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Abstract 

The durability of low-cost fuel cells is one of the last technical challenges to be overcome before the 

widespread adoption of fuel cells can become a reality.  Most research concentrates on polymer 

electrolyte membrane or solid oxide fuel cells in this topic with little published regarding the 

durability of recirculating liquid electrolyte alkaline fuel cells.  In this paper we present an 

investigation into the durability of this fuel cell variant under harsh load cycling, air starvation and 

fuel starvation conditions.  In the study, making use of the high ionic conductivity of the electrolyte, 

a novel rig design was utilised, which allowed the surfaces of the electrodes to be constantly 

monitored optically during the experiments.  This demonstrated the good physical durability of the 

anode during the test protocols whilst highlighted the instability of the manganese-cobalt spinel 

cathode, used in this study, during the air starvation protocols.  The load cycling stability of the 

alkaline fuel cells used was found to be good with the standard configuration giving only around a 

2.7% voltage degradation at 100 mA cm-2 operating point over 8000 load cycles.  
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1 Introduction 

Hydrogen fuel cells are efficient clean energy conversion devices poised for widespread 

implementation, however, when applied to most real world applications where cycling conditions 

are experienced high lifecycle costs remains a major obstacle to commercialisation.  Alkaline fuel 

cells (AFC) are attractive for their greater electrical efficiencies, up to 60% in moderate conditions [1] 

compared to other fuel cell types. This is largely the result of excellent oxygen reduction kinetics in 

alkaline media compared with acidic conditions such as those in polymer electrolyte membrane fuel 

cells (PEMFC) [2]. Secondly, a significant advantage of AFCs is the wide range of electrocatalysts 

(including low cost, non-noble metal based materials) which can be used for both electrode 

reactions, although stability and activation issues exist [3, 4]. Another attractive feature is that 

concentrated alkaline electrolytes are highly ionically conductive compared to the electrolyte in 

other fuel cells where ultra-thin electrolytes must be used to achieve similarly low electrolyte 

resistive losses [5]. Despite this, alkaline fuel cells have never been produced in commercial 

quantities. During the latter part of the 20th century, research in alkaline fuel cells waned as interest 

in other types of fuel cells increased [6]; however, with recent advances in materials and processes 

in the intervening period, opportunities for producing commercial alkaline fuel cell systems have 

become apparent.  This can be seen by the success of UK based alkaline fuel cell developer, AFC 

Energy Plc, who demonstrated their 240 kW ‘KORE’ system at the Air Products Stade site in Germany 

during early 2016. 

There are two primary variants of alkaline fuel cell systems; immobilised electrolyte and re-

circulating liquid electrolyte. Immobilised alkaline cells can be easier to manage due to their system 

simplicity; however, this variant requires very careful CO2 management as carbonates formed by 

reaction of the hydroxide with carbon dioxide in the air cannot be easily removed. Carbonates act to 

degrade the performance of the cell through reducing the conductivity of the electrolyte [7]. The 

second type of alkaline fuel cell, the re-circulating liquid electrolyte cell, is able to resolve this issue 

by transporting the carbonate outside the cell and processing it externally. Other key benefits of 

recirculating AFCs are their ability to manage heat and water removal from the fuel cell reliably and 

accurately, as the electrolyte provides an efficient transfer medium. 

The degradation rates of fuel cells in in real world applications is currently the most significant direct 

technical barrier to the adoption of fuel cells as power sources for wide spread application.  

Degradation studies, materials and design innovations to improve degradation rates in two of the 

most studied fuel cell classes, PEMFC and SOFC, are favoured topics as can be witnessed by the 

amount of research published in this field but, the degradation of liquid electrolyte alkaline fuel cells 



is not a well-researched topic.  Most existing data is fairly limited, such as a series of post-mortem 

studies conducted on classical electrode designs [8, 9] or specific studies on the effect for carbonates 

[7].  Karl Kordesch, a prolific researcher in the field of AFC device development, published and 

presented many papers on the subject from the 1970s to the early 2000s.  He showed that many of 

the degradation modes experienced by PEMFC such as electrocatalyst agglomeration, carbon 

corrosion and current collector corrosion could be experienced by AFCs, but some particular 

degradation mechanisms, such as loss of hydrophobicity by de-fluorination of PTFE and layer 

cracking due to high hydroxide concentrations, were also evident [10-12].  Kordesch showed 

reasonable cycling performance of the AFC systems being developed at University of Graz as a 

continuation of the Union Carbide designs [13] and authors including Tomantschger and Kordesch 

have shown that Pt on carbon catalysts show greater Pt agglomeration during cycles than in acid 

media in ex situ experiments [11, 14].  Again these were all based on post-mortem analysis which 

can be problematic. Post-mortem analysis by its very nature requires samples be extensively dried 

and prepared which essentially removes a significant body of the evidence – the electrolyte.  Hence 

the research presented here aimed to develop a test rig and method where the fuel cell is “opened 

out” and observations made, in this case optically, to allow in-operando studies of degradation to be 

made.   

The subject of accelerated tests and cycling durability has been extensively investigated for other 

fuel cell types whereas for AFCs there is very little knowledge in this area.  Therefore, accelerated 

testing by load, air starvation and fuel starvation are used as a test cases to demonstrate the method 

whilst showing an aspect of AFC performance which has not been extensively investigated.     

1.1 Alkaline fuel cell structure 

The kinetics of hydrogen oxidation in alkaline media are favourable and the conditions allow the use 

of low cost catalysts unsuited to rival low temperature technologies.  These include Ni in various 

forms and low %wt non-platinum precious metals supported on carbons [15, 16].  Bulk Ni based 

materials such as Raney Ni have been shown to have poor stability at constant running as well as 

activation problems [9].  The choice of cathode materials is even wider than that for the anode and 

can range from Pt through to spinels and perovskites usually found in SOFCs [17-19].  Silver, 

although a suitable material and a good oxygen reduction catalyst, requires care when used in the 

cathode as at open circuit potential dissolution occurs to form AgO- [20] limiting cell life [21].  State-

of-the-art cathodes are likely to be based on the ceramic materials similar to those in SOFCs 

although the electrode structure is different using around 75% wt or more conductive carbon fillers 

bound with a hydrophobising polymer (PTFE).  Figure 1 shows the typical architecture of a liquid 

electrolyte alkaline fuel cell. 

http://www.sciencedirect.com/science/article/pii/037877539285003S


 

Figure 1:  Standard structure of alkaline fuel cells with liquid electrolyte.  Diagram shows PTFE bound 
layers on a gas diffusion layer with a conductive porous metallic backing. 

The conditions within the cathode structure are particularly harsh; high potentials and very high 

local hydroxide concentrations (when at load) can lead to a number of degradation mechanisms:  

1. Support corrosion – particularly when carbons are used as the conductive support material;  

2. PTFE defluorination – leading to loss of hydrophobicity and breakthrough of electrolyte into 

gas diffusion layer;  

3. Hydroxide crystallisation – dependent on air flow, humidity and the porosity and location of 

the triple phase boundary, hydroxide could crystallise and cause structural damage to the 

electrode as well as a transport limitation;  

4. Carbonate formation - CO2 in the air may cause structural damage to the electrode [10, 11, 

13, 22].   

The rig designed and developed by the authors presents a method by which such structural 

degradation can be simply observed.  Results are presented for optical observations but the same 

principles, with modifications to the rig, would allow other imaging and spectroscopic techniques to 

be applied. These could capture deep structural change and other non-structural mechanism 

previously discussed which may also take place leading to loss in performance 
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2 Design of optical access rig 

The alkaline fuel cell test rig developed for the purpose of structural degradation observations is 

shown in Figure 2.   
A

n
o

d
e

C
at

h
o

d
e

KOH 
in

KOH out

FACE SECTION Y-Y SIDE SECTION X-X

X

X Y

Polished
clear
PMMA

Current collection
ring

Power 
take off pin

Voltage tap
to electrode

Electrode
Face seal

O ring
Air seal

Removeable
fuel domain
with current
collection ring

Main manifold
block

Electrolyte
domain

Y KOH out

Fuelout

Fuel in

 

Figure 2.  Fuel cell test rig schematic showing side-by-side electrode configuration giving line of sight 
optical access to the faces of the electrodes. 

The high conductivity liquid electrolyte allows an unusual electrode configuration to be used giving 

line-of-sight access to the surface of each electrode during operation.  Rather than face-to-face the 

electrodes are configured side-by-side with an electrolyte domain across the face of the electrodes.  

The rig materials used is Polymethyl methacrylate (PMMA) which when polished gives good 

transparency to visible light and is also sufficiently stable in strong hydroxide for use in alkaline fuel 

cell rigs.  Behind the anode and cathode are simple hydrogen and air (respectively) flow domains 

supplying reactants and removing water as vapour. Current is collected from each electrode nickel 

backing by a current collector ring which also has a voltage sense connection.  Hydroxide resistant 

seals are used to give the required electrolyte to electrode and electrode to gas domain seals.  The 

rig is configured to allow simple removal and replacement of electrodes. The active geometric area 

for the electrodes were 16 cm2 



3 Experimental Methods 

3.1 Materials and equipment 

In all experiments 30%wt KOH was used made up with ultra pure water (Elga PURELAB Flex3 with a 

resistivity of 18.2Mohmcm) and high purity KOH flake from ReAgent.  High purity ‘research’ grade 

hydrogen (N5.5) from BOC was used for the hydrogen fuel, and filtered and CO2 scrubbed (Sufnolime 

absorbent) air used for the cathode to give carbon dioxide free air.  

The electrolyte flow circuit consists of a recirculation loop of 1 dm3 capacity.  Electrolyte (and 

consequently rig) temperature was controlled by an inline heater with electrolyte pumped by a gear 

pump.  A constant flow rate of 80 ml min-1 was used for all experiments.  Though initial tests were 

conducted at a number of temperature set points the results reported here are all for 70 °C which 

represents a commonly used temperature for non-pressurised systems [6] and combined with the 

30%wt KOH gives close to optimum electrolyte conductivity (1.5 S cm-1 [23]). The piping used is the 

Swagelok PFA range.  All parts of the electrolyte circuit have high corrosion resistance to alkaline 

media.  The fuel cell operation is controlled by a Scribner 890e test station incorporating a built in 

impedance analyser.  Mass flow controllers used with the Scribner were supplied by Alicat and 

appropriately sized for the rig.  A nitrogen purge facility is included which automatically purges the 

anode side should from expected norms of voltage and temperature be experienced.  The rig was 

operated in specially design laboratory in compliance with UK DSEAR 2002 (Dangerous Substances 

Explosive Atmospheres) regulations.  This allowed for adequate control of risks for extended 

unattended running. 

The electrode materials as bilayer structures (gas diffusion and active layers) laminated onto a 

porous nickel current collector were sourced from AFC Energy Plc.  Although a non-current version 

of the cell architecture a degree of commercial sensitivity exists regarding the exact construction.  

However, the anode active material was a 5%wt Pd on carbon catalyst bound with PTFE whilst the 

cathode active material was high surface area manganese- cobalt spinel (Mn1.5Co1.5O4) blended with 

conductive carbon and bound with PTFE.  The same materials batches and electrode construction 

was used in all experiments. 

3.1.1 Testing protocols 

Three different sets of cycling tested were defined to explore idealised load cycling of alkaline fuel 

cells and their response to air and fuel starvation events whilst under load.  The first mimicked 

idealised rapid loading and unloading to accumulate a large number of cycles over a short time as an 

accelerated stress test similar to those specified by the US Department of Energy [24].  The second 



two starvation protocols were designed to simulate extreme disturbances in the fuel and air supply 

to AFCs and examine how resilient they are to such events.  The three protocols are summarised in 

Table 1 and were applied to the cell after an initial period of stabilisation at open circuit voltage. 

Step Rapid cycling protocol Air starvation protocol Fuel starvation protocol 

1 Rapid cycling between 0 A 

and 0.5 A at 50 mA s-1 

(equates to cell voltage scan 

of 0.8 V – 0.4 V with no 

recovery at open circuit) for 

1000 cycles 

Stabilise at -0.64 A (high 

power point) for 2 minutes 

then stop air flow 

Stabilise at -0.64 A (high 

power point) for 2 minutes 

then stop fuel flow and start 

nitrogen purge of fuel side 

(0.5 slm) 

2 Stabilise cell at 0.4 A output 

and run impedance spectra 

with 10% perturbation 

Remove load when voltage 

collapses to 0.1V. 

Remove load when voltage 

collapses to 0.1V. 

3 Repeat steps 1 and 2 till cell 

deemed to fail (0.1 V) 

Restart air flow and stabilise 

cell at open circuit for 2 

minutes 

Restart fuel flow (stop 

nitrogen flow) and stabilise 

cell at open circuit for 2 

minutes 

4  Run rapid cycled current 

scan from 0 A to 0.8 A at 

50 mA s-1 

Run rapid cycled current 

scan from 0 A to 0.8 A at 

50 mA s-1 

5  Stabilise cell at 0.64 A 

output and run impedance 

spectra with 10% 

perturbation 

Stabilise cell at 0.64 A 

output and run impedance 

spectra with 10% 

perturbation 

6  Repeat steps 1 to 5 till cell 

deemed to fail 

Repeat steps 1 to 5 till cell 

deemed to fail 

Table 1:  Details of testing protocols used in the optical access experiments 

When using the optical access rig distinguishable features on the electrode were located and marked 

in the images in the IMetrum video gauging software for location tracking.  In the case of the rapid 

cycling test, points on both anode and cathode were tracked (though this negated the use of 3D, 

which required two cameras to give a stereo image, due to field of view limitations) whereas for the 

air and fuel starvations tests only the cathode and anode respectively were tracked (in 3D).  Due to 

the lack of contrast in the surfaces it was difficult to track homogenous parts of the layers, so small 

variation in binder and small defects were tracked.  It had initially been intended to run the cycling 



test at the same current points as the starvation tests but an anode delamination from the current 

collector backing, which was not visible at assemble (but became worse during testing and was 

subsequently visible on disassembly) limited the performance of this cell and consequently the 

current points had to be reduced. 

For the fuel starved cell a final more aggressive cycle was applied where the cell was drawn down to 

0.1 V for 2 minutes heavily polarising the fuel cell, particularly the cathode, the fuel supply was then 

set to zero (fuel side purged with nitrogen as previously) and the cell continued to be run at 0.1 V for 

a further 10 minutes.  After this the fuel was restarted, the cell allowed to regain an open circuit 

potential and its impedance analysed though at a current point of 0.2 A to allow for the effect of the 

rapid degradation.  Impedance analysis at this current point showed no difference to the last 

measurement made at 0.64 A in the previous protocol. 

As a baseline for comparison with a more conventional rig design a version of the rapid cycling 

protocol was conducted.  In this rig square coupons of the same electrode materials were used 

which had an active area of 11.8 cm-2.  The same flow rates of electrolyte, fuel and air were used 

along with the same temperature set point.  However, the electrodes were conventionally facing 

each other with a uniform electrode gap of approximately 3 mm which was over an order of 

magnitude shorter than that in the optical access rig. 

4 Results and Discussion 

4.1 Standard configuration baseline cycling durability 

Figure 3 shows the results of rapid cycling on the conventional configuration cell.  Initial appearances 

from the polarisation curves suggest that there is very little change in performance.  At a current 

density operating point of 100 mA cm-2 the voltage degradation from the maximum achieved is only 

around 2.7% after 8000 cycles (approximately 43 hours of testing).  On closer examination of the 

impedance spectra in Figure 3B it can be seen that at least two things are changing in the 

performance of the cell.  Firstly the series connected resistance is reducing and secondly the 

polarisation resistance of one of the electrodes are increasing.  The electrolyte concentration and 

temperature are steady and so are an unlikely source of the any reduction in series resistance, 

however, the most likely course is the progressive wetting of the active region of the electrodes 

during the initial operation.  This leads to a reduction in the electronic conduction path length to the 

current collector and so a slight improvement in series resistance.  The increase in charge transfer 

resistance could be either attributed to instabilities, both physical and chemical, of the Pd anode and 

ceramic cathode catalysts. 



 

Figure 3.  Baseline rapid cycling test results conducted for 8000 cycles on electrodes with active area 
11.8 cm2 at 70 °C, 0.5 slm air and 0.2 slm hydrogen.  A: current voltage response scanned at 5 mA s-1 0 to 
1.5 to 0 A. B: Impedance response at 0.8 A and 10% perturbation in current between 10 kHz and 0.1 Hz. 

It is possible to use a basic equivalent circuit model to give an indication of the how the electrodes 

are changing during cycling. A simple circuit proposed is given in Figure 4.  At the current point 

chosen for the EIS measurements it can be seen that the series resistance improves by around 13% 

whilst the electrode resistances (dominated by charge transfer rather than mass transfer) increase 

by around 17% giving a slight degradation overall in performance.  Over 8000 cycles the degradation 

rate equates to 3 mV per 1000 cycles at a current density of 100 mA cm-2.  The current density is 

more modest that the usual for PEMFC targets [25] but is still demonstrates that AFCs are durable to 

load cycling in idealised accelerated stress tests. 
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Figure 4:  Simple electrode model for a fuel cell. RCT – Charge transfer resistance, W – Warburg element 
Cdl – double layer capacitance 
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4.2 Optical access results 

The rapid cycling protocol optical access results are shown in Figure 5 and Figure 6.  There are some 

notable differences in the performance of the cell in this experiment compared to the more 

standard set up.   

 

Figure 5:  Optical access X and Y displacement results for two example points for load cycling protocol. 
Point 3 on cathode and point 12 on anode. Number of cycles are marked. A: X displacements, B: Y 
displacements, C: image of rig with points marked. 

 

Figure 6:  Load cycling results for 6000 load cycles on optical access rig set up, on electrodes with active 
area 16 cm2 at 70 °C, 0.5 slm air and 0.2 slm hydrogen.  Cell temperature set point; 70 °C, electrolyte 
concentration; 30%wt KOH. A: polarisation, 0 to 0.5 to 0 A at 50 mA s-1 B: Impedance Nyquist plot for 
0.4 A with 10% perturbation from 10 kHz to 0.1 Hz. 
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In Figure 5 it is clear to see that the series resistance of the optical access rig is around 10 times 

greater. This is in keeping with the increased electrolyte current path though this in practice is 

complex due to the side by side configuration.  The same percentage reduction in series resistance is 

experienced (13%) during running as for the face to face configuration and can be explained again by 

the electrodes wetting with electrolyte and the triple phase reaction boundary becoming defined 

deeper within the electrode.  This is observed in the optical results particularly for the cathode 

where bubbling can be witnessed in Figure 5D at the start of the experience but not in Figure 5E at 

the end.  

The cell failed (voltage dipped below 0.1 V) at around 6000 cycles whereas the face to face 

configuration was only slightly degraded at 8000 cycles.  Figure 6 gives some indications as to the 

reasons for failure.  The polarisation curves in Figure 6A show a rapid degradation and hysteresis in 

the curves indicating an increased diffusion resistance in the electrodes. This is further emphasised 

in the impedance spectra of Figure 6B which now displays significant transport resistance.  It should 

be noted that although the current point of 0.4 A gives much higher apparent cell polarisation than 

for the face to face rig around 200 mV of this is due to resistive loss in the electrolyte such that the 

polarisation of the electrodes is much more modest than initially appears.  Using the simple model 

given in Figure 4 and by making the assumption that anode charge transfer and mass transfer 

resistances are smaller than those of the cathode, a simple estimation of the component values 

were made using an impedance analysis software linked with the fuel cell test station (ZView, 

Scribner Associates).  The charge transfer and mass transfer resistances combined for the anode and 

cathodes in all the tests at the start and end are shown in Figure 7 which suggests that the largest 

deterioration in performance could be attributed to the cathode. These resistances and 

deteriorations are much greater than for the face to face rig.  This can be attributed in part to the 

lower voltage operating point (even considering pure series resistive loss difference) but is likely 

largely attributable to the transport resistance being much larger than in the face to face. Both the 

gas and electrolyte flow in the optical access rig are much less uniform and idealised than in the face 

to face rig.  This likely led to fouling by water in the gas diffusion layers possibly giving breakthrough 

of electrolyte into the gas diffusion layer and rapid irreversible loss of performance.   



 

Figure 7:  Summary of approximate electrode resistance from basic fitting of simple equivalent circuit of 
Figure 4.  Approximate resistances (both charge transfer and mass transfer) for each electrode are given, 
the total electrode resistance and the series resistance (electrolyte and interconnection) for each cell at 
the start and end of the protocols conducted. 

The displacement measurements shown in Figure 5 don’t give further information on the 

degradation mode experienced in cycling but confirm that wetting of the cathode in preventing air 

crossover is important and that both electrodes at the active layer remain intact without any visible 

material loss or change.  Elemental analysis by EDAX (Jeol EX-94400T4L11 with ultra-thin film 

window suitable for Be to U) post-mortem compared to fresh material gives further information on 

change produced by the test.  This is given for the anodes and cathodes of all tests in  

Table 2.  The fluorine content which is associated with PTFE is the most stable constituent of the 

electrodes and is well interconnected.  This means any relative increase in fluorine percentage 

suggests a loss of other components from the surface.  Considering the anode the changes appear 

insignificant though the slight apparent reduction in Pd content may be an artefact of changing Pd 

distribution and loss of surface area.  Considering the cathode the change in the composition again is 

minor supporting the observations of no significant surface changes to the electrode. The changes 

that do occur are mostly attributable to slight dissolution of the Co from the spinel and oxidation of 

the carbon leading to oxygen containing groups on the carbon surface. 
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Figure 8:  Optical access X, Y and Z displacement results for seven example points on the cathode for 
the air starvation protocol. Number of cycles are marked. A: X displacements, B: Y displacements, C: Z 
displacements, D: image of the rig at the start with monitoring points highlighted, E: image of the rig after 
10 hours showing the start of observable debris in the rig, F image of the rig as the end showing 
significant debris in the rig. 
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Figure 9: Air starvation results for 65 cycles on optical access rig set up on electrodes with active area 
16 cm2 at 70 °C, 0.2 slm hydrogen and air cycled between 0 and 0.5 slm.  A: polarisation, 0 to 0.8 to 0 A at 
50 mA s-1 B: Impedance Nyquist plot for 0.64 A with 10% perturbation from 10 kHz to 0.1 Hz. 

The air starvation protocol had a much more significant effect on the cell.  The results can be seen in 

Figure 8 and Figure 9.  The starting performance of these electrodes were significantly better than 

other used in the cycling protocol and had no substrate to current collector delamination observed 

post-test on disassembly.  Increasing cathode contribution to the impedance is particularly apparent 

as shown in Figure 7 and Figure 9B.  The cathode degradation produces very visible debris in the rig 

(Figure 8E and F) and in the displacement traces (Figure 8A, B and C) start to coincide with 

detectable events at the monitoring points.  These become more frequent and significant as the test 

progresses and very much more significant beyond 44 cycles which was the point at which the EIS 

current point could no longer be sustained and the performance of the cell in the polarisation curves 

(Figure 9A) began to degrade more rapidly.  The EDAX composition data ( 

Table 2) shows that again the anode changes slightly but during this test the cathode composition 

has been significantly altered.  The data shows that the active catalyst has been lost with a selective 

leaching of the cobalt. The manganese : cobalt ratio has reduced from 1:1 to 1:0.61 and as a major 

component of the electrode has led to the physical erosion.  This is supported by the increased 

percentage of fluorine in the surface.  The loss of cobalt from the spinel can be explained by 

examining the relative stabilities of the simple oxides of both manganese and cobalt.  In the pH 14.7 

polarising the cathode by around 700 mV would start to lead to the formation of the HMnO4
- ion 

[20] whereas a polarisation of only 100 mV would allow the formation of the HCoO2
- ion to begin 

[20].  This gives no indication of the kinetics but in the harsh test in the air starvation protocol where 

the cell voltage is allowed to drop to 0.1 V there will be significant driving force for the cobalt 

reduction and dissolution to occur as observed.  Away from the electrode and with the dissolved 

oxygen content in the electrolyte this species is likely to be reoxidised and precipitate out as the 

simple oxide adding further to the debris observed. 



 

Figure 10:  Optical access X, Y and Z displacement results for four example points on the anode for the 
fuel starvation protocol. Number of cycles are marked. A: X displacements, B: Y displacements, C: Z 
displacements, D: image of the rig at the start with monitoring points highlighted, E image of the rig as 
the end of 84 cycles. 

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20000 40000 60000 80000 100000

D
is

p
la

ce
m

en
t 

in
 'X

' d
ir

ec
ti

o
n

 /
 m

m

Time / s

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 20000 40000 60000 80000 100000

D
is

p
la

ce
m

en
t 

in
 'Y

' d
ir

ec
ti

o
n

 /
 m

m

Time / s

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20000 40000 60000 80000 100000

D
is

p
la

ce
m

en
t 

in
 'Z

' d
ir

ec
ti

o
n

 /
 m

m

Time / s

Point 1 Point 2

Point 4 Point 10

Point 10

Point 2

Point 1

Point 4

A

B

C D

E

Anode Cathode

5 15 25 35 45 55 65 73

84

Y

XZ



-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80

R
ea

ct
iv

e 
im

p
ed

an
ce

 /
 o

h
m

Resistive impedance / ohm

Start 5

15 25

35 45

55 65

73

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 0.20 0.40 0.60 0.80 1.00

C
el

l v
o

lt
ag

e 
/ 

V

Cell current / A

Start 5

15 25

35 45

55 65

73 84

A B

 

Figure 11:  Fuel starvation results for 84 cycles on optical access rig set up on electrodes with active 
area 16 cm2 at 70 °C, 0.5 slm air and hydrogen cycled between 0 and 0.2 slm alternately with nitrogen at 
0.5 slm .  A: polarisation, 0 to 0.8 to 0 A at 50 mA s-1 B: Impedance Nyquist plot for 0.64 A with 10% 
perturbation from 10 kHz to 0.1 Hz. 

The fuel starvation protocol had a more significant effect on the performance of the anode as would 

be expected and can be seen in Figure 7 and Figure 11, however, in all tests with the optical access 

rig there is an apparent degradation in transport which is not seen in the face to face rig. This is in 

both electrodes but more pronounced for the cathode as would be expected given diffusion 

limitations of 21% oxygen in air.  This is a rig specific effect and highlights the importance of good air 

and hydrogen flow field design in alkaline fuel cells.  More difficulty was experienced when tracking 

the points in the rig for this test than previously as electrolyte degassing caused bubble formation on 

the inside surface of the rig window obscuring the view of the electrode. It was later noted that the 

electrolyte in this test had been allowed to cool after being generated from flake allowing gas to 

redissolve in the electrolyte and later give the degassing problem on reheating in the rig.  Hence only 

4 points were successfully tracked. Excluding point 4 (see Figure 10) little evidence is present of 

significant events equivalent to the structural degradation of the cathode in the air starvation 

protocol.  This is supported by the lack of observable debris in the rig and flow circuit. 



 

Figure 12:  Aggressive cycling results for 50 cycles on optical access rig set up on electrodes with active 
area 16 cm2 at 70 °C, 0.5 slm air and hydrogen cycled between 0 and 0.2 slm alternately with nitrogen at 
0.5 slm .  A: X displacements, B: Y displacements, C: Z displacements, D: image of the rig at the end with 
monitoring points highlighted and significant evidence of debris from cathode, E Impedance Nyquist plot 
for 0.2 A with 10% perturbation from 10 kHz to 0.1 Hz. 

The fuel starvation cycle continued straight into the final combined anode and cathode aggressive 

cycling test which repeatedly heavily polarised first the cathode then the anode.  The equivalent 

results are shown in Figure 12.  Again tracking the points on the anode surface show little sign of 

physical degradation of the anode. However, Figure 12D clearly shows debris from the cathode has 

been generated again by the high cathode polarisation during the cycle.  The cell impedance spectra 

Figure 12E and basic model fitting (Figure 7) suggest steady degradation in performance of both 

electrodes but again proportionally more attributable to the cathode. The EDAX measurements 

made on these electrodes after the two protocols confirms that the anode does not suffer structural 

or compositional degradation even in these harsh cycle conditions, though catalyst agglomeration is 

likely and a steady increase in transport resistance related to the rig design is observed.  The cathode 

composition shows very clearly an extreme degradation of the layer where the manganese : cobalt 
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ratio is now 1:0.57 and the increase in the proportion of fluorine and hence the overall loss of the 

bound powders is significant. 

Element 
/ ratio Cycling Air Fuel Fresh 

Cathode compositions (%weight) 

C 0.79 0.83 0.79 0.75 

F 0.16 0.13 0.17 0.18 

Pd 0.05 0.04 0.04 0.07 

Anode compositions (%weight) 

C 0.28 0.28 0.33 0.22 

O 0.20 0.18 0.10 0.15 

F 0.09 0.15 0.33 0.08 

Mn 0.21 0.23 0.15 0.28 

Co 0.22 0.15 0.09 0.27 

Spinel atomic ratio in cathode (Mn:Co) 

1:Co 0.96 0.61 0.57 1.10 
 

Table 2:  EDAX electrode composition (surface) results for fresh electrodes and those used in the optical 
access experiments. 

5 Conclusion 

An optical access rig for liquid electrode alkaline fuel cells has been successfully developed to 

monitor the surface of fuel cell electrodes during operation.  Changes in electrodes have been 

observed during load cycling, air starvation and fuel starvation protocols.  The active cathode 

(catalyst constituent was Mn1.5Co1.5O4 ) was severely damaged by air starvation and cycling which 

brought the cathode potential down to a potential region where the Co component could rapidly 

reduce and form a soluble complex.  This was observed by changes in impedance and witnessed by 

physical erosion events on the electrode surface resulting in a build-up of debris in the rig and flow 

circuit.  The change in composition and loss of components was confirmed by EDAX measurements. 

Physically the active anode layer was much more durable than the cathode with no observable 

erosion events during starvation cycles, however, the cycles did result in a drop in performance most 

likely attributable to agglomeration of the Pd catalyst.  The rig design did allow for simple 

observation of the electrodes surfaces by an IMetrum 3D optical gauging system but the flow fields 

within the design were not as optimal as the standard face to face rig.  This could be seen by a 

steadily increasing transport resistance in both electrodes in the optical rig which was not 

experienced in the standard rig.  This resulted in the test from the standard rig showing very little 

degradation in 8000 load cycles whilst the optical rig gave very significant degradation in only 6000 

cycles.  Overall the optical access rig has demonstrated the successful observation of electrodes and 



highlighted the bulk physical stability of the anode used and the lack of chemical stability of the 

manganese – cobalt spinel in adverse cathode operating conditions. 
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