagellates. Positions of amino acid 

identity (*) and conservation (:) are indicated; negatively charged amino acids within the N-

terminal extensions of FOR20 from T. vivax, T. congolense, and T. brucei are italicised. 

‘African’ trypanosome species are in red; trypanosomatid species more closely related 

phylogenetically to T. cruzi than to the T. brucei clade are in purple; other kinetoplastids are 

in blue. Taxonomic abbreviations: Bs, Bodo saltans; Cr, Chlamydomonas reinhardtii; Dr, 

Danio rerio; Gg, Gallus gallus; Gl, Giardia lamblia; Hs, Homo sapiens; Lm, Leishmania 

major; Ng, Naegleria gruberi; Nv, Nematostella vectensis; Pt, Paramecium tetraurelia; Tb, 

Trypanosoma brucei; Tc, T. cruzi; Tcg, T. congolense; Tg, T. grayi; Tr, T. rangeli; Tt, 

Tetrahymena thermophilia; Tv, Trypanosoma vivax; Tva, Trichomonas vaginalis; Xl, 

Xenopus laevis.  
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Figure 5. Targeting of trypanosomatid FOR20 to pro- and mature basal bodies in procyclic 

T. brucei. (A) Inducible expression of TbFOR201-21::myc: main panel, a formaldehyde-fixed 

cell decorated for indirect immunofluorescence using anti-myc monoclonal primary antibody; 

inset, absence of TbFOR201-21::myc from detergent-extracted cytoskeletons. (B) Mature 

basal body localisation only for constitutively expressed TbFOR2022-151::RP21/134-463::myc; 

panels and merged insets correspond to kinetoplast-basal body regions from 1K1N, 2K1N 

and 2K2N  cells where the mature basal body is decorated by a YFP fusion of the T. brucei 

orthologue of FOP family protein OFD1. (C-D) Localisation of TcFOR20::myc at both pro- 

and mature basal bodies; cells were decorated with anti-myc plus either BBA4 (C) or anti-

TbRP2 antibodies (D). K, kinetoplast; m, mature basal body; p, probasal body. Scale bars 

correspond to 5 µm (A-D) and 1 µm (inset B and C-D). 
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Figure 6. Phyre2 prediction of TbFOR20 secondary structure. Relative predictions of 

confidence for disorder and α-helical regions are indicated. TOF and LisH motifs are known 

to adopt α-helical conformations: the TbFOR20 TOF motif spans amino acids 30-60 and the 

LisH motif amino acids 78-104. 
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Figure 7. Site-directed mutagenesis of TbFOR20 TOF and LisH motifs. (A) E37A mutation 

abrogates protein targeting to the basal/probasal bodies. Main panels show punctate 

accumulation of protein in whole cells; inset shows the absence of protein from basal body 

region in detergent extracted cytoskeletons. (B-C) Basal body localisation of F54A (B) and 

Y88A (C) site-directed mutants.  
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Figure 8. Organisation of FOP family proteins at mature trypanosome basal bodies. 

Positions of FOP family proteins are shown relative to the proximal end antigen recognised 

by monoclonal antibody BBA4 and TAC component TBCCD1 (an additional tubulin cofactor 

C domain-containing protein (André et al. 2013)). 

 

 


