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Abstract

Sequential decision making problems require an agent to repeatedly choose be-
tween a series of actions. Common to such problems is the exploration-exploitation
trade-off, where an agent must choose between the action expected to yield the best
reward (exploitation) or trying an alternative action for potential future benefit (ex-
ploration). The main focus of this thesis is to understand in more detail the role this
trade-off plays in various important sequential decision making problems, in terms
of maximising finite-time reward.

The most common and best studied abstraction of the exploration-exploitation
trade-off is the classic multi-armed bandit problem. In this thesis we study several
important extensions that are more suitable than the classic problem to real-world
applications. These extensions include scenarios where the rewards for actions
change over time or the presence of other agents must be repeatedly considered. In
these contexts, the exploration-exploitation trade-off has a more complicated role
in terms of maximising finite-time performance. For example, the amount of ex-
ploration required will constantly change in a dynamic decision problem, in multi-
agent problems agents can explore by communication, and in repeated games, the
exploration-exploitation trade-off must be jointly considered with game theoretic
reasoning.

Existing techniques for balancing exploration-exploitation are focused on achiev-
ing desirable asymptotic behaviour and are in general only applicable to basic de-
cision problems. The most flexible state-of-the-art approaehg®edy and-first,
require exploration parameters to be aggriori, the optimal values of which are
highly dependent on the problem faced. To overcome this, we construct a novel al-



5

gorithm,e-ADAPT, which has no exploration parameters and can adapt exploration
on-line for a wide range of problems-ADAPT is built on newly proven theoreti-

cal properties of the-first policy and we demonstrate th@ADAPT can accurately
learn not onlyhow muchto explore, but alswvhenandwhich actiongo explore.
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Chapter 1
Introduction

In many real-world situations, decision makers are required to repeatedly choose ac-
tions from a set of available options. Important examples include allocating drugs
to patients in a clinical trial, choosing targets to track in a multi-target tracking
problem and providing product recommendations for users visiting an e-commerce
website. These are all examples of sequential decision making problems. In each
case, the decision maker (henceforth called an agent) will learn which action it
prefers based on past experiences and current circumstances. Agents accrue re-
wards from the actions they select, and seek to maximise the total reward gained
over a period of time. At each time-step, however, the agent is faced with a trade-
off between exploration and exploitation — where the agent must choose between
what it believes is the best action (exploitation) and trying alternative actions for
potential future benefit (exploration). For example, in a clinical trial, a patient can
be allocated the tried and tested drug which is expected to perform best, or a new
unknown drug which may perform better and subsequently benefit many patients —
but may alternatively cause the patient adverse undesirable symptoms.

The exploration-exploitation trade-off is in fact central to any sequential deci-
sion making problem (beyond the examples given above) where agents are uncer-
tain of future rewards and the rewards of unselected actions are not observed. Many
sequential decision making problems have these features. The purpose of this the-
sis is therefore to study this trade-off in many important and applicable sequential
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decision making frameworks, in terms of maximising the total reward gained in
finite-time problems.

The most common and best studied abstraction of the exploration-exploitation
trade-off in sequential decision making problems is the multi-armed bandit prob-
lem (Robbins, 1952), which we comprehensively introduce and review in Chapter
2. The objective of the bandit problem is to select the optimal action from a set
of available actions at each time-step, where the expected rewards for each action
are unknowra priori. Throughout this thesis, we study the bandit problem in de-
tail, to make new insights and develop new algorithms that maximise the reward
gained by an agent. We study several important extensions of the bandit problem,
however, that are more suitable to real-world applications than the classic bandit
problem. These include problems where additional side information is observed
that is relevant to the decision problem, which is then further extended to scenarios
with multiple interacting agents that can communicate this side information with
each other.

Most existing literature in the bandit problem has developed methods that max-
imise reward asymptotically (as discussed in Chapter 2), but in this thesis we are
motivated by maximising reward in finite-time problems, as this objective is more
useful in real-world problems. This is because real-world problems are always
likely to be finite in length or change over time, such that asymptotic convergence
is neither meaningful nor desirable.

1.1 Research Contributions

Throughout this thesis we consider two central themes that are fundamental to the
various sequential decision making problems considered. First is the role that the
exploration-exploitation trade-off plays and how it is fundamentally related to the
problem of maximising reward in finite-time problems. This concept is well under-
stood for simple single-agent sequential decision making problems (such as basic
bandit problems), but it is still poorly understood in many other important sequen-
tial decision making problems such as:
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e Bandit problems with side information, where additional relevant information
must be considered prior to each action.

e Dynamic bandit problems, where the expected reward for an action is chang-
ing over time.

e Multi-agent decision making problems, where the presence of other decision
makers must be considered.

These problems characterise several real-world decision making problems. Not
only is it uncleahow muchan agent should explore in these environments, but it is
also difficult to ascertaimhenthis exploration should occwyhich actionsshould

be explored and — in the multi-agent case — in what way exploration should be de-
pendent on the presence of other agents. This first theme therefore serves to provide
a better understanding of the exploration-exploitation trade-off in sequential deci-
sion making problems. In particular, selecting the correct actions for exploration
(and at the right time) is crucial in terms of maximising reward in finite-time prob-
lems, as demonstrated throughout this thesis.

The second central theme, which builds on the findings of the first, is the con-
struction of practical and implementable algorithms for each type of sequential de-
cision making problem that we study. The exact solution to optimally balancing
the exploration-exploitation trade-off is almost always an intractable calculation
(Sutton and Barto, 1998). Gittins (1979) provides a more tractable, but still compu-
tationally intensive solution to basic bandit problems, which assumes certain fixed
reward distributions. Otherwise, in more complicated sequential decision making
problems, the current state-of-the-art is to apply off-line stochastic policies such as
e-greedy ore-first, which are introduced in more detail (together with other core
policies and algorithms) in Chapter 2. These exploration policies can provide good
results in finite-time problems, as compared with other exploration policies or no
exploration at all, but their performance is inexorably linked with the setting of an
exploration parametex priori that governs the overall amount of exploration. The
optimal value of this parameter is likely to be unknown to an agepriori in real-
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world applications, and moreover performance can degrade rapidly with a poorly
chosen parameter value (Sutton and Barto, 1998).

For these reasons, in this thesis we first attempt to find the optimal value of
the exploration parameter for the standargreedy and-first policies, for a ba-
sic bandit problem. This analysis allows an agent to select optimal parameters if
the parameters of the problem are known beforehand, otherwise these can be learnt
on-line. For more enhanced and realistic bandit problems, however, where the theo-
retical calculation of optimal parameters becomes intractable, we build an algorithm
that can approximate the optimal exploration decision on-line, without the need for
a prefixed exploration parameter. This algorithm, which we«ADAPT, is much
more applicable to practical domains due to the absence of an exploration parame-
ter. In addition,e-ADAPT can be extended to various multi-agent sequential deci-
sion making problems. The on-line approachk-@&DAPT allows this algorithm to
perform comparably with optimally tuned off-line policies,@8DAPT can learn
the circumstances of the decision making problem as it plays, and adapt to events
such as the arrival of different side information, the dynamics in the environment
or changes to the behaviour of other agents in the systéeAPT can therefore
learnhow much, wheandwhich actionto explore and how best to explore in the
presence of other agents.

The main contributions of this thesis can hence be summarised as follows:

e Theoretical analysis and proofs of the behaviou¢-tifst ande-greedy poli-
cies in bandit problems, including derivations and proofs of the optimal ex-
ploration rates for a basic bandit problem. These findings are fundamental to
the construction of the-ADAPT algorithm.

e An autonomous on-line algorithngADAPT, which is the first algorithm
that can adapt exploration on-line in sequential decision making problems,
without the need for aa priori fixed exploration parameter.

e Extensive simulation results showing the favourable performancABiAPT

for all decision making problems considered, as compared with optimally
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tuned off-line policies such asfirst ande-greedy.

e The construction and analysis of several off-line policies for multi-agent se-
guential decision making problems, specifically for the novel multi-agent
bandit with communication problem studied in Chapter 6 and the repeated
games with unknown rewards framework studied in Chapter 7.

1.2 Thesis Structure
This thesis is structured as follows:

Chapter 2 provides a background on the multi-armed bandit problem, which is cen-
tral to the study of the exploration-exploitation trade-off in this thesis. We provide
a review of well-studied frameworks and of existing policies and algorithms. We
also provide an extensive analysis of the various policies and algorithms in terms of
their flexibility and applicability to different problems. This motivates the need for
the research contributions that follow.

In Chapter 3 we theoretically examine a basic bandit with covariates problem.
Specifically, we derive and prove optimal exploration rates forctgeeedy and-

first policies, which are frequently used and strong performing policies for bandit
problems in general. These findings are then used to construct a novel on-line algo-
rithm (free of exploration parameters) which is the building block ofe#dOAPT
algorithm.

Chapter 4 constructg-ADAPT, our on-line algorithm for multi-armed bandit prob-
lems, for problems with and without side information. The algorithm is built using
newly derived theoretical properties of théirst policy. Several key additional fea-
tures are introduced to the algorithm to improve finite-time performance, which we
demonstrate through a detailed empirical study. We note that some of the findings
in this chapter are also presented in Sykulski et al. (2010a).

In Chapter 5 we study dynamic bandit problems, where the expected rewards re-
ceived for actions change over time. This is an important and realistic extension
of bandit problems to real-world applications. We make several key changes to the
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e-ADAPT algorithm of Chapter 4 and demonstrate the strong performance again
through an extensive empirical study of several different dynamic reward processes.

Chapter 6 starts by providing a short background on relevant multi-agent sequen-
tial decision making problems. Motivated by this, we then study a multi-agent
bandit problem with communication, to show the importance of agexporing

their communication decisions. We construct a novel off-line policy, which is an
extension ot-greedy and also exterdADAPT to this multi-agent framework.

In Chapter 7 we study repeated 2-agent, 2-action games (also knownxas 2
games) with unknown rewards, to study the impact of the exploration-exploitation
trade-off in relation to game theoretic reasoning. We study several fundamental
off-line policies before using these findings to exterADAPT to this framework.

We show that optimal rates of exploration are dependent on the type of opponent,
as well as the reward structure of the game.

Finally, in Chapter 8 we conclude and present key directions for future work.



19

Chapter 2

Sequential Decision Making and
Bandit Problems

This thesis first examines the exploration-exploitation trade-off in the single-agent
domain by studying the multi-armed bandit problem (Chapters 3, 4 and 5) and then
in the multi-agent domain by considering various extensions of the bandit prob-
lem (Chapters 6 and 7). Since the bandit problem is central, in this chapter we
provide a thorough overview of existing literature on the multi-armed bandit prob-
lem, including the various types of problem considered, which we referliaradit
frameworks and the range of existing policies and algorithms that attempt to bal-
ance the exploration-exploitation trade-off. Finally, we evaluate the applicability of
existing policies and algorithms to the different bandit frameworks and perform a
critical analysis of their key advantages and disadvantages. This analysis identifies
several shortcomings in the current state-of-the-art which we try to address in the
proceeding chapters. Note that we review the relevant literature for multi-agent se-
guential decision making problems, which are (in general) not directly related to
the bandit problem, at the beginning of Chapters 6 and 7.

The multi-armed (ok-armed) bandit problem is the most basic and best studied
abstraction of the exploration-exploitation trade-off in sequential decision making
problems. Originally documented by Robbins (1952), the problem is based on the
analogy of a series of slot machines or one-armed bandits. A gambler selects one
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arm to pull at each time-step (arm at timet wherei € {1,...,k}) and then re-

ceives a corresponding rewardt) (which can be negative). The objective of the
gambler is to maximise cumulative reward over a sequence of pulls. Note that we
henceforth refer to the gambler as an agent, and the arms as actions, to keep the ter-
minology consistent with the multi-agent system problems considered in Chapters
6 and 7.

The bandit problem has three key properties. First, the agent starts with little
or no prior knowledge of the expected rewards of each action. Secondly, the agent
has no knowledge of the rewards foregone from unselected actions — this makes the
problemopaque(as opposed transparentwhere the agent observes the rewards
of all actions) and finally, the observed reward of a selected action is not always
the same (it is either noisily observed or changes over time). Taking these proper-
ties together, the agent must consider exploring all actions in an effective policy to
learnabout their potential future rewards. The agent therefore faces an exploration-
exploitation trade-off, where the agent must choose between selecting actions that
are expected to perform best (exploitation) and selecting alternative actions for po-
tential future benefit (exploration). The objective of the multi-armed bandit problem
is to design a policy that can use past actions and rewards to select the next action
whilst simultaneously balancing the exploration-exploitation trade-off.

The multi-armed bandit problem has been extensively studied in the fields of
statistics (Berry and Fristedt, 1985; Lai and Robbins, 1985), machine learning
(Sutton and Barto, 1998), economics (Rothschild, 1974) and multi-agent systems
(Carmel and Markovitch, 1999) and has applications in areas as diverse as on-line
auctions (Blum et al., 2003), clinical trials (Hardwick et al., 1998; Woodroofe,
1979), market pricing (Azoulay-Schwartz et al., 2004; Rothschild, 1974; Weitzman,
1979), organisational learning (March, 1991), web advertising (Kleinberg et al.,
2008; Pandey et al., 2007) and multi-target tracking (Hero et al., 2006; Krishna-
murthy and Evans, 2001). Notice that all of these applications match the key prop-
erties of the bandit problem mentioned above. In clinical trials, for example: there
will usually be little prior knowledge about the effectiveness of an untested drug, the
outcome of untried drugs on patients will be unknown, and the benefits/symptoms
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of tried drugs will vary from person to person and over time. In fact, several real-
world applications of sequential decision making problems are likely to have these
key properties and it is for these reasons that the multi-armed bandit problem has
attracted such wide attention in the past 40 years.

This chapter is structured as follows. In Section 2.1 we introduce the various
bandit frameworks that have been considered. Then, in Section 2.2, we summarise
all the different algorithms and policies that have been constructed for the bandit
problem. Then we evaluate the strengths and weaknesses of these algorithms and
policies in Section 2.3 and also discuss how well they generalise to the different
bandit frameworks. Summary remarks follow in Section 2.4.

2.1 Bandit Frameworks

All bandit frameworks considered in the literature have the three key properties
mentioned earlier: little or no prior knowledge of expected rewards, opaqueness,
and action rewards that are noisy or change over time. There are several variations
of this general principle, however, which are covered in this section. These vari-
ations include: the number of actions available (Section 2.1.1), the availability of
any side information (Section 2.1.2), the length of game (Section 2.1.3), the method
by which rewards are generated (Section 2.1.4) and dynamics driving the reward
process (Section 2.1.5). Finally, in Section 2.1.6 we introduce Markov Decision
Processes (MDPs) and discuss their relationship with bandit problems.

2.1.1 Number of Actions

The simplest version is the one-armed bandit problem, introduced in Chernoff
(1967). In this formulation, the agent must select between an unknown “risky”

action and a known “safe” action. The application considered in this paper is se-
guential clinical trials, where patients in a trial can be allocated the best known and
tested drug or a new untested drug (which is the subject of the trial). The objective
of the trial is not only to learn about the performance of the untested drug, but also
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to maximise the benefits (or minimise the symptoms) to all the tested patients —
which creates the exploration-exploitation trade-off. The one-armed bandit prob-
lem has since been extensively studied in Kumar and Seidman (1981), Rosenberg
et al. (2007), Sarkar (1991) and Woodroofe (1979).

The reward structure of the alternative “known” action does not require any
learning, and hence the agent does not need to explore this action. Exploration
in the one-armed bandit problem therefore involves selecting the unknown action
when it is expected to perform worst given the knowledge the agent has. This is
why the problem is known as the one-armed bandit (as opposed to two-armed).
The two-armed bandit problem, where the reward structures of both actions are
unknowna priori, has been studied in Berry (1972), Li and Zhang (1992) and
Rothschild (1974) amongst others. The extension to multiple-arms where the agent
must select between a finite set of unknown actions is commonly referred to as the
multi-armed bandit problem dt-armed bandit problem (Sutton and Barto, 1998;
Vermorel and Mohri, 2005). This problem has also been extended in Whittle (1981)
to arm acquiring banditsvhere new actions become available during the decision
making problem. Finally, the continuous bandit problem or the infinitely-armed
bandit problem studies scenarios where the agent must select from a continuous
variable or an infinite set of actions (Flaxman et al., 2005; Kleinberg, 2005). In this
thesis, we consider bandit problems for a set number of finite actions and continue
to make the distinction between one-armed and multi-armed problems. Arm ac-
quiring bandits and the infinite-action problem are both of interest and form part of
planned future work (see Chapter 8 for more details).

2.1.2 Side Information

In many real-world applications, agents are likely to have additional side informa-
tion that is received throughout a decision making process. This side information
can be interpreted as additional information (other than observed rewards) that is re-
lated to, but does not fully reveal, the expected rewards of future actions. This con-
ceptwas first introduced to bandit problems in Woodroofe (1979) for the one-armed
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bandit problem. This paper advanced the work in Chernoff (1967) for sequential
clinical trials, by arguing that available side information such as age, severity of
disease or general physical status, which is specific to the patient, should be incor-
porated into the decision making process. Woodroofe goes further to argue that side
information is likely to be present in all applications. As examples, weather con-
ditions, time of day and terrain topography can inform the agent in a multi-target
tracking problem or daily volume of transactions, exchange rates and the availabil-
ity of alternative products can assist a bidder in on-line auctions.

The agent observes the side information in the form of a covariate (also referred
to as a concomitant variable) prior to the decision made at#irmi&is covariate is
linked to the reward of both the known and unknown action. In Woodroofe (1979),
the covariate takes a scalar value) (from a known distributionX’) and the reward

of the unknown actiom; is simply:

ri(t) = x(t) + 2(t), (2.1)

wherez(t) is drawn from a known distributio# (independent oX') with unknown
but fixed meanu. In this instantiation of the problem, the agent must learn the
parametey. to establish which action is expected to yield a larger reward given a
particular value ofc(t).

This problem has become known as Handit with covariates problemnd has
since been extensively studied in Clayton (1989), Pavlidis et al. (2008a), Pavlidis
et al. (2008b), Sarkar (1991), Woodroofe (1982) and Yang and Zhu (2002) for both
the one-armed and multi-armed cases. In other literature, the problem has been re-
ferred to as theontextual bandit probler{Beygelzimer et al., 2011; Langford and
Zhang, 2007; Lu et al., 2010), or simply as thendit problem with side observa-
tions (Pandey et al., 2007; Wang et al., 2005a,b). In each case the covariate and
reward structure has been enhanced from that seen in Woodroofe (1979), to include
high-dimensional covariates and complicated reward structures. This is covered in
more detail in Section 2.1.4 where we discuss the many different reward processes
that have been investigated.
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We consider the bandit with covariates problem to be important in the context
of sequential decision making problems as they characterise many real-world prob-
lems where agents face the exploration-exploitation trade-off. The framework can
also be viewed as a generalisation of the standard bandit problem with no covari-
ates (where the covariate can simply be set to be degenerate (Wang et al., 2005b)).
For these reasons, we focus our research on the covariates setting in the following
chapters.

2.1.3 Length of Game

The objective of the agent in bandit problems is to maximise reward over a se-
guence of pulls, or to minimiseegret where regret commonly refers to the differ-
ence between the reward of the action selected and the reward of the optimal action.
In most early studies of bandit problems (Berry and Fristedt, 1985), the objective
was to find a policy to maximise reward (or minimise regret) asymptotically, or
in an infinite-length game. Regret measures are preferred for asymptotics, as the
objective is to then design a zero-regret policy (whereas rewards will grow with-
out bound). More recent studies however (Auer et al., 2002; Vermorel and Mohri,
2005), have attempted to design policies that are optimal or approximately optimal
in finite-length games. The latter task is more difficult, as asymptotically optimal
policies can yield poor results in finite time (Vermorel and Mohri, 2005). This is
particularly relevant in real applications, where decision making problems are al-
ways likely to be finite in length. Furthermore, decision making environments will
usually evolve over time and the decision problem will constantly change — such
that asymptotic convergence is neither meaningful nor desirable. Given this, we
focus our attention on finite-time problems in this thesis.

2.1.4 Reward Process

In the k-armed problem, the agent receives a rewaftt) from actiona; at timet,
wherei € {1,...,k}. The objective is to maximise the cumulative rewa (")
in a game of lengt” wheret € {1,...,T'}. Note thatt takes discrete values and
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decisions occur at regular intervals — this is not a restrictive assumption in static
bandit problems where reward processes do not change over time and the actual
time between each decision is not important. The valuecah therefore be simply
interpreted as the “iteration number”.

The cumulative reward is sometimes discounted over time such that:

R(T) = a'r(t), (2.2)
t=1

where0 < a < 1 is the discount factora( = 1 corresponds to no discounting).
Some action selection policies (as detailed in Section 2.2) require the discount fac-
tor to be strictly less than 1 for the policy to work. This is somewhat restrictive as
several applications (such as clinical trials) consider undiscounted rewards (Berry
and Fristedt, 1985). For this reason we impose no such condition on the policies
and algorithms we build in this thesis and henceforth consider only undiscounted
cumulative rewards.

The individual rewards for each action(t), have been generated in a number
of ways. In the simplest case rewards are generated using a Bernoulli distribution
(Berry and Fristedt, 1985) or a normal distribution (Vermorel and Mohri, 2005). In
these cases, the reward of each actipis an i.i.d. sample from a Bernoulli distri-
bution with unknown success probabilityor a normal distribution with unknown
mean and variancg; ands? respectively. The agent has to learn these unknown
parameters to identify the actions that yield the highest rewards. In fact, any proba-
bility distribution could be used, but analysis of i.i.d. rewards is typically restricted
to Bernoulli and normal distributions (as these are commonplace in many applica-
tions and also easy to use in a Bayesian setting). This problem is typically referred
to as thestochasticbandit problem (Vermorel and Mohri, 2005) or in some liter-
ature as atopping problenfWoodroofe, 1979; Gittins, 1979), as the agent would
prefer to perform all exploration first and must learn wherstiap exploring and
start exploiting.

An alternative mechanism for generating rewards is abeersarialor non-
stochastidandit problem (Auer et al., 1995, 2003) where rewards are set by an ad-
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versarya priori and can take any possible sequence of values, which can be highly
unpredictable and constantly change the optimal action. Although this framework
appears more flexible, analysis has been restricted to rewards that are bounded in
the interval|0, 1], which is not always practical. Moreover, the best policies in this
framework attempt to maximiseax; (> _, r;(t)) rather thard_, max; (r;(¢)). Orin

other words, the agent attempts to minimise regret against the action that performed
best overall on average (rather than the regret against the best action at each time
stept). In this work, we do not bound rewards and attempt to find the best action at
each iteration (rather than the best action on average), we therefore do not consider
the adversarial framework and generate our rewards stochastically.

Side information has also been incorporated into the reward process in a number
of ways. A popular framework models the reward of each action as a linear func-
tion of ap-dimensional covariate(t) = (x4(t), ..., x,(t)) with added observation
noise (Ginebra and Clayton, 1995; Pavlidis et al., 2008a,b; Yang and Zhu, 2002):

ri(t) = Z O"i,jxj(t) + 772’<t)7 Th'(t) ~ N(()? Ui2>7 (23)

wherez, (t) = 1, such thaty; ; becomes the intercept of the reward plane. phe
dimensional covariate(t) is often assumed to be an i.i.d. draw from a multivariate
normal distribution with unknown mean and covariance matrix. The agent has to
learn thek x p matrix « to partition the covariate space between regions where
each action is optimal. For this reason, bandit problems with this characteristic are
sometimes referred to aiocation problemgWoodroofe, 1979).

Another method is to model the relationship between the covariate and the re-
wards for each action using a set of finite hypotheses (Langford and Zhang, 2007;
Wang et al., 2005b). In some cases, these hypotheses have been labelled as “ex-
perts” that provide advice on the best action (Auer et al., 2003; Beygelzimer et al.,
2011). This setting allows for a richer set of reward functions to be considered, but
restricts the agent to a finite set of parameter values. Moreover, existing analysis in
this framework has been restricted to a 1-dimensional covariate and in some cases,
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rewards that are bounded in the intery@l1] (Beygelzimer et al., 2011; Lang-

ford and Zhang, 2007). Variations of this setting includeheial-label problem
(Kakade et al., 2008) and tlassociative bandit problegstrehl et al., 2006), where

the covariate can take high-dimensional values but the rewards for each action are
further restricted to either O or 1.

High-dimensional covariates and unbounded rewards are likely to exist in sev-
eral applications. For example in finance, side information (such as macro-economic
measurements) is widely available and rewards are difficult to bound, particularly
in times of economic instability. For these reasons, we use the linear reward and
multivariate normal covariate setting as the test-bed in this thesis. At first glance,
linear rewards and normal covariates may appear restrictive; however, non-linear
reward functions can often be accurately approximated by a linear function (using
an appropriate design of covariates) (Abe et al., 2003; Auer, 2003; Sutton and Barto,
1998) and multivariate normal distributions can accurately model several real-world
data sources (Cox and Small, 1978). Although our algorithms can in fact also be
applied to non-linear rewards and non-Gaussian covariates.

2.1.5 Dynamic Environments

In many real-world applications, the rewards received for an action will change over
time. In the simplest case, many slot machines in casinos will be pre-programmed
such that expected rewards incrementally grow as the agent plays (and loses) un-
til the agent does eventually win a large reward. After this, the expected reward
suddenly jumps down such that the agent is almost guaranteed to lose money if it
continues to play (BettingCorp.com, 2009). In this way, the casino can guarantee
a steady profit over long term play — in fact, this is where the “bandit” part of the
term “one-armed bandit” originated (7770nlineSlots, 2011).

A good policy for selecting actions should therefore be time dependent and
adapt to the type of dynamics observed. The optimal action may constantly change
over time, or in the presence of side information, the regions of the covariate space
for which each action is optimal will move or jump over time. The problem is
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no longer about convergence to an optimal action, but instead the agent needs to
continuously adapt and respond to changes in the reward structure.

This type of dynamic reward process, which incorporates both drifts and jumps,
has been implemented in the bandit with covariates framework by Pavlidis et al.
(2008a). In this formulation, the coefficients of the linear reward function in Equa-
tion (2.3) each follow an ESTAR (Exponential Smooth Transition Autoregressive)
process (Haggan and Ozaki, 1981):

a; ;(t) = szg + (ai,j(t -1) - afﬁ'}) exp (—fy(am-(t -1) - afE)Q) +uv, (2.4)

whereq;; is the equilibrium value ofy; ; andv is zero-mean normally-distributed
noise (with variances?). Coefficient values close to the equilibrium will change

like a random walk, but values far from the equilibrium will become mean revert-
ing and jump back to the equilibrium. The ESTAR model therefore allows for a
“continuum” of regimes (Van Dijk et al., 2002). The parameter (0,00) is

a smoothness parameter which determines the balance between drift and mean-
reversion (high values of allow no drift and asy — oo the process effectively
becomes static).

This type of dynamics ensures that the decision making problem does not de-
generate such that one action becomes globally optimal (as may naturally happen in
a drifting system) but has the important effect of constantly changing the regions of
the covariate space where each action is optimal. An effective policy would there-
fore constantly adapt to the problem with continuous exploration of all actions —
rather than trying to converge to a specific partitioning of the covariate space. An
alternative framework for considering dynamic rewards isréfstless bandiprob-
lem (Whittle, 1988), where the state of all unselected actions change over time.
This formulation, however, does not include side information and can therefore be
seen as a degenerate version of the dynamic model in Pavlidis et al. (2008a).

We consider dynamic rewards to be an important generalisation of bandit prob-
lems, as they can capture many real world problems. For example, the price of
financial assets will drift and jump over time, in response to various micro and
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macro-economic effects or targets will continuously adapt their evasive movements
in a multi-target tracking problem. From henceforth, we refer to bandit problems
with dynamic reward structures dgnamic bandit problem&s opposed tetatic
bandit problemsand we study such problems in more detail in Chapter 5, where
we consider new types of dynamic reward processes, previously not considered in
a bandit setting.

2.1.6 Markov Decision Processes

Finally, we note that another well-studied class of sequential decision making prob-
lems areMarkov Decision ProcesséMDPs) (Bellman, 1957). In MDPs, the de-
cision problem is in some state and transitions to new states are dependent on the
past action and current state only, also known as the Markov Propartjally Ob-
servable Markov Decision Procesg¢¥OMDPs) (Monahan, 1982) are generalised
frameworks where the agent does not observe the current state, and instead has a
probability distribution over all states.

MDPs and POMDPs have also been extended to situations where rewards are
unknown, which then introduces the exploration-exploitation trade-off (Sutton and
Barto, 1998). In this case, the classic multi-armed bandit problem is equivalent
to a single-state MDP, whereas the inclusion of side-information can be viewed as
an infinite-state MDP, where actions do not affect subsequent realisations of states.
The dynamic bandit problem, however, can capture state transitions beyond those
permitted by the Markov property and the agent is further not assumed to know
these state transition probabilities, hence the MDP framework is not as general —
it is for this key reason that we focus on bandit problems and not MDPs in this
thesis. Nevertheless, we note that the policies and algorithms introduced in Section
2.2 for the bandit problem have also been widely applied to MDPs and POMDPs,
in particular Q-learning which is introduced in more detail in Section 2.2.6.
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2.2 Policies and Algorithms

In this section we detail the various policies and algorithms that have been con-
structed for bandit problems, many of which have been broadly applied to other
sequential decision making and optimisation problems that require action explo-
ration. We make a distinction between algorithms and policies such that algorithms
are on-line methods for selecting actions, where an algorithm is executed at each
iteration, and policies are off-line decision rules with all exploration parameters set
in advance.

All policies and algorithms in the bandit problem require some form of initial-
isation. In most cases (Auer et al., 1995; Sutton and Barto, 1998) this requires
selecting each action once to gain an unbiased estimate of the expected rewards. In
other instances (Berry and Fristedt, 1985; Gittins, 1979) a Bayesian prior is attached
to the reward of each action — but unless there are some particularly informative pri-
ors, this almost inevitably also leads to the agent selecting each action once at the
beginning. The case of more actions than rounds was considered in Vermorel and
Mohri (2005), and in this case the policies and algorithms were initialised by se-
lecting two random actions and then estimating the reward of all other actions as
being the average of the two selected actions. We note that the case of more actions
than roundsK > T) is interesting, but we restrict our attention to more rounds than
actions " > k) in this work — as this is more common in most bandit applications.
Finally, in the presence of side information, a longer initialisation period is required
to gain unbiased sample estimates. In the linear reward structure of Yang and Zhu
(2002), each action must be first selected 1 times (wherep is the dimension
of the covariate), so that unbiased estimates of the reward coefficigntan be
computed before any action selection policies are executed.

In this section we review the-greedy policy and its variants (Section 2.2.1),
the SoftMax policy and probability matching variants (Section 2.2.2), interval esti-
mation and UCB policies (Section 2.2.3), the Gittins Indices (Section 2.2.4), the
POKER algorithm (Section 2.2.5) and reinforcement learning methods (Section
2.2.6). We discuss the applicability of these approaches throughout, but then com-



Chapter 2. Sequential Decision Making and Bandit Problems 31

pare their strengths and weaknesses in more detail in Section 2.3.

2.2.1 e-greedy and Variants

The simplest policy in any bandit setting igeeedypolicy (Sutton and Barto, 1998)
which selects the action that has yielded the highest reward thus far. This is a pure
exploitation policy — as exploration involves selecting an action that is not expected
to yield the highest instantaneous reward, but might improve cumulative reward in
the long-term. The lack of exploration and consideration of long-term rewards has
lead this policy to be referred to agva/opicpolicy in some literature (Woodroofe,
1979) and also ane-step look-aheagolicy in others (Gittins, 1979).

This policy has in fact been shown to perform optimally (Macready and Wolpert,
1998; Woodroofe, 1979), or near-optimally (Pavlidis et al., 2008b) for certain bandit
frameworks. This can be attributed to a number of possible factors. First of all, the
initialisation period can perform sufficient exploration for the agent to immediately
learn the optimal action before the action selection policy is even implemented.
This was discovered, for example, in the linear bandit with covariates framework
in Pavlidis et al. (2008a), particularly for a high-dimensional covariate where the
initialisation period is long. Secondly, the observation noise may be sufficiently low
such that exploration is not required (Pavlidis et al., 2008b) and finally, the num-
ber of actions is small or reward structure is very simple (Macready and Wolpert,
1998; Woodroofe, 1979) and the problem is easy enough to learn from the rewards
received through pure exploitation. The greedy policy has also been found to be op-
timal for many other sequential decision making and optimisation problems (Lew,
2006).

In most bandit settings however, the greedy policy will perform far from opti-
mally as the agent is performing insufficient exploration and will often converge to
the repeated selection of a suboptimal action (Sutton and Barto, 1998). In fact, the
greedy policy is mainly used for its computational efficiency and simplicity (Lew,
2006). Unlike most other policies, it does not require any parameters to lae set

priori.
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Exploration can be incorporated into a policy in a number of ways. One of
the simplest methods is by using amgreedypolicy (Watkins, 1989), which is a
straightforward extension of greedy selection. At each iteration, the agent adopts a
greedy policy with probabilitl — ¢ (where0 < ¢ < 1) and selects a random ac-
tion with probabilitye. The value of is selected priori and can be interpreted as
an exploration parameter — higher values correspond to more exploration and vice-
versa. Note that the greedy policy is recovered by settirg0. The explorative
component is random and ensures every possible action is continuously explored
— such that convergence to a suboptimal action is not possible. In a static reward
setting this may seem undesirable as an agent should stop exploration once the op-
timal action has been learnt. Nevertheless, this policy has been found to perform
well in finite time, in a number of empirical studies (Sutton and Barto, 1998; Ver-
morel and Mohri, 2005). Furthermore, this policy is suitable for dynamic problems
where an agent should continuously explore to then adapt to any changes in the sys-
tem (Pavlidis et al., 2010). In fact;greedy methods for exploration are commonly
used across many sequential decision making and optimisation problems (Neumann
et al., 2007; Shani et al., 2005; Sutton and Barto, 1998) and we study this policy in
more detail throughout this thesis.

A natural variant of the--greedy policy is are-first policy (Even-Dar et al.,
2002), which performs all exploration at the beginning of the problem. Specifically,
in a game of length’, the agent explores randomly for the fie§t iterations and
then selects greedily for the remainifig— €)1 iterations. This policy ensures that
all exploration is performed at the beginning when the agent has the highest levels
of uncertainty regarding the expected rewards of each action (in a static problem).
In fact, for the same value ef ane-first policy will on average perform better than
ane-greedy policy in a static problem, as shown empirically in Vermorel and Mohri
(2005). This is because the benefits of exploration, through increased learning, are
experienced over more iterations (as the exploration is performed earlier) whilst
the short-term costs of exploration are the same in both cases. In other words, the
“greedy” part is performed better using aifirst policy, as the agent has a better
idea of which action is optimal. In fact, this policy was found to perform best in
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the empirical evaluation by Vermorel and Mohri (2005). Afirst policy however,
requires knowledge of the game-lendthi{e-greedy does not), which is not always
available in certain applications. Furthermore, this policy is not usually suitable in
a dynamic reward setting where exploration should not be performed all at once.

Another variant, which combines the above approaches, isd@areasingol-
icy (Auer et al., 2002), where the agent explores with probahility (1, 670) attime
t (whereey, > 0) and otherwise selects greedily. Alternatively, in a variant called
GreedyMix(Cesa-Bianchi and Fischer, 1998), the exploration is performed with
probability min (1, %) In both these cases, the rate of exploration decreases
exponentially to zero, making these policies particularly suitable for problems that
are static and where the game-lengtls unknown (such that asnfirst policy is un-
suitable). Moreover, for certain classes of problems, these policies can be shown to
have optimal asymptotic properties and strong finite-time performance (Auer et al.,
2002).

The e-greedy, e-first ande-decreasing policies are sometimes collectively re-
ferred to as-greedy policies (Sutton and Barto, 1998), but to avoid ambiguity, in
this thesis we refer to them separately with the above given names. In other lit-
erature, these policies are sometimes referred teeas-uniformpolicies as the
agent forms a binary distinction between greedy exploitation and random (uniform)
exploration (Vermorel and Mohri, 2005). We consider these approaches to be the
simplest but most fundamental exploration policies in sequential decision making,
and pay particular attention to thegreedy and-first policies in this thesis, not
least because they have been found to perform consistently well across a range of
empirical studies (Auer et al., 2002; Pavlidis et al., 2008b,a; Sutton and Barto, 1998;
Vermorel and Mohri, 2005). Note thatfirst performs best in static problems, but
e-greedy has particular application in a dynamic reward setting (see Chapter 5), or
in certain multi-agent settings (Chapter 7). The main weakness of these policies,
however, is that exploration is performed randomly which means that actions that
are known to be suboptimal will continue to be selected for exploration. We com-
pare and contrastgreedy and its variants against other policies in more detail in
Section 2.3.
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2.2.2 SoftMax and Probability Matching Variants

An alternative approach to randomly exploring actions is to weight the probability
of selecting each action such that actions that are expected to perform better are
selected with higher probability. This concept was first introduced in Luce (1959),
where aSoftMaxpolicy was proposed. Each actianis chosen with probability

pi =€/ Z?zl e™i/™, wherer; is the mean reward of this action thus far. The pa-
rameterr > 0 determines the degree of exploration performed where large values
correspond to more equal weighting between the actions and hence more explo-
ration. Conversely, as — 0 the policy approaches a greedy policy. For a suitable
value ofr, this policy ensures that actions that are unlikely to be optimal are rarely
selected. The overall degree of exploration, however, does not change over time,
which yields poor asymptotic properties. For these reasons, the temperature pa-
rameter is sometimes decreased over time atlrater log(¢)/t (in a similar vein

to e-decreasing) — the latter case sometimes being referred t&agMix policy
(Cesa-Bianchi and Fischer, 1998), which was shown to be the theoretically appro-
priate choice for certain classes of problems in Singh et al. (2000). All of these
weighted probability exploration policies are sometimes collectively referred to as
probability matchingpolicies (Vermorel and Mohri, 2005).

Another popular method, particularly in the non-stochastic adversarial frame-
work, is theExp3 policy (Exponential weight algorithm for exploration and ex-
ploitation), designed in (Auer et al., 2003). In this instance, the probability of se-
lecting each action at timeis weighted by:
w;(t)

pi(t) = (1 - 7) A

S wy(t)

, (2.5)

=2

wherew;(t + 1) = w;(t) exp (7;(—%) (updated only if action; is selected). The
parametery € [0,1] determines the degree of exploration, where= 1 yields

pure random exploration. This policy ensures that actions with high rewards lead to
higher probability weightings — where the increase in weighting is largest if an ac-

tion with previously low probability weighting (and hence low prior rewards) then
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observes a high reward. Numerous variants are also proposed, including decreasing
~ over time to achieve asymptotic optimality — but these policies are beyond the
scope of this thesis, particularly as they are designed for the non-stochastic adver-
sarial framework.

In this thesis, we choose not to focus on SoftMax policies and their variants as
they do not perform well in finite time (Vermorel and Mohri, 2005), and are mainly
designed for their guaranteed asymptotic properties (in some specific problems).
For example, Exp3 policies are only asymptotically optimal for rewards bounded
in the interval[0, 1]. Moreover, such methods have not always been extended to
include side information or dynamics. This is discussed further in Section 2.3.

2.2.3 Interval Estimation and UCB

Another approach to exploration is to be “optimistic in the face of uncertainty”
(a term introduced in Kaelbling (1993)) and select actions using a combination
of expected reward values and the uncertainty of the reward estimates — such that
actions with high uncertainty are selected more often. This approach is sometimes
referred to as using “exploration bonuses” (Dearden, 2000; Meuleau and Bourgine,
1999). This idea was first introduced in Kaelbling (1993) where the upper bound
of the 100(1 — )% confidence interval is calculated for the expected reward of
each action, and then the action with the highest value (sometimes referred to as an
“optimistic reward estimate”) is selected. This action selection policy subsequently
became known as ainterval estimationpolicy. Higher s values correspond to
less exploration and as— 1, action selection approaches that of a greedy policy.
The rewards are typically assumed to follow a normal distribution such that the
confidence bounds can be easily estimated on-line (Sutton and Barto, 1998). This
policy has also been extended to the covariates setting in Pavlidis et al. (2008b) for
a multivariate normal covariate and to dynamic problems in Li et al. (2010) for a
web-advertising application (where user preferences change over time).

A further enhanced approach, which does not require distributional assump-
tions regarding the reward processes, was developed in Auer et al. (2002). Specif-
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ically, severalJCB (Upper Confidence Bound) policies were designed for rewards
bounded in the intervdDb, 1] (and an additional policy for normally distributed re-
wards). These policies were designed to achieve bounded regret in finite time (as
well as having optimal asymptotic properties). In more detail, the first proposed
policy UCBY, selects the actiom; that maximises:

YL (2.6)

ny;

wheren; is the number of times that actiar) has been selected thus far. This
parameter free method has optimal asymptotic properties for rewards in the interval
0, 1] but was found to perform poorly in finite-time problems. To improve on finite-
time performance however, Auet al. modify this policy and instead select the
action that maximises:

Int 1
7 —min [ =, Vi(n; 2.7
Tz_l' J”Z min <4a‘/2(nz))7 ( )
where,
1 o~ , > 2Int
“(n;) = [ — 2 (¢, — 7 , 2.8
Vi(n) (n > i <T>>) Y (28)

wheret; is the sequence of time-steps for which actigrinas been selected. This
policy, referred to asJCB1-Tuned performs well with rewards bounded in the
interval [0, 1], but the authors are not able to provide any finite time or asymptotic
performance bounds. Auet al. then propose a policWCB2 which performs

well in finite-time analysis and can be bounded. This policy chooses an action and
selects this for an “epoch” (an interval in time). The action selected is the one that
maximises:

. (1+ Rl (et /(1 + K)*T)
n+\/ 2T+ r)] : (2.9)

and is selected exactly{1 + )% + [(1 + k)% times, where; is the number of
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epochs selected with actiarthus far (anck is Euler's number). We note that this
policy introduces a parametér< ~ < 1, which must be sed priori and affects the
rate of exploration. Finally, Auegt al. construct a policy for normally distributed
rewardsUCB1-Norma) which selects the action that maximises:

- \/ 1027 ) )i 1) (2.10)

All of these policies were found to generally perform worse than a well-tuned
e-decreasing policy in an empirical evaluation. Although, it is noted that the perfor-
mance of-decreasing degrades rapidly with a poorly tuaedhe performance of
UCB2 for example, is much less sensitive to thearameter. Nevertheless, all UCB
policies are designed to work with specific reward structures and cannot be easily
extended to include covariates or dynamics. We therefore do not use these policies
within our algorithms in this thesis but nevertheless refer to them frequently and
compare performance in relevant empirical studies in Chapter 4.

Finally, we note that the UCB approach of Auer et al. (2002) has also been
extended to other sequential decision making problems not considered in this thesis
such as Markov Decision Processes (MDPs) and game-tree searches (used to solve
games such as chess, Go and backgammon) in Kocsis and Sae2806) where
a UCT (Upper Confidence bounds for Trees) algorithm was constructed, based on
Monte Carlo planning.

2.2.4 Gittins Indices

An optimal policy has been found for a discounted stochastic bandit problem in
the classic paper by Gittins (1979). The framework assumes Bernoulli distributed
rewards for each actiom;, with unknown success probability. At time ¢ = 0,

the agent has a prior probability density ~ betg«;(0), 5;(0)). The posterior
distribution for ¢, at timet is therefore also a beta distribution with parameters
(ei(t), Bi(t)) = (a4 (0) + s;, 5:(0) + n; — s;), wheres; is the number of successes
(rewards of 1) received from actian up to timet. At each time-step the agent
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calculates an index for each actiepwhich is given by:

T (at), Bu(t), @) = sup 2@l i), @) (2.11)

t
T<T t=0 a

for a discount factor off < a < 1, where

T—1

R (ci(t), Bi(t),a) = B a'ri(t), (2.12)
t=0
is the expected total discounted reward frotmials on actioru;, which can be cal-
culated iteratively forr = 1,2, ..., by calculating conditional expectations of the
beta posterior distributions (see Gittins (1979) for the full algorithm). The optimal
value ofr is referred to as the “optimal stopping time”.

The action with the highest” (a;(t), 3;(t), a) index value is selected at each
iteration. These indices were referred todgmamic allocation indice$DAIS) in
Gittins’ papers but are now commonly known as @igtins indices The expected
probability of success for each actiopat timet is the mean of the beta; (¢), 5;(t))
posterior distributions, namely;(t)/(«;(t) + G:(t)), which serve as minimum
bounds for the Gittins indices (as they are equalto' (a;(t), 3:(t), a)). For small
values ofa (i.e. a large discount factor), the Gittins indices will be close to these
values. They will however be considerably larger for high values where the
optimal stopping time is large.

Computation of the Gittins indices is difficult, particularly as the optimal stop-
ping timer becomes large. For these reasons Gittins and Jones (1979) provides
pre-computed index values for a grid @fand 3 integer values ranging from 1 to
10 — this however is with a 0.75 discount factor, as higher discount values require
longer stopping times. In fact, as— 1 the indices all tend towards 1 and precisely
determining the optimal action can require extremely heavy computation. In addi-
tion, large values of requirea and/3 values far greater than 10. The use of a beta
prior for Bernoulli rewards is also significant, as this prior is conjugate and hence al-
lows an analytic representation of the posterior and avoids numerical approximation
techniques. The Gittins indices were also extended to normally distributed rewards
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with unknown meanu; but with known variance?. The prior distribution fon;
is also normal and hence conjugate, but the indices are even more complicated to
calculate (see Section 9 in Gittins (1979) for more details).

The optimality of the Gittins indices for the discounted bandit problem has been
proved several times, see for example (Ishikida and Varaiya, 1994; Tsitsiklis, 1994;
Weber, 1992; Whittle, 1980). Gittins indices have also been shown to be optimal
for several variations of the multi-armed bandit problem, for example with arm ac-
quiring bandits (Whittle, 1981) and restless bandits (Whittle, 1988); but have also
been shown to not exist or be suboptimal for other variations, such as bandits with
switching costs (Banks and Sundaram, 1994; Van Oyen et al., 1992) and bandits
with multiple plays (Ishikida, 1992; Pandelis and Teneketzis, 1999). Analytical rep-
resentations of Gittins indices in bandit problems are typically unattainable, how-
ever such solutions were found in a continuous time bandit where rewards evolve
according to a Brownian motion (Karatzas, 1984), with unknown drift but known
volatility.

The Gittins indices do not converge in the undiscounted setting and have only
been computed for certain reward distributions and parameter priors. Given this,
and the fact that no extensions to covariates or dynamic rewards exist, we do not
consider the Gittins indices in this thesis. Nevertheless, our novel algorithm for
the bandit problem has similarities with the Gittins approach, in that we attempt to
iteratively calculate the long-term value of selecting each action individually. We
discuss this analogy in more detail in Chapter 4.

In addition to Gittins indices, there are other Bayesian approaches which are
much less computationally demanding. Thompson sampling (Thompson, 1933)
samples a value from the posterior distribution for the expected reward of each
action and then selects the action with the highest sampled value. Although this
method was originally constructed for Bernoulli bandits, and is focused towards
achieving desirable asymptotic properties, Thompson sampling has been imple-
mented by Graepel et al. (2010) for web advertising with Microsoft’s Bing search
engine. Bayesian Reinforcement Learning (Strens, 2000) uses a similar approach
of estimating the posterior distribution of the unknown parameters, but then uses
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these distributions to sample a hypothesis of the decision problem faced. The op-
timal action can then be approximated by optimising over this hypothesis using
techniques such as Q-learning (see Section 2.2.6). These Bayesian sampling meth-
ods are useful but not considered further in this thesis as they are not designed for
the finite-time or dynamic problems that we consider in this thesis — but more for
guaranteeing convergence to the optimal action in an infinite-time static decision
making problem.

2.25 POKER

The “Price Of Knowledge and Estimated Reward” (POKER) algorithm (Vermorel
and Mohri, 2005) uses similar principles to interval estimation and UCB methods
in that optimistic estimates are given to under-explored actions. At each time-step
t, an indexp; is calculated for each action:

pi = 7o+ 6Prlus > 7+ 6,)(T — 1), (2.13)

wherey; is the unknown true mean reward of action 7 is the highest observed

mean reward of all actions ardj is the expected reward mean improvement. The

action with the highest index valygis selectedo,, is multiplied by the probability

of a reward improvement and the horiZon-t. This can be collectively interpreted

as an estimate of the “knowledge acquired” if actigms selecteds,, is not known

to the agent and is estimated §y= (7;, —f,-ﬁ)/\/_, wherer;, > ... > 7; arethe

ordered reward means of all theactions selected thus far. Note thatan be less

than the total number of actiorsas this paper studies scenarios whEre k. and

not every action is selected during initialisation (as discussed on page 30 earlier).
The probability of a reward improvemeRt|y; > 7 +6,] is also approximated

by:

& 5 (7, —7 =0, :/ N(x,n,i> dz. (2.14)
T“\/’Tz'< l) f*+5’u \/TTZ

This approximation assumes that the unknown paramgismormally distributed
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and centred around the mean estimat&vith standard deviation proportional to

the inverse square root of the number of times actiphas been selected. This
approximation is exact if the rewards themselves follow a normal distribution and
otherwise converges to the true distributionfagcreases) under the central limit
theorem. There are no finite-time theoretical guarantees on the POKER algorithm
(in fact we show in Chapter 4 that the algorithm can also perform poorly in simu-
lation studies). The authors do however provide a proof showing that the algorithm
is zero-regret asymptotically, under certain assumptions regarding the reward gen-
erating mechanism.

The POKER algorithm is in fact intrinsically an on-line algorithm, with no fixed
exploration parameter, and is therefore an alternative approach to the work pre-
sented in Chapter 4, where we develop methods for controlling exploration on-line.
This algorithm, however, has no natural extension to incorporate side information
(or dynamics), and hence cannot be generalised to the bandit with covariates prob-
lem. Furthermore, the choice 6f is not a principled approach, and changing this
value will scale the amount of exploration performed accordingly (in the same way
that/3 controls the degree of optimism in the interval estimation policy). The choice
is motivated by the authors from the fact that it performs well empirically and is
suitable for problems with a large number of actions. Nevertheless, despite these
restrictions, we include the POKER algorithm in various simulations as a bench-
mark for our algorithms, in the standard bandit problem with no side information.

2.2.6 Reinforcement Learning

Several other policies and algorithms exist for balancing the exploration-exploitation
trade-off in sequential decision making and bandit problems. Many of these are
only for specially designed frameworks that are not relevant to this thesis, but some
are general enough to encompass a wide range of sequential decision making prob-
lems. In this section we give an overview of these policies/algorithms, which are
all reinforcement learning type approaches.

A popular reinforcement learning approach is to @skearning(Watkins, 1989)
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to learn the expected rewards from each action over time, such that:

Qi(t) = Qi(t — 1) + A(ri(t) — Qi(t — 1)), (2.15)

where Q;(t) are referred to as th@-valuesfor each action and < A < 1is

the learning rate. Note that this is a simplified version of the full Q-learning algo-
rithm which can be used in settings with multiple states (such as those considered
in MDPs, see Section 2.1.6), but this extension is beyond the scope of this the-
sis. Returning to the single-state formulation given in Equation (2.15), if we set
A = 1/(n;) then we recove®);(t) = 7;(t), which is the average reward from action

a; thus far. Setting\ to be a constant value allows the Q-values to be an adaptive
estimate of the mean reward of each action, which is useful for dynamic systems.
Selecting the action with the highest Q-value, however, can yield similar results to
that of a greedy policy, as there is no explicit action exploration. This is unless Q-
learning is combined with usingptimistic initial valueqSutton and Barto, 1998),

i.e. setting high values fap;(0). This causes all actions to be explored at the be-
ginning until their Q-values converge to their true values — this will however only
encourage exploration at the beginning of a game and is therefore only suitable for
exploration in a static system. Furthermore, there are two obvious issues with set-
ting these optimistic initial values. First, the agent may not know what rewards to
expect and hence does not know what range of initial values are optimistic and sec-
ondly, even with this knowledge, the degree of optimism influences the total amount
of exploration performed before converging to a particular action. This algorithm
is consequently more useful for guaranteeing asymptotic convergence, rather than
maximising finite-time performance. We note that the multi-agent extension of this
algorithm, known as R-Max, was constructed in Brafman and Tennenholtz (2003).
Essentially, R-Max initialises optimistically by allocating each state and joint ac-
tion the maximum possible reward (which is assumed to be bounded and known).
This is covered in more detail in Section 6.2 where we provide a more detailed
background on multi-agent sequential decision making.

Alternative reinforcement learning approaches incltelaforcement compar-
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ison methods (Sutton, 1984) armlrsuit methods (Thathachar and Sastry, 1985).
The former adjusts the probability of selecting an action dependent on whether
an observed reward is less than or greater than sefeeence rewardsuch that

high rewards increase the probability (and vice-versa). A natural choice for the
reference reward is the mean from past observations (although optimistic Q-values
could also be used). As an example, the probahilityf selecting each action can

be determined using a SoftMax poligy(t) = e™(*)/ Zle e ) wherer;(t + 1) =

7(t) + B(ri(t) — Q;(t)). This algorithm was shown to work well in finite time
(Sutton and Barto, 1998) with optimistic Q-values for suitably tuned parameters.
Although we note that the inclusion of the step-size parametevgether with the
Q-learning step-siza and setting the optimistic initial values) over-parameterises
the problem, and complicates the implementation of this algorithm in many practi-
cal domains.

Pursuit methods are similar, but rather than changing the probability of selecting
each action dependent on their relative performance, the algorithm actively “pur-
sues” the greedy action. Specifically, the probability of selecting the greedy action
pi=(t) is adjusted by« (t + 1) = p;«(t) + B(1 — p;i<(¢)) and all other actions are
adjusted by, (t + 1) = p;(t) — Bpi(t), which ensures the probabilities always sum
to 1. The initial probabilitiep;(0) are usually set to be/k. This algorithm is more
suitable than reinforcement comparison for the problems encountered in this the-
sis, as there is only one parameter that controls exploration, but we do not consider
this algorithm any further as it does not extend to the more enhanced frameworks
considered in this thesis.



2.3 Evaluation and Comparison 44

2.3 Evaluation and Comparison

In Section 2.1 we outlined the key variations between the different bandit frame-
works studied in the existing literature and in Section 2.2 we highlighted the key
policies and algorithms constructed for these various frameworks. In this section
we bring this work together and analyse in detail the robustness and flexibility of
each policy and algorithm in the context of how well they generalise to different
types of bandit problems. To keep this evaluation succinct and easy to follow, we
detail this analysis in Table 2.1, where a grid of different policies/algorithms and
bandit frameworks are cross-compared. The table shows thaiglteedy policy
is the most flexible: the policy is computationally efficient, can incorporate covari-
ates, does not require knowledgelof does not require bounded rewards or any
distributional assumptions, and can be applied to dynamic reward environments.

The other policies and algorithms have significant shortfalls — most cannot be
extended to dynamics and covariates and several require bounded rewards. Despite
these increased requirements, the simpler and more gergmexdy approach (and
its variants) have been consistently found to perform best across a range of empiri-
cal studies (Auer et al., 2002; Pavlidis et al., 2008b,a; Vermorel and Mohri, 2005),
which is a significant finding that warrants further investigation. Furthermore, there
are two obvious shortfalls of thegreedy policy: first, the requirement of an ex-
ploration parameter (in contrast to POKER and UCB1) and secondly, the fact that
actions that are sure to be suboptimal are repeatedly selected through random ex-
ploration. The first of these issues is particularly important. In many applications,
setting an exploration parameter optimadiyriori is not feasible and, as noted in
Auer et al. (2002), performance can degrade rapidly with a poorly tened

As mentioned earlier, thefirst policy will outperform ane-greedy policy in
static problems. Despite the requirement of knowing the length of the ggme
we also investigate this policy (together wittyreedy) in much more detail in the
chapters that follow. In addition, we include the POKER and UCB algorithms as
benchmarks for the bandit with no covariates problem.

land of course the greedy policy, which is a special casegoéedy.
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2.4 Summary

In this chapter we have reviewed the multi-armed bandit problem and the various
policies and algorithms that have been constructed for balancing the exploration-
exploitation trade-off. These are the state-of-the-art methods and have been applied
to many sequential decision making problems outside of the bandit framework.
Nevertheless, this is the first comprehensive review that encompasses the full range
of bandit problem literature and the first attempt to analyse the applicability of
various policies and algorithms across the various types of bandit problems.

Our critical analysis has shown that thgreedy and-first policies are the
best-performing and most flexible approaches to exploration-exploitation, partic-
ularly for the important generalisations of the bandit framework that include side
information and dynamic rewards. These policies have significant shortfalls though,
such as the requirement for an exploration parameter that needs todprgmt.

Given this, in this thesis we construct a novel on-line algorittiADAPT, which
removes the need for an exploration parameter and learns which action to explore
over time — we extend this algorithm to both covariates (Chapter 4) and dynamics
(Chapter 5), such thatADAPT is more generalisable than the UCB and POKER
algorithms. In addition, in the next chapter we conduct a theoretical analysis of
a basic one-armed problem to demonstrate how we can find the optivalles
off-line for bothe-greedy and-first.
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Chapter 3

Optimal Exploration Rates in Bandit

Problems

In the previous chapter we performed a critical analysis of the existing policies and
algorithms for various multi-armed bandit problems. We found thakigeeedy
policy is the simplest and most robust approach across the range of bandit frame-
works that have been considered. Furthermore, this policy (togetherfirtt)

has been found to perform best in a number of empirical studies, however this is
only for a well chosen value of Indeed, performance can degrade rapidly if this
parameter is chosen incorrectly.

For these reasons, in this chapter we theoretically examine the performance of
the e-greedy and-first policies for a simple bandit framework, namely the one-
armed bandit with covariates problem (with a one-dimensional covariate). We
investigate this framework as it is the most basic formulation of the exploration-
exploitation trade-off, where there is only one action to explore and one covariate
value to consider. The contributions of this chapter therefore serve as an important
first step towards theoretically finding optimal parameters off-line and also under-
standing how exploration-exploitation needs to be balanced in finite-time problems.
Furthermore, we use these theoretical findings to construct algorithms for adapting
exploration on-line which removes the need forapriori fixed exploration pa-
rameter.
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In more detail, we present a novel approach for reasoning about the expected
reward of action selection policies, by modelling the distribution of estimated pa-
rameters in the reward function. This helps us findghabability of error, that is,
the probability that the agent selects the action with lower expected reward when
trying to select the best action, given a specific policy. This measure is important
because it helps us find the expected reward when the agent is selecting greedily be-
tween actions. The probability of error is therefore crucial to finding the expected
reward (in finite time) of any policy or algorithm that exploits the covariate values
to select between actions, in this casedtygeedy and-first policies.

In a one-armed bandit problem, there is only one “unknown action”. Explo-
rative policies will select this action more often as this helps the agent to learn
about the expected rewards more quickly, thus reducing the probability of error —
this is thebenefit of explorationConversely, such policies have an attributedt of
exploration as the agent might be selecting the action with lower expected instan-
taneous reward. In the one-dimensional covariate setting considered in this chapter,
we can explicitly calculate this benefit and cost of exploration and hence capture
the exploration-exploitation trade-off in the same currency. We can then find the
expected cumulative reward efgreedy anck-first for finite-time problems, and
hence reason about their optimal tuning.

In this chapter we prove that in the one-dimensional setting, the expected reward
of the e-greedy policy is maximised by = 0 irrespective of the length of the
game (") and all other parameters. This means that, on average, a greedy policy
will outperform anye-greedy policy in finite time. This result is in line with the
infinite-time statements proved in Woodroofe (1979) and Sarkar (1991), where it
was proved that the greedy policy is asymptotically optimal (for a one-dimensional
covariate using slightly more generalised reward functions). Moreover, contrary
to the findings of finite-time analyses of multi-armed bandits (Auer et al., 2002;
Vermorel and Mohri, 2005; Pavlidis et al., 2008b), we have proved the interesting
result that the-greedy policy (withe > 0) is a suboptimal policy for the one-armed
bandit problem considered here. We discuss the implications of these findings more
throughout this thesis.
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For thee-first policy, however, we show that the optimal valueeotvill be
non-zero for certain game-lengtids In particular, we find the optimal value ef
numerically and present results to show its dependencgE. ofhe significance of
this result, is that a well-tunedfirst policy will, on average, outperform the greedy
policy. This motivates the construction of an on-line algorithm that can learn the
optimal rate of exploration over time — we construct such an algorithm for the one-
armed problem considered here using the theoretical propertiefiref. We then
use the ideas from this on-line approach to construct an algorithm for adapting
exploration on-line for more general multi-armed bandit problems which can be
used with high-dimensional covariates (Chapter 4) and also with dynamic rewards
(Chapter 5).

This chapter is structured as follows. In Section 3.1 we introduce the one-armed
bandit with covariates framework. In Section 3.2 we model the distribution of esti-
mated parameters in the reward function and use this to find the probability of error
over time. In Section 3.3 we derive the expected reward of-ipeedy policy and
prove that this is maximised with = 0. In Section 3.4 we derive the expected
reward of thee-first policy and show numerically that non-zero values ctn be
optimal. Finally, in Section 3.5, we use these theoretical findings to construct an
on-line algorithm that removes the need foragpriori fixed exploration parameter.
Summary remarks follow in Section 3.6.

3.1 The One-Armed Bandit with Covariates Framework

An agent is faced with a one-armed bandit problem and must choose at time
1,...,T between actior:; with unknown expected reward and actiopn with
known expected reward. The agent only receives a reward from the action that
is selected, which is a function of an observed covariate at timenotedz(t).

We consider the linear reward structure used in Ginebra and Clayton (1995), Yang
and Zhu (2002) and Pavlidis et al. (2008a,b) (see Equation (2.3) in Section 2.1.4),
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simplified to a one-dimensional covariate, such that:

ri(t) = ax(t) +n(t),
ro(t) = P (t) + w(t), (3.1)

where(t) andw(t) are i.i.d. noise terms drawn froiv(0,07) and NV (0,02),
respectively. The coefficient is known to the agera priori, but « is unknown

and must be estimated from observations. The covasiéteis an i.i.d. draw

from N(0,02) and the agent must then either select actipand receive reward

r(t) = ri(t) or select actior, and receive reward(t) = r,(t). The objective is

for the agent to maximise the cumulative rewddl’) = 3./ r(¢). The reward
generating mechanism is simple, using a normal covariate centred at zero, but al-
lows for a clear analysis of the exploration-exploitation trade-off — as exploration
is only needed for the agent to learn one parameter. We note that the initialisation
in this framework is for the agent to select the unknown acitipance, in order to
receive an estimate of its expected average reward.

3.2 The Probability of Error

The agent must learn the value®fn Equation (3.1) over time. Suppose the agent
has selected actian n times prior to time (wheren € {1,...,t — 1}) and these
selections occurred at time-steps. . . , t,,. « is estimated using,,, the solution of
the linear least squares equation:

o > i w(t)r(ty)
! E?:1x(tj)2 '

(3.2)

The parameter estimatg, has a distribution that is centred@tand dependent on
the number of pulls: and the distribution of:(¢) andn(t). Asn(t) isi.i.d. and
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normally distributed it follows that (see Daly et al. (1995, p.407)):

ay, ~N (a, na—,272) \/Ff
Zj:lx(t]) o \/Z 2/\/—> /n

If the agent uses angreedy ore-first policy, then the distribution of covariates

z(t;) used for estimating: does not follow a\/(0, ¢2) distribution (unlesg = 1
and actioru; is always selected) as the agent only select®r certain regions of
the covariate space. Nevertheless, actipis selected based only on whethgr)
is positive or negative and hence the distribution:@f)? is the same as(¢)?, i.e.:
> e 2(t;)?//o2 ~ x% — a chi-square distribution with degrees of freedom. In
addition, this chi-squared distribution is independent of the normal distribution in
the above equation, as the magnitude of the observed covariates and the observation
errors are independent of each other (which will not always be the case in other
settings). It then follows from the definition of thelistribution that:

(Qn — @) no; ~ tp, (3.3)

2
U77

wheret,, is thet-distribution withn degrees of freedom. From Equation (3.3) we
can find the probability of error after pulls, that is the probability that the agent
selects the wrong action when being greedy. Specifically this occuars if
whena < 3 and vice-versa. We therefore define this probability as:

F(n) = { Pr(a, < ) whena > f; (3.4)

Pr(a, > ) whena <
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First consider(a,, < ) whena > . It follows from Equation (3.3) that:

2 2
Pr(a, < 8) = Pr ( % (@n — a) < ”U‘%m (8 - a)>
_T <(5 —a) ”U“f , n) , (3.5)

whereT'(z,n) is thet-distribution cumulative density function at ordinatewith
n degrees of freedom. By consideriRg(a,, > (5) whena < 3 in the same way, it
follows from Equation (3.4) and Equation (3.5) that:

no?
5
for all values ofa and 3. The probability of errorF'(n), has the following four
properties:

1. F(n) is (strictly) bounded above by 0.5.

2. F'(n) decreases as increases, as both the ordinate becomes more negative
and the degrees of freedom increase (reducing the weight in the tails).
is also a convex sequencerir(proved later).

3. Increasing the difference betweemndj reduces the value df (n).

4. The ratioo? /o7 can be interpreted as a ‘signal to noise ratio’ — larger values
of this ratio reducd’(n).

Property 1 ensures that the agent can do no worse than guessing between the ac-
tions. Notice however, that ag — oo, F(n) — 0.5. Figure 3.1 shows the
probability of error over for several values of? /o7 where properties 1, 2 and 4

are demonstrated. Note that we use the reward coefficierts).5 and(5 = 0.3

for all figures and simulations in this chapter and that in all figures the displayed
curves are not continuous and can only be identified at integer valuesrat
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Figure 3.1: The sequendg(n) from Equation (3.6) for various values af /7.

3.3 Thee-greedy Policy

The e-greedy policy dictates that the agent selects actiowith probability e but
selects the action with highest expected reward with probalility. In the previ-
ous section, we found the probability of error givempulls of actiona; by timet.

In fact, we can find the distribution of givent by the symmetry of the problem, as
x(t) is centrally distributed and therefore actienis pulled50% of the time when
the agent is greedy. One pull of actianis guaranteed at time= 1 (for initiali-
sation), so the probability of having pulled the actiotimes by timet, B(n,t,¢),
follows a binomial distribution:

Bln,t,¢) (;:i) (%(1 + e))n_l (%(1 - e))t_n_l, (3.7)

wheret > 2 andn € {1,...,t — 1}. This probability is the probability that the
action is selected — 1 times from thet — 2 opportunities whilst using-greedy
(recall that initialisation occurs at the first time-step and the decision atttimas
not been made yet). The probability of selection at each rourid s ¢)/2 as
1/2 of the pulls are guaranteed usiagreedy and a furthes/2 throughe-greedy
exploration.

The distribution ofa,, aftern pulls of actiona; using thee-greedy policy is as
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given in Equation (3.3). The distribution afcan then be used to find the probability
of error at timef of the e-greedy policy:

t—1
Fy(t,e)=>  B(n,t,e)F(n). (3.8)

n=1
As F(n) < 0.5andY."_" B(n,t,¢) = 1 it follows that F.,(t, ) < 0.5 (for t > 2,
note thatF,,(1,¢) = 0.5Ve). It then immediately follows that all other properties
of the probability of error mentioned in Section 3.2 still hold, @gl(t, €) has the
additional property that it decreaseseancreases, for a fixetl Figure 3.2 shows
the sequencé, (¢, ¢) for a selection ok values from¢t = 1,...,50, where this
property is demonstrated.

0.5

m o™

0.4

o™

0.31

FE g(t,s)

0.2

0.1

Figure 3.2: The sequendg,(t, ) from Equation (3.8) for various (o7 /o7 = 1).

The expected instantaneous reward of ¢kgreedy policy at time, r,(t, €),
can now be found by considering the cases when the agent explores and exploits
separately:
Teg(t,€) = €E(ri(t)) + (1 — e)ry(t, €), (3.9)

wherer,(t, €) is the expected instantaneous reward when the agent is greedy. It
follows that asc(t) ~ N (0, 02):

E(r, (1)) = / ” aalt) \/217T7€Xp (_2(;)2 ) dz()=0.  (3.10)
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From the probability of errof,(¢, ) we can find the expected instantaneous
reward when the agent is greedy, by separately considering the expected instanta-
neous reward when the correct/incorrect action is selected, dependent on the prob-
ability of error (see Appendix A.1). It follows that:

r.6) = o= B\ 2 (1~ 2P (t.0). 311)

which yields the expected instantaneous reward otifpeedy policy:

reg(t€) = (1 —€) |a— [ \/%(1 —2F,(t,€)). (3.12)

This expected reward is greater than zero (for 2) as F.,(t,e) < 0.5, so the
policy performs better than guessing between the actions for all valugextept

e = 1). Larger values of reduce the probability of errar,, (¢, ¢), which increases

the expected reward — this is thenefit of explorationConversely, larger values of

e reduce the€1 — ¢) term in the expected reward and this is tost of exploration
Despite this exploration-exploitation trade-off, the expected instantaneous reward
in Equation (3.12) is maximised kby= 0 for all values oft > 0, a, 3 ando? /o7,

which we prove in Theorem 3.1 below.

Theorem 3.1 r,(t,0) > re(t,e) forall 0 < ¢ < 1 and for allt € Z+t\{1},

a,BeR andai,ag e RT.

Proof We prove Theorem 3.1 by contradiction. First consider the ¢ase 3.
Suppose there existis< ¢ < 1 such that:

Teg(t, €) > 14(t,0) forsomet € ZT\{1},a,8 € R, 02,02 € RT. (3.13)

I xron

Substituting from Equation (3.12) and Equation (3.8), the inequality in Equation
(3.13) becomes:

(3.14)

=
2
2
=
vV
ST
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whereG(n) = B(n,t,0)—(1—¢)B(n, t,¢). Notice thatF(n) < 1/2and}""_", G(n)
— ¢, however it does not follow from this alone thgl' " F(n)G(n) < €/2 (by
Cauchy-Schwarz, for example), §n) can be negative for certain values of
To proceed, the following three lemmas allow for a useful upper bound to be con-

structed on the left-hand side of Equation (3.14).

Lemma 3.1 F(n) is a convex sequencein

Proof From Equation (3.6) and Abramowitz and Stegun (1965),

1 n 1 n 1
F =T(— :_Im a9 | h = = )
(n) (—ev/n,n) 5 (2 2) wherex oy Epay s T g

x is a constant where < x < 1 asc € R*. I,(a,b) is the regularized incomplete
beta function ¢, b > 0 and0 < I, < 1) defined by:

L(a,b) = % /0 e

It therefore suffices to prove that for all> 0,

I.(a,1/2) + I,(a+1,1/2)
2

> I (a+1/2,1/2).

To prove this we use the following 4 relations found in (Abramowitz and Stegun,
1965):

1
Propertyl B.(a,b) = —x%3Fi(a,1 —b,a+ 1;7)
I a

I'(e !

PI‘Opert)Q 2F1 (CL, b, C, I) = m/{) tb_l(]_ — t)c_b_l(l — I't)_adt
1

Propertﬁ 2F1 (CL, b) ¢, I) = b 2F1 (ba ¢—a,c, Ll)

= 7= T —

(1—2)
Propertyd ,Fi(a,b,c,x) = 2Fi(b,a,c, x)

where, Fi(a, b, ¢, x) is the Gauss hypergeometric series dhda, b) is the non-
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regularized incomplete beta function where:

_ B,(a,b) T(a+b)
I(eb) = 55 = T B O (3.15)

andB(a, b) is the beta function. From Properties 1 and 3:

xa+1/2

a+1/2
xa+l/2

- T o F <1/2, 1,a+3/2; ﬁ) :

Bo(a+1/2,1/2) = Fi(a+1/2,1/2,a+3/2;2)

similarly,

B.(a,1/2) = o (1/2, La+1; L) , (3.16)

z—1

Bula+1,1/2) =

T
Fi{1/2,1 2, ——— .
21(/77a+7x_1>

(a+1)V1—=x
Therefore from Equation (3.15), Equation (3.16) and Properties 2 and 4:

I'a+1/2)
['(a)(1/2)

z® T
Fi11/2,1 1, ——
1 21(/77a+ ’.CE—l)

I.(a,1/2) = By(a,1/2)

z° T
Fi(1,1/2 1, ——
21(,/,@—1- ’33—1)

x¢ I'(a+1)

av/IT—z(1/2)(a+1/2
- /1 21— )21 — 2t) 7,

1
) / V21— ) Y2(1 — o)Lt
0

z = —£-andl'(1/2) = y/=. Notice that: < 0 as0 < z < 1. It follows that:

:L,a+1/2 1

7T\/1—33' 0

IL(a+1/2,1/2) = V21— )% (1 — 2t) L,

V21— ) (1 — zt) e

$a+1 1
Ima—|—1,12:—/t
( /2 =—— i
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Therefore,

I.(a,1/2) + I,(a+1,1/2)

= \/% /1 21— 1) V2(1 — 2t) 1 + (1 — t)]dt
> \/% /1 V21— 1) Y21 — 2t) 2/ 2(1 — t)]dt = 20, (a + 1/2,1/2).

This holds ad + z(1 —t) > 2¢/z(1 —t),for0 < z < 1 and0 < ¢ < 1. To verify,
setu = z(1 — t) and square both sides:

(1+u)?=1+2u+u*= (1 —u)*+4u > 4u.

The relation holds a8 < u < 1 and the proof of convexity isomplete. |}

Lemma 3.2 There exists an integerwhere2 < ¢ <t — 1 such that:

G(n)>0 forn=1,...,q

G(n) <0 otherwise.

Proof

G(n) = bin (n—l,t—Q,%) — (1 —¢)bin (n—l,t—Q,%(1+e))

_ (%)” <Z:21> (1= (14" (1= o).

Notice that:

G() = (%) : (1-(1-e¢"") >0, (3.17)

(B)7(7)
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for0 <e<landn =1,...,t — 1. From Equation (3.17) and Equation (3.18) it
suffices to show that the sequen@én) = (1 — (1 +¢)"'(1 — ¢)'™") is decreas-
inginnforn=1,...,t—1.

Hn+1)—Hmn)=(1-(14+¢"1—-e ) =(1-Q+e" ' (1-¢"")
(A+e™ (1 - ) (—2¢) <0,

forn =1,....t — 1 and0 < e < 1. Therefore, the sequen¢gn) has all negative
terms preceded by non-negative terms. The integerthe lemma is set to be the
last non-negative term in the sequeidié@), where2 < ¢ <t—1. |}

Lemma 3.3

qg—n n—1
F(1
q—1 ()+q—1

Y F(n)G(n) <> F(n)G(n), where F'(n)= F(q).

3
|
—
3
Il
—

Proof It follows from Lemmas 3.1 and 3.2 that(n) < F'(n) andG(n) > 0 for

n=1,...,q,therefore:

q
Y F(n)G(n) <> F(n)G(n).
n=1 n=1

It also follows from Lemmas 3.1 and 3.2 th&at{n) > F'(n) andG(n) < 0 for
n=q+1,...,t—1,therefore:

t—1

> FwGm < Y Fa)Gm). |

n=q+1 n=q+1

After expanding the binomial coefficients and rearranging (see Appendix A.2):

S F(n)G(n) = %(26—62)F(1)+162F<q)+1£e2

2 7 -1 ¢ Flo-F{). 319

As %t‘qq%llez >0, F(q) < F(1)andF(n) < 0.5, then the third term is negative and
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hence from Lemma 3.3 and Equation (3.19):

t—1

S F(n)Gn) <

n=1

1 1 11
2¢ — )F(1) + =€*F —(2¢ — €} = + =
(2e = )F(1) + 5 F(q) < 526 —€)5 + 5

N | —

A contradiction has been made angf ', F(n)G(n) < ¢/2, therefore Theorem 3.1
has been proved far > 3. It remains to show that the theorem holds for 2.
Using Equation (3.12) and Equation (3.8):

r(2.0) = o= 81y 2 (1~ 2P (1)

> (=12 (1= 20(0) = ry(2.0)

as0 < e < landF(1) < 0.5. This completes the proof of Theore3rl. |}

Theorem 3.1 states that the expected instantaneous reward atgimaximised by

e = 0. Itis then immediate that the cumulative rewdtd (7', ¢) = ZL T, (t,€),

which is what we wish to maximise, is also maximisedeby 0. This implies that

the greedy policy, on average, outperforms amgyeedy policy for this one-armed
bandit problem. Given these findings, Figure 3.3 shows the averaged instantaneous
and cumulative reward at timtdrom 20,000 repeated simulations of the same prob-
lem, with the theoretical expectations overlayed. The empirical evidence verifies
the theoretical findings that the instantaneous reward (and hence cumulative reward
also) is maximised by = 0. In other words, the-greedy policy is a suboptimal
policy for this one-armed bandit problem with covariates.

In contrast, finite-time analyses of multi-armed bandit problems (Auer et al.,
2002; Vermorel and Mohri, 2005; Pavlidis et al., 2008b) have concluded, through
empirical evidence, that the optimally tunedreedy policy can have > 0. The
difference between this evidence and our findings, is due to the exploration re-
quirements of the two problems. In our one-armed bandit problem only one ac-
tion requires any exploration, and since this action is already selected 50% of the
time with a greedy policy, no further exploration is required withcagreedy pol-
icy. Conversely, in a multi-armed bandit problem, more actions require exploration.
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Figure 3.3: Average rewards for a rangecegreedy policies ((a) instantaneous
reward and (b) average cumulative reward) wherg? = 1. Theoretical expecta-
tions are overlayed (in grey).

Moreover there are no such guarantees on exploring each action sufficiently with a
greedy policy and consequently optimal actions are often overlooked. As a result,
ane-greedy policy withe > 0, can outperform the greedy policy.

3.4 Thee-first Policy

Thee-first policy dictates that all the agent’s exploration is at the beginning (for the
first ¢T iterations) followed by greedy selection for the remaining iterations. When
the agent explores, action is always pulled and it follows from Equation (3.10)
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that the expected reward effirst r.;(t) = E(ri(t)) = 0 fort < €I" + 1. To find
the expected reward far> €7" + 1, consider the probability of errdr, (¢, €) with
this policy. Using the same reasoning as before, we find:
t—elT—1
Fy(t.e)= Y B(n,t—€l,00F(n+€T), (3.20)
n=1

with F'(n) as given in Equation (3.6) anél(n, ¢, ¢) as given in Equation (3.7). No-
tice thatF.;(¢,€) < 0.5 (for ¢ > 2) as with thee-greedy policy. This probability of
error follows as there is a minimum éf"'+ 1 guaranteed pulls from exploration and
initialisation, and any further pulls occur from greedy selection over the remaining
t — €1 — 2 opportunities, each with probability 50%. In the same way that Equation
(3.11) was derived (see Appendix A.1), it follows that:

2
rep(t,e) = |a— B ,/;—; (1—2F4(t€)) fort> el +1. (3.21)

Again this expected reward is positive Bs (¢, ) < 0.5. Larger values of reduce
the probability of error fot > ¢7'+1 and thus have a higher expected reward in this
region — this is théenefit of explorationConversely, larger values ettorrespond
to a longer period of exploration where the expected reward is zero — thisdeshe
of exploration The expected cumulative rewardss, (7', ¢) = Zthl re,(t, €) and
we can maximise this numerically using Equation (3.21) to find the optimal

This optimal value will not necessarily be zero as the following numerical re-
sults show. In particular, Figure 3.4(a) displays the expected reward at tiioe
the game of lengti” = 50 shown in Figure 3.3, for various values @f, where
the benefit and cost of exploration can be clearly seen. Summing the rewards from
Figure 3.4(a) generates Figure 3.4(b) which is the expected cumulative reward at
timeT =1,...,50 for the fixed values ofT". Fixing T in this way has shown that
the greedy policy can be beaten and there are regiothswdiereeT = 0, 1,2, ...
are optimal in terms of maximising the expected cumulative reward.

Figure 3.5(a) displays how the optimal valueedt grows with 7" for various
values ofo? /o;. The range of values df where a specific value off’ is optimal



Chapter 3. Optimal Exploration Rates in Bandit Problems 63

0.06

0.05f

0.04

0.031

(Te)T

0.02

€g

0.01

1 5 10 15 20 25 30 35 40 45 50
T

(b)
Figure 3.4: Expected rewards for a range-@ifst policies ((a) instantaneous reward
(with T' = 50) and (b) average cumulative reward) whefgo; = 1.

become larger asl’ increases, indicating thai” grows more slowly thafl’. This

idea can also be seen in Figure 3.5(b), which shows a plot of optifiealvalues

of T. The non-smooth shape of this plot is due to the fact tliats represented

as a step-function taking integer values only. The key observation, however, is that
the optimale decreases and approaches zerd as oo (although foraz/ag =0.2

this happens very slowly), which concurs with the studies of Woodroofe (1979) and
Sarkar (1991) which proved the greedy policy was asymptotically optimal. Never-
theless, in finite time, a well chosein thee-first policy will outperform the greedy
policy, signifying the benefits of correctly balancing exploration and exploitation in
an action selection policy.
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Figure 3.5: Optimal values of (&)l and (b)e for the e-first policy, with various
values ofo? /o7

3.5 An On-line Algorithm

In this section, we construct an algorithm that can effectively attempt to learn the
optimal e-first policy on-line. This algorithm is simple, and makes use of the the-
oretically derived expected reward of thdirst policy, given in Equation (3.21).

This expected reward is dependent on the reward function parameters:and

037. The agent does not know the true values of these parameters, but can recursively
estimate them on-linex is estimated using least squares Equation (3:2)s es-
timated using the sample variance of observed covariate valuez%aﬂdstimated
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from the residuals from the regression:

6y = —¢%, (3.22)

§ =ri(t;) — ax(ty). (3.23)

With these estimates the agent can then compute estimates of the expected cumu-
lative reward (from the current timeto the final time-stefl”) of exploring for one
more iteration R, (t)) or selecting greedilyR,,..(t)) for the rest of the game:

Rop(t) (res (v, (t — 2)/T)|a, 62,52) (3.24)

N Iltllﬁﬂ

Repir(t Z rep(v, (t —1)/T)|&, 62,62) (3.25)

which are computed using Equation (3.21) where the sample estimaiﬁs}g are

used instead of their unknown true values. Notice that the number of exploration
steps forR,,;-(t) and R, (t) ist — 1 andt — 2, respectively, as the first time-step

is initialisation and the decision at time-steps the one being determined and is
hencee-first exploration withR,,;,.(¢) or greedy selection witlk,,;;(¢). The agent
simply follows the policy R, (t) or R, (t)) with the highest estimated reward

for the next iteration, and then recomputes for the next iteration with the new sample
estimates.

If the greedy policy dictates selecting actiopanyway then the agent does not
need to execute the algorithm at each iteration (although parameter estimates are
still updated). If the agent determines that a greedy policy is better than exploration
then, unlike withe-first, exploration can still be revisited at future time-steps if the
new sample estimates dictate this. In this way, the algorithm is self-correcting and
performs better than simply estimating the optimah-line during the initial time-
steps, where sample errors are still large. Note that an initialisation period of length



3.5 An On-line Algorithm 66

2 is required, where actiom, is pulled twice, such that sample estimates of the
covariance and noise variancg (@nda;) can be obtained.

Table 3.1 shows the average performance of this on-line algorithm (averaged
over 20,000 repeatgfor various values of?/o;, as compared with variousfirst
policies, where the game-lendtis T = 100. The rewards are normalised between
0 and 1, where 1 is the expected reward to an oracle that knows all parameters and
0 is the expected reward of a random policy. We report all rewards in this thesis in
this manner as this allows results between experiments to be comparable.

Table 3.1: Average rewards of the on-line algorithm and varéefust policies

o2/o2 [e=0 002 005 01 015 02 | Oniline
5 | 0.882 0.887 0.883 0.858 0.822 0.780| 0.894
2 | 0755 0.764 0.769 0.764 0.744 0.717| 0.776
1 | 0618 0.626 0.6380.639 0.629 0.614| 0.640
0.5 | 0.478 0.482 0.4930.501 0.499 0.492| 0.501
0.2 | 0.318 0.322 0.327 0.3330.340 0.333| 0.331
Avg. | 0.610 0.616 0.622 0.619 0.606 0.587| 0.628

As expected, performance degrades for each poliey, s, decreases and the
relative amount of noise increases. For a given valug ¢§2, the on-line approach
yields a reward close to or better than the best performifgt policy (denoted in
bold), and when rewards are averaged across experiments then the on-line approach
performs best overall. In fact, Table 3.2 compares the on-line algorithm against the
optimal e-first policy, and we see that the on-line approach yields rewards that are
comparable with the optimal off-line reward. Note that the relative performance
degrades for higher noise problems, as the sample estimates have larger variance.
Moreover, notice that the average number of exploration steps has increased ac-
cordingly with increases in the noise variance, albeit slowly. This shows that the
amount of exploration is being driven, to some extent, by the degree of uncertainty
the agent has regarding the rewards of the unknown action.

1This number of repeats ensures the standard errors of all average rewards are lesslthah

2This value ofT is selected as it is used in Chapter 4, justified by the fact that real-world static
problems are likely to be short-length, so we want algorithms that can yield high rewards quickly.
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Table 3.2: Comparison of on-line and optimal off-line policies

o2 /o2 Off-line (e-first) On-line
»7n | Opt.e Reward | % Optimal Avg. expsteps
5 0.03 0.888 100.8% 1.43
2 0.06 0.769 100.8% 1.84
1 0.08 0.640 100.0% 2.04
0.5 0.10 0.501 100.1% 2.14
0.2 0.13 0.340 97.5% 221

The on-line algorithm often marginally outperforms the optimdikst policy
and this is because the on-line algorithm can respond to the circumstances of each
game — for example, a favourable start to the game, where rewards are observed
with little noise and yield faster than expected convergence to the true regression
parametery, will mean no more exploration is required. Conversely, noisy obser-
vations that lead to a high probability of error, will lead to more exploration. In
this way, the on-line approach is again showing that it is driven by the amount of
uncertainty as it plays.

Figure 3.6(a) shows the average rate of exploration over time for various values
of aﬁ/ag. The rate decays to zero over time and does this more slowly for high
noise problems, which is desirable behaviour. Figure 3.6(b) however, displays a
histogram of the number of explorative steps over the 20,000 repeats for a high-
noise problem. Notice that the algorithm often does not perform any additional
exploration after the 2 initialisation steps. As previously mentioned, this is some-
times due to a fortuitous initialisation period where observations are not noisy and
the correct value ofv has been immediately learnt. On other occasions however,
the observations could be noisy but still ‘aligned’ on the regression plane, yielding
an under-estimate of the noise variance (as the residuals are small) and an incorrect
estimate ofa which causes suboptimal actions to be selected. In such cases, the
algorithm will prematurely cease exploration, explaining the slight degradation in
performance with high-noise problems. This issue is addressed in the next chapter,
where we build an algorithm for a more general problem that is more responsive to
the uncertainty of parameter estimates when choosing the next action.
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Figure 3.6: Explorative behaviour of on-line approximation algorithm: (a) the av-
erage rate of exploration over time and (b) a histogram of the total number of ex-
plorative steps (fov? /o7 = 0.2).

3.6 Summary

In this chapter we have theoretically derived the expected rewards efgreedy

and e-first policies for a one-dimensional one-armed bandit problem. We have
proved that-greedy is optimised by setting-0 bute-first is optimised withe > 0
(beyond some time-length). In addition, we have constructed an algorithm for
approximatinge-first on-line, without the need for aa priori fixed exploration
parameter. We do this by estimating unknown parameters on-line and then approx-
imating the optimal action. A key component of this is measuring the amount of
uncertainty (by estimating the variance of the noise and covariate) and using this
to drive exploration — more uncertainty leads to greater levels of exploration being
required.

Extending these theoretical findings to higher-dimensional covariates or multi-
armed problems is not trivial. The distributions of parameter estimates can be
found, but their interactions in terms of how they influence the probability of error
means finding analytic representations of errors and rewards is usually not possible.
In addition, the introduction of multivariate distributions almost inevitably leads to
numerical approximations of any representations that can be found. As a result,
the expected rewards of various policies can simply be found through Monte Carlo
simulations (rather than numerically approximating reward representations that are
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intractable and contain high dimensional distributions). For these reasons, we do
not find any more specific reward representations of bandit frameworks. Instead
we focus on developing algorithms for adapting exploration on-line in the proceed-
ing chapters, using the concept of uncertainty driven exploration introduced in this

chapter.
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Chapter 4

On-line Adaptation of Exploration in
Bandit Problems

In Chapter 2 we performed a critical analysis of the various policies and algorithms
constructed for the bandit problem. We demonstrated that there is a shortage of
parameter-free methods that can generalise across the many bandit frameworks, in
particular for settings that include side information and dynamics (see Table 2.1).
In fact, thee-greedy policy is the only such method (anfirst for static rewards),

but these policies are not parameter-free and require the exploration paratoeter

be fixeda priori. As previously noted, the performance of these algorithms can
deteriorate rapidly with a poorly selectedalue and setting this value correctly is
unfeasible in many applications, as this requires prior knowledge of the problem
faced, which is precisely what the agent is trying to learn.

For these reasons, in this chapter and the next, we construct an algarithm,
ADAPT, that can adapt exploration on-line in a computationally efficient manner,
without the need for any exploration parameters. In this chapter, we focus on the
static reward case (we focus exclusively on dynamic rewards in Chapter 5), and
construct an algorithm for settings that are with or without side information. The
latter setting is considered as most policies and algorithms cannot be used with
side information — and we can therefore evaluate the performance of our algorithm
against more alternatives. The generalisation to include side information, however,
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is particularly significant as our algorithm is the first on-line (and parameter-free)
algorithm that can be used in this setting.

In Chapter 3, we performed a theoretical analysis ofdlgeeedy and:-first
policies for a one-armed bandit problem. We derived the expected rewards and the
optimal exploration parameters. In particular, we proved that the optimalfirst
will be non-zero (beyond some game-length) and then constructed an algorithm
that attempted to find this optimal rate of exploration on-line. The empirical results
were favourable, with average rewards that were close to or better than the optimal
off-line policy. In this chapter, we extend this approach first to higher-dimensional
covariates and then to multi-armed problems. In addition, we make several im-
provements to the basic approach introduced in the last chapter, such as learning
which regions of the covariate space should be explored and which actions require
most exploration. In other words;ADAPT not only learnshow muchto explore,
but alsowhento explore andvhich actiongo explore.

In general, planning out an optimal exploration policy for the duration of a
finite-length game is an intractable computation (Sutton and Barto, 1998), scaling
exponentially in the length of the game and the number of actions available. To
reduce the computation to quadratic-time, we make use of the propertiesef the
first policy, such that-ADAPT need only decide whether to explore or exploit for
the next time-step. In more detail, the likelihood of exploring at each iteration is
driven by the amount aincertaintythe agent currently has — captured by calculat-
ing statistics from past interactions with the environment. Our algorithm therefore
adapts as it play$o effectively tune the exploration parameter without the need for
any other free parameters. We note that many policies and algorithms presented in
Table 2.1 scale linearly in time (rather than quadratically), but this increased level
of computation withe-ADAPT is required to remove the need for an exploration
parameter to be satpriori.

The remainder of this chapter is structured as follows. In Section 4.1 we con-
structe-ADAPT for the one-armed bandit with covariates problem, and then per-
form a preliminary empirical evaluation. We extenrdDAPT to the multi-armed
problem in Section 4.2 and then perform a detailed empirical evaluation in Section
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4.3, for both simulated and real data. Summary remarks follow in Section 4.4.

4.1 The One-Armed Bandit with Covariates Problem

In the one-armed bandit with covariates problem, the agent must select between
actions{ay, as}, where the rewards for each action are given by:

ri(t) =f(z(t), @) +n(t), (4.1)
ra(t) =g(z(t), B) + w(t), (4.2)

wherex(t) is the p-dimensional covariate observed at tihen(t) andw(t) are
i.i.d. noise processes assumed to be normally distributed and centred at zero with
varianceag and o2 respectively (both unknown to the agent). It is assumed the
agent knows the functiong andg and the parametey3 of the known action, but
not the parameter values of the unknown acton this is precisely what the agent
must learn. As in Pavlidis et al. (2008a), the covariate is assumed to be drawn from a
known distribution, with unknown parameters (for example a multivariate Gaussian
with unknown mean vectgt,, and unknown covariance matrt,). The objective
of the agent is to correctly partition the covariate space between areas where each
action is optimal — the agent hence has to learn this decision boundary accurately
and quickly to achieve a high reward.

As previously mentioned, exploration in the one-armed bandit with covariates
problem involves selecting unknown actieny when actioru, is expected to yield
a larger reward, given the observed covariate val(g. To illustrate the need to
control the amount of exploration performed in this problem, in Figure 4.1 we show
expected rewards using thdirst policy with the 10-dimensional covariate problem
studied in Section 4.1.2, for various values of the noise varia@cé\s in Section
3.1.5, we normalise the rewards between 0 and 1, where 1 is the expected reward
to an oracle that knows all parameters and 0 is the expected reward of a random
policy. The optimal value of (denoted by a star) is highly dependent on the level
of noise variance, and furthermore the performancefaft can degrade quickly
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Expected Reward E(R(T))

1
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Figure 4.1: Expected reward of tadirst policy (averaged over 10,000 repeats) for
0 < e <0.25in the 10-dimensional setup used in Section 4.1.2.

for badly tuned:, particularly when the amount of noise is low — this motivates the
construction of an algorithm to control exploration on-line, which we describe in

the next section.

4.1.1 Thee-ADAPT Algorithm

In this section, we construct an on-line algoritevADAPT, that learns to effec-
tively control the amount of exploration in the one-armed bandit with covariates
problem. At each iteration, the agent updates its predictions of the unknown pa-
rameters of the reward function and the covariate. For example, with a multivariate
Gaussian covariate, the agent maintains estimatendy,, along withé and&%,

using the sample estimates from the past history of interactions. These statistics
indicate the likelihood of each action being optimal for future covariate values and
the amount of uncertainty the agent has regarding this. It is this uncertainty that
dictates the likelihood with which the agent will explore or exploit at each iteration.

In an on-line setting, the agent only needs to select an action for the next iter-
ation, and does not have to submit a policy for the remainder of the game. Never-
theless, the agent cannot ignore the possible action choices that follow the current
one, which presents the agent with an intractable calculation. To combat this issue,
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we use the-first policy as the building block of our algorithm (as motivated in the
previous chapters). In particular, we make use of Theorem 4.1 — a new theorem
regarding the optimality of-first policies in finite time.

Theorem 4.1 R¢(T,c/T) > R.s(T,0) andc > 1 = R (T,1/T) > R.(T,0)
(forall T,c € ZT).

R.¢(T,c/T) is the expected cumulative reward of théirst policy for a game of
lengthT', wheree = ¢/T'. This theorem states that if arfirst policy that explores

for one or more iterations outperforms a greedy policy ther-&rst policy that
explores for exactly one iteration also outperforms a greedy policy. This property
can be clearly seen in Figure 4.1 where the expected reward effitst policy is
always monotonically increasing betwees: 0 and the optimat value.

Proof (sketch) Suppose thaR.;(7,1/T) < R(T,0). As the two policies are
identical after one iteration (i.e. they are both greedy), it follows tRa{(T",0)
selects the known action first arfél;(7',1/T") selects the unknown action first.
The proof now has two key steps:

1. If the game were to be one iteration shorter, thep7" — 1,1/(7 — 1)) <
R.¢(T —1,0). To see this consider removing the last action at timevhich
is a greedy action. This subtracts more from the rewar ¢f7’,1/7") than
R.¢(T,0)), as R.;(T,1/T) would have a larger number of samples with
which to estimatex and hence a reduced probability of error (and hence
higher expected reward) in this final iteration.

2. It then follows thatR.¢(T,2/T) < R(T,1/T). This is because adding an
extra exploration step at the beginning will add more rewald {¢7" — 1, 0)
thanR.¢(T'—1,1/(T — 1)), as there ar@ — 1 proceeding exploitation steps
(rather thanl" — 2), so the increased knowledge @f and hence reduced
probability of error, benefits more future iterations.

We can then consider a game two iterations shorter and continue this inductive
process{— 1 times) to showR (T, ¢/T") < Rs(T,0), which completes thproof.
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The significance of this result is that all the agent now needs to compute at time
t is which policy is expected to yield a larger rewarel; (7, 0) or R.;(1T™*,1/T*),
whereT* = T — t + 1 (the length of the game remaining). This follows because
if any more exploration needs to be performed in a static problem, it should be
performed immediately. Therefore, from Theorem 4.1, the agent needs to explore
if and only if ane-first policy with one initial exploration step outperforms a greedy
policy (or e-first with O initial exploration steps) for a game starting at tim# the
agent could calculate this exactly, the optimal on-line policy can be computed using
Algorithm 4.1 — an algorithmic representation of the optiméitst policy.

Algorithm 4.1 Optimal on-line poliy
1: fort =1to7T do
2:  Observer(t) {Covariaté

3:  Update unknown parameters of covariate distribution
4 if t < D or Ry(T*,1/T*) > R(T*,0) or E[r(t)|x(t), & >
E[ra(t)|x(t), 3] then

5: Select action; and receive reward (¢)

6: Updatea and&% {Only updated when;, is selected

7. else

8: Select action, and receive rewarth(¢)

9: endif
10: end for

11: D is the required length of initialisation for sample estimates to exist.

This policy receives exactly the same reward as the optimally tuned oftdine
first policy, but requires knowledge of all the unknown parameters. The challenge
therefore lies in approximating the unknown expected rewatdg ™, 1/7™) and
R.¢(T*,0). We use sample estimates so that the agent, at#jroan perform a
Monte Carlo (MC) simulation of the rest of the game, to see which policy yields
the highest expected cumulative reward. This involves generating future covariate
values &'(s)) and rewardsi((s)|z’(s), B, &,57) fori = 1,2 ands = 1,...,T*,
and then simulating the game with each policy to see which performs better. An
alternative approach would be to to try and find these values analytically, but this in
an intractable calculation — as the number of future action sequences rises exponen-
tially with the length of the game. The analytical expressions can be approximated,
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but these can only be done case-by-case dependent on the covariate distribution
and type of reward function. We therefore resort to MC approximation due to its
simplicity and generality.

The shortcoming of the Monte Carlo approach, however, is that if we simu-
late the rest of the game from timausing the sample estimates, then the greedy
approach will always outperformifirst. This is because the MC estimatedo{de-
noted&) will already have converged i@ and is then used to drive future rewards,
so exploration is deemed not to be required. To avoid this, we need to introduce
uncertainty in the estimate @f, which reflects the uncertainty in the true game. So
in addition to simulating the rest of the game, we also regenerate covariate values
and rewards that were used to estimatprior to timet, such that the MC estimate
a is perturbed from the true sample estimate. This creates uncertainty in the sim-
ulated game that mimics the uncertainty in the true game, and provides a reason
to explore. The on-line approximation & ;(7™,0) (and R.;(7*,1/T™)) follows
Algorithm 4.2. We note that an alternative method is to directly sample the MC
estimate ofx at timet (rather than resampling covariates prior to tithebut this
can only be done when an analytical representation of the distributiénoain be
found — which is only easily attained in the 1-dimensional problem considered in
Chapter 3.

Our algorithm for controlling exploration on-line;ADAPT, follows Algorithm
4.1, with R.¢(T*,0) and R.¢(T™*,1/T*) approximated using Algorithm 4.2. The
MC computation can in fact be repeated several times to smooth the estimates of
the two competing policies, but this is not necessary for our algorithm to work.
In fact, in the simulations performed in Section 4.1.2, the MC estimate was only
repeated twice at each iteration, as more repeats had no particular extra benefit —
an interesting result which we discuss more in Section 4.2 for the full multi-armed
bandit problem.

The covariate value at timeis not replaced by a new sample in Algorithm
4.2, but kept at the true observed value — a key compones®®JAPT. This al-
lows e-ADAPT to decide which regions of the covariate space are worth exploring
and which are not. For example, if the expected reward of the unknown action is
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Algorithm 4.2 On-line MC approximation ofz.;(7™,0) (andR.;(17*,1/T™))
1: Inputs: ¢t (current time-step)7” (length of game). (no. of timesa; selected
prior to timet), sample estimateg( &,2], o)
2. for s=1t0oT* +ndo

3: Generater’(s) {New Covariaté

4. if s=n+1then

5: x'(s) = x(t) {True covariate value kept at timenly}
6: endif

7. if s <norEr(s)|e'(s),a] > E[ry(s)|x’(s), 8] then

8: Select action; and receive reward (s) = r(s). Updatea
9. else

10: Select action, and receive reward (s) = r5(s)

11:  endif

12: end for

13: Rep(T*,0) = 32124 1/(s) {MC approximation

14: Replacen with n + 1 in Line 7 to calculate approximation & ;(7™,1/7™).

only marginally smaller than the known action (given the covariate value), then the
benefits of exploration (through increased learning of paramatarfdafi) can out-
weigh the costs (the myopic loss of selecting a sub-optimal action). Whereas with
other covariate values the short-term costs might exceed the long-term benefits.

This includes a notion of cost-inclusive exploration-#6DAPT, where at ear-
lier steps the algorithm is willing to forego a lot of reward for 1 exploration step
whereas later exploration is only worthwhile if the cost to the reward is negligible.
In this sense¢-ADAPT attempts to deteathenbest to explore and not just how
much. This is something thatgreedy and:-first policies are not able to do, as
they are off-line policies, and further motivates the use of an on-line exploration
algorithm.

e-ADAPT is based on the-first policy, but does not require any parameters to
be seta priori that govern the amount of total exploratiecrRADAPT only requires
parameters that are used within the estimation module or for the distributions spec-
ified in the MC approximation, but these can be estimated during play, and do not
need to be seat priori. In addition, the need for MC distributions can be removed
(by using nonparametric bootstrapping techniques (Efron and Tibshirani, 1993) for
example) and we nevertheless provide evidence in Section 4.1 2A2APT can
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work well even with misspecified modelling assumptions.

Occasionally-ADAPT might undershoot (due to poor sample estimates and/or
error from the MC approximation) and start exploiting too early. For these reasons,
we continue to decide whether to explore or exploiaryiteration until the end
of the game. In this way-ADAPT is naturally self-correcting and will explore at
a later stage (if necessary) to compensate for any lack of earlier exploration.

e-ADAPT is computationally efficient, scaling quadraticallyih(as the MC
approximation in Algorithm 4.2 is of maximum lengihand is repeated’ times).

The relationship with the dimensionality of the covarigtdepends on the infer-

ence procedure used to estimate the paraneetdfor linear reward models, least
squares can be used (orgéJ or recursive least squares (Haykin, 2002) (onatgr

if a further saving is required (at a marginal increase to the error of the estimates
for low sample-length data), see Appendix B for the full algoritkrADAPT can
handle non-linear reward functions, using techniques such as non-linear regression.
In addition, the algorithm can deal with non-Gaussian covariates and error terms by
either explicitly coding them in (where tractable) or by using nonparametric boot-
strapping techniques. In the case of bootstrapping, covariate values and rewards
could be resampled (with replacement) from the original dataset of observed side
information and past rewards. This is particularly applicable in our setting where
covariate information is generally assumed to be i.i.d. over time.

4.1.2 Numerical Results

In this section, we testADAPT for the one-armed bandit with covariates problem.
We first compare-ADAPT against the on-line algorithm developed in Section 3.5
for the one-dimensional covariate problem, to examine the benefits of using the
MC approximation technique. We then consider linear reward functions with both
a 5-dimensional and 10-dimensional covariate, to test the ability AIDAPT to

learn from a higher-dimensional covariate. Finally, we also test the robustness of
ADAPT to a misspecified noise model, where the noise is assumed to be normally
distributed, but is in fact either-distributed (heavy-tailed) or gamma distributed
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(skewed). This tests the dependence-BDAPT on correct modelling assumptions

in the MC approximation. As this chapter considers static problems, we compare
e-ADAPT against the-first policy in all numerical experiments in this chapter. All
rewards are again normalised between 0 and 1, where 0 is the average reward of a
policy that always randomly selects between actions and 1 is the average reward of
an oracle that knows all reward coefficients beforehand.

e 1-dimensional Covariate

We first repeat the numerical experiments of Section 3.5 witk#ABAPT algo-
rithm for a game of length” = 100. We consider this game-length throughout
this chapter for two reasons. First, static problems are likely to be short-length in
real-world applications, because the environment often changes and the decision
problem evolves to a new one. Secondly, we want to test the performance of algo-
rithms in finite time and expose policies and algorithms that only perform well after
several time-steps (many of which will have optimal asymptotic behaviour).

Table 4.1 displays the average rewards and average rates of exploration of
ADAPT (over 20,000 repeats), along with the results for the optufakt policy
and the alternative on-line algorithmADAPT is the best performing algorithm in
each case. Notice also, that the average number of exploration steps has increased
much more than with the alternative approach, as the noise increases, which sug-
gests the algorithm is being driven to a greater extent by the uncertainty surrounding
the sample estimates.

Table 4.1: Comparison of on-line and optimal off-line policies (wHADAPT)

Off-line (e-first) | On-line Algorithm of Sectior8.5 e-ADAPT

Opt.e Reward| Reward % Optimal Avg.x. | Reward % Optimal Avg.)®.
5 0.03 0.888 | 0.894 100.8% 1.43 0.897 101.0% 1.33
2 0.06 0.769 | 0.776 100.8% 1.84 0.783 101.7% 2.78
1 0.08 0.640 | 0.640 100.0% 2.04 0.659 102.9% 5.12
0.5 | 0.10 0.501 | 0.501 100.1% 2.14 0.514 102.7% 6.28
0.2 | 0.13 0.340 | 0.331 97.5% 221 0.370 108.8% 7.35

05/0727

To gain further insight, in Figure 4.2(a) we show the rate of exploration over
time (averaged over all simulations) for various valuesrpfo;. In contrast to
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Figure 3.5(a), notice that the rate of exploration decays more slowly and does not
reach zero until the final time-step. This is due to the fact that the probability of
error will be non-zero for the duration of the game and exploration can be worth-
while, even at a late stage, with certain covariate values and coefficent estimates —
it is only until the final time-step that the algorithm stops exploring and fully ex-
ploits. There is also a much bigger difference between the amount of exploration
performed throughout for different values(f)j/a%, again showing that exploration

is driven by uncertainty. Figure 4.2(b) displays a histogram of the number of explo-
rative time-steps (over the 20,000 repeats) for the high noise problem. In contrast
to Figure 3.5(b),c-ADAPT does not get caught under-exploring as often, which
explains the much stronger performance in terms of cumulative reward gained.
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Figure 4.2: Explorative behaviour e/ ADAPT with a 1-D covariate: (a) the aver-
age rate of exploration over time and (b) a histogram of the total number of explo-
rative steps (fov?2 /o7 = 0.2).

To further explain the strong performanceeceADAPT in this problem we in-
vestigate to what extent the algorithm has determinbdnexploration should be
performed, as well as how much overall. Figure 4.3(a) displays a histogram of all
covariate values observed in the entire simulation and partitions them according to
whethere-ADAPT decides to explore or exploit (wheeg /o7 = 1). First of all,
e-ADAPT is usually partitioning the covariate space correctly, by selectinigr
x(t) > 0 anday otherwise. Interestingly-ADAPT appears to explore for the full
range of covariate values, but proportionately less so wi{énis close to zero.

This is due to the fact that reward observations in this region are not particularly



Chapter 4. On-line Adaptation of Exploration in Bandit Problems 81

informative abouty, so exploration has little value. This is a feature of this type of
reward function, where rewards are fixed through the origin, and does not extend to
reward functions where the intercept of the reward function is unknown (as we see
in later sections).

Figure 4.3(b) displays a frequency plot showing the average proportion of times
e-ADAPT explores whem is predicted to be optimal (for the covariate bins gener-
ated in Figure 4.3(a)). This plot reveals thadDAPT is explicitly considering the
covariate value when making exploration decisions. Aside from less exploration
nearz(t) = 0, notice that the algorithm explores more for positive covariate values
—this is where the greedy action is in fact suboptimal, and the algorithm is respond-
ing to this by exploring more. This is a key featureceADAPT and explains its
strong performance. When the covariate is positive, but the greedy action deter-
minesas is optimal, then:-ADAPT is likely to have high noise variance estimates
and the difference betweenand g is likely to be small. These factors make ex-
ploration more likely and meartADAPT can correct erroneous greedy decisions
more effectively then agafirst or e-greedy policy. In addition, exploration is more
likely for covariate values that are closer to (but not nedt) = 0 rather than val-
ues from the tails of the distribution, as this is deemed less costly to the immediate
reward. e-ADAPT therefore also incorporates the cost of exploration, a feature of
the algorithm we investigate more in future sections.

e 5-dimensional Covariate

We now test-ADAPT for a 5-dimensional covariate using linear reward functions
given by:

.....

N(u.,>,). A multivariate normal covariate is used as this distribution can accu-
rately model several real-world data sources (Cox and Small, 1978), but this is not
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Figure 4.3: Histograms of (a) the covariate distribution partitioned into regions of
exploration/exploitation and (b) the frequency of explorative actions wheis
greedy optimal, usingeADAPT on a 1-D covariate problem.

a requirement for our algorithm to work. We testedDAPT over 20,000 repeated

simulations for a game of length 100 with the following parameter values:

1In this section we s to be a vector of zeros, without loss of generality. Any problem can be
transformed to this by subtracting”_, 5;z;(¢), which is known, from each observed reward.
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The parameter values are selected such that each action is optimal in approxi-
mately 50% of the covariate space, which maximises the importance of learning the
correct decision boundary quickly. We simulated the problem for various values of
the noise variance}; and quantify this using theovariance to noise ratigPavlidis
etal., 2008b), CNR % where||X, ||; is the 1-norm of,. The larger the CNR,
the more informative ogservations are abaytnaking the learning problem easier.

The only other parameters we could change are the reward coefficients — this has a
similar effect to changing the CNR though, in that separating the distance between
actions dissipates the effect of noise (and vice-versa). We choose to report CNR
values, however, as this allows our results to be commensurate across dimensions.
Note that the CNR values for the experiments performed in the last section with a
1-dimensional covariate (and in Section 3.5) are simply eqwaj/tofi.

Table 4.2 displays results ferADAPT and severat-first policies for various
CNR values (where CNR values are set with consideration of the rangeadiies
considered). Lower CNR values correspond to lower rewards for each policy, as
the learning problem is more difficult. For each CNR value, howev&DAPT
performs close to the best performindirst policy? Moreover,e-ADAPT is the
best overall when the rewards are averaged, even though these problems naturally
favour exploration rates of 5-10% (which will not always be the case).

Table 4.3 comparesADAPT with the optimally tuned off-line-first policy
from the same set of experiments. The reward is always within 95% of the off-line
optimal, although the performance degrades as the noise increases — this is because

2Note that the optimat in all future experiments in this thesis is now found empirically rather
than theoretically.



4.1 The One-Armed Bandit with Covariates Problem 84

Table 4.2: Average rewards with a 5-D covariate

CNR | e=0 0.02 0.05 0.1 0.15 0.2 | eADAPT
100 | 0.845 0.857 0.850 0.816 0.775 0.730 0.856
50 | 0.772 0.796 0.802 0.783 0.750 0.710 0.800
20 | 0.630 0.661 0.687 0.696 0.680 0.654 0.685
10 | 0.501 0.535 0.567 0.5900.591 0.576 0.574
5 0.383 0.411 0.442 0.4700.480 0.475 0.458
Avg. | 0.626 0.652 0.670 0.671 0.6550.629 0.675

the errors in the sample estimates are larger, yielding on-line approximations that
are not as accurate. Nevertheless, lower values of the CNR require more exploration
from the agent, andeADAPT has responded to this by performing more exploration
steps on average (last column). The performanceADAPT no longer exceeds

that of the optimat-first policy, as was the case in the 1-dimensional problem. This

is due to the increased number of reward coefficient estimates and covariate distri-
bution parameters used in the MC approximation of Algorithm 4.2, which make
optimal exploration decisions harder to learn on short time-scales. Nevertheless,
e-ADAPT still performs best on average and we further test the robustness of this

algorithm with a 10-dimensional covariate in the next section.

Table 4.3: Comparison efADAPT and optimak-first with a 5-D covariate

CNR Off-line (e-first) On-line ¢-ADAPT)
Opt.e Reward | % Optimal Avg. expsteps

100 0.02 0.857 99.9% 3.04

50 0.04 0.803 99.7% 4.17

20 0.09 0.697 98.3% 5.76

10 0.13 0.592 96.9% 6.78

5 0.15 0.480 95.5% 7.55

Figure 4.4 displays the average amount of exploration performed at each time-
stept (after initialisation) for various CNR values. As in the 1-dimensional case,
the amount of exploration performed is naturally higher for low CNR values and
generally decreases as the game is played. For low CNR values, there is initially a
small increase in exploration over time. This is due to the small number of sample
estimates when the ADAPT algorithm commences, leading to potential under-



Chapter 4. On-line Adaptation of Exploration in Bandit Problems 85

estimates in the amount of noise and subsequent under-exploration. This is soon
corrected however, as the algorithm learns that more exploration is needed to cor-
rectly partition the covariate space. This may seem to be a weakness of the algo-
rithm, but after relatively few sample estimates, it is difficult to distinguish between
the different types of problems. Forcing the algorithm to explore more initially
would reduce the rewards for problems with higher CNR values where high rates of
exploration are not neededADAPT is therefore adapting to the game as it plays.

0.15—

CNR =100
CNR =20
CNR =5

0.1}

0.05-

Average rate of exploration

10 20 30 40 50 60 70 80 90 100
t

Figure 4.4: Average rate of exploration performed at tinweith a 5-D covariate
usinge-ADAPT, for various CNR values. Rates fok 7 are not reported as this is
during the initialisation period.

Figure 4.5 displays histograms of the number of exploration steps performed
within a game for low and high CNR values — the spread is due to both the noise
in the sample estimates (and subsequent MC approximation) and the circumstances
of each game (a favourable start to the game means less exploration needs to be per-
formed later and vice-versa). OveralADAPT rarely gets caught under-exploring,
as the algorithm naturally self-corrects if it learns the incorrect partitioning of the
covariate space.
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Figure 4.5: Histograms showing the total number of exploration steps performed
with a 5-D covariate by-ADAPT for CNR values of (a) 100 (low noise) and (b) 5
(high noise).

e 10-dimensional Covariate

To test the robustness efADAPT to a high-dimensional covariate, we repeat the

same experiments using a 10-dimensional covariate with parameters:

a= [ 0.1 04-04 0 04-02 04-0.3 0.1 —0.1} )
My = [—0.5 -02 0.1 04 02-04 0 0.3 —0.3] 5

Ew:dmg<[05 03 07 01 09 08 0.1 1 0@).

We choose a diagonal matrix fat, to maximise the effect of the increased di-
mensionality on the learning problem, and the remaining values are set such that
each covariate has a different impact on the reward function. Tables 4.4 and 4.5
display the expected rewards for the same on-line and off-line policies, where the
magnitude of CNR values has been deliberately reduced by increasing the noise.
This is because higher dimension problems require less exploration (see Pavlidis
et al. (2008b) for a detailed explanation)xADAPT has again yielded a reward

that is within 95% of the optimal and furthermore, has performed best on average
against the range eaffirst policies considered. The performance@DAPT has

not been affected by the increased number of parameters it is required to learn as

the algorithm is robust to any-dimensional covariate.
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Table 4.4: Average rewards with a 10-D covariate

CNR | e=0 0.02 0.05 0.1 0.15 0.2 | eADAPT
20 | 0.832 0.833 0.817 0.777 0.732 0.685 0.831
10 | 0.788 0.795 0.787 0.755 0.715 0.672 0.791
5 0.718 0.731 0.734 0.715 0.684 0.646 0.731
2 0.586 0.605 0.620 0.622 0.606 0.581 0.618
1 0.471 0.490 0.509 0.522 0.518 0.504 0.511

Avg. | 0.679 0.691 0.693 0.678 0.6510.618 0.696

Table 4.5: Comparison efADAPT and optimalk-first with a 10-D covariate

CNR Off-line (e-first) On-line €-ADAPT)
Opt.e Reward | % Optimal Avg. expsteps

20 0.01 0.835 99.6% 2.36

10 0.02 0.795 99.5% 3.31

5 0.04 0.735 99.5% 4.42

2 0.08 0.624 99.0% 5.87

1 0.11 0.522 97.9% 6.73

e Misspecified Noise Models

Finally, we explore the behaviour e/ ADAPT when assumptions fail (as they may

in real-world applications). In particular, we look at two common departures from

a Gaussian noise model — asymmetric and heavy-tailed noise distributions. Specif-
ically, we generate the noise process usif®) (heavy-tailed) and gamni 6)
(skewed) distributions (where the gamma distribution is recentred at mean zero and
the first parameter is the shape parameter and the second is the scale which we vary
in simulations). This allows us to check whetlheékDAPT is robust to misspecified

noise models. We ran simulations for the 10-dimensional covariate with the alter-
native noise models, and scaled the noise so that we used the same range of CNR
values. The results are presented in Table 4.6. As can be seen, the performance
of e-ADAPT has not been affected despite false assumptions regarding the noise
model — which is a particularly desirable type of robustness if these methods are to
be applied to real-world problems.
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Table 4.6: Performance efADAPT with misspecified noise models

t(3) noise gamma(2) noise
CNR e-first e-ADAPT e-first e-ADAPT

Opt.e Reward %Opt. Opt.e Reward %Opt.
20 0.01 0.841 99.7% 0.01 0.836 99.5%
10 0.01 0.805 99.7% 0.02 0.799 99.3%
5 0.03 0.751 99.8% 0.03 0.743 99.4%
2 0.06 0.649 99.6% 0.07 0.634 99.0%
1 0.09 0.554 98.9% 0.10 0.532 98.7%

4.2 The Multi-Armed Bandit with Covariates Problem

In this section we extenedtADAPT so that it can be applied to multi-armed bandit
problems, where there is more than one unknown action available. This is achieved
by constructing an index for each action on-line, and then selecting at each iteration
the action with the highest index value, in a similar vein to the Gittins Indices (as
described in Section 2.2.4). Using this methedDAPT is then able to reason
aboutwhich actionto explore in addition to learninghento explore andhow much
overall.

In the multi-armed bandit with covariates problem, the agent selects between
actions{a;,i = 1,..., k}, with rewards given by:

where, as in the one-armed cas¢t) is ap-dimensional covariate observed at time

t andn;(t) are i.i.d. noise processes which are normal and centred at zero with
variances?. The agent is assumed to know the form of each funcfjpbut not the
reward coefficientgx; — which is what the agent must learn to correctly partition
the covariate space between the actions.

We seek to extend the ADAPT approach of Section 4.1 to multiple action
problems. Theorem 4.1 also holds for multi-armed problems, so we can construct
e-ADAPT based on the-first policy as before. In the simplest case, this could
be performed by following Algorithms 4.1 and 4.2 in exactly the same way, ex-
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cept thatR, ,(7*,1/7™) is instead approximated by randomly selecting one of the
non-greedy actions at timein the MC approximation of Algorithm 4.2. Then if

R (T*,1/T*) > R.s(T*,0), a random non-greedy action is also selected in the
actual game. This method retains the characteristiesAIDAPT for one-armed
problems, in that the agent contrélew muchandwhenexploration is performed,

but has the same disadvantages ascthiest ande-greedy policies in that explo-
ration is performed randomly. So to further improve ondHast methodology we

also choosevhich actionshould be explored at each time-step, such that globally
suboptimal actions (actions that are suboptimal for all covariate values) are never
selected again after sufficient exploration, allowing other actions to be explored
more. We do this by constructing an index for each acfiop(7', ¢, ), which is

the expected reward of selecting actionext, and then selecting greedily for the
remainder of the game (length— ¢ + 1).

We therefore define-ADAPT as an algorithm that sequentially approximates
a value R.(T,t,4)) for each action, and then selects the action with the highest
value at each iteration. We provide the pseudo-code-®DAPT in Algorithm
4.3 and the MC approximation a@t.;(7’, ¢, ) in Algorithm 4.4. Note thatD is the
required number of times each action must be selected during initialisation. With
linear rewards (see Equation (2.3)) for examgle= p + 1, such that-ADAPT
has estimates of the noise varian¢ebefore the indices are calculated.

We generate past and future rewards and covariates in exactly the same way
as before, by sampling from the covariate distribution using the sample estimates
updated in Line 5 of Algorithm 4.3. Again, we retain the same covariate value at
time ¢, so that the agent can deciddento explore (Line 10, Algorithm 4.3)e-
ADAPT can then calculate the indicé& (T, ¢,:) for each action, as detailed in
Algorithm 4.4. The MC approximation simulates the game for the full duration
T, but uses only rewards gained from timenwards to findR.;(7’,t,7). In the
time-steps before, each action must be selected the number of times it has been
selected in the actual game, such that the uncertainty of each individual action in
the approximation mimics the true uncertainty. It is in this way thADAPT can
then determine which action to explore.
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Algorithm 4.3 e-ADAPT for the Multi-ArmedBandit

1: C = 0 {Initialise Action coun}
2: fort=1to7 do

3 Ir"=T—-t+1
4.  Observe covariate(t)
5.  Update unknown parameters of covariate distribution
6: ift <kD then
7: Select action wherei = 1 + ¢ mod k {Initialisation}
8 else
o: Generate new Covariates(s) V1 < s < T
10: x'(t) = x(t) {Keep same covariate at timg
11: Generate new rewards(t) V1 < ¢ < k,1 < t < T using estimated
reward coefficientgy; and estimated noise varianég
12: fori=1tokdo
13: ApproximateR, (71, t, i) {Algorithm 4.4}
14: end for
15: Select action (1 < i < k) that maximisesR.;(7', t,1)
16: end if
17:  Receive reward(t) = r;(t)
18:  Updateq; ands?
19:  C(i) = C(i) + 1 {Update action coumt
20: end for

tion 2.2.4), in that an index is attributed to the value of selecting each action. Our

method, however, offers three important advantages. First, we do not require that
rewards are discounted over time. Secondly, Gittins Indices do not generalise to in-
clude covariates, and are restricted to Bernoulli or normally distributed rewards for

the non-covariates setting — where their extension to other reward distributions are
non-trivial. Finally,e-ADAPT is significantly less expensive to compute. Specif-

The e-ADAPT approach is somewhat similar to the Gittins Indices (see Sec-

ically, e-ADAPT scales linearly in the number of armisand quadratically in the

length of the gamé@’ — this is computationally more expensive thatirst (which is

linearinT), butis a necessary cost to remove the need for an exploration parameter.

Note also that the estimation of reward coefficients for a linear reward model is

quadratic in the dimensiomof the covariater(¢), if we use recursive least squares

(see Appendix B).
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Algorithm 4.4 MC Approximation ofR. (7, ¢, ) index
1: for s=1to7 do
2. if s<tthen
3 Select an action such that each action is selectéd) times whens = ¢
and receive reward (s) = ri(s)
Updatea;
else ifs = t then
Select action and receive reward (s) = 7(s)
Updateq;
else
Select actiory that maximises & (s)|a;, «’(s)) (1 < j < k) and receive
rewardr’(s) = r5(s)
10: Updatea;
11:  end if
12: end for
13: Ry (T, t,1) = S, 7'(s)

© o N TR

Finally, the MC approximation of Algorithm 4.4 can be repeated several times,
and the indices can be averaged, to smooth the overall estimates. In practice how-
ever, when performing numerical tests we again found that 2 repeats were usually
sufficient to find the best action to explore, and more repeats had no particular extra
benefit. This is because if the optimal action is not clear from only a few MC re-
peats, then it is likely that all of the competing best actions are ‘good choices’ and
the cost of picking a marginally suboptimal action is low. Furthermore, if several
actions have high uncertainty then those not selected immediately are extremely
likely to be selected in subsequent iterations. The ordering of these selections is
therefore not of prime importance — identifying which actions and how much to
explore is more significant.

4.3 Numerical Results

In this section we test the performancec«eADAPT for a range of multi-armed
bandit problems. We first study the bandit with covariates problem in Section 4.3.1,
with varying numbers of actions and covariate dimensions. Then in Section 4.3.2,
we evaluate-ADAPT for the bandit problem with no covariates, which allows a
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comparison with existing parameter-free methods (which have not been extended
for problems with side information) such as the POKER algorithm and the UCB
policy (reviewed in Sections 2.2.5 and 2.2.3 respectively). Finally, in Section 4.3.3,
we teste-ADAPT with a real data set from th@ontent Distribution Networkrob-

lem (CDN) where an agent must minimise the sum of delays whilst retrieving data
through a network with several sources available. This data set is used as the data
is spiky and non-normal. We can therefore test the robustnesDAPT to mis-
specified modelling assumptions and to real-world non-smooth data sets.

4.3.1 Bandit with Covariates Problem

In this section we test-ADAPT for the bandit with covariates problem for a 2-
armed problem, a 3-armed problem (with a globally suboptimal action) and a 10-
armed problem (with a 10-dimensional covariate).

e 2-armed problem

We start with a basic 2-armed problem with reward functions and covariate distri-
bution as given in Figure 4.6. These are selected such that each action is optimal
in 50% of the covariate space — in order to maximise the difficulty of the learning
problem faced.

Table 4.7 displays the average rewardssfDAPT and various-first policies
and yet agair-ADAPT has performed best overall. Table 4.8 compar@®APT
with the optimale-first policy wheree-ADAPT performs particularly well with the
lower range of CNR values where the MC approximation is most accurate.

Table 4.7: Average rewards with a 2-armed problem

CNR | e=0 0.02 0.05 0.1 0.15 0.2 | eADAPT
200 | 0.876 0.894 0.888 0.849 0.803 0.755 0.906
100 | 0.843 0.862 0.868 0.840 0.796 0.750 0.878
50 | 0.780 0.808 0.826 0.813 0.778 0.737 0.828
20 | 0.662 0.686 0.7190.730 0.717 0.689 0.720
10 | 0.529 0.569 0.598 0.625 0.625 0.609 0.609
Avg. | 0.738 0.764 0.780 0.771 0.744 0.708 0.788




Chapter 4. On-line Adaptation of Exploration in Bandit Problems 93

T T T T

0.3k — Action 1
- = =Action 2

Expected reward

Figure 4.6: Reward functions for a 2-armed problem where the covariate distribu-
tion (given below) is centred at the intersection of Action 1 and Action 2 and has
variance 1.

One of the key reasons for the strong performance-ADAPT is the algo-
rithm’s ability to detect when best to explore. This occurg-&DAPT explicitly
considers the current covariate value when making each decision. To explore this
feature in more detail, Figure 4.7 shows the distribution of covariate values over
all simulations and separates them into regions of exploration and exploitation for
the first and second halves of the game. As expected, the amount of exploration
decreases and the correctness of exploitation decisions improve over time. Notice
however, that unlike Figure 4.3;ADAPT is exploring more for covariate values
near the decision boundary. This occurssa&DAPT now needs to learn the in-
tercept of the reward plane (which was earlier fixed) and covariate values near the
decision boundary are still informative regarding the correct partitioning of the co-
variate space. This feature is verified in Figure 4.8 which shows the average pro-
portion of times each covariate value is used for exploration (using the same bins
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Table 4.8: Comparison et ADAPT and optimak-first with a 2-armed problem

CNR Off-line (e-first) On-line -ADAPT)
Opt.e Reward | % Optimal Avg. expsteps

200 | 0.03 0.895 101.2% 1.37

100 | 0.04 0.870 100.9% 2.45

50 0.06 0.827 100.1% 4.05

20 0.09 0.736 97.8% 6.81

10 0.11 0.629 96.8% 8.61

for the covariate as in Figure 4.7) for the two halves of the game. Covariate values
near the decision boundary are used much more for exploration than from the tails
of the distribution as exploration is not as costly here whilst still being informative.
This includes a notion of cost-inclusive exploration ilBDAPT and explains the
potential for higher rewards than the optimadirst policy.

x 10° x10°
25 , , , — Il exploration 25 , , , — Il exploration
[_]exploitation (al) [ ]exploitation (al)

I cxploitation (az) 2r I exploitation (az)

Figure 4.7: Histograms of the covariate distribution partitioned into regions of ex-
ploration/exploitation for (a) the first 50 time-steps and (b) the final 50 time-steps,
for a 2-armed bandit problem.

e 3-armed problem

We now study a 3-armed bandit problem where the third action is globally subopti-
mal (i.e. it is suboptimal for all possible covariate valugs)). This problem is of
particular interest asfirst methods do not choose which action should be explored,
and will continue to explore an action even if the agent knows it is globally subopti-
mal. Itis of interest to see whethetADAPT can do better and learn to not explore
suboptimal actions. We keep the same setup as for the two-armed problem and we
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Figure 4.8: Histograms of the average proportion of explorative actions, given a
particular covariate value, in (a) the first 50 time-steps and (b) the final 50 time-
steps, for a 2-armed bandit problem.

add a third action as shown in Figure 4.9. We repeat our simulations with this third

action to check how quickly-ADAPT can learn to never select this action.

—Arm1
0'3'\\ - - = Action 2
0.2+ r= =1 Action 3

0.1y

Expected reward

0.1t
0.2 P =i m i m e e m e m e 2 T ~

Figure 4.9: Reward functions for a 3-armed problem where the covariate distribu-
tion as given in Figure 4.6. Action 3 is globally suboptimal.

To this end, Table 4.9 demonstrates the performaneeAAPT with respect
to the optimally-tuned-first policy. As can be seen, the addition of a suboptimal
arm that confounds the decision making process has not affected the performance
of e-ADAPT with respect to the optimaltfirst policy. There is a slight loss in per-
formance for low-noise problems due to the extra round of initialisation required
by e-ADAPT (to gain unbiased noise variance estimates), but a slight improvement
with high-noise problems where a good exploration policy is particularly impor-
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tant. Moreover, notice that the optimal exploration ratescforst are lower than

with the 2-armed problem (cf. Table 4.8) as exploration is more costly (if performed
randomly), leaving the other 2 actions under-explored. Convers@pAPT has
performed marginally more exploration than in the 2-armed problem, as there are
more actions and hence more indices to construct. This suggests that this explo-
ration is performed more intelligently than wigkfirst.

Table 4.9: Average rewards with a 3-armed problem

CNR Off-line (e-first) On-line €-ADAPT)
Opte Reward | Reward % Optimal Avg.x@.
200 | 0.00 0.893 0.891 99.8% 1.40

100 | 0.00 0.867 0.869 100.3% 2.56
50 0.02 0.835 0.835 100.0% 4.63
20 0.04 0.757 0.747 98.7% 8.80
10 0.07 0.675 0.654 96.9%  12.13

To investigate this further, Figure 4.10 shows that the suboptimal action has
been selected infrequently for exploration (even for a high-noise problem) and Fig-
ure 4.11 shows that the rate with which the suboptimal action is selected decreases
rapidly over time, irrespective of the CNR value. This demonstratestABMAPT
has learnt to adapt to the problem faced and correctly seleich actionsto ex-
plore, whilst also correctly controlling the overall amount of exploration. This al-
lows more exploration to be performed, particularly for high-noise problems, in
such a way that is less costly than the random explorationfio$t ande-greedy
policies.

e 10-armed problem

So far we have demonstrated the ability @ADAPT to partition the covariate space
into regions where each action is optimal, and also to learn and identify if any ac-
tions are globally suboptimal. Every bandit problem in higher dimensions (whether
that is in the number of actions or covariates) will be an extension of the above
mentioned examples. Nonetheless, to check whet®®APT is indeed robust to
high-dimensional covariates and a large number of actions, we nowAd3APT
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Figure 4.10: The average number of times each action is selected for exploration
by e-ADAPT where (a) CNR =100 and (b) CNR = 20, for a 3-armed problem.
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Figure 4.11: The average frequency of selecting the globally suboptimal action
(Action 3) over time for various CNR values with a 3-armed problem. The initial
rate of 1/3 is the average rate during the initialisation period.

for a 10-armed problem with a 10-dimensional covariate. We extend the length of
the game to 200 iterations, to allow for the initialisation period of length 100.

Table 4.10 shows results fetADAPT compared with the optimakfirst policy
for a range of CNR values. The optimal valuecof close to zero for all prob-
lems — this is a feature of problems with a high-dimensional covariate (Pavlidis
et al., 2008a), as the extensive side information and long initialisation period render
additional exploration to be of no particular valueADAPT explores more as the
algorithm explores intelligently and learns not to explore suboptimal actions or with
covariate values far from decision boundaries. Moreav@&DAPT yields rewards
that are again consistently close to the optimally-tuaéicst policy.
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Table 4.10: Average rewards with a 10-armed problem

CNR Off-line (e-first) On-line €-ADAPT)
Opte Reward | Reward % Optimal Avg.x.
50 0 0.721 0.709 98.3% 8.9

20 0.01 0.675 0.671 99.4% 11.0
10 0.01 0.651 0.647 99.4% 12.7
5 0.02 0.616 0.601 97.6% 14.5

4.3.2 Bandit Problem without Covariates

In this section we check hoetADAPT performs in the standard bandit problem,
with no side information. This allows ADAPT to be compared with the POKER
algorithm (Section 2.2.5) and the UCB policy (Section 2.2.3), which are the only
other methods that are free of exploration parameters — but have no obvious exten-
sion to the bandit with covariates problem.

e 2-armed problem

We first teste-ADAPT for a simple 2-armed bandit problem (length 100) with nor-
mally distributed rewards (with means 0.5 and 1 and variazrjiteTabIe 4.11 dis-
plays results for 10,000 repeats, where we also include results for varimgs
policies, the POKER algorithm and UCB1-Normal — a UCB approach specifically
designed for normally distributed rewards (see Equation (2.E0WDAPT is the
only approach that outperforms atfirst policies when rewards are averaged and
also outperforms the POKER algorithm and the UCB policy for each value of the
noise variance — which is a particularly desirable result givenst#ddAPT works
for a broader range of problems. The poor performance of UCB1-Normal is at-
tributed to the fact that any action is explored if it has been selected less théf) 8log
times at timef — for a 2-armed problem this means exploration effectively occurs
for at least the first 66 iterations (and for an even longer period for problems with
more actions). This renders this policy of limited use in finite-time problems and is
hence most useful for its desirable asymptotic properties.

Table 4.12 provides a comparison with the optimétst policy and the POKER
algorithm for each value of? used. Performance degrades more rapidly with the
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Table 4.11: Average rewards for a 2-armed problem with no covariates

0727 e=0 0.02 005 01 0.15 0.20 | UCB1-Normal| POKER | e-ADAPT
0.05| 0.967 0.957 0.929 0.880 0.8300.780 0.237 0.961 0.962
0.1 | 0.917 0.932 0.923 0.879 0.8300.779 0.217 0.930 0.948
0.2 | 0.827 0.869 0.892 0.870 0.827 0.778 0.191 0.873 0.911
0.5 | 0.645 0.716 0.7780.801 0.785 0.754 0.183 0.736 0.800
1 | 0501 0.572 0.653 0.6910.697 0.684 0.160 0.597 0.698
Avg. | 0.772 0.809 0.835 0.824 0.794 0.755 0.181 0.819 0.859

POKER algorithm as the noise increases, whet6®SAPT yields rewards that are

still within 95% of the optimally tuned-first policy, even for high noise problems.
Both on-line algorithms correctly learn to explore more as the noise increases, but
POKER does this to a lesser extent, and with no more than 2 exploration steps the
algorithm performs similarly to aafirst policy withe = 0.02. e-ADAPT, however,
explores to a more optimal level as the agent’s high levels of uncertainty are driving
exploration directly.

Table 4.12: Comparison of optimal exploration rates for a 2-armed problem with
no covariates
5 | Off-line (e-first) | On-line(POKER) | On-line ¢ADAPT)
7 | Opte Reward| % Opt Avg.&p.| %Opt Avg. &p.
0.05[ 0.00 0.967 | 99.4% 0.65 99.4%  0.77
0.1 | 002 0.932 | 99.8% 0.89 101.7%  1.09
0.2 | 0.05 0.892 | 97.9% 1.27 102.2%  1.82
05| 010 0.801 | 91.8%  1.69 99.9%  3.44
1 | 017 0.698 | 855%  1.95 96.9%  4.80

g

e 5-armed problem

We now test-ADAPT for a 5-armed bandit problem to test the algorithm’s ability

to correctly choose the most important actions to explore when there is no side
information available. This time we bound the rewards in the intdfval, which
allows for a comparison with the other UCB policies constructed by Auer et al.
(2002). These policies only require an initialisation period:abunds, which is
much shorter than with UCB1-Normal, and will therefore perform much better in
finite-time problems. In fact, it is noted in Auer et al. (2002) that UCB1-Tuned is
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the best performing UCB policy in all experiments, so we restrict our attention to
this policy in this section.

One of the best known distributions bounded in the intefal] is the beta
distribution and we choose to use this distribution to draw the rewards from each of
the 5 actions. We consider 4 different problems, where the 5 actions always have
expected rewards of 0.3, 0.4, 0.5, 0.6 and 0.7 respectively, but with each problem we
increase the variance of the beta distributions, which makes the learning problem

harder. These reward distributions are displayed in Figure 4.12.
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Figure 4.12: 4 different 5-armed bandit problems where each action is beta-
distributed. The parameters are set such that the expected reward of each action
is 0.3, 0.4, 0.5, 0.6 and 0.7 respectively. The variance of each distribution increases
with the problem number.

The average rewards efADAPT, POKER and UCB1-Tuned are displayed in
Table 4.13, wher& = 100. Note that we adjust the initialisation e#ADAPT such
that each action is selected once (rather than twice), and the reward variance of
each action is then estimated as being equal to the variance of all observed rewards.
If a second reward of an action is observed this estimate is then replaced by the
sample variance estimate from the past rewards for this action only. This allows for
a fair comparison with POKER and UCB1-Tuned which both require initialisation



Chapter 4. On-line Adaptation of Exploration in Bandit Problems 101

periods of lengtlk.

In the experiments-ADAPT and POKER performed close to or better than the
optimally tunede-first policy. Both algorithms benefit from selecting which action
should be explored based on both their uncertainty and potential for increased future
reward. This is in spite of the fact that neither algorithm assumes a beta distribution,
nor rewards bounded in the interval 1. In fact, we have configured ADAPT
to continue to assume normally distributed rewards, which again shows robustness
to misspecified models and explains the slight loss in performance for Problem 4
where the distributions are highly non-normal. UCB1-Tuned however, performs
poorly for all experiments, despite having the most restrictive assumptions. The
policy over-explores each time and this exploration is not driven by uncertainty —
in fact the policy explores marginally more for the easier learning problems, which
is not desirable behaviour.

Both e-ADAPT and POKER explore more for the harder problems. On this oc-
casion, POKER has learnt the right level of overall exploration, which is in contrast
to Table 4.12, where the algorithm under-explored for a 2-armed problem. This
inconsistency is due to the choice ®f in the algorithm (see page 41 for a more
detailed discussion), which effectively controls the overall amount of exploration.
Although this choice removes the need for an exploration parameter, it can nega-
tively affect finite-time performance for certain types of problem. This feature is
not investigated any further in this thesis (as the POKER algorithm is not applicable
to dynamic or multi-agent decision problems) and we conclude that POKER and
ADAPT are comparable in terms of performance for the bandit problem with no
covariates — but we reiterate thaBDAPT is a much more generalisable approach.

Table 4.13: Comparison of policies for a 5-armed problem with no covariates

Problem| Off-line ¢-first) UCB1-Tuned POKER e-ADAPT
Number| Opt Reward | % Opt Avg. &p. | % Opt Avg. &p.| % Opt Avg. &p.
1 0.00 0.937 | 64.9% 37.49 99.4% 2.01 99.7%  1.39
2 0.00 0.851 | 70.9% 37.03 101.8% 3.35 102.5%  5.47
3 0.02 0.765 | 78.4% 35.04 | 102.5% 5.37 101.2% 10.95
4 0.04 0.735 | 81.2% 33.31 99.8% 6.00 99.2% 13.00
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Figure 4.13 shows the average number of times each action is selected for ex-
ploration in Problem 2 and Problem 4 byADAPT. Even for the high-variance
problem, action 4 is selected most for exploration — as this is the action that is
closest to the optimal action (action 5). Action 5 is also occasionally selected for
exploration, which occurs whenADAPT has incorrectly found a different action
(usually action 4) to be optimal. This shows that the algorithm self-corrects and
does not converge to selecting sub-optimal actions as often as other algorithms and
policies might.
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Figure 4.13: The average number of times each action is selected for exploration
by e-ADAPT with (a) Problem 2 and (b) Problem 4 for the 5-armed beta-distributed
bandit problems.

4.3.3 Real Data

Finally in this section we compareADAPT with thee-first policy and the POKER
algorithm using real data. The data is from a real-w@tthtent Distribution Net-
work problem (CDN) where an agent must must retrieve data through a network
with several sources available (see Vermorel and Mohri (2005) for a more detailed
description, and a link to the data source which has been made publicly available).
The sources can be viewed as the actions and the delays as rewards (where a small
delay yields a high reward and vice-versa). The objective of the agent therefore is
to minimise the sum of delays from a series of retrievals.

Table 4.14 displays the average retrieval delay using each algorithm for prob-
lems ranging from 2 to 5 arms. We performed 10,000 repeats (game length 100),
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each time randomly sampling the actions used and then randomly ordering the la-
tencies (such that repeat experiments are not performed). The objective is to min-
imise the average delay, and all three methods perform relatively equally for this
data set withe-ADAPT performing marginally best overall, although thérst fig-

ures given are from the optimally tuned parameter (given in parentheses in the ta-
ble). Notice that the optimal value decreases as the number of actions increase,
this is because random exploration is more costly. The number of exploration steps
performed by-ADAPT however (also given in the table in parentheses), increases
with the number of actions. As demonstrated in Section 4.3.1 with a 3-armed prob-
lem and Section 4.3.2 with a 5-armed problem, this is because the algorithm learns
to eliminate the worst actions quickly and explore more between the best actions. In
summaryge-ADAPT works well with this real data set — despite the algorithm mod-
elling the observation noise as being normally distributed (which is not the case,
in fact the data is quite spiky). This again demonstrateset#ddAPT is robust to
misspecified modelling assumptions.

Table 4.14: Comparison of algorithms with real data

No. Actions e-first POKER e-ADAPT
2 38.18(0.05) | 38.21 38.00(2.52)
3 37.22(0.02) | 37.12 37.27(5.80)
4 36.50(0.01) | 36.54 36.708.35)
5 35.02(0.00) | 34.78 34.64(11.27)
Avg. 36.73 36.66 36.65

4.4 Summary

In this chapter we have constructedADAPT, the first algorithm for balancing
exploration with exploitation in an on-line and incremental manner for the bandit
with covariates problem. The algorithm is based on the effective and suAfijpse

policy, but removes the need for arpriori fixed exploration parameter, using on-
line approximation techniques. We first constructedDAPT for the one-armed
bandit problem and then extended this to multiple actions using an indexing ap-
proach that shares characteristics with the Gittins indices. We then performed an
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exhaustive simulation study to show thaADAPT is robust to varying numbers of
actions, high degrees of noise, high-dimensional covariates and performs well with
real data. Our simulation results also show tRADAPT is competitive with, and
can outperform, optimally tuned off-line policies and performs best overall when
results are averaged over experiments, for both the generalised bandit with covari-
ates setting and the commonly studied special case of the standard bandit problem
(with no covariates). We note that we have not test@dDAPT for non-linear re-
wards and non-normal covariates, where bootstrapping techniques could be used to
regenerate new rewards and covariates. Furthermore, we have not yet placed any
theoretical bounds on the finite-time performance-&DAPT — this is reserved
for future work and discussed further in Chapter 8.

Thee-ADAPT algorithm fills an important void in the bandit literature, in that
we now have an on-line algorithm that can effectively balance the exploration-
exploitation trade-off for the bandit with covariates framework — without any fixed
exploration parameters. In the next chapter we make the important next step of ex-
tendinge-ADAPT for bandit problems with dynamic rewards. We can then revisit
Table 2.1 and analyse hawADAPT compares with other policies and algorithms
and indeed offers one of the most generalisable approaches across all bandit frame-
works.
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Chapter 5

Adapting Exploration in Dynamic

Environments

In the previous chapter we constructed an on-line algorithm for adapting explo-
ration in static bandit problems;ADAPT. Most real world decision making prob-
lems, however, are likely to change over time — as discussed in Section 2.1.5. Fur-
thermore, many decision problems that are modelled as static problems may in fact
have some form of dynamics that are unknown or unexpecpeabri, which should

not be ignored by a reward-maximising agent. Dynamic decision making problems
are particularly challenging, however, as not only is predicting future rewards more
complicated, but also the optimal balance between exploration and exploitation is
closely related with the dynamics of the problem, and will change as the decision
problem itself changes.

In this chapter, we construct a dynamic versior-&DAPT, where the reward
functions of each action change over time. In dynamic environments, we require
e-ADAPT to adapt as it playsand quickly respond to changes in the reward struc-
ture that yields significant changes to the optimality of different actions. As in the
previous chapter, we do this by capturing the uncertainty surrounding each action,
which will automatically increase if the reward process significantly changes, and
we then use this uncertainty to drive exploration on-line. In this way#RBAPT
method is naturally suited to dynamic problems, but we make several significant
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changes to the static version of the algorithm for this to work.

Many policies and algorithms presented in Table 2.1 are not suitable for dy-
namic environments. Several policies, however, including SoftMax (Section 2.2.2)
and Reinforcement Learning type approaches (Section 2.2.6), can be used in a
dynamic reward setting, by estimating the expected reward of each action using
Q-learning (rather than recursive averaging). The learning rate paraméee
Equation (2.15)) can be adjusted dependent on the rate of change of the reward pro-
cess -\ values close to 1 forget past data quickly and weight the reward estimate
towards the most recently observed rewards. These approaches, however, are only
designed to work for the standard bandit problem, with no side information.

This is in contrast to the-greedy policy, which has been implemented in a dy-
namic bandit with covariates framework in Pavlidis et al. (2010). In this study, the
coefficients of linear reward functions are assumed to change over time, following
an ESTAR process (see Equation (2.4)), such that the optimal partitioning of actions
in the covariate space changes over time. The estimated reward coefficients are then
estimated using the Recursive Least Squares (RLS) algorithm with adaptive forget-
ting (Haykin, 2002, p.662). This algorithm learns to weight recent observations
more heavily dependent on thate of dynamicgi.e. the speed at which the re-
ward process is changing) — and is hence analogous to Q-learning (with an adaptive
learning rate) for the non-covariates setting. We use RLS with adaptive forgetting
with e-ADAPT in this chapter, and hence review the algorithm in more detail in
Section 5.1.

It is argued in Pavlidis et al. (2010) thagreedy is a better policy for dynamic
bandit problems thar-first or e-decreasing as there is a constant need to explore.

In other words, in dynamic environments an agent needs to adapt over time, rather
than converge to a fixed decision rule, so constant exploration is required to keep
track of any significant changes. Thgreedy policy still requires aa priori fixed
exploration parameter, so for the same reasons outlined in Chapter 4, we construct
an on-line algorithm that removes the need for this exploration parameter. Never-
theless, rather than extendirgADAPT to dynamic problems by using an on-line
approximation of the optimatgreedy policy, we instead continue to usérst as
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the building block of our algorithm. We adjust our approach, however, such that
the game is considered on a moving window whose size is dependent on the rate of
dynamics. This has the important advantage ¢PADAPT can continue to make
near-optimal decisions without having to model the type of dynamics or predict
future changes in the reward structure. We also adjust the estimates of the noise
variance (which drives exploration) to include the uncertainty created by changes
to the reward functions, and not just the amount from observation noise. This al-
lows e-ADAPT to retain the same characteristics as seen in Chapter 4 for the static
case, i.e. the algorithm determinesw much, wheandwhich actionsto explore

over time. We detail the-ADAPT algorithm for dynamic bandits in Section 5.2.

We analyse the applicability @@ ADAPT to dynamic bandit problems by per-
forming a thorough simulation study in Section 5.3. We first te8DAPT against
variouse-greedy policies for drifting reward processes in Section 5.3.1, using the
ESTAR framework. Then we construct a new bandit framework in Section 5.3.2,
where reward coefficients jump over time to new values at unknown times gov-
erned by a Poisson distribution. This tests the robustnes®\BAPT to suddenly
changing environments (as well as the more gradual drift of an ESTAR process).
We then show that the dynamic versionceADAPT can be successfully applied to
static problems (Section 5.3.3), with only a small loss in performance as compared
with the static version analysed in the previous chapter. Finally, in Section 5.3.4 we
combine all three reward processes (ESTAR/jumps/static) in one decision-making
problem. We conclude and discuss future work in Section 5.4.

5.1 The RLS Algorithm with Adaptive Forgetting

In this section we detail the RLS algorithm with adaptive forgetting, which will
be used by-greedy and-ADAPT to estimate reward coefficients over time with
linear reward functions. Furthermore ADAPT uses outputs from this algorithm

to control the window sizes of the MC approximations and the on-line estimates of
the noise variance (which we outline in Section 5.2). The line-by-line algorithm is
given in Appendix B, where the significant step is the update ohtheparameter,
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given by:
A+

M) = [ At —1) + wpT(t — 1):B(t)£(t)] 7 (5.1)

A
where,

E(t) =r(t) — &% (t — 1)x(t). (5.2)

A(t) is used to effectively place more weight on recent observations. At the ex-
tremes\(t) — 1 corresponds to weighting all observations equally, and the stan-
dard RLS algorithm (used in Chapter 4) is recovered by settiig = 1; con-
versely as\(¢) — 0 the algorithm places all weight on the most recent observation.
In practice, the values thatt) can take are truncated, with the upper limit set close
to unity and the lower limit in the region of 0.8 (Niedzwiecki, 2000) — which is the
value we use in this chapter. The quantity) is often referred to as aaxponential
weighting factoror simply as thdearning rate(Haykin, 2002), but in this thesis we
refer to\(¢) as aforgetting factor as in Soderstrom et al. (1978) and Sayed (2003).
The RLS algorithm with adaptive forgetting propagakés) in the direction of
the gradient of the one-step-ahead residual &ftor (Anagnostopoulos, 2010) —
i.e. large errors in predicting the reward (based on the current coefficient estimates)
will shift \(¢) towards the lower truncation limit and vice-versa. The rate at which
A(t) is adjusted is controlled by the meta-learning tatgvhich should be set close
to zero (Haykin, 2002)). We note that removing the need to fix the forgetting factor
a priori has removed one parameter but created three more: the meta-learning rate
w and the upper and lower truncation limits foft). This is still preferable to fixed
forgetting however, as the latter two parameters are easily fixed at practical values
(as discussed in the previous paragraph) and the meta-parametenuch less
sensitive than changing a fixedvaluea priori (Anagnostopoulos, 2010). More-
over, adapting the forgetting factor on-line allows the RLS algorithm to better track
reward coefficients when the optimal forgetting factor changes over time (Anagnos-
topoulos, 2010) —i.e. when the rate of change of the reward coefficients varies over
time, which is particularly useful for unpredictable dynamic environments.
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An alternative method for inferring reward coefficients is to perform ordinary
recursive least squares over a window of historic time-steps (Haykin, 2002). This
method avoids having to adapt forgetting factors on-line, but has the disadvantage
that window sizes are fixed priori and are difficult to adapt on-line, which can
yield poor results when the rate of dynamics changes over time. Moreover, per-
forming least squares over a window requires storing past data-sets (which is not
required in RLS with adaptive forgetting), so this method is not fully-online and
can create computational issues with large data sets (for example when there is a
large volume of side information).

Another method is to use state-space modelling (Durbin and Koopman, 2001)
to try and fit the sequence of reward coefficients to a model that can then predict
future values. We choose not to follow this approach however, as we study scenarios
where the type of dynamics are unknown and unpredictable. As a result, we do not
wish to impose a model on the reward processes and prefer methods that are able
to handle all sorts of dynamics using exactly the same algorithm. For the same
reasons, we dismiss using particle filter techniques (Gordon et al., 1993).

For these reasons we use RLS with adaptive forgetting in this chapter, and to
demonstrate the benefits of using this algorithm, in Figure 5.1 we show its average
performance using the Poisson jump framework studied in Section 5.3.2. The for-
getting factor\(¢) on average takes low values immediately after jumps — as the
algorithm learns that it should forget past data quickh() then incrementally
grows until the next jump occurs. As a result, the reward coefficient is (on aver-
age) tracked more accurately than by using the optimal rate of fixed forgetting, as
demonstrated in the figure. We note that in frameworks such as ESTAR (which
we introduced in detail in Section 2.1.5), where the rate of change is constant over
time, A(¢) will converge to the optimal fixed value over time (Anagnostopoulos,
2010).

When applied to the multi-armed bandit problem, the RLS algorithm with adap-
tive forgetting is applied to each action separately, suchitsgparate forgetting
factors);(t) are used. This has the important advantage that actions with different
reward dynamics can be modelled separately and estimation is more accurate. Each
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Figure 5.1: (a) Coefficient values from a Poisson jump process with average RLS
estimates (using adaptive and constant forgetting) and (b) the corresponding av-
erage adaptive forgetting factor (with the jumps indicated by vertical grey lines).
The observation noise variance is equal to 0.1 and results are averaged over 10,000
repeats.

set of reward coefficients (and corresponding forgetting factors) are therefore not
updated at each time-step, as bandit problems are opaque and rewards from unse-
lected actions are not observed. Therefore, even a decision making problem with a
fixed rate of dynamics (such as ESTAR) requires an adaptive forgetting factor — as
the sequence of observed rewards for each action is unlikely to be regularly spaced
over time. This makes the RLS algorithm with adaptive forgetting even more ap-
propriate for dynamic bandit problems. The alternative, of trying to fill in missing
values, is an open problem and beyond the scope of this thesis.

5.2 ¢-ADAPT for Dynamic Bandit Problems

In this section we show howtADAPT can be extended to bandit problems in dy-
namic environments. Perhaps the most obvious approach would be to design an
algorithm that models the dynamics, and then uses this model to generate future
rewards in the MC approximation of tkeADAPT indices R (T, t,) (similarly

to Algorithm 4.4 for the static case); however, we do not take this approach for
two key reasons. First, forecasting a dynamic process is often challenging, partic-
ularly if we do not want to make any underlying modelling assumptions or impose
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any additional parameters on the algorithm. Secondly, the opacity of bandit prob-
lems means the sequence of observed rewards are usually not regularly spaced over
time (as mentioned in Section 5.1), which further complicates the use of any mod-
elling techniques. Instead, we compute the MC approximation of each index over

a smaller window and assume the decision problem is static in this window, such
that we do not need to explicitly model the dynamics. In Section 5.2.1 we detalil
how this window size is determined and in Section 5.2.2 we describe other key
changes to the algorithm and provide the pseudo-code-AAPT for dynamic

bandit problems.

5.2.1 Window Sizes for-ADAPT

To avoid modelling potentially unpredictable dynamic&DAPT considers a static
game over a shorter window at each time-step. Specifically, at each time-step
ADAPT considers a window size &fVV (t) = TB(t) + T*(t), whereT?(t) and

TT(t) are the number of past and future time-steps (respectively) used in the MC
approximation bye-ADAPT, as shown in Figure 5.2. This approach disregards
the impact of time-stepsthat are in the distant past or future € ¢ — T2(¢) and

s > t+T7(t)) at timet, which makes sense in dynamic problems, as action choices
and observed rewards in these regions are not as relevant to the current decision
problem (for suitable values @Gf2(t) and7*(t)). Furthermore, this method allows

the regeneration of new covariates and rewards to be performed in a static setting
(using the current reward coefficient estimates) and avoids any issues of modelling
dynamics.

Reduced window

Size: TY(t) = T8+ T (1)

T T
0 t-T° t tH+T7 T

Figure 5.2: Window sizes used byADAPT in the MC approximation.

The main challenge now lies in selecting the window sizé¢t) and7” (t) for
the MC approximation of each index. After all, problems that are changing rapidly
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require shorter windows than problems that are drifting slowly. To avoid introduc-
ing any further complicated algorithms or models, we can find appropriate values
for TP(t) andT* (t) from the outputs from the RLS algorithm with adaptive for-
getting, which is otherwise used to estimate reward coefficient values. Specifically,
we use the forgetting factors (¢) for each actioru; as a metric for how fast the
decision making problem is changing overall — low values\gtf) suggest high
rates of dynamics (and vice-versa). We first introduce the concegtexttive sam-

ple sizewhich is a measure of the effective number of samples being used in the
linear regression (if the problem was static and all samples were equally informa-
tive). Attimet the effective sample size, denoted S;(¢), depends on all previous
forgetting factors (Niedzwiecki, 2000):

ny Ny

ESSi(t) =Xi(ti(n:) + Niti(na)Ai(ti(ng — 1)) + ... = > [ Nlta(7))

j=1 7=j
B { Ai(t)(1 4+ ESS;(t — 1)) when actior; is selected

| (5.3)
ESSi(t—1) otherwise

wheret; is the sequence of time-steps for which actighas been selected (a total
of n; times).

e Forward-looking window size

To set the forward-looking window sizé&" (¢), a ndve approach would be to set

this value aSZle ESS;(t — 1), the sum of the effective sample sizes. This ap-
proach only makes sense if the effective sample sizes are not going to change in
future time-steps, such that the decision made at timeinlikely to impact any of

the coefficient estimates after timer- >.F | ESS;(t — 1). In a dynamic system,
however, the rate of dynamics can change and past forgetting factors will have an
increasingly smaller impact on future effective sample sizes. Furthermore, in the
early stages of the game, the effective sample size will be small and will naturally
increase over time (see Equation (5.3)). Consequently, we only make use of the
existing forgetting factors\;(¢) to setT*'(¢), as this value is the most informative
regarding the current rate of dynamics and future effective sample sizes. If the cur-
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rent rates of forgetting were to remain the same in future time-steps then it can be
seen from Equation (5.3) th&tSsS;(t) — 1/(1 — X\;(t)) ast — oo. We can use this
result to set:

k
TF(t) = min (; %W,T—thl), (5.4)
whereT” (t) does not exceed the length of the horiZzbn- ¢ + 1. This is a much

more appropriate choice far? (¢) as past dynamics are no longer being used to
predict future dynamics. Moreover, the required inverse relationship between the
window size and the current rate of dynamics is achieved, without any new param-
eters or additional modelling assumptions. A more sophisticated method could be
constructed where future sample sizes are calculated for specific future time-steps
(rather than taking — oo), but we avoid this approach as it requires consideration

of the frequency with which each action is selected and hence involves additional
modelling of future dynamics.

e Backward-looking window size

The calculation of the backward-looking window siZ&;(t), could also be set to

the sum of the effective sample sizgé“:1 ESS;(t — 1) —this would be a suitable
choice for transparent problems where all rewards are observed and every forgetting
factor can be updated at each time-step. For bandit problems, however, this is yet
again a poor choice of window size, precisely because of the irregular number of
time-steps between each observation and subsequent RLS update. For example, the
effective sample size of an action may be large (as the action previously yielded
rewards that suggested slow-moving reward coefficients and a forgetting factor that
is close to 1), but the action may not have been selected for a long time. In such
cases, there is still some uncertainty regarding the future rewards of this action, so
it should not be selected too many times during the backward-looking window. In
other words, the effective sample size of each action does not mean this action has
actuallybeen sampled this many times in recent time-steps.
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To combat this issue, we count how many times each action has been selected
in the window(t — T*(¢), ¢ — 1) and then select each action this many times in the
MC approximation. We choose to look back over the forward-looking window size
so that our two window sizes are consistent in size and respond to the current rate
of dynamics (reflected through the(¢) values) in the same way. We make an im-
portant adjustment however, that reflects the scale of dynamics in recent time-steps.
Specifically, the count for each action is re-weighted dependent on the histaic
values inside the window — this places more weight on actions which have yielded
rewards that are not changing as fast and as a result have less unceADAPT
is then more likely to explore actions that have demonstrated recent large changes
to their reward structure. We can hence formulate the backward-looking window

Size as:
k
TE(1) = > C() (5.5)

where,

C*(i) = max [W (ESS;(t — 1) — ESS;(t — T"(t))) , D] ,

g— (1) , (5.6)
D iy (ESSi(t —1) — ESSi(t — T*(t)))

where ESS;(t — 1) — ESS;(t — T*(t)) is the effective sample size within the
reduced window}V is a re-weighting constant and is the minimum number of
samples required for unbiased coefficient estimates to exist. Each action is then
selected”" (7) times in the backwards window of the MC approximati6r. (i) is
required to be at lead? so thate-ADAPT has estimates of the reward coefficients
at the end of the window. This is a reasonable imposition, however, as actions that
are only selected times will have high uncertainty and are likely to be selected
for exploration.

Using these values faF?(t) andC¥ (i) in the MC approximation creates two
desirable properties. First, actions that have not been selected recently are more
likely to be explored by-ADAPT in future time-steps (a€™ () is small). This
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is key, as actions that have been predictable and selected many time in the past,
but have not been selected recently, should continue to be explored. Otherwise
e-ADAPT would be incorrectly extrapolating the observed rate of dynamics from
many time-steps in the past — which is dweapproach in dynamic environments.
Secondly,c-ADAPT re-weights the values @f™ (i) within the window, such that
actions that are suggesting recent fast-changing coefficients are down-weighted and
vice-versa. This component allowsADAPT to distinguish between actions that
have differing rates of dynamics — such that actions which may have “jumped”
to new reward coefficient values have down-weight&d:) values and are hence
more likely to be explored.

5.2.2 Pseudo-code ferADAPT

The e-ADAPT algorithm for dynamic bandit problems is based on the same ba-
sic concept as-ADAPT for static problems. At each time-step, however, the MC
approximation occurs on a reduced wind@W (t) = T5(t) + T*(t) < T, as
discussed in Section 5.2.1. Indices (now dendtegdT®(t), T (¢),t,1)) are cal-
culated for each action (with the same intention as that in Section 4.2) and then the
action with the highest index value is selected. The full pseudo-code is provided in
Algorithm 5.1, with the MC approximation of the indices given in Algorithm 5.2,
The significant changes from the static versior-®DAPT have been denoted in
blue type font. We note thatADAPT can also be used for dynamic rewards where
there is no side information (as in the static case) by seiting= 1.

There is one other key difference between the static and dynamic versions of
the algorithm: the estimates of the noise variangefor each action. In the static
setting, these values are calculated by averaging the squares of the residuals in the
regression (as in Equation (3.22)). In the dynamic setting, however, the residual
errors will change over time in response to jumps or changes in the rate of drift. As
a result, we use an adaptive measure of the noise variance for each action, which is
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Algorithm 5.1 e-ADAPT for Dynamic BanditProblems
1: n = 0 {Initialise Action coun}
2: fort=1to7T do
3:  Observe covariate(t)
Update unknown parameters of covariate distribution
if ¢t < kD then
Select action wherei = 1 4 ¢ mod & {Initialisation}
else
CalculateT* (t), T?(t) andC%(i) V1 < i < k {from Equations (5.4),
(5.5) and (5.6) (respectively)SetT" (t) = T5(t) + T (t)
o: Generate new Covariated(s) V1 < s < TW(¢)
10: x'(TP(t) + 1) = x(t) {Keep same covariate at timg
11: Generate new rewards(s) V1 <i < k,1 < s < TW(t) using estimated
reward coefficientgy; and estimated noise variané®(t — 1)
12: for i =1tok do

© N o gk

13: ApproximateR, ;(T5(t), T*(t),t,i) {Algorithm 5.2}

14: end for

15: Select action (1 <4 < k) that maximisese; (T2 (¢t), T* (¢),t,1)
16: end if

17:  Receive reward(t) = r;(t)

18:  Updated;, \;(t) ands?(t)

19:  n(t) = ni(t — 1) + 1 andn;(t) = n,(t — 1) (for j # i) {Action countg
20: end for

recursively updated (when the action is selected) as follows:

52(1) = M (1) <§i(”2 NP 1>> LA-AOEWL 67)

n; n;

where&;(t) = r;(t) — é;x(t) is the residual error at time This adaptive mea-

sure is equivalent to the approximation of the variance using adaptive Q-learning,
with a finite-sample adjustment for low values. The measure is used as it does
not require any additional parameters and is consistent with the RLS updates of the
reward coefficients. Notice that’(¢) is no longer an estimate of the observation
noise variancer? in Equation (2.3). In fact, this measure ensures that the noise
variance estimates used in Algorithm 5.2 track both the observation error and the
measurement error resulting from dynamics. As a result recent abrupt changes in
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Algorithm 5.2 MC Approximation of R ; (T (t), T (t), ¢, i) index
1: for s =1toT5(t) + T"(t) do
2: if s <TPB(t) then

3 Select an actiom such that each action is selected (i) times afters =
TB(t) and receive reward (s) = r(s)

4: Updatea;

5. elseifs = T5(t) + 1 then

6: Select action and receive reward (s) = 74(s)

7 Updateq;

8. else

9: Select actiory that maximises & (s)|a;, «(s)) (1 < j < k) and receive

rewardr’(s) = r5(s)

10: Updatea;
11: endif
12: end for

. ™
13: Rep(TB (1), TF(t),8,) = Y00 7' ()

the reward structure will increase overall levels of exploration. Moreover, if only
certain actions have changed (and not others), then exploration will be reserved for
these actions. The significance of using these adaptive measuresd4sADAPT
is now more able to determine when and which actions to explore in dynamic envi-
ronments, which we demonstrate through simulations in the next section.
Thee-ADAPT algorithm is robust to different types of dynamics including slow
drifts and abrupt jumps in the reward structures. The key reason for this robustness
is the fact that-ADAPT does not attempt to model dynamics, allowing a wide
range of dynamics to be handled using the same algorithm. Exploration is driven by
uncertainty — through both the noise variance estimates and the size of the windows
in the MC approximation. These values are themselves driven by the forgetting
factors, whiche-ADAPT uses to gauge the current rate of dynamics and influence
how past data should be weighted. Furthermore, the dynamic versieAAPT
can in fact be readily applied to static problems, as the forgetting factor will stay
close to 1. As a resule-ADAPT considers a large window size (possibly the full
window of lengthT’) in the MC approximation (see Equations (5.4) and (5.5)) and
in addition the noise variance estimate (Equation (5.7)) becomes equivalent to the
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estimate used in the static setting. TRADAPT algorithm consequently becomes
almost identical to the static version of Chapter 4. We test all these claims further
in the next section where we run tkéADAPT algorithm in static, drifting and
abruptly changing environments.

5.3 Numerical Results

In this section we test the ADAPT algorithm against the-greedy algorithm for
various dynamic multi-armed bandit problems. We compare agaigstedy as

this is the only other policy or algorithm that can be extended to dynamic settings
and can also include side information (see Table 2.1). First we consider the ESTAR
process considered in Pavlidis et al. (2010) where reward coefficients drift around
an equilibrium value over time (Section 5.3.1). We then construct a new dynamic
framework where reward coefficients jump to new values at unknown times, as gov-
erned by a Poisson distribution (Section 5.3.2). We also check whethBeAPT

for dynamic bandit problems can perform well in static problems, by comparing
performance against the results of the previous chapter (Section 5.3.3). Finally, we
test a novel 3-armed setting where the rewards of each action follows one of the
above mentioned processes (ESTAR, jumps or static), to check wietihPT

can learn to respond to unpredictable and random dynamics and intelligently ex-
plore the best actions at the correct time-steps (Section 5.3.4).

5.3.1 ESTAR Process

The ESTAR process, which we introduced in Section 2.1.5, is a drifting process
which jumps back to an equilibrium value if the process drifts far in either direction.
The ESTAR process has been used to model exchange rates in Kilian and Taylor
(2003), for example. This mean-reverting process ensures that the decision problem
does not degenerate to one where one action is globally optimal. In our simulations
we sety = 1 to allow enough drift such that the optimal partitioning of covariates
changes throughout the game, but not so much that one action often dominates the
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covariate space. The parametérdictates the speed of change and Pavlidis et al.
(2010) recommends values in the raf@e.2], as higher values are too fast to track
(especially as bandit problems are opaque). Otherwise, the frequency of change
becomes much faster than the frequency of selection and the sampled process looks
like white noise. In our experiments we consider values of 0.01 and 0.1, to
consider both slow and fast changing processes.

Figure 5.3 demonstrates how the optimal partitioning of the covariate space
evolves over 50 time-steps with the twg values for a 2-armed problem. The
equilibrium value of the coefficients and the covariate distribution are as given in
Figure 4.6. Wherr? = 0.01, the decision boundary drifts slowly over time, but
jumps back to the equilibrium value of -0.5 (astatz 15) if there is large drift.

In contrast, whew? = 0.1, the decision boundary jumps around frequently but
occasionally shows periods of slower moving drift. By testing these two ESTAR
processes, we examine the robustnessADAPT to different ratios of drifts and
jumps in the dynamic bandit problem.

I Action 2
I Action 1

10 20 t 30 40 50 ) 10 20 t 30 40 50

(a) (b)

Figure 5.3: The optimal partitioning of covariates in a 2-armed dynamic bandit
problem where coefficient values change according to an ESTAR process, where
the rate of change is (@? = 0.01 or (b) 02 = 0.1. The equilibrium coefficient
values and the reward functions are the same as those used in Section 4.3.1.

We testede-ADAPT against varioug-greedy policies for the 2 ESTAR pro-
cesses over 10,000 repeats. We repeated simulations across a range of CNR val-
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ues, where the equilibrium coefficient values and the covariate distribution are the
same as those used in the static setting in Section 4.3.1. Throughout this section,
we extend the length of game # = 1,000, as this gives the decision making
problems enough time to change from their initialised states. The results of the
simulations are reported in Table 5.1, where optimal off-line exploration rates are
found numerically to 2 decimal places. The performance of each policy/algorithm
and the amount of exploration required increases asdjoithcreases and the CNR
decreases, as the dynamic decision boundary becomes harder to track. In fact, ex-
ploration is even required when there is no observation noise (€ENR), as the
unknown dynamics still create uncertainty. We include results-fost to demon-

strate the expected poor performance of this policy in dynamic proble MBAPT
ande-greedy perform much better in comparison — as both approaches explore both
actions throughout the game and adapt to the changing decision boundary more
quickly. In fact,e-ADAPT performs marginally better, despite not requiring an op-
timally tuned exploration parameter — this is attributed to the factdafDAPT

will learn on-line to not explore for costly covariate values, and allows on-line ap-
proaches to outperform optimally tuned off-line policies.

Table 5.1: Average rewards for the ESTAR Process

+2 |cNR e-greedy e-first e-ADAPT

v Opte Reward| Opte Reward %Optimal| Reward % Optimal Avg.x®.
0.01] 100| 0.01 0.506 | 0.01 0.505 99.6% 0.518 102.4% 6.93
0.01) 10 | 0.04 0.426 | 0.01 0.422 99.0% 0.423 101.6% 7.88
0.01) 1 |0.08 0.273| 0.05 0.268 98.4% 0.525 101.9% 10.22
01| co | 0.06 0.191| 0.02 0.185 96.8% 0.196 102.7% 8.45
0.1] 100 | 0.06 0.192 | 0.02 0.189 98.6% 0.197 102.8% 8.46
0.1| 10 | 0.06 0.183| 0.02 0.175 95.7% 0.185 101.5% 8.82

To investigate the strong performanceceADAPT further, in Figure 5.4 we
display the average forgetting factors and noise variance estimates over time, where
CNR= 10 (with ¢? = 0.1) ando? = 0.01. All parameters appear to converge to
an equilibrium value, though note that converges to a value that is higher than

INote that CNR values track changes to the observation noise variditas defined in Equation
(4.3)) and not the noise variance of the ESTAR proegswhich determines the rate of dynamics.
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the true observed noise variance. As mentioned earlier, this is because the estimate
includes the uncertainty from the dynamics and is used to encourage the necessary
increased levels of exploration. We display the average rate of exploration over
time in Figure 5.5 for the range of CNR values, whefe= 0.01. The average rate
quickly converges to a stable value for the entirety of the problem (as the window
sizes and noise variance estimates also converge to fixed values), except for the fi-
nal time-steps as the horizon draws near. Note that the rate of dynamics is constant
with an ESTAR process and as a restl§DAPT has learnt to explore consistently
throughout the game. Moreover, the strong performance of the algorithm suggests
that the windows sizes used in Algorithm 5.2 are correctly calibrated with the ob-

served rate of dynamics.

—Action 1 0.14r
0.98 — Action 2

pory i o Wi, Mo o
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Figure 5.4: The average value of (&)¢) and (b)s2(t) over all time-steps where
CNR = 10 ando? = 0.1, as calculated by-ADAPT using RLS with adaptive
forgetting, for an ESTAR dynamic 2-armed problem.

5.3.2 Poisson Jumps

In this section we construct a different type of dynamic bandit problem, namely
one where reward coefficients jump to new values at unknown times, and otherwise
remain at the same values. This type of reward process can exist in financial time
series for example, where rewards of various instruments are often directly linked
to macro-economic factors such as interest rates (Cont and Tankov, 2004), or in cli-
matological data gathered from remote sensors (Jensen et al., 1995). In this section,
we select each coefficient uniformly from the interjall, 1] and the time between



5.3 Numerical Results 122

=

o
©

CNR=100| ~§
CNR=10
CNR=1

o
©

rate of exploration
© © o o o o
N w » (8§ (2] ~

o
[

0

0 200 400 600 800 1000
t

Figure 5.5: The average rate of exploration over time-ByDAPT for various CNR
values where? = 0.01, for an ESTAR dynamic 2-armed problem.

jumps is drawn from a Poissaf)(distribution. The resulting process is displayed in
Figure 5.1(a) where we demonstrated that RLS with adaptive forgetting is an appro-
priate technique for tracking changes to coefficient values. In our simulations in this
section we usé€ values of 50 and 200 (and various CNR values) to test the robust-
ness ok-ADAPT to detect the presence of jumps in the data. We fix the timings of
the jumps to be the same in all simulations, but only to accurately demonstrate the
average behaviour of the algorithm before and after jumps occur — the coefficients
of the reward functions are not fixed over the experiments. Table 5.2 displays the
results ofe-ADAPT against the optimad-greedy (and:-first) policy over 10,000
repeats. Agair-ADAPT has correctly identified how much to explore (exploring
more for problems that have frequent jumps or are noisy) and has outperformed the
optimal e-greedy (and-first) policy. Notice that the optimal for these two poli-
cies is always small, even for high-noise problems — this is because large degrees
of exploration are only worthwhile if performed immediately after jumps.

Figures 5.6-5.8 demonstrate WikhADAPT performs well with this type of re-
ward process. Immediately after jumps occur (as indicated by the grey vertical
lines), the average forgetting factor decreases and the average noise variance es-
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Table 5.2: Average rewards for the Poisson Jump Process

¢ |CNR e-greedy e-first e-ADAPT

Opte Reward| Opte Reward %Optimal| Reward % Optimal Avg.x®.
50| 100 | 0.06 0.674| 0.00 0.649 96.3% 0.686 101.8% 4.39
50| 10 | 0.06 0.614 | 0.00 0.580 94.5% 0.619 100.9% 4.97
50| 1 |0.07 0.522| 0.01 0.479 91.7% 0.525 100.5% 6.49
200 100 | 0.03 0.848 | 0.00 0.825 97.3% 0.861 101.5% 2.65
200/ 10 | 0.03 0.829 | 0.00 0.805 97.1% 0.846 102.0% 3.22
200f 1 | 0.03 0.777 | 0.01 0.757 97.4% 0.787 101.2% 5.29

timate increases (see Figure 5.6). As a resuRADAPT calculates indices over
shorter windows with more uncertainty — which makes exploration more likely, as
shown in Figures 5.7 and 5.8 for the two jump frequencies. Between the jumps,
the rate of exploration decreasesasDAPT learns the new coefficient values and

the uncertainty decreasesADAPT therefore performs better thargreedy as the
algorithm learns when to explore more (rather than exploring at a constant rate), as
driven by the varying degrees of uncertainty.

0.95¢

A®

0.9f

0.85 : : : : : :
0 200 400 600 800 1000 0 200 400 600 800 1000

(a) (b)

Figure 5.6: The average value of (&)¢) and (b)s2(¢) over all time-steps where
CNR = 10 and¢ = 200, as calculated by-ADAPT using RLS with adaptive
forgetting, for a Poisson jump dynamic 2-armed problem.

5.3.3 Static Problems

In this section we check whether the dynamic versioaADAPT can be applied
to static bandit problems. We repeat all simulations from the 2-armed bandit with
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Figure 5.7: The average rate of exploration over time-BpDAPT for various CNR
values wher& = 200, for a Poisson jump dynamic 2-armed problem.
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Figure 5.8: The average rate of exploration over time-ByDAPT for various CNR
values wher€ = 50, for a Poisson jump dynamic 2-armed problem.

covariates problem studied in Section 4.3.1, this time including the dynamic version
of e-ADAPT. The results are displayed in Table 5.3. As can be seen, there is only
a marginal loss in performance with the dynamic versior-&DAPT which is

attributed to the fact that the algorithm must learn to use the full window in the cal-



Chapter 5. Adapting Exploration in Dynamic Environments 125

culation of the indices in Algorithm 5.2 — which will happen if the forgetting factor
is as close as possible to 1 (i.e. the upper limit of the forgetting factor truncation).

Table 5.3: Comparison of static and dynamic versions-ADAPT with a static
2-armed problem

CNR Statice-ADAPT Dynamice-ADAPT
Reward Avg. expsteps| % Optimal Avg. expsteps

200 0.906 1.37 100.0% 1.26

100 0.878 2.45 100.0% 2.23

50 0.828 4.05 100.0% 3.60

20 0.720 6.81 99.8% 5.85

10 0.609 8.61 99.1% 7.65

To investigate this further, in Figure 5.9 we show the average forgetting factors
over time (for the high noise problem, CNR10) and the average rate of explo-
ration for a range of CNR values. Despite the high levels of observation noise, the
forgetting factor does not (on average) deviate far from its initial value of 1, which
explains the comparable performance with the static versierPABAPT. As a re-
sult, the average rate of exploration decays at similar rates as were seen in the static

setting.

| —
| —— Action 1 CNR =200
0.99 —— Action 2 1 r —CNR =50

——CNR =10

o
©

A
rate of exploration
o o
IS o

o
)

o
&
o
o
)
\
|/
(

20 40 60 80 100 0 20 40 60 80 1700
t t

(a) (b)

Figure 5.9: (a) The average valueXft) for CNR = 10 and (b) the average rate of
exploration for a range of CNR values, as calculated-BWDAPT using RLS with
adaptive forgetting, for a static 2-armed problem.
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5.3.4 Mixture of Processes

Finally, in this section we testADAPT with a novel 3-armed problem, where we
combine the previous considered settings, such that one action has a static reward
function and the others have reward coefficients that change according to a Poisson
jump (7 = 50) or ESTAR processo¢ = 0.01)2. We do this to test the robustness of
e-ADAPT to scenarios where each action demonstrates different types of dynam-
ics. We display the expected rewards for two cases in Figure 5.10, against various
e-greedy and-first policies, where each case assigns different observation noise
variance to each action. In both case®\DAPT performs best overall as it treats
each action differently — which happens as the forgetting factors and noise vari-
ance estimates are different for each action (as demonstrated earlier in this section).
Note that the optimal off-line determined value ©for the e-greedy is high (in

both cases), as the combination of ESTAR and Poisson jumps renders the decision
problem as highly dynamic.
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Figure 5.10: Expected rewards f@ADAPT and various:-greedy and-first poli-
cies where the orderings of the observation noise variances are (apsta8FAR

> jumps and (b) jumps> ESTAR > static. CNR values (which determine the
variance) are fixed at 2.5/10/40 in each figure.

2\We use the same covariate distribution as shown in Figure 4.6. The equilibrium coefficients of
the ESTAR action are as in Action 1 of Figure 4.6. The Poisson Jump action is as defined in Section
5.3.2 and the static action has reward coefficients= —0.1 anda; = 0. These values are selected
such that each action has likely regions of optimality in the covariate space.
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5.4 Summary

In this section we have extended & DAPT algorithm to dynamic bandit prob-
lems where reward coefficients change over time. #FAOAPT approach is nat-
urally suited to dynamic problems. Nevertheless, the extension involved several
significant changes to the static version — including changing the window size of
the MC approximations and changing the estimate of the noise variance, to include
the uncertainty of dynamics. These adjustments were performed by using outputs
from the RLS with adaptive forgetting factor. Specifically, we used the forgetting
factor as an indicator of the rate of dynamics and combined this with sample sizes
and observation errors to measure the rate of uncertainty and use this to drive ex-
ploration on-line.

Our simulations indicate thatADAPT is an effective algorithm for dynamic
bandit problems, including processes where reward functions can jump or drift over
time (or combinations of the above). In additiePADAPT can be successfully ap-
plied to the static bandit problems investigated in the previous chapter. Moreover,
e-ADAPT is not a tailor made algorithm for specific settings (such as jumps, drifts
etc) — exactly the same algorithm has been applied to each decision making prob-
lem we have considered, and performance is consistently stteRDAPT makes
no attempt to model the dynamics which makes the algorithm robust to all sorts of
unpredictable changes in the environment. We consider this to be significant, partic-
ularly as several real-world phenomena exhibit unpredictable behaviour that models
have been unable to predict or capture (such as financial data or climate models).
For dynamic reward processes that can be modelled or predicted, state-space mod-
els or particle filters can be used, the implementation of this withhDAPT is
reserved for future work (see Chapter 8).

We note that in this chapter we have considered dynamic bandit problems where
rewards change over time and not the covariate side information. In fact, as noted
in Pavlidis et al. (2010)}a time varying covariate distribution plays no role in
the transformation of a static sequential decision making problem into a dynamic
problem”. This is because the optimal partitioning of a covariate space is unaf-
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fected by time varying covariates alone. For these reasons we have considered a
fixed covariate distribution, though we note tkaADAPT could be extended to

such cases by using adaptive forgetting to draw new covariates (for the MC approx-
imations) based on recent observations osBADAPT could also be extended to
problems where new actions arrive or leave over time — a framework studied by
Whittle (1981) for the non-covariates setting, which was cadled-acquiring ban-

dits. Actions that arrive could be assigned high levels of uncertainty which makes
subsequent exploration very likely. We reserve such extensions for future work.

The dynamic version of-ADAPT does not require any exploration parameters
—the parameters used in the RLS algorithm with adaptive forgetting are required for
inferring coefficient values, we just happen to exploit outputs from this algorithm to
drive exploration on-line. In addition, the computational complexity-&iDAPT
is now bounded linear in time — as the window size of the MC approximations
are constrained by the upper truncation limit of the forgetting faciefy. For
short-length static problems however, the window size will usually consider the full
window (lengthT’), so the resulting algorithm still usually scales quadratically in
time. Nevertheless the dynamic versieADAPT is actually more computationally
efficient than its static counterpart, especially when the rate of dynamics is high.

To bring the findings of the last two chapters together, we insert our static and
dynamic version ot-ADAPT into Table 2.1, which cross-compared the existing
algorithms and policies in the literature. We display this amalgamated table in Table
5.4.¢-ADAPT has filled a void in the bandit literature — the need for an algorithm or
policy that is free of exploration parameters and can be applied to settings that are
dynamic and/or include side information. We also note that the dynamic version of
e-ADAPT could be applied without knowledge of the game-lengttthough this
will marginally affect performance.

This concludes the analysis of single-agent problems in this thesis. In the fol-
lowing chapters, we investigate the exploration-exploitation trade-off in multi-agent
decision making problems. We will study the nature and meaning of exploration in
multi-agent domains and attempt to extend ¢heDAPT approach to the various
frameworks we consider.
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Chapter 6

Exploring in a Multi-Agent Bandit

Problem

In the previous chapters we have studied the exploration-exploitation trade-off in
single-agent sequential decision making problems, where one agent repeatedly se-
lects between a finite set of actions. For the remainder of this thesis, however,
we study the exploration-exploitation trade-off nmulti-agentsequential decision
making problems, where multiple interacting agents must simultaneously choose
between actions in the same environment. Multi-agent sequential decision making
problems are ubiquitous and have been widely applied to applications as diverse as
online auctions (Rogers et al., 2007b), sensor networks (Wang and Cheng, 2008)
and disaster management (Ramchurn et al., 2008) amongst many others. In fact,
it is likely that most real-world sequential decision making problems are likely to
include at least one other decision maker, whose actions cannot be ignored. For
these reasons, we investigate the role of exploration-exploitation in the multi-agent
domain, and attempt to extend thdDAPT algorithm to various important frame-
works.

In this chapter we study the impact of communication between agents, to inves-
tigate the importance of agerggploringtheircommunicatiordecisions, as well as
their action decisions, in order to learn the best actions to select in an unknown en-
vironment. We investigate communication problems because, in many multi-agent
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scenarios, information relevant to the decision problem is likely to be distributed
amongst agents. This information, however, can often be communicated between
agents during the decision making process. Consider a disaster management sce-
nario, for example. Emergency service vehicles may have differing information
about the locations of injured civilians and the outcomes of different actions are
unknowna priori, but these agents can communicate such information to achieve a
better coordinated solution (at an associated time cost). Agents can therefore learn
and explore through communicatiand action decisions.

To study the role of exploration-exploitation in multi-agent communication prob-
lems (such as the disaster management scenario), we construct a novel framework
which is an extension of the single-agent bandit with covariates problem. Specifi-
cally, we construct a multi-armedecentralisedandit problem, where each agent
controls a (non-overlapping) subset of the available actions. In addition, each agent
only observes a subset of the covariate, representing its partial view of the world.
Furthermore, we allow agents to initiate communication between themselves (at a
cost) exchanging potentially useful covariate values that were previously unknown
to the agents.

The communication of information between agents is an important feature of
many scenarios modelled by multi-agent systems. Furthermore, the use of the
bandit setting allows us to specifically investigate the relationship between com-
munication and the exploration-exploitation trade-off. This is because in a bandit
setting the covariate distribution and its relationship to the rewards of each action
are unknown and must be learnt over time. Each agent must therefore learn when
and which agents to communicate with, to avoid unnecessary and costly commu-
nication exchanges. The exploration-exploitation trade-off is hence important to
both communicatiomnd action decisions in multi-agent sequential decision mak-
ing problems. In this chapter, we show that this trade-off can be effectively balanced
using adoublee-greedyor doublee-first policy, at the cost of introducing a second
exploration parameter. We then go on to show that both exploration parameters can
be effectively tuned on-line by extending thDAPT algorithm.

The structure of this chapter is as follows. In Section 6.1 we provide a brief
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background on multi-agent sequential decision making and communication prob-
lems, and the role of the exploration-exploitation trade-off therein. Then in Section
6.2, we introduce the novel multi-agent bandit framework, which allows communi-
cation between agents. In Section 6.3 we construct an effective policy for commu-
nication and action selection decisions that addresses the exploration-exploitation
trade-off. In particular, we propose a novel method of valuing communication be-
tween agents, called VOC (Value Of Communication), which finds the best myopic
communication decision. We also propose novel exploration policies for this prob-
lem called double-greedy and double-first, which consider the exploration of
communication decisions as well as action decisions. We test the defitsdepol-

icy empirically in section 6.4, and discuss the significance of these findings. Finally,
in Section 6.5 we extend tkeADAPT algorithm to this multi-agent framework and
demonstrate empirically that exploration of both action and communication deci-
sions can be effectively adapted on-line, without any prefixed exploration parame-
ters, at a slight cost to the reward. Summary remarks follow in Section 6.6.

6.1 Multi-Agent Sequential Decision Making and Communica-

tion Problems

Multi-agent sequential decision making problems have been extensively studied
in Markov gamegLittman, 1994; Wang and Sandholm, 2003), otherwise known
asstochastic game&Shapley, 1953), and also Decentralised Markov Decision
ProcessegDec-MDPs) andecentralised Partially Observable Markov Decision
Processe¢Dec-POMDPSs) (Bernstein et al., 2002). These frameworks, where the
decision problem changes dependent on the previous state and the subsequent se-
lection ofjoint actions only, can be seen as multi-agent extensions of Markov De-
cision Processes (MDPs) (Finzi and Lukasiewicz, 2004), which we introduced in
Section 2.1.6. Most literature in these frameworks has assumed the reward function
is known, so there is no exploration-exploitation trade-off. In other literature, how-
ever, the reward function has been treated as unknown, but in these cases the explo-
ration policies used are almost exclusively borrowed from the bandit literature. For
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example, Hu and Wellman (2003) and Wang and Sandholm (20033-gieedy,
Carmel and Markovitch (1999) use SoftMax exploration and Littman (1994) com-
binese-greedy with Q-learning.

The background provided in Chapter 2 therefore also serves as a background to
balancing the exploration-exploitation trade-off in multi-agent sequential decision
making problems, and many of the algorithms and policies can be applied without
any adjustments or changes. A notable addition to the multi-agent literature, how-
ever, iISR-MAX (Brafman and Tennenholtz, 2003), which allocates an optimistic
initial estimate to each state and joint action in a stochastic game and updates these
estimates until they are assumed to be known (after a sufficient number of visits).
This method, which is a multi-agent extension of Q-learning with optimistic initial
estimates (Section 2.2.6), ensures under-explored states and joint actions are more
likely to be visited in the future. As with Q-learning however, R-MAX requires
several parameters that affect finite-time performance, and in addition it is not clear
how to extend this algorithm to dynamics or problems with side information. For
these reasons we continue to use the simpler and more flexgskedy approach
as the building block of the off-line and on-line policies constructed in this chapter.

Communication between agents in multi-agent sequential decision making prob-
lems has been previously considered in Bayesian games (Gerardi, 2004) which are
games where information about the rewards of other agent’s actions is unknown or
incomplete. The extension to Bayesian games where agents can communicate is
based on the idea @heap talk(Farrell and Rabin, 1996), where agents can freely
communicate without directly affecting the rewards of the game to each agent. This
form of communication is therefore strategic, as agents can attempt to mislead other
agents with false information for potential self-benefit (Farrell, 1987). Communi-
cation in games has also been considered in network formation games (see Jackson
et al. (2003) for a review) where agents must decide whether or not to form links
with each other to form a network. In some studies of this problem agents have
been allowed to communicate preferences to each other, either at no cost (Aumann
and Myerson, 1988) or with a one-off cost (Bala and Goyal, 2000), before any links
are made. We note that in this chapter, we consider a different communication
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framework to that studied in Bayesian games or Network formation games. Specif-
ically, communication is costly and incurred every time information is passed — this
is more realistic in various applications, for example in sensor networks (Krause
et al., 2006) and disaster management (Ramchurn et al., 2008).

Finally we note that multi-armed bandit problems have been recently studied in
a decentralised multi-agent context in Liu and Zhao (2010) and Gai and Krishna-
machari (2011). In this framework, a number of distributed agents compete over
the set ofk actions, but there is no communication, so agents can “collide” and
select the same action. In this case, the agents that collide either receive no re-
ward or share the reward from that action in some arbitrary way. The application
in mind for this framework is agents contending for opportunistic spectrum access
over multiple channels in cognitive radio networks. Our framework in this chapter
is very different, as we allow agents to communicate, and do not consider the case
of conflicts over actions.

6.2 The Multi-Agent Bandit Framework

Consider ak-armed bandit and lek” denote the set of actions, whelE| = k.
Now consider a set of agenté (| N| = n), where each agent! controls a disjoint
subsetC; of K fori = 1,...,n (i.e. the assignment of actions to agents forms a
partition of the set of actions):

JCGi=K and CinCj=0 Viji+#j.

=1
Each action is controlled by one agent only, thus avoiding potential conflicts in
action selection decisions. In this version of the bandit problem, each ageat
select any number of actions from subé&gtat each time step. Each actiore K
has a reward function.(t) based on &-dimensional covariate:(t) with added
observation noise, as used in Chapter 4 (see Equation (4.3)):

LIn this chapter agents (rather than actions) are dengted
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The covariater(t) is generated from a fixed multivariate distribution, with pa-
rameters unknown to the agents. The coefficient veetgrior ¢ = 1,...,k are
predetermined and also unknown to the agents, and precisely what the agents must
learn. We consider fixed coefficient parameters (rather than dynamic) so that we
can explicitly focus on the challenges inherent in multi-agent exploration, rather
than confounding the decision problem with the difficulties of tracking dynamic
decision boundaries (as investigated in the previous chapter).

Each agent:; only observes a subsegt(¢) of x(t) at timet, representing the
agent’s partial view of the world. To keep the framework flexible, the subsets of
agents’ covariate information can be overlapping and there may be covariate infor-
mation that is not observed by any of the agents at certain time-steps. Agent
can request a specific missing covariate valte) from another agent; that has
observed this value at a cost denotéd,*(¢)|a;, a;, x(t),t). Agents can request
several covariate values from several different agents and the communication cost
can be dependent on any functionagf) or ¢, which agents are communicating or
the number of communications (which can also be limited by bandwidth capacity
(Rogers et al., 2005)). This is called the “communication stage” and is an important
component of extending bandit problems to realistic multi-agent sequential decision
making problems.

The agents are assumed to know the communication cost function (and any
bandwidth limitations)a priori and to also know which covariate values other
agents are observing. Given this, each agent can request unknown covariate values
from the least costly agent that has this information. The agent is therefore assumed
to know the cost for requesting each subgét) C y© () by communication. The
sety’(t) is the compliment ofy;(¢), but crucially does not contain any covariates
that are not observed by any agents (and hence cannot be communicated). The total
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communication cost is then denotddy’(¢)) and is given by:

Ty, () = > T b)las ajee @), x(t),t) (6.2)

y* () eyl (t)

wherea;,- () is the least costly agent from which to acquirét). We assume

this total cost is known for each subggtt) so that we can explicitly focus on the
exploration-exploitation trade-off rather than learning to estimate communication
costs on-line. In the simplest case, however, the communication cost is propor-
tional to the number of covariates requested and is independexiit pbr ¢ and

is equal and known to each agent — this would often be the case that the cost of
communication is only dependent on the volume and not on the type of information
passed.

Agents do not have to communicate ‘fully’ with other agents and exchange all
their covariate information — this is costly and unnecessary (particular when agents
share overlapping information). This framework is richer and more general as it
allows for partial communication between agents, which is why in our algorithms
agenta,; optimises over the set of unknown covariaést) rather than over the set
of other agents,; (z # j). For applications where agents can only fully communi-
cate, then the agent must then search over a restricted suhgét of

Agents are assumed to receive covariate values truthfully if they are requested
— this is feasible because there is no strategic communication in this framework (as
opposed to the “cheap talk” principle discussed in the previous section). The re-
ward function, as given in Equation (6.1), is independent of the actions of all other
agents, which is the simplest version of a multi-agent communication problem. The
interaction between agents therefore occurs at the communication level, and the ac-
tion selection problem is essentially still a single-agent problem. This allows us to
explicitly consider the impact of communication in this chapter, and its relation-
ship to the exploration-exploitation trade-off. Reward functions that are affected by
the actions of other agents are considered in the next chapter, where we study the
relationship between exploration-exploitation and game theoretic reasoning.

Returning to the communication problem in this chapter, after the communica-
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tion stage, each ageat must then make the decision as to which actions to select
from C;. The agent only receives rewards from actions that are selected, and zero
otherwise. Each agent therefore faces a series of interdependent one-armed bandit
problems (which are all tied to the same covariate value). This is called the “action
stage”. Each agent therefore has a “two-stage” decision process which happens
strictly sequentially — although effective policies must consider the impact of one
decision on the other. Algorithm 6.1 outlines the sequential decision process each
agent follavs.

Algorithm 6.1 Two-stage decision process for agent
1: fort=1to7 do
Observey;(t) C x(t)
3:  Choose covariates valug$(t) C y¢ (t)
4:  Incur Communication codi(y/(t)) {See Equation (6.2)
5. Choose actions to sele§f(t) C C;
6
7

Receive reward,, ()
: end for

The cumulative reward?,, (7'), is the sum of the rewards received at each time-
step,r,,(t), which in turn is the sum of all rewards observed at tihmainus the
communication cost, i.e.:

T
R (T) =Y ra(t) . ra(t)= > re(t) = (yi(t), (6.3)

t=1 cE€S;i(t)
wheresS;(t) is the subset of actions selected by agerdt timet. The communi-
cation cost has been placed in the same currency as the reward, so that each agent
only needs to maximise one function (namély,(7")), which again allows a clear
analysis of the interaction between communication and the exploration-exploitation
trade-off. With this reward function, an agent should select an action if the expected
reward is positive. This creates a series of interdependent one-armed bandit prob-
lems with covariates. The interdependence occurs because the rewards are based on
the same covariate(t) and the benefit of receiving one additional covariate value is
shared between all actions, but the communication cost is only incurred once by the
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agent. Therefore, the various policies and algorithms for the one-armed bandit with
covariates problem, introduced in Section 2.2, are applicable to this framework. In
particular, the:-greedy and-first policies are used to construct the doubtgreedy
and double-first policies (respectively), which are introduced in more detail in the
next section.

Each agent has to learn the reward function parantetelespite only observ-
ing a subset of the full covariate(t). There are thus two learning problems for the
agents: the estimation of parameters subject to noisy data and a missing value prob-
lem. These have to be handled concurrently with reward seeking behaviour and thus
increases the challenge that each agent faces. High volumes of communication and
action selection lead to faster learning, however this can lead to negative rewards —
so the agent faces an exploration-exploitation trade-off. Furthermore, the additional
communication decision makes the problem of finding a good policy more subtle,
in that communication and action decisions have to be jointly considered. A novel
method is therefore needed, as the exploration-exploitation of both action and com-
munication decisions have not previously been considered in the same framework.
This is discussed in more detail in the next section.

6.3 A Policy for Action and Communication Decisions

The inclusion of multiple communicating agents to the bandit problem introduces
a two-stage decision process for each agent, as outlined in the previous section. In
the communication stage, agents choose which missing covariates they would like
to observe, and then request these values at a corresponding cost. There are es-
sentially two reasons for an agent to communicate: the myopic gain to an agent’s
subsequent action decision, and the improved learning of unknown parameters. The
myopic gain can be estimated using ¥eue Of CommunicatiofVOC) which is
constructed in Section 6.3.1. The agent can also explore communication decisions
to speed up the learning of unknown parameters. To this end, we corcgulae
e-greedyanddoublee-first policies in Section 6.3.2, which both encourage explo-
ration by communication (where the greedy decision is to pick the optimal myopic
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communication action using the VOC). Similarly, in the action stage, agents have
the same two reasons to select actions: the myopic gain to the reward function and
the improved learning of unknown parameters. We show that the optimal myopic
action can be found automatically, as part of the VOC, and action exploration forms
part of the double-greedy¢-first policy.

Finally, whether or not an agent has communicated or acted, parameter esti-
mates must be updated from the observations. In a bandit problem with fully ob-
served covariates this could be done using regression for a linear reward function (as
in Chapter 4), however in the multi-agent framework an agent must handle missing
data during parameter estimation. The agent has two basic choices of how to deal
with missing data (Scheffer, 2002). The first is case deletion, which in standard in-
ference problems can be either listwise (deleting an entire case if it contains missing
data) or pairwise (cases are only deleted if they contain missing data in the analysis
being carried out). The second method is imputation, which involves estimating the
missing values dependent on other values that have been observed. In the context
of our problem, the agent estimates all the reward coefficients using linear regres-
sion, so deletion would have to be listwise and hence this method throws away a
lot of data when the agent does not observe the full covariate. For this reason, we
use imputation. Specifically, we adopt a maximum likelihood approach and use the
Expectation-Maximisation (EM) algorithm (outlined in Section 6.3.3) to update es-
timated reward coefficients in an effective and computationally efficient way, in the
presence of missing data.

We note that in the previous chapter we dismissed using algorithms to predict
future rewards from missing data in a dynamic rewards setting. In a static setting,
however, dealing with missing data is much simpler as models for dynamics are not
required, which is why we use the EM algorithm.

6.3.1 The Value of Communication

Agenta; observes a subset of covariatg$t) at timet. After the communication
stage the agent will observe a subset of covariates = y;(t) U y!(t). Agenta;
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controls a subset of actiolig C K and must decide which actiene C; to select.
If agenta; has a reward function given by Equation (6.3) then the agent would select
actionc € C; if E(r.(t)|zi(t), &.) > 0, where:

E(Tc(t)‘zl(t) =A+ Z Oécd/did |z2( ))dxd<t)
za(t)Ezi(t
A= OAéc,l + Z OAéc,dxd t ’ (64)
$d(t)€zi(t)

wherer,(t) is given by Equation (6.1) and(p,(t)|z;(¢)) is the probability ofc,()
given z;(t). Equation (6.4) is the myopic reward to agenfor selecting action:
at timet. Agenta; can then find the optimal subset of actigfis C C; to select at
time ¢ using Algorithm6.2.

Algorithm 6.2 Optimal myopic action for agent; at timet
Observez;(t) = y;(t) U yi(t)
for c € C; do

Calculate Er.(t)|z;(t), &.) from Equation (6.4)

if E(re(t)|z:(t), &) > 0then

cc Sz(t)

end if
end for
Select actions);(t) C C;
Receive reward,, (¢) {as given in Equation (6.3)

=

Before agent;; communicates, its expected reward at titmis the Value Of
Silence(VOS) given by:

VOS,, = Y max(0, E(r.(t)|yi(t))) (6.5)
ceCy
Note that the VOS is bounded below by zero, corresponding to the agent selecting
no actions at time, which occurs when all actions are expected to yield a negative
reward.
Agenta; can observe a subset of covariatg&) C y (t) by communication at
a costll(y!(t)) (as defined in Section 6.2). If agentknows the joint distribution
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of x; then it can find the VOC for the subsg(t):

VOC,, i) = Y VOC.yr) — T(yi (1)), (6.6)

ceC}

where,

VOC. 1) = / max|0,B+ Y dearalt) | pyl(t)|yi(t)dyl(t), (6.7)

za(t)ey;(t)

Botot 3 awn)t 3 o [ att) plaalus®)doa)

zq(t)ey;(t) zq(t)¢

The VOC calculates whether the probability that the expected reward of an ac-
tion is positive or negative, after observigg(¢). In the instances where this is
negative the agent would not select this action and thus receive no reward, but still
incur the costs of communication. The VOC is therefore the expected reward to
agenta; at timet, with myopic action selection, if it first requests to observe the
covariate valueg!(t). Agenta; can maximise this value over all possible subsets
y!(t) C yF(t) (not including the empty sey!(t) = 0, which is the VOS given
in Equation (6.5)), to find the maximum VOC value. The agent then requires this
value to be bigger than the VOS, otherwise the agent should not communicate at all.
If the communication cost is zero then trivially the maximum VOC would always
correspond to choosing the full subggtt) = y(¢). In effect, each agent must
learn to partition the space of observed covariate values into regions where, in each
region, a specific subset of unknown covariates is the optimal subset to observe
through communication.

Algorithm 6.3 outlines how agent; can find the optimal subset of covariates
to request by communication using the VOC. The number of possible subsets of
y!(t) grows exponentially with the size @ (¢), so this search is computationally
intensive for large volumes of unobserved side information. In such cases, however,
approximations such as forward induction could be used and furthermore, the size
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of y!(t) is likely to be restricted by bandwidth in many applications, which will also
restrict the size of this computation.

The solution presented in Algorithm 6.3 is only optimal myopically, as the ben-
efits of exploration have not been factored in. Furthermore, the VOC can only be
found precisely with perfect knowledge of the conditional densities of the covari-
ates and the coefficients of the reward function. In reality, these have to be learnt
by the agents over time, and hence the VOC can only be approximated on-line.
Additional exploration of communication decisions can therefore have a positive
effect on the cumulative reward, as this improves future communication decisions
(through the increased learning of the VOC boundaries), which in turn will improve
future action decisions. Exploration of actions can benefit an agent’s reward also, in
the same way as with the single-agent bandit problems studied in Chapters 3-5. As
a result, in the next section we outline an effective exploration policy, that combines
exploration through communication and actaecisions.

Algorithm 6.3 Optimal myopic communication decision for agepat timet using
the VOC

1: Observey;(t) C x(t)
2: for all y!(t) C y“(t) do
3. forallce C;do
4 Find VOC, /() {Equation (6.7)
5. end for
6
7
8
9

VOC., 1) = D cec, VOCeyin — H(wi(1))

: end for

: Find VOS,, {Equation (6.5)

if maxy(¢) VOC%yZ((t) > VOS%. then
10:  Request covariatag () by communication
11: else
12: Do not communicate
13: end if

6.3.2 The Double-greedy and Double-first Policies

The communication and action policies detailed in the last section are optimal my-
opic policies, and are thus purely greedy (or exploitative). Nevertheless, in order to
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improve the accuracy of these decision over time, the agents may have to perform
additional exploration to aid their learning. We note, however, that actions by the
agents can be explorative as well as exploitative, particularly if the VOC encourages
a high volume of communication, or if expected reward calculations encourage a
high proportion of actions to be selected. Nonetheless, in a noisy environment with
unknown parameters it is likely that additional exploration may benefit the agents.
Exploration by communication can be easily increased by requesting more covari-
ate values than the VOC suggests. Exploration by action, similarly, can be increased
by selecting additional actions, even though their expected rewards are negative.
To encourage exploration by both communication and action, a dewgrkedy
policy is proposed, which uses thgreedy policy separately for both decision pro-
cesses. We use thegreedy approach for the same reasons as before: its simplicity,
applicability to broad frameworks and its consistent strong performance in finite-
time experiments. In the context of this multi-agent framework, we can construct
a doublec-greedy policy, where covariates that are not selected for communication
using the VOC are still requested — each with probabdityand actions that are
not selected because of their positive estimated expected reward are still selected —
each with probabilitye,. This policy is formalised in Algorithm 6.4. The optimal
parameterse; ande,, are inter-dependent and will depend on factors such as the
communication cost, the degree of noise in the data, and the unknown coefficients
of the rewardunction.

Algorithm 6.4 Doublee-greedy Polig
1: Sete; andes
2: fort=1to7 do
3:  Observey;(t) C x(t)
4:  Find optimal subset of covariatgg(t) C y¢(¢) to request through commu-
nication using VO Using Algorithm 6.3
5:  Request each covariaie(t) that is an element af (¢), but not an element
of y;(t) or y!(t), with probabilitye;
Find optimal subset of actions to seleéttt) C C; {Using Algorithm 6.2
Select each action that is @}, but not inS;(¢), with probabilitye,
Update unknown parameters
end for
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A similar policy can be devised using thdirst policy. Specifically a double-
first policy, where all covariate values are requested and all actions are selected for
the firste; T" ande, T iterations (respectively). Afterwards, the agent is greedy and
uses the VOC exclusively for communication decisions and maximises expected
reward for action decisions. In the static bandit problems studied in Chapters 3 and
4, we stated tha-first would perform better than-greedy as the agent has more
future time-steps to benefit from past exploration. This would not necessarily be the
case in the multi-agent bandit problem however, as the agent might gain less myopic
value in receiving all covariates for the fikstl” iterations for example, rather than
having fewer additional covariate values spread throughout the game. For this rea-
son we propose both policies and note that the stronger performing policy is likely
to be dependent on the number of actions each agent controls and the dimension of

unobserved covariates.

6.3.3 Dealing with Missing Data

The agents have to iteratively update parameter estimates of the reward functions
and covariates (Line 8, Algorithm 6.4). With linear reward functions, the coeffi-
cients can be updated using recursive least squares estimation (see Appendix B).
The agents, however, do not always observe all covariate values, even after com-
munication. This induces a missing value problem and the agent has the choice of
imputing these missing values or deleting observations if they contain missing data
(as discussed on page 139). Due to the potential high occurrence of missing data,
deletion methods are not practical for this framework. We therefore impute the data
using a likelihood approach. To this end, an Expectation-Maximisation (EM) algo-
rithm (Dempster et al., 1977) in conjunction with least squares estimation can be
used, to iteratively update each agent’s parameters. The EM algorithm is a com-
putationally efficient and robust method for dealing with missing data, that can be
practically implemented even if the number of agents/variables are high — which is
important for the application of multi-agent systems to realistic scenarios.

In more detail, the EM algorithm is a procedure for maximum likelihood infer-
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ence in the presence of missing data. Starting from an initial guess of the values
for the parameter vectaf(0), it employs an iterative update step, each time choos-
ing f(i + 1) to maximise the expected log-likelihood of the observed data, where
the expectation is taken over the missing data with respect to the current estimate
(7). Once the change in expected log-likelihood is smaller than some pre-defined
threshold then the algorithm terminates and missing values have been imputed.

6.4 Numerical Results

In this section we test the framework and proposed policies in a 2-agent version
of the problem. We consider the case where each agent controls one action and
observes a different covariate value — specifically, the covariate is 3-dimensional
(the first dimension is always equal to 1 as in Equation (2.3)) and one agent always
observes the second dimension and the other the third. This is perhaps the simplest
possible formulation of the multi-agent framework and is considered firstly to illus-
trate the selection behaviour of the policies and secondly to show that exploration
is needed even though the decision problem is relatively simple. The behaviour of
systems with more agents and higher-dimensional covariates will share characteris-
tics with this case study, but the detailed study of which is reserved for future work.
In the 2-agent problem, the reward function of agent = 1, 2) is given by:

3

The coefficient values; ; are predetermined and unknown to the agents. The co-
variate values:, 3(¢) are i.i.d. draws from a bivariate normal distributia.; (¢) ~
N (u,Y), where the parameters are unknown to the agents (recalt tfiat= 1).

In our experiments we set:

1 04 0.10.3
Hn = 0, Y= , 8 = )
04 1 0.20.2
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such that the covariate values are weakly correlated and each agent can therefore
benefit from accurately learning the VOC. Agentonly observes:;.(¢) at each
iteration. The noise;(t) is also normally distributed and i.i.d., with zero mean and
variance 0.05 (such that CNR = 20). The length of play considered is 100 iterations,
long enough for the agents to start exploiting, but short enough such that the agents
must learn quickly and effectively.

6.4.1 Application of the VOC

The optimal myopic communication decision can be found if the agekhows
the values oty; 1, o; 5, p and; however the agent must learn these over time. In
this 2-agent scenario, the VOC from Equation (6.6) becomes (see Appendix C.1):

R N A~ . A C - C
VOC,, = (&1 + Qiir12Tip1(t) + Qi j101) @ (—&gn(ai,jﬂ)- 3 = 1)
. C —(C3 — C 2
gy Zewp (M) 1 (6.9)

™ 2(32

wherell is the communication cost (assumed constant) and,

A

DY F R
1 =p; + A_w(xi—i-l(t) - Mi),
Zm‘
R 32
Cy =Y — =22
2 7,7 Ei’i )
¢ _—@i,l - @i,i+1$i+1(t)
3 — ~ .
Qi j+1

fori = 1,2 (wherej = 2,1), whereX, ; is the{i, j}th entry of the matrix> (and
similarly for other vectors and matrices®(z) is the cdf of the standard normal
distribution and the values andc, are the mean and variance, respectively, of the
unknown covariatey;(t), given the known covariate,,(¢). The VOC is there-
fore only dependent on the parameters that agenkeeds to learn, the observed
covariater; . (t) and the communication cost. The VOS from Equation (6.5) sim-
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ply becomes (see Appendix C.1):
VOSai = max(O, OAéz'71 + (3[1'72‘_4_11’2‘4_1 (t) + OAéi’j_HCl) (610)

Agent a; communicates if the VOC is greater than the VOS. To this end, Figure
6.1(a) displays VOG and VOS, for different values of:,(¢) and for various com-
munication costs (which are set as constant values), with the distributios(f
plotted underneath. There is a region where the VOC is higher than the VOS (ex-
cept with the highest communication cost) and the agent should communicate when
the observed covariate value falls in this region. The agent can find this “region of
communication” over time, by learning the unknown parameters correctly. In this
region the unknown covariate value will be informative as to whether the expected
reward is positive or negative. Conversely, for covariate values outside the region
of communication, the optimal action decision is clear enough (as the agent knows
whether the reward is likely to be positive or negative) and it is hence not worth
incurring the communication cost to verify this. As expected, the region of com-
munication is larger for smaller communication costs.

Figure 6.1(b) demonstrates how the agent, using the datifist policy, has
learnt the region of communication in relation to each communication cost for a
particular replication of the 2-armed problem. Furthermore, the agent has made the
correct action and communication decisions for most observed covariate values and
has therefore learnt to partition the covariate space correctly. The points highlighted
by green squares show the points where exploration by communication has occurred
(i.e. the agent has been willing to explore outside of the region of communication
to aid its learning). For other parameter values the region of communication may
not exist (if the covariance between the known and unknown covariate is high for
example) or be infinite (if the communication cost is zero for example). Neverthe-
less, this region does not have to be explicitly found as the VOC only needs to be
calculated for the covariate values observed at each iteration.
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Figure 6.1: (a) VOG, and VOS, over different values of(¢) for varying con-
stant communication costs (with the distributionwgft) plotted below) and (b) the
decisions by agent;, using a double-first policy, over 100 iterations with; and
€9 set at 100 with IT = 0.05 (top) andIl = 0.1 (bottom), for a 2-armed problem.
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6.4.2 Performance of the Doubddirst Policy

In the previous section, we outlined how the agents can approximate the VOC and
demonstrated that this approximation can be made accurately with some degree of
exploration. In this section, we explore the effect of the dou#lest policy on the
agent's cumulative reward. We use the doubfest policy for this problem, rather
than the double-greedy policy, as for the 2-dimensional case considered in this
section, the double-first policy will perform better on average. This is because
there is only one explorative choice for both communication and action and it is
beneficial to do these explorative steps early in the game.

To this end, Figure 6.2 shows the average cumulative reward to agéoner
10,000 repeats) for various communication costs, using the detfiet policy
over a grid of values fo¢; ande, ranging betwee and25%. The optimal com-
bination of parameters is denoted with a cross. Notice that the agent benefits from
exploring by both communication and action — greedy selection in either decision
process leads to poor performance. Additionally, there is a correlation betyween
ande, that is dependent on the communication cost. As expected, the amount of
optimal exploration by communicatios, |, is inversely related to the communica-
tion cost. To a lesser extent, the amount of optimal exploration by actpns(
positively correlated with the communication cost; this is due to the fact that a to-
tal amount ofglobal exploration is required, and as exploration by communication
becomes more costly, the agent requires more exploration by action to perform a
reasonable amount of learning (and vice-versa).

6.5 Implementing thee-ADAPT Algorithm

In the previous section we demonstrated that the agents can effectively balance the
exploration-exploitation trade-off in this multi-agent framework by using a dou-
ble e-first policy. This off-line policy requires an additional exploration parameter,
however, which further restricts the feasibility of implementing this policy in any
practical domain. To this end, in this section we extendtA®APT on-line algo-
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0.45

Figure 6.2: The average cumulative reward to agentor various communication
costs: a) 0.05, (b) 0.075, (c) 0.1 and (d) 0.125, using a dauhist policy, where
0 S €1, €2, S 25%
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rithm of Chapter 4 to the multi-agent bandit framework, where communication and
action decisions are adapted on-line. The main challenge lies in removing the need
for both exploration parameters, without incurring too much loss in the overall re-
ward (as compared with the optimally tuned off-line policy). We describe how this
can be done in Section 6.5.1 and then report on some simulations in Section 6.5.2.

6.5.1 Adapting Communication and Action Decisions On-Line

As with the doublec-greedyé-first approach (see Algorithm 6.4), we continue to
select myopically optimal communication and action decisions (using the VOC).
Rather than requesting additional covariates and selecting additional actions with
some predefined probability, we now determine this rate of exploration using on-
line MC approximations that mimic the decision problem faced. For the single-
agent one-armed bandit problem of Chapter 4, we regenerated past covariates and
rewards and then simulated the rest of the game to see which policy performed
better: greedy selection or one more round of exploration. The likelihood of ex-
ploration was driven by the agent’s level of uncertainty, which was linked to the
amount of noise and the sample size of the unknown action.

In the multi-agent setting, however, this method of approximation would require
repeating past covariates and rewards with missing values (due to the partially-
observed side information) and then using embedded EM algorithms at each step
of the MC approximation. This is computationally demanding and very problem
specific. Furthermore, there is the complication of the two-stage decision process
and deciding whether to explore by communication or action. To overcome these
issues, we instead perform an MC approximation of a decision problem #iat-is
ilar to the one faced by each agent, in terms of the amount and type of exploration
required. Specifically, we capture the effect of increased occurrence of missing
values by increasing the noise variance estimates used in the MC approximation,
such that missing values create more uncertainty which in turn encourages more
exploration. We then do not need to regenerate the problem with partial covariate
observations and can instead regenerate with a fully-observed covariate (such that
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we also do not need to compute VOC values), but with increased reward observation
noise. This method of approximation transforms the multi-agent problem into the
simplest sequential decision making problem (i.e. a bandit problem) which is then
a much easier task for the agent in terms of balancing exploration with exploitation.

The key step is therefore how to calculate the noise variance estimates for each
actionc € C; to incorporate the uncertainty from missing data. We can do this at
time ¢t using the following estimate:

52 (1) = ((ne — )32 (1 — 1) + €2) | (6.11)

Ne

E=1re) = D Gearat) = D deaB(za(t)2(1) |

zq(t)€z4(t) zq(t)gzqi(t)

when the action is selected (and kept the same otherv\@s";ce()t) is therefore the
estimatedpredictionerror given the observed information. The instantaneous pre-
diction error,&, will on average be higher when there are more missing covariates
(za(t) ¢ zi(t)), which increases the value 6f (t). Note that we did something
similar in Chapter 5 with dynamic problems, where we regenerated a similar prob-
lem that was static with increased noise variance for highly dynamic problems.

In addition, we saw in the previous section that the optimal rates of exploration
by communication and action are interdependent and the balance between the two
optimal rates are tied to the communication cost. For this reason, we perform two
types of MC approximation: one for exploration by communication and the other
for exploration by action. We outline theADAPT algorithm in Algorithm 6.5,
with the communication MC approximation given in Appendix C.2 (Algorithm C.1)
and the action MC approximation identical to that given in Algorithm 4.2 for single-
agent one-armed problefasThe MC approximations are similar, but the crucial
difference between them is the increased cost of communication, which is explicitly
factored in with exploration by communication (line 23, Algorithm C.1).

2Note that in Line 5 of Algorithm 4.2, we keep the true covariate at tinfhis may be not fully
observed in the multi-agent problem, so we draw unknown values conditional on observed values.
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Algorithm 6.5 e-ADAPT for a Multi-Agent BanditProblem
1: fort =1toT do
2:  Observey;(t) C x(t)
3:  Find optimal subset of covariateg(t) C y“ (¢) to request through commu-
nication using VOC| Algorithm 6.3}
4. Request additional covariatesz’(t), that maximise the function
R.¢(T*, 2{(t)) {Algorithm C.1}
5. Find optimal subset of actions to sele;tt) C C; {Algorithm 6.2}
6: Calculate approximations fak.((7™*,0) and R.¢(T™*,1/T*) for remaining
actions{Algorithm 4.2}
7:  Select actions wherB ;(7T*,0) < R.(T*,1/T%)
8:  Update noise variance estimatgs(t) {Equation (6.11)
9:  Update unknown parametefblsing EM-algorithm with missing valués
10: end for

6.5.2 Numerical Results

In this section we repeated the experiments of Section 6.4 to compsDAPT
against the doublefirst policy, to see how our on-line algorithm performs against
an optimally tuned off-line policy. The results are displayed in Table GADAPT

has yielded a high reward that is approximately 95% of the optimal daufiist
policy, despite the difficult challenge of removing two exploration parameters. The
table also shows thatADAPT yields a significant improvement as compared with
the greedy policy or when only one decision process is optimally explored (so that
there is only one exploration parameter and the other is set to zero). The perfor-
mance ofe-ADAPT could be potentially further improved if missing values were
incorporated, but as discussed earlier, this would slow the algorithm down consid-
erably. Furthermore, this would be ad hocversion ofe-ADAPT, whereas the
algorithm proposed in this section retains the same characteristics as the algorithms
used in previous chapters, which demonstrates the algorithm’s flexibility.

Table 6.1: Comparison efADAPT and off-line policies for a multi-agent problem
II Reward | Opt. Dble-first €; = e; = 0 (greedy) Optea, e =0 Opt.eg,ea =0

0.05 | 0.545 93.6% 140.7% 116.6% 129.9%
0.075| 0.468 95.9% 136.0% 121.3% 126.5%
0.1 0.427 96.5% 124.2% 120.8% 111.2%

0.125| 0.415 95.2% 118.3% 118.3% 101.3%
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To gain more insight, Figure 6.3 demonstrates the rate of exploration (by com-
munication and action) over time. Both types of exploration decay over time, as
they should, and moreoverADAPT explores more by communication for low
communication costs (and vice-versa). This demonstrates-HRBAPT can learn
howto explore, in addition to when, which action and how much (as demonstrated

in previous chapters).

= = = Communication, M = 0.05
= = = Communication, N = 0.125
Action, I = 0.05

Action, I = 0.125 4

©
[N
N

0.081 v

Rate of exploration
o
[

0.06 -

0.04

0.02

Figure 6.3: The average rate of explorationdaDAPT (by communication and
action) over time for high and low communication costs, for a 2-armed problem.

6.6 Summary

In this chapter we have proposed a new framework for modelling sequential deci-
sion making problems in multi-agent systems. We have extended the multi-armed
bandit problem to investigate the exploration-exploitation trade-off in a multi-agent
context. Specifically, we have investigated sequential decision making of commu-
nication decisions between agents, which is relevant and applicable to many other
multi-agent problems.

In more detail, we have constructed novel algorithms for selecting communi-
cation and action decisions. The exploitative element of these algorithms involve
using the Value of Communication (VOC) to myopically value the optimal com-
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munication and action decisions. The explorative element was first designed using
a doublee-greedy or double-first policy, which randomly performs more com-
munication or selects additional actions, to benefit the agent’s learning. Later we
extended the-ADAPT algorithm (constructed in Chapter 4) to this framework,
which removes the need for any prefixed exploration parameters.

In an empirical evaluation of a 2-agent problem, both the doeflest and
e-ADAPT methods significantly outperformed the greedy policy. Moreover, both
methods, which combine exploration by both communication and action, perform
better than doing exploration by one method and not the oth®DAPT performs
close to the optimal doublefirst policy, despite having to remove two prefixed
exploration parameters. Furthermore, we have shown that agents can benefit from
exploring by communication — agents should hence not communicate with other
agents for myopic gain only. This novel framework has therefore developed new
ideas about balancing exploration-exploitation in a multi-agent setting where re-
wards of actions are unknovenpriori. The framework also includes the possibility
of agents communicating, which is central to many real world scenarios modelled
by MAS.

This framework is novel in that exploration-exploitation of joint action and
communication decisions are considered simultaneously, however the framework
is restrictive in that the interaction of agents is constrained to communicating side
information — there is no interaction of rewards between agents. We consider this
more realistic feature in the next chapter, where we consid@r r2peated games
with unknown rewards, which introduces game theoretic considerations into the

exploration-exploitation trade-off.
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Chapter 7

Learning and Exploring in 2-player

Repeated Games

In the previous chapter we extended bandit problems to multi-agent systems such
that agents could communicate information prior to subsequent action selections.
This extension is distributedbandit problem (a phrase first coined by Claus and
Boutilier (1998)), where the control of actions and knowledge of side information is
partitioned between participating agents in the system. In this framework, however
the reward functions of the individual agents are not explicitly affected by the ac-
tions of other agents — which is not realistic in a number of multi-agent applications.
If individual mobile sensors are controlled by agents in a distributed network, for
example, the expected value of one sensor choosing to move to a certain area is de-
pendent on the locations of other sensors (Stranders et al., 2009). Alternatively, the
expected reward for an action made by an emergency service vehicle in a disaster
is likely to be dependent on the actions of other vehicles (Ramchurn et al., 2008).
To this end, in this chapter we consider a different extended bandit framework
where the rewards to each agent are explicitly affected by the actions of others.
Specifically, we study a 2-agent problem, where each agent has two available ac-
tions, but all expected rewards are unknaavpriori. This extension of the bandit
problem is therefore a 2-player repeated game, which has been extensively studied
for general games in Fudenberg and Maskin (1986) and Abreu (1988), amongst
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many others, and also for specific case games, such alietiaded Prisoner’s
Dilemmaproblem in Axelrod (1987), for example. The key difference between
this literature and our framework is that we assume expected rewards for differ-
ent sets of joint actions are unknowarpriori and must be learnt over time. This

is more realistic in several agent applications (as discussed in Chapter 6) and cre-
ates an exploration-exploitation trade-off for each agent. Moreover, the study of
repeated games with unknown rewards incorporate ideas from both decision the-
ory and game theory, allowing a detailed study of how the exploration-exploitation
trade-off should be combined with game theoretic reasoning in finite-time multi-
agent problems. Note that in this chapter we refer to action selection policies as
strategiesto acknowledge the relevant strategic and game theoretic considerations
made by each agent.

The repeated games with unknown rewards framework has been well studied
(Claus and Boutilier, 1998; Chapman et al., 2011; Babes et al., 2009; Marden et al.,
2009) but findings have been restricted to proving convergence to Nash equilib-
ria (defined in Section 7.1) in 2-player games for various homogeneous strategies
in self-play. There have been few inroads however in finding strategies that max-
imise reward in finite time against both homogeneous and heterogeneous oppo-
nents, which is the focus of this chapter, in particular as this is more relevant and
applicable to real-world multi-agent scenarios. As noted in Claus and Boutilier
(1998), the problem of learning rewards in games can also be viewed as a dis-
tributed bandit problem — we therefore continue to use bandit exploration policies.
We restrict our attention to two-agent, two-action problems (also knownxas 2
games), to focus on the fundamental relationship between learning, exploration and
strategic interaction. We note, however, that this characterisation is still useful in
a wider setting (with more agents and actions) as, in particular, many real-world
situations can be modelled in this way (Govindan and Wilson, 2010). Specifically,
the actions of all opposing agents are represented as the action of one agent and all
sub-optimal actions are treated as the alternative action to the optimal.

In more detail, in this chapter we first examine the impact of both agents us-
ing non-explorative strategies such as greedy and fictitious play (defined in Section
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7.2). Specifically, we show that in the presence of unknown rewards, these strategies
can exhibit behaviour quite different from the known rewards setting. We explain
this behaviour by proving that non-explorative strategies can converge to non-Nash
equilibria for 2<2 games. We then consider introducing exploration to one agent,
initially by using e-greedy, and demonstrate the benefits against a non-explorative
opponent. Specifically, we provide simulation results from various motivating ex-
amples, to show that an explorative agent eaploit by exploring- i.e. gain a
higher reward at the expense of the opponent’s, with a suitably tuned exploration
parameter. This motivates extending tR@DAPT algorithm to this framework,

to see if exploration can be adapted on-line without the need far@ori tuned
exploration parameter.

This chapter is structured as follows. Section 7.1 outlines the framework and
case study games used in this chapter. Section 7.2 defines two separate types of
multi-agent learners: individual and joint-action learners. We also propose several
different strategies for selecting actions. Section 7.3 investigates some of our case
study games with strategies using no exploration and Section 7.4 provides a proof
showing the possible convergence of such strategies to non-Nash equilibria. Sec-
tions 7.5 and 7.6 investigate our case study games but this time with the agents
using explorative strategies. In Section 7.7 we exte ADAPT to this framework
and perform some simulations against off-line strategies. Summary remarks follow
in Section 7.8.

7.1 Framework and Case Study Games

Agent A and agent B repeatedly play a stage game where they both choose between
Action 1 and Action 2 at each time-step~= 1,2,3,...,7. Agentk = {A, B}
receives a rewarg(¢), where:

TA(t) (71)
re(t) =b(i,7) + v(t), (7.2)
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wherei, j € {1,2} are the actions picked by agents A and B respectively, attime
n(t) andv(t) are noise processes which are i.i.d. Gaussian and centred at zero with
varianceag and o2 respectively. The expected reward matrix of the stage game
follows Table 7.1. The agents’ objective is to maximise their cumulative reward
Ry (T) = Zle r,(t). The agents observe their own reward and the action selected
by the opponent, but not the reward received by the opponent.

AgentB
Action 1 Action?2
Action1| a(1,1),b(1,1) a(1,2),b(1,2)
Action 2| a(2,1),b(2,1) a(2,2),b(2,2)

Agent A

Table 7.1: Expected reward matrix of the 2 stage game

Reward matrices where(i, j) = —b(i, ) (Vi,j) are referred to as zero sum
games (and non-zero sum games otherwise)Nash Equilibrium(Nash, 1951)
exists when each agent is playing a strategy such that no individual agent can
benefit from a unilateral change to their strategy. Inx&@2jame, for example,
a(1,4) > a(2,7) andb(j,1) > b(y,2) (Vi, j) corresponds to a Nash Equilibrium of
both agents selecting Action 1 — referred to gsuge strategyNash Equilibrium.

On the other hand, whem(1,1) > a(2,1), a(1,2) < a(2,2), b(1,1) < b(1,2)
andb(2,1) > b(2,2) (for example), then the Nash Equilibrium is for both agents
to play amixed strategya randomised strategy where Action 1 is selected with
probability p; and Action 2 with probabilitylt — p;). Converselya(1,1) > a(2,1),

a(1,2) < a(2,2),b(1,1) > b(1,2) andb(2,1) < b(2, 2) corresponds to 2 or 3 possi-

ble Nash Equilibria: two pure (both agents selecting Action 1 or both agents select-
ing Action 2) and possibly one mixed ({1, 1) > b(1,1) anda(2,2) < b(2,2) for
example). There is at least one Nash Equilibrium in arp ame (Nash, 1951).

The number and type of Nash equilibria is dependent on the structure of the
expected reward matrix, and there are many possible such configurationsiih a 2
game (three of which were detailed in the previous paragraph). For the remainder of
this chapter we focus our attention to two well-studied repeated games to illustrate
the performance of our various strategies. Together, these games characterise con-
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flicts that frequently arise between reward-maximising agents. In later sections, we
will see that both games demonstrate differing sub-optimal and non-Nash behaviour
with non-explorative strategies and furthermore, the optimal level of exploration is
markedly different due to the underlying reward structure. This motivates the in-
clusion of both case study games. Note that each case study game represents the
expected reward for each joint action — the actual reward received is observed with
noise. In addition, the rewards in each case study game are set such that random
action selection by both agents yields an expected reward of zero.

e Case Study Game 1: Matching Pennies

Consider the following zero-sum stage game, known as matgengies:

AgentB
Action 1 Action2
Actionl1] 1,-1 —1,1
Action2, —1,1 1,-1

Y

Agent A

Agent A wishes to match (both agents selecting the same action) and agent B prefers
not to match. There is hence no pure strategy Nash equilibrium, instead the Nash
equilibrium is a pair of mixed strategies where both agents select each action with
probability 0.5.

e Case Study Game 2: Prisoner’s Dilemma

We also consider the following non-zero sum stage game, known as prisoner’s

dilemma:
AgentB

Action 1 Action?2
Actionl] 1,1 —2,2
Action2| 2. -2 —1,-1

Agent A

The Nash equilibrium is for both agents to “defect” and select Action 2 (a pure
strategy Nash equilibrium), despite the fact that this joint action pair is not Pareto
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efficient (both agents could gain a higher reward by “cooperating” through selecting
action 1), which is why each agent faces a dilemma. In a repeated game setting,
however, there exist several strategies that can outperform playing the Nash strategy
for every stage game (Rogers et al., 2007a, and references therein).

We note that there exist several other interesting case games, such as games
with two pure and one mixed strategy Nash equilibria (for example, “Battle of the
Sexes” (Dixit et al., 2004)) or games with one pure strategy Nash equilibrium that is
Pareto efficient (consider switching the rewards in the prisoner’s dilemma for both
agents selecting Action 1 and Action 2), which is in effect a bandit problem. The
two case study games, however, characterise the range of possible problems faced
(at least in the context of the exploration-exploitation trade-off), as exploration is
extremely costly in one game and highly beneficial in the other, as we demonstrate
from Section 7.3 onwards.

7.2 On-line Learning Strategies

Before investigating our case study games in more detail, we first outline some
strategies that the agents can use in a repeated game setting. The agents do not
know the reward structure of the stage gaapiori. The agents therefore have two
distinct learning operationgstimatingthe rewards anddaptingto the opponent’s
strategy. These have to be handled concurrently with reward seeking behaviour, oth-
erwise agents will often select sub-optimal actions. There are two distinguishable
forms of multi-agent learning that the agents can use to sequentially estimate and
adapt (Claus and Boutilier, 1998hdependent learnerdLs) would apply learning

in the classical sense, ignoring the existence of the other agent. Convéosety,
action learners(JALs) would make decisions based on their own past actions in
conjunction with those of the opponent. JALs are more sophisticated in that they
use observations of both the reward received and the action selected by the oppo-
nent to learn (thus using all the information provided to the agent). Specifically,
JALs estimate rewards in the joint action space and can adapt to the opponent by
making inferences on its past history of actions. ILs however, estimate rewards in
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an individual action space and adapt using this information only.

In various numerical simulations performed in Claus and Boutilier (1998) for
cooperative games, ILs were found to perform not much differently from JALs with
only slightly slower convergence to a Nash equilibrium. Nevertheless, this conver-
gence was guaranteed by using SoftMax exploration (Section 2.2.2) and it is not
clear how performance might differ between ILs and JALs against heterogeneous
opponents, particularly in finite time. It is for these reasons that we consider both
ILs and JALs in our analysis.

7.2.1 Independent Learners (ILs)

After selecting an action, the agents only observe their own reward and which ac-
tion the opponent selected. ILs however, choose to ignore the opponent and make
inferences based on the reward received only. The decision problem is then anal-
ogous to a bandit problem and the estimated expected reward of each actipn (
anda(2) for agent A) can be simply updated at timesing recursive averaging:

(ra(t) —a(2)), (7.3)

fori = 1,2 when action is selected, and similarly for agent B! (¢) is the number
of times agent A has selected actioprior to timet. The agents must then use
these estimated rewards to select an action to play at the next iteration. In the
absence of any exploration, the obvious way to do this is to adopt a greedy strategy
and select the action with the higher valued estimate — we refer to this strategy as
bandit greedy

Exploration of actions is however required to guarantee convergence to Nash
equilibria (Chapman et al., 2011), but can also improve performance in finite time
for bandit problems (as demonstrated in Chapters 3-5). We choose to investigate
this in our framework using artgreedy strategy, for reasons discussed later.
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7.2.2 Joint Action Learners (JALS)

Contrary to ILs, JALs learn on the joint action space by observing the actions se-
lected by the opponent. In the 2-player, 2-action game studied here, each agent has
4 running estimates of rewards(i, ;) and@(z’,j) fori,j = 1,2. These can again

be updated by agent A and B respectively at timnésing recursive averaging:

a(i,j) —a(i, j) + (rat) —a(i, 7)), (7.4)

n;;(t)

updated when agent A selects acticend B selectg (and similarly for agent B).
n; ;(t) is the number of times joint actiofy, j} has been selected up to time

The agents must use these joint action reward estimates, together with the past
history of actions, to select the next action. There are several game-theoretic meth-
ods with which this can be done, including fictitious play (Brown, 1951), adaptive
play (Young, 1993), regret-matching strategies (Marden et al., 2007) and one-shot
Nash (Fudenberg and Maskin, 1986). In this research, we consider the agents us-
ing fictitious play as this strategy does not require knowledge of the opponent’s
rewards (required to calculate one-shot Nash and regret-matching strategies) and
is also suitable for a game with a static reward process (an adaptive play strategy
would be more naturally suited to dynamic rewards). Furthermore, fictitious play
(with known rewards) has been shown to converge to a Nash equilibrium for a vari-
ety of games including zero-sum games (Brown, 1951), potential games (Monderer
and Shapley, 1996), games that are solvable by iterated elimination of dominant
strategies (Nachbar, 1990) and more recently alN2games where an appropriate
tie-breaking rule is used to separate actions of equal preference (Berger, 2005).

Games that converge to a Nash equilibrium under fictitious play are said to have
the Fictitious Play Property. In the case of convergence towards a mixed strategy
equilibrium, fictitious play selects actions deterministically (as opposed to stochas-
tically), but converges to selecting each action at the average frequency as deter-
mined by the probability weightings of the mixed strategy equilibrium. Both case
study games introduced in Section 7.1 have the Fictitious Play Property. We can
define thefictitious playstrategy for 2 games as follows. The agents select the
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best response the empirical frequency of actions selected by the opponent thus
far. Suppose that at timeagent B has selected Action 1 fof (¢) past plays (and
Action 2 fort — n(t) — 1). Action 1 is a best response to agent A if and only if:

nP(t)a(1, )+ (t—nP(t)—1)a(1,2) > nP()a(2,1)+(t—nP(t)—1)a(2,2), (7.5)

and Action 2 is a best response if the inequality is reversed. The agents, how-
ever, do not know the true values of the rewards and instead seleptetieted

best responsausing the estimated rewards from Equation (7.4) rather than the un-
known true values. Without any exploration, there is no guarantee that fictitious
play will converge to a Nash equilibrium, due to the fact that rewards are observed
with noise (as we prove in Section 7.4). Claus and Boutilier (1998) use SoftMax
exploration with fictitious play for cooperative games and Chapman et al. (2011)
usee-decreasing exploration with fictitious play for non-cooperative and potential
games — though only Chapman et al. (2011) prove that their strategy converges to a
Nash equilibrium for specific games with the correct decay rate.fés with ILs,

we will again use-greedy exploration and define thé-P strategy as follows:

i .. | 1—¢€ select action that is the predicted best response
with probability _ _ _
€ select action that is the predicted worst response

7.2.3 Strategies for:22 Games with Unknown Rewards

We have constructed strategies for both ILs and JALs and also explorative and non-
explorative agents. Henceforth we refer to these strategies as they are denoted in
Table 7.2. For both ILs and JALs we initialise these strategies with both agents
selecting each action once (in a random order) as would often be done in a bandit
problem (Auer et al., 2002). The JALs initially estimate the reward of unselected
joint actions as the average reward of all selected actions thus far, until these joint
actions are eventually selected and the estimates are then replaced with the estimates
from Equation (7.4). We therefore do not assume each joint action is sampled once,
as this requires coordinated initialisation — although all our results and proofs in this
chapter could be extended to deal with this and other initialisation procedures.
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Table 7.2: Different types of strategies for on-line learning agents

Joint Action Leaner (JAL) Individual Leangi.)
Type I: fictitious play Type II: bandigreedy
Type lll:e-FP Type IV:e-greedy

On-lineLearning

No

Exploration
P Yes

7.3 Non-Explorative Strategies

In this section we consider agents playing with non-explorative strategies (ie. Type

| or Type Il strategies from Table 7.2). These strategies would perform well in

a setting with known rewards, but we are interested in the impact of no explicit
exploration when rewards are unknown. We present simulation results for both case
study games, where each stage game is repeated 50 times — this length of game is
sufficiently long such that agents can learn in a noisy environment but short enough
such that fast learners are rewarded. Note that for simplicity we set the observation
noise variance to be equal for each agent in all simulations in this chapter.

7.3.1 Case Study Game 1: Matching pennies
e Type I: fictitious play vs. Type I fictitious play

If both agents use fictitious play with full knowledge of the rewards then the em-
pirical frequencies of both agents converge to the mixed strategy Nash equilibrium.
With no prior knowledge and no exploration, however, no such convergence is guar-
anteed. Figure 7.1 shows the average proportion of times that Action 1 is selected by
each agent over the course of the game, for the matching pennies game of length 50
(over 100,000 repeats). Each subplot shows results for games with different noise
variances (where top left is the lowest variance and bottom right is the highest).

As can be seen, for low noise variances, the action selection frequencies con-
verge towards the Nash equilibrium without any additional exploration. As the
magnitude of the noise increases, however, the agents increasingly play pure strate-
gies. This is due to a lack of exploration. For example, agent B may have observed
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an unusually low reward for Action 2 in an early round of the game and calculates
Action 1 to be the dominant strategy. Action 2 is never revisited to correct this error
and the agent is subsequently exploited by agent A (who selects Action 1 to match).
This pattern can explain all 4 possible combinations of pure strategies being played.

The initial observations are the most crucial, as this is when reward estimates
are furthest from their true values, and can therefore have the biggest impact on
the long-term convergence of the strategies. Different initialisation procedures will
also effect the long-term convergence of a strategy. Specifically, a longer and more
explorative initialisation will result in more games converging to Nash equilibria,
for the same strategy, than with a shorter initialisation sequence.
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Figure 7.1: Density plots showing the proportion of times Action 1 is selected by
agent A p(ay)) and agent By(b,)) over the course of the game in the matching
pennies case study game of length 50 over 100,000 repeats for noise variances of

0.25 (top left), 0.5 (top right), 1 (bottom left) and 2 (bottom right). Both agents are
JALSs using Fictitious Play.
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e Type Il: bandit greedy vs. Type II: bandit greedy

If both agents are ILs using the bandit greedy strategy, then even with full knowl-
edge of rewards, convergence to the Nash equilibrium is not guaranteed. Figure
7.2 (left) displays average rewards from the same setup as Figure 7.1, except both
agents are ILs. The noise variance has been deliberately set low and despite this
both agents are playing pure strategies — approximately half the games favour agent
A and the remainder agent B. The lack of exploration immediately forces one agent
to commit to an action first and then the other exploits this choice.

e Type I: fictitious play vs. Type Il: bandit greedy

In Figure 7.2 (right), agent A is a JAL (using fictitious play) and agent B is an
IL. Some games resulted in plays close to the Nash equilibrium but the majority
converged to pure strategies where agent A (the JAL) exploits agent B. Learning
on the joint action space allows agent A to distinguish between matched and un-
matched actions and exploit agent B who plays a bandit problem and often settles
on one action. This advocates the use of joint action learning, over independent
learning, in the unknown rewards setting.

Reward to Player B
Reward to Player B

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Reward to Player A Reward to Player A

Y v

Figure 7.2: Density plots showing the average rewards for agent A and agent B in
the matching pennies case study game of length 50 over 100,000 repeats for a noise
variance of 0.25, where both agents are ILs (left) and agent A is a JAL and agent B
an IL (right).
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7.3.2 Case Study Game 2: Prisoner’s Dilemma

e Type I: fictitious play vs. Type I fictitious play

For the prisoner’s dilemma game, fictitious play would immediately converge to
both agents defecting with known rewards, as this is a dominant action and hence
is a best response regardless of the frequency of the opponent’s actions. Figure 7.3
displays average rewards, in the unknown rewards setting, for 2 fictitious players
playing the prisoner’s dilemma game of length 50 (for 100,000 repeats), with low
noise variance (left) and high variance (right).
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Figure 7.3: Density plots showing the average rewards for agent A and agent B in
the prisoner’s dilemma case study game of length 50 over 100,000 repeats for noise
variances of 0.25 (left) and 2 (right). Both agents are JALs using Fictitious Play.

Notice that although around half of the games have converged to the agents
defecting and receiving the Nash equilibrium reward of -1, other games have both
agents “cooperating” and selecting the dominated pure strategy. This happens by
chance from the noisy reward estimates. When the noise variance is high some
games also converge to cooperate/defect. This non-Nash convergence is again due
to the lack of exploration of the joint action space, which has resulted in incorrectly
calculated best responses, especially when the noise variance is high. This selection
of dominated strategies has actually resulted in a higher expected reward to each
agent than if the rewards were known, due to the Pareto optimality of cooperating.
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In particular, the clustering of rewards aroufid 1) has improved the expected
reward from -1 (with known rewards) to -0.01 when the noise variance is low and
-0.19 when the noise variance is high.

e Type II: bandit greedy vs. Type II: bandit greedy

Figure 7.4 (left) displays the same results for two ILs using bandit greedy (left). For
this game setting, the ILs have performed similarly to JALs with almost identical
convergence characteristics — although the larger clusters of average reward values
suggest that the convergence has been slightly slower (this was also found to be the
case in Claus and Boutilier (1998)).

e Type I: fictitious play vs. Type Il: bandit greedy

In Figure 7.4 (right) we show results for a JAL against an IL (right). On this oc-
casion, the IL has performed as well as the JAL with very similar action selection
behaviour. This is because, for this reward structure, the problem is more like a ban-
dit problem — with one action dominating the other. Explicit knowledge of the joint
action space is therefore of no particular benefit if the agent is indifferent between
the actions of the opponent and trying to calculate a best response.
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Figure 7.4: Density plots showing the average rewards for ageit,A &nd agent

B (R3p) inthe prisoner’s dilemma case study game of length 50 over 100,000 repeats
for noise variance of 0.25, where both agents are ILs (left) and agent A is a JAL and
agent B an IL (right).
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7.4 Convergence of Non-Explorative Strategies

2x2 games, with the genericity assumpfipnan have either 0, 1 or 2 pure strat-
egy Nash equilibria, 0 or 1 mixed strategy Nash equilibria and at least 1 Nash
equilibrium (of any kind) overall (Dixit et al., 2004). In the previous section we
demonstrated that, with unknown rewards, two fictitious players will not necessar-
ily converge to playing a Nash equilibrium strategy in finite time. A number of
simulated games resulted in both agents sticking to a non-Nash pure strategy. In
fact, we prove the possible convergence of all four pure strategy profiles, at least
two of which are non-Nash, in Theorem 7.1.

Theorem 7.1 In a 2x2 game with a priori unknown rewards (and with the generic-
ity assumption) there is a non-zero probability that the joint strategies of two agents
using a fictitious play strategy will converge to any one of the 4 pure strategy profiles
— at least two of which are non-Nash.

Proof Consider, without loss of generality, both agents converging to Action 1.
There is a probability greater than 0 thaR, 1) < a(1,1) and@(l,Q) < b(1,1)

at a certain time-step, as the noise is unbounded. It suffices to prove that there
is a probability greater than O such that,1) > @(2,1) (andg(l, 1) > 3(1, 2))
perpetually. In this formulation, the estimai€l, 1) is an average of i.i.d Gaussian
samplesX; ~ N (a(1,1),07). Suppose that = a(1,1) —a(2, 1) wheres > 0. We

are therefore trying to prove that:

00 j Xi
HP(#>@(1,1)—5) >0 for 6>0, (7.6)
=1 J

which after some rearranging is equivalent to proving that if:

. J
Y SN@G), W =YY, (7.7)
=1

1The genericity assumption (Pruzhansky, 2003) states that an agent has a preferred action for
every fixed action of the opponent, specificallt, 1) # a(2,1), a(1,2) # a(2,2),b(1,1) # b(1, 2)
andb(2,1) # b(2,2).
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then,

(H P(W, > 0)> >0 for 0>0. (7.8)

j=1

The procesdV; is a random walk, or a discretised Brownian motion with positive
drift 6. We have from Chang (1999) that the probability of continuous Brownian
motion W, (with positive driftd) never falling below zero fot < ¢t < coise 2" >
0. The probability for the discretised version is therefore bounded below by this.
We have hence proved that there is a probability greater than 0 such(2hat <
a(1,1) perpetually. The proof fo@(l, 2) < 5(1, 1) follows by symmetry. By this
logic, there is a probability greater than zero that both agents perpetually choose
Action 1 as their best response (see Equation (7.5)) and hence there is a non-zero
probability that both agents converge to Action 1. By symmetry, convergence to
any 4 pure strategy combinationgpessible. |}

Theorem 7.1 is concerned with asymptotic properties of infinite-length games,
which is not of direct relevance in finite-time problems, as studied in this the-
sis. Nevertheless, Theorem 7.1 helps to explain the finite-time behaviour of non-
explorative strategies that we demonstrated in Section 7.3. This non-Nash and po-
tential suboptimal finite-time performance leads us to consider explorative strate-
gies, which we construct and investigate in detail in the following sections.

7.5 Explorative vs. Non-Explorative Strategies

In Sections 7.3 and 7.4 we analysed ILs and JALs with no exploration and proved
that convergence to non-Nash pure strategies is possible. Now we consider the
impact of introducing explorative actions. As defined in Table 7.2, we consider
an e-FP strategy for JALs (Type lll) and atigreedy strategy for ILs (Type IV).

First we consider only agent A selecting explorative actions for our two case study
games, to see whether a non-explorative agent can be easily exploited to gain a
higher reward.
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7.5.1 Case Study Game 1: Matching pennies

e Type lll: e-FP vs. Type [: fictitious play

Figure 7.5 displays simulated results for JALs (e€=P against fictitious play) for

the matching pennies game of length 50 (with a relatively high noise variance of
1). In the left figure, agent A selects the predicted worst resptiigeof the time

and in the right figure30%. In both cases agent A has received a higher reward
than agent B (there are more matched actions than unmatched actions), despite this
being a zero-sum symmetric game. Agent A has exploited agent B for two key
reasons:

e The agents have no longer both converged to pure strategies where actions are
not matched and agent A receives a low reward. This is the first benefit of ex-
ploration to agent A — the agent is no longer exploited by the opponent as the
exploration causes agent A to learn that this is not a best response (compare
with Figure 7.1 (bottom left) where agent A is occasionally exploited).

e Agent B, in the absence of any exploration, is still sometimes playing a pure
strategy and agent A has learnt to exploit this (by matching) for close to
(1 — €)% of plays and gain a high reward. Moreover, notice that agent B
selects pure strategies more often whker 0.3. This feature can be at-
tributed to the fact that agent A is playing a more mixed strategy (due to the
added exploration) which gives agent B rewards close to 1 (rather than -1)
more often. Consequently, the exploration of agent A prevents agent B from
switching action as its predicted best response action is less likely to change.

The second benefit of exploration is of particular interest — exploiting agent B too
often, such that it consistently receives a low utility, is more likely to make the
agent switch action. Therefore agent A benefits from a high exploration parameter
even if it has learnt the expected reward values. This feature can be viewed as agent
A explicitly managing its mixed strategy to maintain long term rewards. Higher
values ofe come at the cost of less frequent exploitation, but has the benefit that
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the opposing agent is easier to exploit. This exploitation yields a high utility to the
explorative agent — far greater than the Nash equilibrium utility of O.

pb,)
pib,)
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Figure 7.5: Density plots showing the proportion of times Action 1 is selected by
agent A p(a;) and agent Byf(b;)) in the matching pennies case study game of
length 50 over 100,000 repeats for a noise variance of 1, where agent B is a fictitious
player and agent A is playingFP withe=0.1 (left) ande=0.3 (right).

To explain these results in more detail, the benefit of explicitly managing a
mixed strategy can be derived from the theoretical reasoning used in Section 7.4
(where we proved non-Nash convergence of non-explorative strategies). In partic-
ular, notice that there is a positive probability that a non-explorative agent never
switches action and continuously selects a pure action. In such instances this posi-
tive probability for agent B is greater if the expected utility of the pure action is kept,
with a higher likelihood, above a required level (whichuid, 1) — ¢ in Equation
(7.7)) — which can be done by agent A exploring and selecting the suboptimal ac-
tion. The trade-off, however, is exploring too much such that agent A is penalised
and agent B is rewarded (above the Nash expected reward) despite continuously
playing this pure action.

Figure 7.6 (left) displays the expected reward to agent Acfer [0, 1], for a
selection of noise variances, for the game of length 50. Agent A has benefited
from exploring by having a positive reward in a symmetric zero-sum game, when
0 < e < 0.5. Itis easy to see that= 0.5 will yield an expected reward of O for all
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noise variances as agent A selects each action exa@iyf the time. For > 0.5,

agent A selects the predicted worst response more often than not and thus allows
agent B to take a positive reward. The optimal value @f larger for small noise
variances, which initially appears counter-intuitive. After all, lower noise variance
corresponds to an easier learning problem. It must be remembered, however, that
the only way agent A can gain a positive reward is to keep agent B on a pure strategy.
For low noise variances this is hard to do (see Figure 7.1 (top left)), as the opponent
quickly learns the correct best response of a mixed strategy. Agent A therefore has
to keep its strategy very mixed in order to keep agent B’s predicted response on the
pure action. Conversely, large variances make agent B’s predicted best responses
more erroneous. Agent A can afford to exploit this more often and hence gain a
higher expected reward, by playing with a smadlealue.

Figure 7.6 (right) displays the optimal value«for a range of noise variances,
along with the corresponding average expected rewards. The pattern emerges that
higher noise variances, correspond to lower optienathich in turn correspond to
higher potential rewards. Note that the optimal value f of course unknown to
the agent priori which motives the extension efADAPT to this framework in
Section 7.7.
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Figure 7.6:¢/-FP against fictitious play in the matching pennies case study game
of length 50. (left) The Average expected reward to agent A and agent B (shaded)
for the range of values for different noise variances and (right) Optimalnd
corresponding average expected reward over a range of noise variances.
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e Type IV:e-greedy vs. Type II: bandit greedy

Figure 7.7 (left) considers the same matching pennies game except with ILs, where
agent A uses-greedy (withe = 0.1) and agent B uses bandit greedy with no explo-
ration. Agent A has again learnt to not be exploited with unmatched pure strategies
and has learnt to often exploit agent B. The introduction of this exploration, how-
ever, has now introduced some convergence of the empirical action frequencies
to the mixed strategy equilibrium (compare with Figure 7.2 (left), although note
that this convergence can only be seen on the histograms on each axis). Figure 7.7
(right) displays the expected reward to agent Adar [0, 1], for a selection of noise
variances. The properties of the results are similar to Figure 7.6 (left) for JALs in
that the explorative agent can exploit with< ¢ < 0.5. For ILs however, the opti-

mal e is smaller and less dependent on the noise variance. This lower value can be
attributed to the fact that the greedy strategy learns more slowly than fictitious play
and hence agent B can be exploited at a higher frequency without forcing the agent

to change action.
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Figure 7.7: (left) Density plot showing the proportion of times Action 1 is selected
by agent A f(a,)) and agent Bf(b,)) in the matching pennies case study game
of length 50 over 100,000 repeats for a noise variance of 0.25, where agent B is
playing bandit greedy and agent A is playiagreedy withe=0.1. (right) Average
expected reward to agent A and agent B (shaded) for the full rangeaddies with
different noise variances.
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e Type lll: e-FP vs. Type Il bandit greedy and Type I¥greedy vs. Type I:
fictitious play

Finally, we show results for the same setup except in Figure 7.8 (left) agent A uses
e-FP and agent B uses bandit greedy and (right) agent Acage=edy and agent B

uses fictitious playe-FP already exploits bandit greedy wheg: 0 (see Figure 7.2
(right)) and only benefits from a non-zeravhen the noise variance is high — so ex-
ploration is not always required to maximise rewardjreedy, however, is able to
recover the deficit whea= 0 and exploit the fictitious player for certain values of

e < 0.5. It can be concluded from these results that exploiting a non-explorative fic-
titious player requires careful management of the agent’s mixed strategy (and hence
a largee) to prevent the opponent from switching strategies. In contrast, a bandit
greedy strategy can be exploited with less exploration, as the opponent here is an
IL and is therefore slower to learn that it should switch action. Nevertheless with
high noise variance, a small amount of exploration will always benefit an agent, as
this will help reduce the high initial estimation error of the reward estimates.
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Figure 7.8: Average expected reward to agent A and agent B (shaded), in the match-
ing pennies case study game, for the range\@lues for different noise variances
where (left) agent A usesFP and agent B uses bandit greedy and (right) agent A
uses-greedy and agent B uses FP.
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7.5.2 Case Study Game 2: Prisoner’s Dilemma

e Type lll:e-FP vs. Type I: fictitious play and Type I¥greedy vs. Type Il: bandit
greedy

We now briefly return to the prisoner’s dilemma example. Figure 7.9 displays re-
sults fore-FP against fictitious play andgreedy against bandit greedy. In both
scenarios, agent A has a better reward than agent B, for low values @f. For

JALs the reward is maximised with= 0 and for ILs withe ~ 0.1. These lower
optimale values (compared with matching pennies) can be attributed to the fact that
agent B cannot be kept on the dominated strategy (cooperate) by playing a mixed
strategy. In addition, the prisoner’s dilemma is an unusual type of game where
the Nash equilibrium is Pareto dominated — so learning and playing the true best

response quickly results in lower rewards.
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Figure 7.9: Average expected reward to agent A and agent B (shaded), in the pris-
oner’s dilemma case study game, for the range\@lues for different noise vari-
ances where (left) agent A use$-P and agent B uses fictitious play and (right)
agent A uses-greedy and agent B uses bandit greedy.

7.5.3 Summary of Results

We have seen that exploring the action space, by playing the action that is estimated
to perform worst, can in fact be beneficial to the agent’s reward in finite time. An
explorative agent can outperform a non-explorative agent as it learns the rewards
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from the action space more quickly and can then exploit the opponent, particularly
if the opponent is stuck playing non-Nash strategies. The optimal valuetioé
exploration parameter, is quite varied depending on the structure of the game and
the noise variance. In particular, if the game has a mixed strategy Nash equilibrium,
then the agent caexploit by exploringi.e. explicitly manage its mixed strategy,
with a highe value, to maintain long term rewards. Nevertheless, even with only
pure strategy Nash equilibria, a small amount of exploration can still allow an agent
to exploit a non-explorative learner.

7.6 Explorative Strategies

In this section we consider both agents using explorative strategies. As documented
in Chapman et al. (2011), a suitable exploration strategy will ensure convergence
to a Nash equilibrium in certain games. The exploration parameter has to decay at
a suitable rate, such that each action is infinitely explored but also action selections
are greedy in the limit, i.e. the probability the correct best response is selected tends
to 1 ast — oo. Such action selection strategies are cafjezkedy in the limit with
infinite exploration (GLIE)XSingh et al., 2000). Chapman et al. (2011) prove that
fictitious play withe-decreasing exploration (lecaying at rate 1/t) will converge to
a Nash equilibrium in any game with the fictitious play property. In contrast, Claus
and Boutilier (1998) argue (without proof) that both ILs and JALs (using SoftMax
exploration) will converge to a Nash equilibrium in any cooperative game.

Our explorative strategies;FP ande-greedy, guarantee infinite exploration for
e > 0, but are not greedy in the limit as the exploration parameter remains con-
stant. We deliberately keep this parameter constant to maximise reward in finite
time — refer to the previous section where we showed that an explorative agent can
maximise reward by explicitly managing its mixed strategy profile throughout the
game. In addition, decayingin finite time requires an additional decay parameter
or function. Only when both agents explore and the game is sufficiently long does
decaying: makes sense, as the joint action space becomes thoroughly explored over
time.
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Nevertheless, even without a decaying exploration parameter, there is fast con-
vergence towards the Nash equilibrium. See, for example, Figure 7.10 where two
JALSs (left) both using-FP (Type Ill) and two ILs (right) using-greedy (Type 1V)
both converge towards the mixed Nash equilibrium in the matching pennies game
(Case study game 1). Without exploration (see Figure 7.1 (bottom left) and Figure
7.2 (left)), there exists only occasional convergence to the mixed Nash for JALs and
none for ILs. Note that, as expected, the convergence of ILs appears slower than
with JALs: there is clear evidence in each corner of the plot, that the agents are
learning at a slower rate to move away from pure strategies and towards the mixed

strategy Nash equilibrium.
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Figure 7.10: Density plots showing the average rewards for agent A and agent B in
the matching pennies case study game of length 50 over 100,000 repeats for a noise
variance of 1, where both agents are JALs usikd (left) and both agents are ILs
usinge-greedy (right).e=0.1 for all strategies.
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The optimal value of for a certain strategy is dependent on the strategy type and
parameter values used by the opposing agent. In Figure 7.11 we display the average
cumulative reward to agent A over a grid of andep values, where 4 refers
to the exploration parameter used by agent A (and similarly for B). Each subplot
corresponds to a different pair of strategies or a different case study game. In the
matching pennies game, the optimal value @ high for both ILs and JALs and
generally above thevalue of the opponent — exploration is not costly in this game
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where mixed strategies perform best. In contrast, in the prisoner’s dilemma game,
the optimal value ot is much closer to O (but is now higher with ILs) and usually
below thee value of the opponent — exploration is costly here as non-dominant
action selection can often be exploited by a less explorative agent.

Figure 7.11: Average cumulative rewards (over 10,000 repeats) to agent A over
a grid ofe4 andep values, where (top figures) both players are usit and
(bottom) both players are usinggreedy and the case study game is (left figures)
matching pennies and (right) prisoner’s dilemma. The optimal valug,ajiven a
value ofep, is denoted by a star. In all figures, the game length is 50 and the noise
variance is 1.

7.7 ¢-ADAPT in Repeated Games

In this chapter we have demonstrated that exploration of actions can benefit an
agent’s total reward in 22 repeated games with unknown rewards. The optimal
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amount of exploration, however, is dependent on several factors other than the
amount of observation noise: such as the structure of the game (in terms of types
and number of Nash equilibria) and the type of strategy and degree of exploration
used by the opponent. In addition, the relationship between the amount of obser-
vation noise and the optimal amount of exploration is not necessarily positively
correlated, as is typically the case in single-agent bandit problems (see Chapters 3-
5). The relationship, in fact, was found to be negatively correlated for the matching
pennies game (see Section 7.5) for reasons related exghatabilityof the oppos-

ing agent. Taking all these features together, the optimal rate of exploration (with
ane-greedy strategy) was found to range from anywhere between 0% and 50%.

In this section we propose adapting the degree of exploration on-line using the
e-ADAPT approach constructed in earlier chapters. An adaptive on-line approach
to exploration is particularly useful in this framework, due to the sensitivity of opti-
mal exploration rates with respect to the type of repeated game and opposing agent
strategies encountered. Adapting exploration on-line using an IL approach can be
immediately performed using Algorithm 4.3 for multi-armed bandit problems. This
is because independent learners ignore the presence of other agents and the prob-
lem can be effectively treated as a single-agent bandit problem. We have seen in
previous sections, however, that JALs always perform better than ILs in finite-time
problems as JALs make use of observing the action selected by the opponent. For
this reason, we construetADAPT to learn rewards on the joint action space and
explicitly consider the sequence of actions selected by the opposing agent.

The optimal amount of exploration is dependent on several factors such as
the game structure and opponent strategy, but these are unkagwiori, and
moreover, opponent rewards amet observed throughout the game. It is there-
fore extremely challenging to gauge appropriate rates of exploration without know-
ing whether the opponent will exploit explorative strategies (as with the prisoner’s
dilemma game) or can be exploited with a mixed strategy (as with matching pen-
nies). We construat-ADAPT, however, without violating the assumption that op-
ponent rewards are unobserved and instead make use of the sequence of actions
selected by the opponent to model its future behaviour.
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7.7.1 Thec-ADAPT Algorithm

e-ADAPT constructs an index based approximation for each aatiah timet. In
addition to regenerating past and future rewards in the MC approximation, the al-
gorithm also simulates the future behaviour of the opponent, to find the best action
to select at time. Specifically, prior rewards are first regenerated for each joint
actionn; ;(¢) times (the number of times each action has been selected thus far), ac-
tion a; is then selected at timg and then future actions are selected using fictitious
play. Future opponent actions are drawn stochastically, where Action 1 is drawn
with probability p5(¢) (and Action 2 with probabilityl — pg(t)). The resulting
e-ADAPT algorithm for 2< 2 games with unknown rewards follows Algorithms 7.1
and7.2.

Algorithm 7.1 e-ADAPT for 2x 2 Games with Unknown Reavds

1: n; ;(0) = 0 V4, j {Initialise Action count

2: fort =1to7T do

3 ift<2then

4 Select each action ondénitialisation}

5. else

6: Generate new rewards ;(s) Vi, j and forl < s < T using estimated
reward coefficienté (s, j) and estimated noise variance¥, )

7 for i =1to2do

8: ApproximateR, (T, t,i) {Algorithm 7.2}

9 end for

10: Select action (1 < i < 2) that maximisesy,(1’,t,1)
11:  end if

12:  Observe opponent actigrand corresponding reward (¢) {Equation (7.1)

13:  Updatea(i, j), 6%(4,j) andpp(t)

14: n;(t) = n(t — 1) + 1 (ngy(t) = ng(t — 1) for {k,1} # {4, 5}) {Action
countg

15: end for

The key differences with the ADAPT algorithm for multi-armed bandits (Al-
gorithms 4.3 and 4.4) are denoted in blue. The first of these is the variance estimate
of joint action{s, j} (Line 13 of Algorithm 7.1). This value cannot be estimated
using sample estimates when;(¢) < 2, but can be instead estimated using the
variance of all observed rewards — this is an idea borrowed from Vermorel and
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Algorithm 7.2 MC Approximation ofRy, (T, ¢,7) index
1: ny(5) =0 (for j = 1,2)
2: for s=1to7 do
3. ifs<tthen
4 Select joint actiorn{s, j} such that each action is selected;(¢) times
whens = t and receive reward (s) = r; ;(s)

5. elseifs =tthen

6: Sample action for Agent B (Action 1 with probabilityp())

7: Select actioni and receive reward (s) = r; ;(s)

8: else

9: Sample actiony for Agent B (Action 1 with probabilityps (1))
10: Select action that maximises(i, 1)7,(1) + a(i, 2)n,(2) {Fictitious play

estimate of best resporjsand receive reward (s) = r; ;(s)

11:  end if

12:  Updatea(i, 7)

130 p(j) = m(j) + 1

14: end for

15: pr(T,t,’D - Zzzt T/(S>

Mohri (2005) which allows sample estimates to be calculated without full initial-
isation. This is particularly useful in this multi-agent framework as the agent has
only partial control of the joint action space and cannot guarantee seeing a par-
ticular joint action without the cooperation of the opposing agent. This method
therefore allows-ADAPT to calculate the noise variance of each joint action sep-
arately, which means that rarely selected joint actions have high uncertainty and
e-ADAPT is more likely to try and explore these actions.

The other key difference te-ADAPT is the explicit consideration of future
actions that might be selected by the opponent. This is particularly evident in lines
6-10 of Algorithm 7.2, where-ADAPT is predicting future actions of the opposing
agent (lines 6 and 9) and then using fictitious play to select future actions dependent
on the opponent’s past action choices (line 10). The future actions of the opposing
agent are drawn stochastically, where Action 1 is selected with probafjlit).
pp(t) could be selected in a number of ways. In the simplest case this value could
be set to equal the frequency of times Action 1 has been selected thyg far=
(n11(t) + n21(t))/(t — 1), but even if the opposing agent is a fictitious player
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(or using another stationary strategy), this measure will often not predict future
actions of the opponent well. This is because a learning agent can select actions very
differently at various stages of the game, as the agent’s knowledge of the rewards
constantly changes over time. It is therefore more appropriate to use an adaptive
measure to predict future opponent actions. Specifically, we weight previous action
choices more heavily using a forgetting facirsuch that:

Bp(t) = Li(t) + M (t — 134;;211(75 —-2)+.. 3 (7.9)

(=3

where/, (t) is an indicator function that is equal to 1 if Action 1 is selected at time

t and O otherwise. This probability can also be found recursively:

pa(t) = 1 _1 i (L =XN0(t) + A1 = X"Hpe(t —1)). (7.10)

Ast — oo this recursion approaches(t) = (1 — \)I1(t) + Aps(t — 1), which

is identical to the belief update used in geometric fictitious play (Fudenberg and
Levine, 1998). The version given in Equation (7.10) is therefore equivalent to ge-
ometric fictitious play with a finite-sample adjustment. Overall, this estimate is
appropriate for opponent strategies that are both stationary and adaptive — this is be-
cause in the unknown rewards setting, agents can change their behaviour throughout
the learning process.

We note that\ could be adapted on-line, as performed in Chapter 5 for dynamic
bandit problems and in Smyrnakis (2010) for geometric fictitious play, but in our
experiments we keep constant at 0.8 so that we can directly focus on the issue of
adapting exploration on-line. Finally, we note thaaDAPT could directly replace
the fictitious play estimate in the MC approximation (Line 10, Algorithm 7.2) with
something more sophisticated, such as stochastic fictitious play (Fudenberg and
Levine, 1998) or generalised weakened fictitious play (Leslie and Collins, 2006).
In our experiments, however, we tesADAPT against an agent using fictitious
play (with e-greedy exploration). For this reason we use the fictitious play estimate
in the MC approximation, so that we can test for the improvements from adapting
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exploration on-line, and not the improvements from better strategic action selection.

7.7.2 Numerical Results

In this section we test-ADAPT against a range of-FP strategies for both the
matching pennies and prisoner’s dilemma case study games. Recall from Sec-
tion 7.6 (and in particular Figure 7.11) that optimal rates of exploration can vary
markedly dependent on the case study game, the opponent strategy and the obser-
vation noise variance. For this reason, we teBDAPT for each case study game

over a grid of noise variances and opponeralues. We repeat each experiment
10,000 times and the results are displayed in Figure 7=J82DAPT has gained a

better reward than its FP counterpart for large regions of the parameter grid. In the
other regions the rewards are comparable, Wi&kDAPT rarely yielding a reward

that is smaller than the opponent. Note that differences are plotted rather than ratios

as rewards can be negative.
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Figure 7.12: Average difference to the cumulative reward (over 10,000 repeats)
of e-ADAPT against thes-FP strategy over a grid ofg values and noise vari-
ances, where the case study game is (left) matching pennies and (right) prisoner’s
dilemma. In both figures the game length is 50.
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To investigate this further, in Figure 7.13 we plot the average number of explo-
rative steps performed byyADAPT in the same set of experiments for each case
study game. An explorative step here refers to time-steps wheteXADAPT algo-
rithm chooses to select the predicted worst response in the MC approximation. The
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overall amount of exploration is generally higher in the matching pennies game, as
it should be, as exploration is less costly when mixed strategies cannot be exploited
as easily. Moreover, for the matching pennies game, the amount of exploration de-
creases as both the noise increases and the valudenfreases, again as it should
(see Figures 7.6 and 7.11). For high noise variance and low valugs$haf oppo-

nent is more likely to be on a pure strategy and hence easier to exp®RAPT

learns to exploit the opponent more often (and explore less) in such cases. This
happens because the value fgi(t) is likely to be close to 0 or 1 andADAPT

learns that selecting the predicted worst response is costly.

For the prisoner’s dilemma game, the amount of exploration increases with
noise variance, as the presence of a dominant strategy makes this problem more
like a bandit problem. The relationship between the amount of exploration and the
value ofe, however, is dependent on the noise variance and the attributed behaviour
of the opponent. Overalk-ADAPT has learnt to explore the correct amount de-
pendent on the noise variance, the structure of the game and the type of opponent
faced. e-ADAPT is therefore able to learwhoto explore against, in addition to
how much, when and which action.

0.01

e

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
€ €

0

Figure 7.13: Average number of explorative steps performed-ARPAPT (over
10,000 repeats) against thd-P strategy over a grid afz values and noise vari-
ances, where the case study game is (left) matching pennies and (right) prisoner’s
dilemma. In both figures the game length is 50.
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7.8 Summary

In this chapter we have studied 2-player repeate@ games where expected re-
wards are unknowa priori. The agents must learn as they play, and hence must
simultaneously estimate rewards and adapt to the opponent. We investigated two
fundamental learning techniques: Individual Learning (IL) and Joint Action Learn-
ing (JAL). Both ILs and JALs, when used with suitable exploration strategies, have
been shown in Claus and Boutilier (1998) and Chapman et al. (2011) to converge
to a Nash equilibrium for certain games. In this chapter, however, we demonstrated
and proved that ILs (using the greedy strategy) and JALs (using fictitious play) with
no exploration, have no such guarantee of converging to a Nash equilibrium in any
game — and hence are often suboptimal strategies. We then constructed exploration
strategies, based on thegreedy strategy from bandit problems, and showed that
an agent can sometimes use this strategy to exploit a non-explorative opponent. We
found surprisingly high optimal values ef for games with a mixed strategy Nash
equilibrium, as the agent coukkploit by exploring- or in other words explicitly
manage its mixed strategy, to keep its opponent on a favourable pure strategy, and
hence maintain long term rewards. In other games, however, the optimal explo-
ration rate was close or equal to zero.

The wide-ranging optimal exploration rates motivated the extensioGIAPT
to this framework, such that exploration could be adapted on-line without the need
for ana priori fixed exploration parameter. By predicting future opponent action
selections on-line¢-ADAPT was able to find a near-optimal exploration rate and
perform better than most explorative fictitious play strategies. cFABAPT al-
gorithm is therefore applicable in a multi-agent context and is able to consider the
presence of other agents in balancing the exploration-exploitation trade-off on-line.
This work could be extended by considering unknown classes of opponents (be-
yond fictitious play) that can be learnt over time by an agent, along with the reward
function. This further complicates the exploration-exploitation trade-off however,

and we reserve such extensions for future work (see Chapter 8).
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Chapter 8

Conclusions

In this chapter, we present an overview of the contributions of this thesis towards
understanding the exploration-exploitation trade-off in sequential decision making
problems. First, in Section 8.1, we summarise the research undertaken and the main
results from each chapter. Then, in Section 8.2, we identify key directions for future
work that arise from the findings in this thesis.

8.1 Summary of Results

We have studied the exploration-exploitation trade-off in several important sequen-
tial decision making problems, all of which are useful extensions of the classic
multi-armed bandit problem. Chapters 3-5 focused on single-agent problems, and
Chapters 6 and 7 considered the role of exploration in multi-agent systems. In par-
ticular, we have studied scenarios where:

Chapters 3 and 4: The agent observes side information that helps identify the op-
timal action at each time-step, known as the bandit with covariates problem

Chapter 5: The agent must consider rewards that are changing over time
Chapter 6: Multiple-agents can communicate missing side information

Chapter 7: Agents must consider the actions of other agents to identify the optimal

exploration strategy
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In each instance, we have studied the role that the exploration-exploitation trade-off
plays in terms of maximising reward in finite time, which was the first objective that
we outlined at the beginning of this thesis. First of all, we note that all the problems
considered are connected with the idea that the agent has additional information
other than the observed rewards (such as side information or the actions selected by
other agents) which should not be ignored and plays a vital role in terms of the opti-
mal balance between exploration and exploitation. Further to this, the main results
and insights we have gained in this direction can be summarised as follows:

¢ For the simplest bandit with covariates problem, we proved that the optimal
exploration rate in finite-time problems is zero for thgreedy policy, but
non-zero for the-first policy (beyond trivial game lengths).

e For more general static bandit problems, we proved that the optimal on-line
e-first policy can be computed on-line by considering the exploration deci-
sion in the next time-stepnly. This result is particularly significant as it
forms the key reason behind the computational tractability of our new on-line
algorithm,e-ADAPT.

e On the other hand, exploration is required throughout a dynamic bandit prob-
lem, but the overall amount is dependent on the type and rate of dynamics,
i.e. changes such as smooth drifts or abrupt jumps.

¢ In multi-agent communication problems, agents can benefit from exploring
communication decisions, as well as action selection decisions. The optimal
balance between the two is dependent on the communication cost.

e In 2-player repeated games with unknown rewards, an agenqaait by
exploringin games with mixed strategy Nash equilibria, but exploration is
much more costly in games with dominant strategies. We found the optimal
amount of exploration to be highly dependent on the reward structure and
type of opponent faced.



8.1 Summary of Results 190

Our second objective was to develop practical and implementable algorithms for
the various frameworks studied. To this end, we have used the results and insights
highlighted above to construct an on-line algoritke®DAPT, which can approxi-
mate the optimal exploration decision at each time-step for each decision problem.
The algorithm is based on theoretical properties oktfiest policy, which has been
found to perform consistently strongly (often best of all) in a variety of empirical
studies in the literature.

The need for constructing tkeADAPT algorithm was motivated in Chapter 2,
where we conducted an extensive review of existing policies and algorithms used
to balance exploration and exploitation in bandit problems. Specifically, the only
policy that was found to be flexible enough to be used in all the frameworks con-
sidered in this thesis is thegreedy policy, but this policy requires an exploration
parameter to be tuneal priori, the optimal value of which is highly variable and
unknown to the agent-ADAPT, on the other hand, is free of exploration parame-
ters, and extends naturally to a range of sequential decision making problems. This
is because witlk-ADAPT exploration is driven byincertainty— the more unsure
e-ADAPT is about the rewards from an action, the more likely that this action is
explored.

In the case of dynamic rewards, for exampl&DAPT would have high uncer-
tainty about actions that suddenly start yielding different rewards, and this action
is then explored more. In this way the algorithm is able to detdsth actionto
explore. After implementing and testingADAPT for all frameworks we consid-
ered, we demonstrated that the algorithm is also able to lkeasmmucho explore,
whento explore (in the presence of side informatiohpw to explore (when ex-
ploration by communication is also available) and finalllgo to explore against
(in the case of repeated games). We test@dDAPT against optimally tuned-
first ande-greedy policies, and found the performance to be consistently close to
the better-performing off-line policy for each framework. We have therefore con-
structed a robust algorithm for adapting exploration on-line in sequential decision
making problems which can achieve strong finite-time performance in both single
and multi-agent problems.
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To summarise, in this thesis we have investigated the fundamental role that the
exploration-exploitation trade-off plays in terms of maximising finite-time reward
in sequential decision making problems. Not only is it important that the overall
amount of exploration performed by an agent is at some required level, but the
presence of side information and other agents in a decision problem means explo-
ration needs to be performed at the right times and with the correct actions. To
this end, we have developed the first on-line algorithm that can approximate these
optimal exploration decisions on-line, without the need for a prefixed exploration
parameter.

8.2 Future Work

There remain a number of open issues to be addressed beyond those considered in
this thesis. First and foremost, the next step is to construct theoretical performance
bounds for the finite-time performance of thDAPT algorithm, to establish the
overall robustness of the algorithms to different problem setups. Finite-time bounds
have been given little attention in sequential decision making problems in general,
with most theoretical analysis restricted to finding optimal asymptotic properties. A
notable exception is the class of Upper Confidence Bound (UCB) algorithms (which
we reviewed in Section 2.2.3), which bounds finite-time performance for static ban-
dit problems with no side information, where rewards are bounded in the interval
0, 1]. Further theoretical evaluations and findings have also been found in restricted
settings in Cesa-Bianchi and Lugosi (2006). In our case, we would like to bound
the performance of-ADAPT in more general problems with unbounded rewards
where side information is present, as this is more useful in applications. Due to the
MC approximations used by+ADAPT, together with the presence of unbounded
rewards and side information, constructing theoretical finite-time bounds is partic-
ularly challenging. To combat this challenge, however, we can bound performance
(under expectation) against that of the optimdirst policy. This can be done by
calculating the mean and variance of the MC approximations and then using these
values to measure the accuracy of selecting optfiat actions on-line.
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Other useful directions of future work include:

Arm acquiring bandits and infinite-action problems: As discussed in Section
2.1.1, arm acquiring bandits study scenarios where new actions arrive throughout
the decision probleme-ADAPT naturally extends to such scenarios as a new action
will be treated with high uncertainty and explored more soon after arrival. It is less
clear, however, how a decision problem changes if new agents arrive over time, but
againe-ADAPT could be constructed to explore this agent more in such circum-
stances (whether that is by communication or action selection). The case of infinite
actions is interesting, asADAPT does not naturally extend to this approach due to
the indexing approach used for each action. A simple biversolution might be to
discretise the action space to make the problem finite action, but this is not always
possible and balancing the exploration-exploitation trade-off in such circumstances
is still an open problem.

State-space modelling:Using state-space modelling techniques to predict future
rewards in dynamic bandit problems. Although we dismissed using this approach
in Chapter 5, as we wanted to consider unpredictable dynamics, it would still be
useful to extend-ADAPT to scenarios where dynamics can be fitted to a certain
model, as will often be the case with climatological or financial data for example.

In such cases, the model can be used to regenerate future rewards in the MC ap-
proximation bye-ADAPT, rather than assuming the decision problem is static in
some window, which will lead to more accurate MC approximations. Rewards are
not always observed, however, which induces a missing value problem, the solution
of which is still very much an open area of research.

Modelling unknown adversaries: In repeated games with unknown rewards an
agent could attempt to learn the type of opponent faced, in order to develop a bet-
ter counter-strategy. This means the agent has an exploration-exploitation trade-off
whilst trying to learn about opponents and not just through learning the reward func-
tion. This feature could also be studied in games with more than 2 agents, which can
introduce strategic interactions suchtasit collusion— where agents agree to team

up and exploit other agents, without explicitly communicating such preferences.
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This has already been investigated in a known rewards setting in Sykulski et al.
(2010b) and Munoz de Cote et al. (2010) and applied to a 3-player game known as
the Lemonade Stand Gameextending these results to the unknown rewards set-
ting can combine this work with the findings in this thesis and further investigate
the relationship between game theory and the exploration-exploitation trade-off.

Applications: Finally, e-ADAPT can be further tested with real-world data sets (in
addition to that performed in Section 4.3.3 for a data-retrieval problem) from wire-
less sensor network problems, multi-target tracking assignments and web-based ad-
vertising problems for example, where we can implement the dynamic bandit ver-
sion of e-ADAPT. Furthermore, the multi-agent frameworks that we have studied,
can be tested (together with the off-line and on-line policies we constructed) against
real-data from mobile sensor problems and on-line auctions.
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Appendix A

Derivations and Proofs for

One-Armed Bandit Framework

A.1 Derivation of e-greedy Expected Reward

Derivation of Equation (3.11) Consider the case > 3:

ro(t) = Foylt, €) /_ Ooo az(t) e(_g("t);)d:c(t)Jr fa(t) e<‘z25)22)dx(t)>

2no2 0o +/2mo?
0 a(t)? 00 a(t)?
+(1 — Fiy(t,€)) : %G(_ 2od )daz(t) + %e<_ 2ol )dx(t)>

o0 o(55) () + 5 / e
)e(z;;%z)dx(t) ta / x(t)e(z(;f)dx(t))

2
0 0%

) 0o
= Fy(t,€) g—; —a/o

O'
o2 < x(t
(1= Pyt /2= (-4 / i

g

o2
oAy 21 28, (0.0).

Note thatf;* = exp( >dx( ) =1,as% > exp< ) is the pdf of a Rayleigh
distribution (deflned orzr( ) € [0, 00)). By symmetry the result holds fgt > «
also.
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A.2 Expansion of Binomial Coefficients in Theorem 3.1

Derivation of Equation (3.19) ' _, F'(n)G(n) =

LU
N >t2<t 2) ”_1 (1— (14" 11 —e)™) F(g)

q—l
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R )

1t—q—1

3 o1 (L~ (1= ENFle) — F(1)).
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Appendix B

The RLS Algorithm with Adaptive
Forgetting

Start with initial values(0) = 0, P(0) = 61, A(0) = 1, S(0) = 0 and)(0) =
(where¢ is a large positive number anblis the identity matrix). Then fot =

1,2,..., compute:
ANt =1)P(t - D=(1)

M) = Tt = D (0P - Va(D)’ (B.1)
E(t) =r(t) —a’ (t — 1)a(t), (B.2)
a(t) =a(t — 1) + k(H)E(), (B.3)
Pt)=\"'t—-1D)P{t—-1)-X't- k()" )Pt —-1), (B.4)
A(t) = [A(t— 1)+ wipT(t — 1)m(t)§(t)h\+, (B.5)

) =210, [T — k)z" (t)] S(t—1) [T — z(t)k"(t)]
AT 1(lﬁ)k(t) Tt ) — ANt P(t), (B.6)
=[I - k()" ()] P(t — 1) + S(t)z(t)E(). (B.7)

Computing Equations (B.1-B.4) with = 1 corresponds to the standard RLS al-
gorithm used in Section 4 for static regression problems. Equations (B.5-B.7) are
required to adapt the forgetting factdft) over time. The bracket followed by_
and)\ . in Equation (B.5) indicates truncation.



197

Appendix C

Addition Material for the
Multi-Agent Bandit Problem

C.1 Derivation of VOC and VOS for 2-armed Problem
From Equation (6.6) it follows that (fa; ;.1 > 0):
VOC,, +1I
= /max(o, Qig + QipTa(t) + Qi3r3(t)) P(Tj1 (t)[ig1 (t))dz i1 (),
= [ G amatt) + a0 Dl (s (a1,
= (s + dinzin() [ D0l () 1)

i / £50( 11 (Dlisa (0)dy i (6),
Cc3

wherecy = —2u1=dimnzin® Now,

Q4,541

S R
c1 = f; + #($Z+1(t) — #Z)
D(Tj41(t)[zis1(t) ~ N (i, ca), { ) %,

Co = 3. . — Zhi
2 JsJ S



C.1 Derivation of VOC and VOS for 2-armed Problem 198

Therefore it follows that:

VOC,, +1I

= (G + GigpaTiga (t) + @i,j+101)/ ()1 (8)|ir1 (8))daj11(F)

C3

i / (211 — cO)p(@yan(B)]ei (6)dayn £),

C3

. A . c3—c¢
= (G + Qiip1Tipa (t) + Qi jracr) {1 - ( 3\/0_2 1)1

o0
+ & / up(u|riyi(t))du,

3—C1

~ ~ A G ¢
= (Qin + QiipaZin(t) + Qi) {1 ¢ ( 3\/0_21)}

o) 1 2
+ Q11 U——=—=€xp (_u_) du
7 cs—c;  V2TCa 2¢9

. . . c3 —C
= (G + Qiip1Tipa (t) + Qujracr) {1 - ( > 1)1

vV C2
A Co (03—01)2
+ @1y — —— ) du,
Q41 5 exp( 5 ) U

and similarly fora; ;11 > 0, to get Equation (6.9). The VOS can be found more
immediately from Equation (6.5):

VOS,, = max(0, E(&;,1 + Gy ip12i41(t) + Qi jr1241(8) |21 (1))

= maX(O, OAéi’l + dz’,¢+1l’¢+1 (t) + OAéi,j_HCl) .

Note that the VOC and VOS implemented in all algorithms use on-line estimates of
a, pandy, as the true values are unknown.
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C.2 MC approximation of Optimal Exploration by Communi-

cation

Algorithm C.1 On-line MC approximation oR. (7™, z!(t))

1: Inputs: T* =T — t + 1, n (no. of times each action selected prior to time

sample estimatesy 67, . . ),

2: for all 2!(t) & y¢ (t) Ny!“(t) do

3:  Denote additional communication costla&z!(t))

4. for s =1toT* + max(n) do

5 Generater’(s) {New Covariaté
6: if s =max(n)+ 1then
7
8
9

for d =1topdo
if xq4(t) € z{(t) then
zl(s) = z4(t) {True covariate value kept at time for observed
covariate values only

10: else

11: Draw z/,(s) conditional onz!(t)

12: end if

13: end for

14: end if

15: for allc € C; do

16: if max(n) —n. <s < max(n) or E[r.(s)|z’(s), & > 0 then
17: Select actiorr and receive rewargd.(s). ¢ € S!
18: Updatea. using EM with missing covariates
19: end if

20: end for

2L 7 () = Dcesipy Tels)

22 end for

23 Rep(T", 2)(t) = Soo ) o7 (s) — TI(2{(t)) {MC approximation
24: end for
25: R.¢(T*,2(t)) = male((t)REf(T*, z{(t))

The benefit of exploration (by communication) occurs in lines 16 and 18, where if
the agent observes more covariates then the agent can make better action decisions
and updatex,. with fewer missing covariate values. The cost of exploration occurs

in line 23, where increased communication has an increased cost which is removed
from the cumulative reward functioR. s (7™, 2/(t)).
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