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ABSTRACT

Let (−A,B,C) be a linear system in continuous time t > 0 with input and output space C and

state space H. The function φ(x)(t) = Ce−(t+2x)AB determines a Hankel integral operator

Γφ(x)
on L2((0,∞);C); if Γφ(x)

is trace class, then the Fredholm determinant τ (x) = det(I +

Γφ(x)
) defines the tau function of (−A,B,C). Such tau functions arise in Tracy and Widom’s

theory of matrix models, where they describe the fundamental probability distributions of

random matrix theory. Dyson considered such tau functions in the inverse spectral problem

for Schrödinger’s equation −f ′′ + uf = λf , and derived the formula for the potential u(x) =

−2 d2

dx2 log τ (x) in the self-adjoint scattering case Commun. Math. Phys. 47 (1976), 171–

183. This paper introduces a operator function Rx that satisfies Lyapunov’s equation dRx

dx =

−ARx − RxA and τ (x) = det(I + Rx), without assumptions of self-adjointness. When −A
is sectorial, and B,C are Hilbert–Schmidt, there exists a non-commutative differential ring

A of operators in H and a differential ring homomorphism ⌊ ⌋ : A → C[u, u′, . . .] such that

u = −4⌊A⌋, which provides a substitute for the multiplication rules for Hankel operators

considered by Pöppe, and McKean Cent. Eur. J. Math. 9 (2011), 205–243. The paper obtains

conditions on (−A,B,C) for Schrödinger’s equation with meromorphic u to be integrable by

quadratures. Special results apply to the linear systems associated with scattering u, periodic

u and elliptic u. The paper constructs a family of solutions to the Kadomtsev–Petviashivili

differential equations, and proves that certain families of tau functions satisfy Fay’s identities.

MSC Classification 47B35, 34B25
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1. Introduction

This paper is concerned with Fredholm determinants which arise in the theory of linear

systems and their application to differential equations such as the Kadomtsev–Petviashvili

equation. For φ ∈ L2((0,∞);R), the Hankel integral operator corresponding to φ is Γφ where

Γφf(x) =

∫ ∞

0

φ(x+ y)f(y) dy (f ∈ L2((0,∞);C). (1.1)
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Using the Laguerre system of orthogonal functions as in [60], one can express Γφ as a matrix

[γj+k]
∞
j,k=1 on ℓ

2, which has the characteristic shape of a Hankel matrix, and one can establish

criteria for the operator to be bounded on L2((0,∞);C). Megretski, Peller and Treil [52]

determined the possible spectrum and spectral multiplicity function that can arise from a

bounded and self-adjoint Hankel operator. Thus they characterized the class of bounded

self-adjoint Hankel operators up to unitary equivalence. Their method involved introducing

suitable linear systems on a state space H, and this motivated the approach of our paper.

Previously, Dyson [20] considered the inverse spectral problem for Schrödinger’s equation

−f ′′ + uf = λf , where u ∈ C2(R;R) that decays rapidly as x → ±∞. From the asymptotic

solutions, he introduced a scattering function φ, and considered the translations φ(x)(y) =

φ(y + 2x). He showed that the potential can be recovered from the scattering data by means

of the formula

u(x) = −2
d2

dx2
log det(I + Γφ(x)

). (1.2)

These results were developed further by Ercolani, McKean [22] and others [36, 69, 73] to

describe the inverse spectral problem for self-adjoint Schrödinger operators on R. Remarkably,

some of the methods of inverse scattering theory do not really need self-adjointness. However,

a significant obstacle in this approach is that Hankel operators do not have a natural product

structure, so it is unclear as to how one can fully exploit the multiplicative properties of

determinants. This paper seeks to address this issue, by realizing Hankel operators from linear

systems, and then introducing algebras of operators which reflect the properties of Hankel

operators and their Fredholm determinants. As in [52], the Lyapunov differential equation is

fundamental to the development of the theory.

Definition (i) (Lyapunov equation). Let H be a complex Hilbert space, known as the state

space, and L(H) the space of bounded linear operators on H with the usual operator norm.

Let (e−tA)t≥0 be a strongly continuous (C0) semigroup of bounded linear operators on H such

that ‖e−tA‖L(H) ≤M for all t ≥ 0 and someM <∞. Let D(A) be the domain of the generator

−A so that D(A) is itself a Hilbert space for the graph norm ‖ξ‖2D(A) = ‖ξ‖2H + ‖Aξ‖2H , and
let A† be the adjoint of A. Let R : (0,∞) → L(H) be a differentiable function. The Lyapunov

equation is

−dRz
dz

= ARz +RzA (z > 0), (1.3)

where the right-hand side is to be interpreted as a bounded bilinear form on D(A)×D(A†).

(ii) (Operator ideals). Let L2(H) be the space of Hilbert–Schmidt operators on H, and

L1(H) be the space of trace class operators on H, so L1(H) = {T : T = VW ;V,W ∈
L2(H)}and let det be the Fredholm determinant defined on {I + T : T ∈ L1(H)}; see [67].

(iii) (Tau function). Suppose further that Rx ∈ L1(H) for all x > x0 for some x0 ∈ R.

Then the tau function is τ (x) = det(I + Rx) for x > x0.

The significant applications of this equation arises for linear systems.
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Definition (i) (Linear system). Let H0 be a complex separable Hilbert space which serves as

the input and output spaces; let B : H0 → H and C : H → H0 be bounded linear operators.

The continuous-time linear system (−A,B,C) is

dX

dt
= −AX +BU

Y = CX,

X(0) = 0. (1.4)

(ii) (Scattering function). The scattering function is φ(x) = Ce−xAB, which is a bounded

and weakly continuous function φ : (0,∞) → L(H0). In control theory, the transfer function

is the Laplace transform of φ.

(iii) (Hankel operator). Suppose that φ ∈ L2((0,∞);L(H0)). Then the corresponding

Hankel operator is Γφ on L2((0,∞);H0), where Γφf(x) =
∫∞

0
φ(x+ y)f(y) dy; see [58, 60] for

boundedness criteria.

Definition (Admissible linear system). Let (−A,B,C) be a linear system as above; suppose

furthermore that the observability operator Θ0 : L2((0,∞);H0) → H is bounded, where

Θ0f =

∫ ∞

0

e−sA
†

C†f(s) ds; (1.5)

suppose that the controllability operator Ξ0 : L2((0,∞);H0) → H is also bounded, where

Ξ0f =

∫ ∞

0

e−sABf(s) ds. (1.6)

(i) Then (−A,B,C) is an admissible linear system.

(ii) Suppose furthermore that Θ0 and Ξ0 belong to the ideal L2 of Hilbert–Schmidt oper-

ators. Then we say that (−A,B,C) is (2, 2)-admissible.

The scattering map associates to any (2, 2) admissible linear system (−A,B,C) the cor-

responding scattering function φ(x) = Ce−xAB. In Corollary 2.3, we show that for a suitable

addition and multiplication on the linear systems, this map is additive and multiplicative.

The inverse scattering problem involves recovering data about u from φ, as in (1.2). In

section 2 of this paper, we analyze the existence and uniqueness problem for the Lyapunov

equation, and show that for any (2, 2) admissible linear system, the operator

Rx =

∫ ∞

x

e−tABCe−tA dt (1.7)

is trace class and gives the unique solution to (1.3) with the initial condition

(dRx
dx

)

x=0
= −AR0 − R0A = −BC. (1.8)

Also, Rx ∈ L1(H) and the Fredholm determinant satisfies

det(I + λRx) = det(I + λΓφ(x)
) (x > 0, λ ∈ C). (1.9)
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Definition (Tau function). Given an (2, 2) admissible linear system (−A,B,C), we define

τ (x) = det(I +Rx). (1.10)

Using this general definition of τ , we can unify several results from the scattering theory

of ordinary differential equations. Such tau functions are strongly analogous to the tau func-

tions introduced by Jimbo, Miwa and Ueno [55, 33] to describe the isomonodromy of rational

differential equations.

The Gelfand–Levitan–Marchenko equation provides the linkage between φ and u via Rx.

Consider

T (x, y) + Φ(x+ y) + µ

∫ ∞

x

T (x, z)Φ(z + y) dz = 0 (0 < x < y) (1.11)

where T (x, y) and Φ(x+y) arem×m matrices with scalar entries. In the context of (−A,B,C)
we assume that Φ(x) = Ce−xAB is known and aim to find T (x, y). In section two, we use

Rx to construct solutions to the associated Gelfand–Levitan equation (1.11), and introduce a

potential

u(x) = −2
d2

dx2
log det(I + Rx). (1.12)

Then we obtain a differential equation linking φ(x) to u(x). In examples of interest in scattering

theory, one can calculate det(I+λRx) more easily than the Hankel determinant of Γφ(x)
directly

[20, 22, 47, 61], since Rx has additional properties that originate from Lyapunov’s equation.

In section two, we establish properties of Rx and τ for (2, 2) admissible linear systems, and

use Rx to solve the Gelfand–Levitan equation.

Definition (Sectorial operator). For 0 < θ ≤ π, we introduce the sector Sθ = {z ∈ C \ {0} :

| arg z| < θ}. A closed and densely defined linear operator −A is sectorial [21] if there exists

π/2 < θ < π such that Sθ is contained in the resolvent set of −A and |λ|‖(λI+A)−1‖L(H) ≤M

for all λ ∈ Sθ. Let D(A) be the domain of A and D(A∞) = ∩∞
n=0D(An).

Definition (Deformations). There are three basic deformations of a (2, 2)-admissible linear

system Σ = (−A,B,C) with H0 = C and −A a sectorial operator, with corresponding effects

on tau functions.

(i) Translation takes Σ 7→ Σ(a), where Σ(a) = (−A,Be−aA, Ce−aA) and τ (x) 7→ τ (x+ a)

for a ∈ Ω. The translation operation is accounted for in the properties of Hankel operators,

and is used in section two.

(ii) The Miura transform is the involution (−A,B,C) 7→ (−A,B,−C). In section three,

we show that the tau functions τ∞ for (−A,B,C) and τ0 for (−A,B,−C) satisfy

τ ′′0 (x)τ∞(x)− 2τ ′0(x)τ
′
∞(x) + τ0(x)τ

′′
∞(x) = 0. (1.13)

(iii) The Darboux addition (spectral shift) [47] maps Σ 7→ Σζ where

Σζ = (−A, (ζI +A)(ζI −A)−1B,C) (−ζ ∈ Sθ) (1.14)
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has tau function τζ . In section three, we use this operation to construct families of solutions

to Schrödinger’s equation.

−ψ′′
ζ (x) + u(x)ψζ(x) = −ζ2ψζ(x) (x > 0), (1.15)

where u is typically complex-valued. When interpreting results, it is important to realize

that there is no simple connection between the spectrum of A on H and the spectrum of

Schrödinger’s equation on L2((0,∞);C).

Definition (State ring). Let Ω be a domain inC such that z, w ∈ Ω implies z+w ∈ Ω. Suppose

that I + Rx is invertible for all x ∈ Ω and so Fx = (I + Rx)
−1 ∈ L(H), and Fx − I ∈ L1(H).

Suppose momentarily that A ∈ L(H). We introduce an algebra AΣ of holomorphic functions

from Ω to L(H), which is generated by I, A ∈ L(H) and Fx (x ∈ Ω), and is a differential ring

for the usual pointwise multiplication and differentiation d/dx over Ω as in [63]. We define a

new multiplication

P ∗Q = P (AF + FA− 2FAF )Q (1.16)

on AΣ , and a new differentiation ∂ : AΣ → AΣ by

∂P = A(I − 2F )P +
dP

dx
+ P (I − 2F )A (1.17)

so that (A, ∗, ∂) is a differential ring. Let MΩ be the meromorphic complex functions on Ω,

with the usual pointwise operations. Then we define the bracket

⌊P⌋ = Ce−xAFxPFxe
−xAB, (1.18)

so that ⌊ . ⌋ : (AΣ, ∗, ∂) → (MΩ, ·, d/dx) is a differential ring homomorphism, so ⌊P ∗ Q⌋ =

⌊P⌋⌊Q⌋ and (d/dx)⌊P⌋ = ⌊∂P⌋.
This algebra (AΣ, ∗, ∂) is generally non commutative, is realized as an algebra of operators

on the space space H of (−A,B,C), and provides a substitute for the multiplication structure

that is lacking in the theory of Hankel operators. Our main result is as follows.

Theorem 1.1. Suppose that Σ = (−A,B,C) is a (2, 2) admissible linear system with −A
sectorial for Sθ and H0 = C.

(i) Then there exist x0 > 0 and a solution Rx to (1.3) and (1.8) such that τ (x) =

det(I+Rx) is holomorphic and u(x) is meromorphic for x ∈ Ω where Ω = {x0+z : z ∈ Sθ−π/2}.
(ii) The tau functions for Σ and Σζ give ψζ(x) = eζxτζ(x)/τ (x) that satisfies (1.15) for

−ζ ∈ Sθ.

(iii) There exists a differential algebra (AΣ, ∗, ∂) on Ω which contains Fx = (I + Rx)
−1

and there exists a differential ring homomorphism ⌊ . ⌋ : AΣ → MΩ such that u = −4⌊A⌋.
(iv) If A satisfies ⌊p(A)⌋ = 0 for some non-zero odd complex polynomial p, then

C[u, ∂u/∂x, . . . , ] is a Noetherian differential ring for ∂/∂x and the standard multiplication.

(v) If ⌊A2m−1⌋ = 0 for some m, then (1.15) can be integrated by quadratures.

In sections 4 and 5 we show that ⌊ · ⌋maps (−4∂jA)∞j=0 to (u
(j))∞j=0, and ((−1)j2A2j−1)∞j=1

to (fj)
∞
j=1, where (fj) satisfies the stationary KdV hierarchy. This provides the crucial link

between algebraic properties of AΣ for Σ = (−A,B,C) and the spectral Schrödinger equation.
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We recall that a compact Riemann surface E is hyperelliptic if and only if there exists a

meromorphic function on E that has precisely two poles. In this case, there is a two-sheeted

cover E → P1 with 2g+2 branch points, where g is the genus of E . The elliptic case has g = 1.

In case (v), u is associated a meromorphic function on a hyperelliptic curve, and the potential

is said to be finite-gap or algebro-geometric; see [14, 29].

Theorem 1.1 applies to scattering potentials such that u(x) → 0 as x → ∞. The case of

periodic potentials is considered in sections 6 and 7 of this paper.

Definition (Periodic linear system). Let A ∈ L(H) be such that (exA)x∈R is a periodic group,

and let B ∈ L(H0, H) and C ∈ L(H,H0) satisfy AE + EA = BC for some E ∈ L1(H). Then

Σ = (−A,B,C;E) is a uniformly periodic linear system, and τ (x) = det(I + exAEexA) is the

corresponding tau function.

In section 6 of this paper, we introduce a ring (AΣ, ∗, ∂) for periodic linear systems. The

periodic linear system Σ has a tau function τ and a periodic potential u, as in Hill’s equation

−f ′′ + uf = λf . Hence Σ is associated with Hill’s discriminant ∆(λ) and a spectral curve E ,
which is typically a transcendental hyperelliptic curve of infinite genus. The Jacobi variety X

of E is then an infinite dimensional complex torus.

We show that if u is an elliptic function, then there exist uniformly periodic linear systems

with tau functions τ1 and τ0 such that u(x) = τ1(x)/τ0(x). Also, we show that if Hill’s equation

for this u has general solution f(x;λ) that is meromorphic in x for all but finitely many λ ∈ C,

then there exist uniformly periodic linear systems with tau function τ3(x;λ) and τ4(x;λ) such

that f(x;λ) = τ3(x;λ)/τ4(x;λ).

Using results of Gesztesy and Weikard [31], we prove a partial converse, namely that if

Hill’s equation has a general solution of the form f(x;λ) = τ3(x;λ)/τ4(x;λ) for all λ ∈ C,

where τ3(x;λ) and τ4(x;λ) are the tau functions of uniformly periodic linear systems, then u is

an algebro geometric potential and is associated with a hyperelliptic spectral curve E of finite

genus.

The notion of a tau function of a linear system generalizes the classical concept of a

theta function for an algebraic curve. We recall that a complete complex algebraic curves

is associated with a finite dimensional Jacobian variety which has dimension determined by

the genus of the curve. Riemann’s theta functions may be defined on such a variety, and

they satisfy some addition rules known as Fay’s identities, which reflect the geometry of the

underlying curve [23]. Ercolani and McKean [22] observed that Fay’s identities can be deduced

from secant identities which relate to the properties of Wronskians of suitably chosen functions.

In this spirit, we prove that tau functions of linear systems satisfy some Wronskian identities

which are counterparts of Fay’s identities. Mumford [56] observed that Fay’s identities give

rise to nontrivial solutions of certain partial differential equations.

The Kadomtsev–Petviashvili equations describe the waves in a two dimensional dissipative

medium where the scale of the propagation of the wave along the y-axis is much larger than

the longitudinal scale along the x-axis. We write

KP
∂

∂x

(∂3u

∂x3
− 6u

∂u

∂x
+ 4λ

∂u

∂x
+ 4α

∂u

∂s

)

+ 3β2 ∂
2u

∂y2
= 0, (1.19)
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where the α, β, λ ∈ C are parameters. Krichever showed that any tau function that arises

from the theta function on the Jacobi variety of a complete complex algebraic curve satisfies

KP . Shiota [66] and Mulase [56] proved the converse, that if τ is the theta function of a finite-

dimensional Abelian manifold, and τ gives a potential that satisfies KP , then the Abelian

manifold arises as a Jacobi variety of a complex algebraic curve.

In section 9, we show that the τ functions of general linear systems under a group of

deformations give rise to a set of solutions of the KP equations.

Theorem 1.2. Let (−A1, B0, C0) and (−A2, B0, C0) be (2, 2) admissible linear systems with

input and output spaces C, where A1, A2 ∈ L(H). Let

C(y; t) = C0e
t(A3

1+λA1)/α−yA
2
1/β, B(y; t) = et(A

3
2+λA2)/α+yA

2
2/βB0;

then with

Rx(y, t) =

∫ ∞

x

e−A2sB(y; t)C(y; t)e−A1sds, (1.20)

let

u(x, y, t) = −2
∂2

∂x2
log det(I +Rx(y, t)). (1.21)

Then u satisfies KP in the form (1.19).

The KP differential equation is the first in a sequence of nonlinear partial differential

equations known as the KP hierarchy. Shiota [66] proved that these are related by an integral

involving a family of tau functions which are subject to a group of deformations involving

infinitely many parameters. We introduce a family of linear systems which are subject to

a group of deformations, and also show that such a family gives tau functions which make

Shiota’s integral vanish; this condition is known to give solutions of the KP hierarchy.

2. τ functions in terms of Lyapunov’s equation and the Gelfand–Levitan equation

The following proves uniqueness of solutions of the Lyapunov equation (1.3), in a style sug-

gested by [60, p 503]. Peller [60] discusses scattering functions that produce bounded self-

adjoint Hankel operators Γφ, and their realization in terms of continuous time linear systems.

He observes that in some cases one needs a bounded semigroup with unbounded generator

(−A). We prove the uniqueness results for bounded and strongly continuous semigroups,

then specialize to holomorphic semigroups. The main application is to the Gelfand–Levitan

equation, and associated determinants.

Proposition 2.1. Let (e−tA)t≥0 be a strongly continuous and weakly asymptotically stable

semigroup on a complex Hilbert space H, so e−tAf → 0 weakly as t→ ∞ for all f ∈ H. Then

(i) St : R 7→ e−tARe−tA for t ≥ 0 defines a strongly continuous semigroup on L1(H),

which has generator (−L), with dense domain of definition D(L) such that

L(R) = AR+RA (R ∈ D). (2.1)
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(ii) The linear operator L : D(L) → L1(H) is injective, and each R0 ∈ D(L) with L(R0) =

X, there exists a weakly convergent improper integral

R0 =

∫ ∞

0

e−tAXe−tA dt. (2.2)

(iii) Suppose moreover that ‖e−t0A‖L(H) < 1 for some t0 > 0. Then L : D(L) → L1(H) is

surjective, the integral (2.2) converges absolutely in L1(H) and R0 gives the unique solution

to AR0 +R0A = X.

Proof. (i) First observe that by the uniform boundedness theorem, there exists M such that

‖e−tA‖L(H) ≤M for all t ≥ 0, so (e−tA)t≥0 is uniformly bounded. Also, the adjoint semigroup

(e−tA
†

)t≥0 is also strongly continuous and uniformly bounded, so A and A† have dense domains

D(A) and D(A†) in H.

Now L1(H) = H⊗̂H, the projective tensor product, so for all X ∈ L1(H), there exists a

nuclear decomposition X =
∑∞

j=1BjCj where Bj , Cj ∈ H satisfy

‖X‖L1(H) =
∑∞
j=1 ‖Bj‖H‖Cj‖H . Then

St(X)−X =
∞
∑

j=1

(e−tABjCje
−tA −BjCje

−tA) +
∞
∑

j=1

(BjCje
−tA −BjCj) (2.3)

where (e−tA) is bounded, ‖e−tABj − Bj‖H → 0 and ‖e−tA†

Cj − Cj‖H → 0 as t → 0+, so

‖St(X)−X‖L1(H) → 0 as t→ 0+, so (St)t≥0 is strongly continuous on L1(H). By semigroup

theory, there exists a dense linear subspace D(L) of L1(H) such that St(R) is differentiable

at t = 0+ for all R ∈ D, and (d/dt)t=0+St(R) = −AR − RA, so the generator is (−L), where
L(R) = AR+RA.

(ii) Certainly D contains D(A†)⊗̂D(A) in L1(H) = H⊗̂H. Choosing f ∈ D(A) and

g ∈ D(A†), we find that

d

dt

〈

e−tAR0e
−tAf, g

〉

= −
〈

e−tA(AR0 + R0A)e
−tAf, g

〉

= −
〈

e−tAXe−tAf, g
〉

(2.4)

a continuous function of t > 0, so integrating we obtain

〈

R0f, g
〉

−
〈

e−sAR0e
−sAf, g

〉

=

∫ s

0

〈

e−tAXe−tAf, g
〉

dt. (2.5)

We extend this identity to all f, g ∈ H by joint continuity; then we let s→ ∞ and observe that

R0 : H → H is trace class and hence is completely continuous, hence R0 maps the weakly null

family (e−sAf)s→∞ to the norm convergent family (R0e
−sAf)s→∞, so 〈e−sAR0e

−sAf, g〉 → 0

as s→ ∞, hence we have a weakly convergent improper integral

〈

R0f, g
〉

= lim
s→∞

∫ s

0

〈

e−tAXe−tAf, g
〉

dt (f, g ∈ H). (2.6)
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(iii) The function t 7→ e−tAXe−tA takes values in the separable space L1(H) and is weakly

continuous, hence strongly measurable, by Pettis’s theorem. By considering the spectral radius,

Engel and Nagel [21] show that there exist δ > 0 and Mδ > 0 such that ‖e−tA‖L(H) ≤Mδe
−δt

for all t ≥ 0; hence (2.2) converges as a Bochner–Lebesgue integral with

‖Rx‖L1(H) ≤
∫ ∞

x

M2
δ ‖X‖L1(H)e

−2δt dt

≤ M2
δ

2δ
‖X‖L1(H)e

−2δx. (2.7)

Furthermore, A is a closed linear operator and satisfies

A

∫ s

x

e−tAXe−tA dt+

∫ s

x

e−tAXe−tA dtA =

∫ s

x

− d

dt

(

e−tAXe−tA
)

dt

= e−xAXe−xA − e−TAXe−TA

→ e−xAXe−xA (2.8)

as s → ∞ where
∫ s

x
e−tAXe−tAdt → Rx; so ARx + RxA = e−xAXe−xA for all x ≥ 0. We

deduce that x 7→ Rx is a differentiable function from (0,∞) to L1(H) and that the modified

Lyapunov equation (1.3) holds.

The hypotheses (i) and (ii) are symmetrical under the adjoint (A,R0) 7→ (A†, R†
0); how-

ever, the hypothesis (iii) is rather stringent, and will be replaced in examples by sharper

conditions.

We introduce Lyapunov’s equation, and the existence of solutions for suitable (−A,B,C).
The solution Rx is defined by a formula suggested by Heinz’s theorem [8] and has properties

analogous to the resolvent operator of a semigroup.

Definition ((2, 2) admissible linear systems). (i) Let H be a complex Hilbert space and

let Σ = (−A,B,C) be a linear system with state space H. Suppose that there is a weakly

convergent integral

Wc =

∫ ∞

0

e−tABB†e−tA
†

dt (2.9)

which defines a bounded linear operator onH; thenWc is the controllability Gramian. Suppose

further that there exists a weakly convergent integral

Wo =

∫ ∞

0

e−tA
†

C†Ce−tA dt (2.10)

which defines a bounded linear operator on H; then Wo is the observability Gramian.

(ii) Then we define Rx to be the bounded linear operator on H determined by the weakly

convergent integral

Rx =

∫ ∞

x

e−tABCe−tA dt. (2.11)

(iii) Then Σ satisfying (i) is said to be balanced if Wc =Wo and ker(Wc) = 0.
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(iv) Also, Σ satisfying (i) is said to be (2, 2) admissible if Wc and Wo are trace class.

(v) We introduce the scattering function φ(t) = Ce−tAB and the shifted scattering func-

tion φ(x)(t) = φ(t+ 2x) for x, t > 0.

(vi) The tau function of Σ is τ (x) = det(I + Rx).

(vii) For 0 < δ < π, we introduce the sector Sδ = {z ∈ C \ {0} : | arg z| < δ}. For

π/2 < δ < π, we introduce Xδ = {ζ ∈ Sδ : −ζ ∈ Sδ} which is an open set, symmetrical about

iR and bounded by lines passing through 0.

Theorem 2.2. Let (−A,B,C) be a linear system such that ‖e−t0A‖L(H) < 1 for some t0 > 0,

and that B and C are Hilbert–Schmidt operators such that ‖B‖L2(H0;H)‖C‖L2(H;H0) ≤ 1.

Suppose further that −A is sectorial on Sθ for some π/2 < θ < π.

(i) Then (−A,B,C) is (2, 2)-admissible, so the trace class operators Rx give the solution

to Lyapunov’s equation (1.3) for x > 0 that satisfies the initial condition (1.8), and the solution

to (1.3) with (1.8) is unique.

(ii) The function τ (x) = det(I + Rx) is differentiable for x ∈ (0,∞).

(iii) Then Rz extends to a holomorphic function which satisfies (1.3) on Sθ−π/2, and

Rz → 0 as z → ∞ in Sθ−ε−π/2 for all 0 < ε < θ − π/2.

Proof. (i) Since BC ∈ L1(H), the integrand of (2.11) takes values in L1(H), and we can

apply Proposition 2.1(iii) to X = BC.

(ii) The Fredholm determinant R 7→ det(I + R) is a continuous function on L1(H). Also

the integral Rx =
∫∞

x
e−tABCe−tA dt belongs to D(L) and gives a differentiable function of

x > 0 with values in L1(H).

(iii) By classical results of Hille, (e−zA)z∈Sθ−π/2
defines an analytic semigroup on Sθ−π/2,

bounded on Sν for all 0 < ν < θ − π/2, so we can define Rz = e−zAR0e
−zA and obtain an

analytic solution to Lyapunov’s equation. For all 0 < ε < θ − π/2, there exists M ′
ε such that

‖e−zA‖L(H) ≤M ′
ε for all z ∈ Sδ where δ = θ− ε− π/2. Now for z ∈ Sδ/2, we write z = x/2+

(x/2+iy) with x/2+iy ∈ Sδ and use the bound ‖e−zA‖L(H) ≤ ‖e−xA/2‖L(H)‖e−(x/2+iy)A‖L(H)

to obtain ‖e−zA‖L(H) ≤ M ′2
ε ‖e−t0A‖x/(4t0)L(H) , so ‖e−zA‖L(H) → 0 exponentially fast as z → ∞

in the sector Sδ/2. Hence Rz is holomorphic and bounded on S(θ−ε−π/2) and by (2.7), Rz → 0

as z → ∞ in S(θ−ε−π/2)/2.

Definition Given M, ε > 0 and 0 < δ < π/2, let R(δ,M, ε) be the space of all the holo-

morphic functions ψ : Sδ → C such that eε|z||ψ(z)| ≤ M for all z ∈ Sδ. Then let R =

∪0<M,0<ε,0<δ<πR(δ,M, ε).

We note that by Cauchy’s estimates, R has the following properties:

(i) φ′ ∈ R for all φ ∈ R;

(ii) for all φ ∈ R, there exists ψ ∈ R such that ψ′ = φ;

(iii) if φ ∈ R, then eφ − 1 ∈ R;

(iv) R+C is an integral domain under pointwise addition and multiplication;

(v) R+C is closed under taking of exponentials.

Hence we can therefore form the field of fractions of R+C to obtain a differential field F , so

that every elements of F is meromorphic on some sector Sη.
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Corollary 2.3. The set of scattering functions φ which arise from the (2, 2) admissible linear

systems as in Theorem 2.2 gives a subring of R.

Proof. Let (−Aj , Bj , Cj) be (2, 2) admissible linear system with scattering function φj as in

Theorem 2.2 for j = 1, 2. Then by Theorem 2.2(iii) the scattering functions satisfy φj ∈ R.

The linear system
(

[

−A1 0
0 −A2

]

,

[

B1

B2

]

, [C1 C2 ]
)

. (2.12)

is (2, 2)-admissible with scattering function φ1(x)+φ2(x), as one checks by direct calculation.

The linear system

(

−(A1 ⊗ I + I ⊗ A2), B1 ⊗ B2, C1 ⊗ C2

)

. (2.13)

is also (2, 2) admissible with scattering function φ1(x)φ2(x). One checks that the semigroups

(e−tA1⊗I)t>0 and likewise (I⊗e−tA2)t>0 are strongly continuous on the tensor product Hilbert

space H⊗H, then (e−tA1 ⊗e−tA2)t>0 is strongly continuous on H⊗H by B15 of Engel]. Also,

B1 ⊗ B2 and C1 ⊗ C2 are Hilbert–Schmidt, as one checks by considering orthonormal bases.

Example. Let ∆ = −d2/dx2 be the usual Laplace operator which is essentially self-adjoint

and non-negative on C∞
c (R;C) in L2(R;C). We introduce A =

√
I +∆ which is given by

the Fourier multiplier FAf(ξ) =
√

1 + ξ2Ff(ξ). Then (e−zA) and (e−zA
2

) give bounded

holomorphic semigroups on H, as in Theorem 2.2, on the right half-plane {z ∈ C : ℜz ≥ 0},
which is the closure of Sπ/2. On the imaginary axis, we have unitary groups (eitA) and

(e−itA
2

). By classical results from wave equations, we can write eitA+e−itA = 2 cos(tA) where

u(x, t) = cos(tA)f(x) is given by

u(x, t) =
1

2

(

f(x+ t) + f(x− t)
)

+
t

2

∫ x+t

x−t

f(y)
J ′
0(
√

t2 − (x− s)2)
√

t2 − (x− s)2
ds (f ∈ C∞

c (R;C)), .

(2.14)

with J0 is Bessel’s function of the first kind of order zero, and u satisfies

∂2u

∂x2
− ∂2u

∂t2
= u(x, t)

u(x, 0) = f(x);

∂u

∂t
(x, 0) = 0. (2.15)

Note that (exp(t(iA)2j−1)) gives a unitary group on H for j = 0, 1, 2, . . ..

Definition (i) (Block Hankel operators). Say that Γ ∈ L(H) is block Hankel if there exists

1 ≤ m < ∞ such that Γ is unitarily equivalent to the block matrix [Aj+k−2]
∞
j,k=1 on ℓ2(Cm)

where Aj is a m×m complex matrix for j = 0, 1, . . ..

(ii) Let (−A,B,C) be a (2, 2) admissible linear system with input and output space H0,

where the dimension of H0 over C is m <∞. Then m is the number of outputs of the system,
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and systems with finite m > 1 are known as MIMO for multiple input, multiple output, and

give rise to block Hankel operators with Φ(x) = Ce−xAB; see [60].

(iii) The Gelfand–Levitan integral equation for (−A,B,C) as in (ii) is

T (x, y) + Φ(x+ y) + µ

∫ ∞

x

T (x, z)Φ(z + y) dz = 0 (0 < x < y) (2.16)

where T (x, y) and Φ(x+ y) are m×m matrices with scalar entries, and µ ∈ C.

Proposition 2.4. (i) In the notation of Theorem 2.2, there exists x0 > 0 such that

Tµ(x, y) = −Ce−xA(I + µRx)
−1e−yAB (2.17)

satisfies the integral equation (2.16) for x0 < x < y and |µ| < 1.

(ii) The determinant satisfies det(I + µRx) = det(I + µΓΦ(x)
) and

µtraceTµ(x, x) =
d

dx
log det(I + µRx). (2.18)

(iii) Suppose that t 7→ U(t) is a continuous function [0, 1] → L(H) such that U(t)A =

AU(t) and ‖U(t)‖L(H) ≤ 1. Then there is a family of (2, 2) admissible linear systems

Σ(t) = (−A,U(t)B,CU(t)) (t ∈ [0, 1]); (2.19)

the corresponding tau function τ (x, t) is continuous for (x, t) ∈ (0,∞)× [0, 1].

Proof. (i) We choose x0 so large that eδx0 ≥Mδ/2δ, then by (2.7), we have |µ|‖Rx‖L(H) < 1

for x > x0, so I + µRx is invertible. Substituting into the integral equation, we obtain

Ce−(x+y)AB − Ce−xA(I + µRx)
−1e−yAB

− µCe−xA(I + µRx)
−1

∫ ∞

x

e−zABCe−zA dze−yAB

= Ce−(x+y)AB − Ce−xA(I + µRx)
−1e−yAB − µCe−xA(I + µRx)

−1Rxe
−yAB

= 0. (2.20)

(ii) As in (1.5), the operator Θx : L2(0,∞) → H is Hilbert–Schmidt; likewise Ξx :

L2(0,∞) → H is Hilbert–Schmidt; so (−A,B,C) is (2, 2)-admissible. Hence ΓΦ(x)
= Θ†

xΞx
and Rx = ΞxΘ

†
x are trace class, (I + µRx) is a holomorphic function of x on some sector Sδ

as in Theorem 2.2 and

det(I + µRx) = det(I + µΞxΘ
†
x) = det(I + µΘ†

xΞx) = det(I + µΓΦ(x)
). (2.21)

By the Riesz functional calculus, (I + µRx)
−1 is meromorphic for x in some Sδ. Correcting a

typographic error in [9, p. 324], we rearrange terms and calculate the derivative

µTµ(x, x) = −µtrace
(

Ce−xA(I + µRx)
−1e−xAB

)

= −µtrace(I + µRx)
−1e−xABCe−xA

= µtrace
(

(I + µRx)
−1 dRx

dx

)

=
d

dx
trace log(I + µRx). (2.22)
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This identity is proved for |µ| < 1 and extends by analytic continuation to the maximal domain

of Tµ(x, x).

(iii) Since A commutes with U(t), the domain D(A) is invariant under U(t), and the

multiplications B 7→ U(t)B, C 7→ CU(t) and e−xA 7→ U(t)e−xAU(t) preserve the hypotheses

of Theorem 2.2, so (−A,U(t)B,CU(t)) is (2, 2) admissible. By commutativity, we have

τ (x, t) = det(I + U(t)RxU(t)), (2.23)

which depends continuously on (x, t).

We refer to Σ(t) = (−A,U(t)B,CU(t)) as a deformation of Σ, and analyze particular cases

below.

3. The Baker–Akhiezer function of an admissible linear system

In this section, we consider the Darboux addition rule for potentials and analyze the transfor-

mation (−A,B,C) 7→ (−A,B,−C) and the effect on the ratios and derivatives of τ functions.

Definition (Baker–Akhiezer function). (i) Let (−A,B,C) be as in Theorem 2.2, and let

Σζ = (−A, (ζI + A)(ζI −A)−1B,C) (ζ ∈ C ∪ {∞} \ Spec(A)) (3.1)

so that Σζ defines a (2, 2) admissible linear systems for ζ in an open subset of C∪ {∞} which

includes {ζ ∈ C : −ζ ∈ Sθ} for some π/2 < θ < π. We identify Σ∞ with (−A,B,C), and Σ0

with (−A,B,−C).
(ii) Let τζ be the tau function of Σζ , and let the Baker–Akhiezer function for the family

of linear systems be

ψζ(x) =
τζ(x)

τ∞(x)
exp
(

ζx
)

. (3.2)

(iii) Let τ∗ζ (x) = τζ̄(x̄) as in Schwarz’s reflection principle, and let

Σ∗
ζ = (−A†, C†, B†(ζI +A†)(ζI − A†)−1) (ζ ∈ C ∪ {∞} \ Spec(A†)) (3.3)

so Σζ 7→ Σ∗
ζ is an involution, and Σ∗

ζ has tau function τ∗.

The following result introduces a family of solutions of Schrödinger equation corresponding

to the Σζ with an addition rule in the style of Darboux.

Proposition 3.1. Let (−A,B,C) be as in Theorem 2.2.

(i) Then for−ζ ∈ Sθ, the linear system Σζ is also (2, 2) admissible, and the Baker–Akhiezer

function satisfies

− d2

dx2
ψζ(x) + u∞(x)ψζ(x) = −ζ2ψζ(x). (3.4)

(ii) There exist hj ∈ C∞((0,∞);C) such that there is an asymptotic expansion

ψζ(x) ≍ eζx
(

1 +
h1(x)

ζ
+
h2(x)

ζ2
+ . . .

)

(3.5)

13



as ζ → ±i∞, and the expansion is uniform for x in compact subsets of (0,∞).

Proof (i) For all ζ ∈ C\Spec(A), there exists x0(ζ) such that ‖(ζI+A)(ζI−A)−1Rx‖L1(H) < 1

for all x > x0(ζ), so that τζ(x) is continuously differentiable and non-zero as a function of

x ∈ (x0(ζ),∞). In particular, suppose that ℜζ < 0, then −ζ ∈ Sθ so ζI − A is invertible.

Using the R function for Σζ , we write

τζ(x)

τ∞(x)
=

det
(

I + (ζI + A)(ζI − A)−1Rx
)

det
(

I + Rx
)

=
det
(

I + (ζI − A)−1((ζI −A)Rx +ARx +RxA)
)

det
(

I + Rx
)

=
det
(

I + Rx + (ζI −A)−1(ARx +RxA)
)

det
(

I + Rx
) (3.6)

so that when ARx+RxA has rank one, the perturbing term (ζI−A)−1(ARx+RxA) has rank

one; continuing we find

τζ(x)

τ∞(x)
= det

(

I + (ζI −A)−1e−xABCe−xA(I +Rx)
−1
)

= det
(

I + Ce−xA(I +Rx)
−1(ζI −A)−1e−xAB

)

= 1+ Ce−xA(I + Rx)
−1(ζI −A)−1e−xAB, (3.7)

since B : C → H and C : H → C have rank one. Hence

ψζ(x) =
τζ(x)

τ∞(x)
exp
(

ζx
)

= exp
(

ζx
)

+ Ce−xA(I + Rx)
−1(ζI − A)−1e−xAB exp

(

ζ
)

= exp
(

ζx
)

−
∫ ∞

x

Ce−xA(I + Rx)
−1e−yAB exp

(

ζy
)

dy

= exp
(

ζx
)

+

∫ ∞

x

T (x, y) exp
(

ζy
)

dy. (3.8)

Here T satisfies the Gelfand–Levitan equation, and by integrating by parts, we see that

∂2T

∂x2
− ∂2T

∂y2
= u(x)T (x, y) (3.9)

where u(x) = −2 d2

dx2 log τ (x). Then by integrating by parts, we see that ψζ satisfies

Schrödinger’s equation.

The solutions of the differential equation depend analytically on ζ at those points where

the potential depends analytically on ζ; note that ζ 7→ τζ(x) is holomorphic and non zero for

‖Rx‖ < 1 and −ζ ∈ Sθ. Then we continue the solutions analytically to all −ζ in the sector

Sθ, on which ψζ(x) is holomorphic as a function of ζ for x > 0.
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(ii) Observe that Xθ = Sθ∩ (−Sθ) contains iR\{0}. For ζ ∈ Sθ∩ (−Sθ), by (i) there exist

solutions ψζ(x) and ψ−ζ(x) to (3.3). In particular, ψik and ψ−ik(x) are solutions for k > 0.

We integrate by parts repeatedly

e−xA(ζI −A)−1 = e−xA
∫ ∞

0

eζse−sA ds

=
e−xA

ζ
+
Ae−xA

ζ2
+ . . .+

Ak−1e−xA

ζk
+

∫ ∞

0

Ake−xA

ζk
eζse−sA ds, (3.10)

where the integral converges by the hypothesis of Theorem 2.2. Also, (e−zA) is an analytic

semigroup in the sector Sθ−π/2, so D(Aj) is a dense linear subspace of H for all j = 1, 2, . . .

and Aje−xA ∈ L(H) and by Cauchy’s estimates there exists C > 0 such that ‖Aje−xA‖L(H) ≤
Cj!/xj for all x > 0. So we can generate an asymptotic expansion of (3.7) with terms

hj(x) = Ce−xA(I +Rx)
−1Aj−1e−xAB (3.11)

which is bounded on compact subsets of (0,∞).

Definition (Darboux transforms). Let (−A,B,C) be an (2, 2) admissible linear system with

tau function τ∞(x;µ) = det(I + µRx). Define the Darboux transform of (−A,B,C) to be

(−A,B,−C) with tau function transform τ0(x;µ) = det(I − µRx). Let

v =
1

µ

d

dx
log

τ∞
τ0
, w =

1

µ

d

dx
log
(

τ0τ∞
)

,

u∞ = − 2

µ2

d2

dx2
log τ∞, u0 = − 2

µ2

d2

dx2
log τ0. (3.12)

In the following result, we show how products and quotients of τ functions can be linked

by the Gelfand–Levitan equation for 2×2 matrices, and satisfy the identities usually associated

with Darboux transforms in the theory of integrable systems. Identities such as (3.18) also

appear in Appendix A16 of Mehta [54].

Theorem 3.2. Let (−A,B,C) be a (2, 2)-admissible linear system with input and output

spaces C, and let φ(x) = Ce−xAB.

(i) Then there exists δ > 0 such that for all µ ∈ C such that |µ| < δ, the integral equation

(2.16) with

T (x, y) =

[

W (x, y) V (x, y)
V (x, y) W (x, y)

]

, (3.13)

Φ(x+ y) =

[

0 φ(x+ y)
φ(x+ y) 0

]

(3.14)

has a solution such that

W (x, x) =
d

dx

1

2µ
log
(

τ∞(x;µ)τ0(x;µ)
)

, (3.15)
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V (x, x) =
d

dx

1

2µ
log

τ∞(x;µ)

τ0(x;µ)
. (3.16)

and
1

2µ

d

dx
W (x, x) = −V (x, x)2; (3.17)

(ii) also Toda’s equation holds in the form

τ ′′0 τ∞ − 2τ ′0τ
′
∞ + τ0τ

′′
∞ = 0. (3.18)

Proof. (i) Let

T∞(x, y) = −Ce−xA(I + µRx)
−1e−yAB, (3.19)

T0(x, y) = Ce−xA(I − µRx)
−1e−yAB (3.20)

and

Φ(x) =

[

0 φ(x)
φ(x) 0

]

. (3.21)

Now let

T (x, y) =
1

2

[

T∞ + T0 T∞ − T0
T∞ − T0 T∞ + T0

]

(3.22)

so that

T (x, y) = −
[

C 0
0 C

] [

e−xA 0
0 e−xA

] [

I µRx
µRx I

]−1 [
e−yA 0
0 e−yA

] [

0 B
B 0

]

(3.23)

hence T satisfies the Gelfand–Levitan equation

T (x, y) + Φ(x+ y) + µ

∫ ∞

x

T (x, z)Φ(z, y) dz = 0. (3.24)

ii) As in Proposition 2.4,

T∞(x, x) =
1

µ

d

dx
log τ∞(x), (3.25)

T0(x, x) =
1

µ

d

dx
log τ0(x); (3.26)

hence (3.18) is equivalent to the condition

d

dx
T0(x, x) + µ

(

T0(x, x)− T∞(x, x)
)2

+
d

dx
T∞(x, x) = 0, (3.27)

which we now verify. The left-hand side equals

Ce−xA
(

−A(I − µRx)
−1 − (I − µRx)

−1µ(ARx +RxA)(I − µRx)
−1 − (I − µRx)

−1A
)

e−xAB

+Ce−xA
(

(I − µRx)
−1 + (I + µRx)

−1
)

e−xAµBCe−xA
(

(I − µRx)
−1 + (I + µRx)

−1
)

e−xAB
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+Ce−xA
(

A(I+µRx)
−1−(I+µRx)

−1µ(ARx+RxA)(I+µRx)
−1+(I+µRx)

−1A
)

e−xAB (3.28)

All of the terms begin with Ce−xA and end with e−xAB, and we can replace e−xAµBCe−xA

by µ(ARx +RxA) to obtain

(3.28) = Ce−xA
(

−2(I − µRx)
−1A(I − µRx)

−1 + 4(I − µ2R2
x)

−1µ(ARx + RxA)(I − µ2R2
x)

−1

+ 2(I + µRx)
−1A(I + µRx)

−1
)

e−xAB

= 0. (3.29)

This proves (3.18), and one can easily check that (3.18) is equivalent to

u0(x) =
1

µ

dv

dx
+ v(x)2, v(x)2 = − 1

µ

dw

dx
. (3.30)

The entries of T satisfy the pair of coupled integral equations

0 =W (x, y) + µ

∫ ∞

x

V (x, s)φ(s+ y) ds

0 = V (x, y) + φ(x+ y) + µ

∫ ∞

x

W (x, s)φ(s+ y) ds; (3.31)

so W satisfies

0 = −W (x, z)+µ

∫ ∞

x

φ(x+y)φ(y+ z) dy+µ2

∫ ∞

x

W (x, s)

∫ ∞

x

φ(s+y)φ(y+ z) dyds, (3.32)

which explains how µ2Γ2
φ enters the discussion in several determinant formulas [67].

Definition (i) (Darboux Addition). For −ζ ∈ Sθ ∪ {0} we define the Darboux addition rule

on (2, 2) admissible linear systems by Mζ : (−A,B,C) 7→ (−A, (ζI + A)(ζI − A)−1B,C) and

on potentials by

u∞ 7→ uζ = u∞ − 2(logψζ)
′′. (3.33)

(ii) Let Wr(ϕ, ψ) be the Wronskian of ψ, ϕ ∈ C1((0,∞);C).

Corollary 3.3. The set {Mζ , (ζ ∈ Xθ),M0,M∞ = I} generates a group such that M2
0 = I,

MζM−ζ = I and MζMη corresponds to adding −2 d2

dx2 logWr(ψζ , ψη) to the potential.

Proof. The definition is consistent with [22, p 484], and p. 414 of [47]. In particular,

ψ0(x) = τ0(x)/τ∞(x), and u0(x) = u∞(x)− 2 d2

dx2 logψ0(x), which is consistent with (3.18).

For ζ1 6= ζ2, let Ψ(x) =Wr(ψζ1 , ψζ2)/ψζ2 , and observe that

Ψ′′ =
(

ζ22 + u∞ − 2(logψζ1)
′′
)

Ψ.

This gives the basic composition rule forMζ2Mζ1 . The other statements follow from Proposition

3.1 and Theorem 3.2.
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Definition (i) Let Ω be a domain in C. A divisor δ on Ω is a function δ : Ω → Z such that

the restriction of δ to K has finite support for all compact subsets K of Ω.

(ii) For a meromorphic function f on Ω, we let ν(z) be the order of z as a zero of f , and

ν(p) be the order of p as a pole. Then (f) =
∑

z ν(z)δz −∑p ν(p)δp defines the principal

divisor corresponding to f ; see [65].

(iii) Let log+ x = max{0, logx} for x > 0. For any meromorphic function f let

m(r; f) =

∫ 2π

0

log+ |f(reiθ)| dθ
2π

(r > 0). (3.34)

Proposition 3.4. Suppose that φ : (0,∞) → R arises from a (2, 2) admissible linear system.

Let τ∞(x;µ) = det(I + µΓφ(x)
), and τ0(x;µ) = τ∞(x;−µ) for all x > 0 and µ ∈ C.

(i) Then µ 7→ τ∞(x;µ) is entire, and τ∞(x; µ̄) = τ∞(x;µ) for all x > 0.

(ii) Let

q(µ) =
τ∞(0;µ)

τ0(0;µ)
. (3.35)

• Then q is meromorphic, q∗(µ) = q(µ) and q(µ)q(−µ) = 1;

• all the zeros and poles of q are simple and lie in R \ {0};
• the zeros (zj) of q satisfy

∑∞
j=1 1/|zj | <∞, and

• m(r; q)/r → 0 as r → ∞.

(iii) Conversely, let q satisfy the conclusions of (ii). Then there exists a balanced linear

system (−A,B,C) with input and output space C, such that q(µ) = κτ∞(0;µ)/τ0(0;µ) for

some constant κ.

Proof. (i) This follows from Theorem 2.2 (ii).

(ii) Since Γφ is self-adjoint and trace class, the spectrum consists of 0, together with non-

zero real eigenvalues λj with multiplicity ν({λj}), and for a self-adjoint Γφ the algebraic and

geometric multiplicity are equal. For a Hankel operator Γφ, the dimension of {ξ : Γξ = 0} is

either zero or infinity; so by compressing Γφ to the closure of its range, we can assume 0 is

not an eigenvalue. Then the function q(µ) = τ∞(µ)/τ0(µ) is meromorphic on C, the identity

q(µ)q(−µ) = 1 is trivially true, while q = q∗ holds by (i).

The formal difference of the zeros and poles of q on {µ ∈ C : |µ| < ρ} may be represented

by the divisor

(q) =
∑

j:|1/λj |<ρ

(ν({λj})δ−1/λj
− ν({λj})δ1/λj

)

=
∑

j:λjρ>1

(ν(λj)− ν(−λj))(δ−1/λj
− δ1/λj

), (3.36)

where ν({λj}) − ν({−λj}) belongs to {−1, 0, 1} by a theorem of Megretskii, Peller and Treil

[53]. Consider λ > 0. If ν(λ) − ν(−λ) = −1, then q has a simple zero at −1/λ and a simple

pole at 1/λ; whereas if ν(λ) − ν(−λ) = 1, then q has a simple zero at 1/λ and a simple pole

at −1/λ.
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Also
∑∞
j=1 |λj | converges since Γφ is trace class, so

∑∞
j=1 1/|zj| converges. Finally, stan-

dard results on convergent infinite products from [31’, Theorem 1.9] show that m(r; q)/r → 0

as r → ∞.

(iii) Suppose conversely that q satisfies the conclusions of (ii). Now q(0)2 = 1 so 0 is

neither a zero nor a pole of q; also z is a zero of q if and only if p = −z is a pole of q, so the

divisor of q is

(q) =
∑

z

δz − δ−z, (3.37)

where we have summed over the set of zeros z of q. Now z ∈ R \ {0} for all the zeros, and

the z have no point of accumulation on R since q is meromorphic, so we can list the zeros

in a (possibly finite) sequence (zj)
∞
j=1 such that (|zj |)∞j=1 is strictly increasing. By hypothesis

∑∞
j=1 1/|zj| converges.
Let λj = −1/zj and define ν : R → Z by ν(λj) = 1 for j = 1, 2, . . ., and ν(λ) = 0

otherwise. Then there exists a self-adjoint Hankel operator Γ on L2((0,∞);C) with spectral

multiplicity function ν and spectrum {λj : j = 1, 2, . . .} ∪ {0} . Since
∑∞

j=1 |λj | converges, Γ
is trace class and has a Fredholm determinant, so

det(I + µΓ)

det(I − µΓ)
=

∞
∏

j=1

1− µ/zj
1 + µ/zj

(3.38)

is meromorphic with only simple zeros at zj and simple poles at −zj . Hence the product in

(3.38) has the same divisor as f , and we deduce that there exists an entire function f such

that q(µ)e−f(µ) equals the product in (3.38). The next step is to eliminate this f by using

elementary Nevanlinna theory.

Let n(r) = ♯{zj : |zj | ≤ r} be the counting function for zeros, or equivalently poles of q,

and then let N(r; q) =
∫ r

0
n(s)s−1ds. By standard results, we have convergent expressions

∞
∑

j=1

1

|zj |
=

∫ ∞

0

n(r)dr

r2
, (3.39)

from which we deduce that n(r)/r → 0 and N(r; q)/r → 0 as r → ∞; so the Nevanlinna

characteristic satisfies N(r; q) +m(r; q) = o(r) as r → ∞. By [31’, Theorem 1.9], we deduce

that f(µ) is a polynomial of degee zero, namely a constant.

By Theorem 1.1 of [53], Γ may be realized by a balanced linear system (−A,B,C) with
input and output space C, where A ∈ L(H) bounded, and Γ = Γφ as in (1.1), where φ(t) =

Ce−tAB.

We now show how a Schrödinger differential equation of scattering type gives rise to an

admissible linear system as in Theorem 3.2; this justifies the terminology ’scattering function’

as applied to φ. In section 4 of [9], we realized the scattering data from Schrödinger’s equation

from a linear system with unbounded A; in the following result, we realize the data with a
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linear system with A ∈ L(H) .The differential equation −f ′′+(v′+v2)f = k2f may be written

as
d

dx

[

f
g

]

=

[

v ik
ik −v

] [

f
g

]

(3.40)

where we suppose that v ∈ C∞
c (R;R) for simplicity. For λ = k2 > 0, there exists a solution

f(x) = ψ(x; k) such that

ψ(x; k) ≍
{

e−ikx + s21(k)e
ikx, as x→ ∞;

s̄11(k)e
−ikx, as x→ −∞.

(3.41)

There may also be a discrete spectrum λj = −κ2j with κn ≥ . . . ≥ κ1 > 0, where each κ2j
is associated to a real eigenfunction ψ(x;−κ2j ) called a bound state that is asymptotic to

c(−κ2j )e−κjx as x → ∞, where c(−κ2j ) is normalized by taking
∫∞

−∞
ψ(x;−κ2j )2dx = 1. The

discrete spectrum gives rise to a linear system with finite dimensional state space, as we discuss

in Proposition 4.5. Note that −κj − κℓ < 0 for all j, ℓ.

So we suppose for the moment that the discrete spectrum is absent, and the inverse

spectral problem is to recover v from s21(k) and s11(k), up to equivalence. We aim to introduce

an admissible linear system from the spectral data and determine the potential.

As in [22], the scattering matrix is

S(k) =

[

s11(k) −s̄21(k)
s21(k) s̄11(k)

]

∈ SU(2) (3.42)

where s21(k) is called the reflection coefficient and s11(k) is the transmission coefficient for

k ∈ R. We suppose that s21(−k) = s21(k), and that s21 ∈ L2(R;C) is absolutely continuous

with s′21 ∈ L2(R;C). Let

an =
(−1)n

2π

∫ ∞

−∞

s21(k)
(1/2 + ik)n

(1/2− ik)n+1
dk, (3.43)

Proposition 3.5. Suppose that (3.41) has no bound states, and suppose that (an)
∞
n=0 satisfy

lim sup
n→∞

|an|1/n < 1/3. (3.44)

Then there exists a (2, 2) admissible linear system (−A,B,C) with H0 = C and bounded

A,B,C such that the potential u0 = v′+v2 of −f ′′+u0f = λf is determined by the τ function

of (−A,B,−C).
Proof. We introduce the scattering function

φ(x) =
1

2π

∫ ∞

−∞

s21(k)e
ixk dk (x > 0), (3.45)

so that φ ∈ L2((0,∞);R) and xφ(x) ∈ L2((0,∞);R); hence Γφ determines a self-adjoint and

Hilbert–Schmidt operator on L2((0,∞);C). We now introduce a linear system which realizes

this φ.
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Let Ln(x) = ex(d/dx)n(xne−x)/n! be the Laguerre polynomial of order zero and degree

n; then the nth Laguerre function is

e−x/2Ln(x) =
1

2πi

∫

C(1,δ)

e−xz/2
(1 + z)n

(1− z)n
dz

1− z
, (3.46)

where C(1, δ) is the circle of centre 1 and radius 0 < δ < 1 in C. This is a special case of a

formula of Tricomi, and follows from Cauchy’s integral formula. Then (e−x/2Ln(x))
∞
n=0 gives

an orthonormal basis for L2(0,∞). By Plancherel’s formula we find that

an =

∫ ∞

0

φ(x)e−x/2Ln(x)dx (n = 0, 1, 2, . . .) (3.47)

are the coefficients of φ with respect to (e−x/2Ln(x))
∞
n=0 and we introduce

b(z) =

∞
∑

n=0

an
(1 + z)n

(1− z)n
(z ∈ C(1, δ)); (3.48)

by the hypothesis, lim supn→∞ |an|1/n = ρ < 1/3 so the series for b(z) converges for all

z ∈ C outside of the disc D((1 + ρ2)/(1 − ρ2); 2ρ/(1 − ρ2)). Hence can choose 0 < δ < 1 so

(2 + δ) lim supn→∞ |an|1/n/δ < 1 so that this series converges absolutely and uniformly on

C(1, δ).

We parametrize C(1, δ) by z = 1 + δeiθ for θ ∈ [0, 2π], and introduce the Hilbert space

H = L2(C(1, δ); dθ;C). Then we introduce bounded linear operators

A : H → H : f(z) 7→ zf(z)/2

B : C → H : β 7→ βb(z)

C : H → C : g 7→ 1

2πi

∫

C(1,δ)

g(z)
dz

1 − z
. (3.49)

Thus (−A,B,C) gives a linear system with state space H, input and output space C.

From the orthogonal series expansion φ(t) =
∑∞

n=0 ane
−t/2Ln(t), we note that

φ(t) =
1

2πi

∫

C(1,δ)

∞
∑

n=0

an(1 + z)ne−zt/2dz

(1− z)n+1
= Ce−tAB. (3.50)

Also, the corresponding R operator has integral kernel

Rx =

∫ ∞

x

e−tABCe−tAdt↔ e−xz/2−xw/2b(z)

z + w
. (3.51)

We observe that ℜz ≥ 1− δ for all z on C(1, δ); hence ‖e−tA‖L(H) ≤ e−t(1−δ)/2; so (−A,B,C)
is (2, 2) admissible by Theorem 2.2(i).
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For all φ ∈ L2((0,∞);R) we have (an)
∞
n=0 ∈ ℓ2 and hence b(iy)/(1 − iy) gives a function

in L2(R;C). Hence by deforming (3.48) to an integral along the imaginary axis ℜz = 0, we

can obtain an L2 Plancherel integral

φ(t) =
1

2π

∫ ∞

−∞

e−ity
b(iy)dy

1− iy
. (3.52)

However, the operation of multiplication by iy is clearly unbounded on this deformed contour.

We now recover u from (−A,B,C) via the Gelfand–Levitan equation. The kernel

T0(x, y) = Ce−xA(I −Rx)
−1e−yAB (x0 < x < y) (3.53)

as in (2.17) gives the unique solution of the integral equation

−T0(x, y) + φ(x+ y) +

∫ ∞

x

T0(x, y)φ(y + z)dz = 0 (x0 < x < y) (3.54)

for some x0 > 0. Then one checks that

∂2T0
∂x2

− ∂2T0
∂y2

− q(x)T0(x, y) = 0, (3.55)

where q(x) = −2(d/dx)T0(x, x). Also, one has T0(x, x) = (d/dx) log det(I − Rx), so q(x) =

−2(d2/dx2) log τ (x). Given this partial equation for T0(x, y) one can check that

f(x; k) = eikx +

∫ ∞

x

eikyT0(x, y)dy (3.56)

satisfies −f ′′(x; k)+ q(x)f(x; k) = k2f(x; k). Hence we can identify q(x) with u0(x) = v′(x) +

v(x)2, and thus obtain a solution of the inverse spectral problem.

4 The state ring associated with an admissible linear system

Gelfand and Dikii [26] considered the algebraAu = C[u, u′, u′′, . . .] of complex polynomials

in a smooth potential u and its derivatives. They showed that if u satisfies the stationary higher

order KdV equations (5.1), then Au is a Noetherian ring [6] and the associated Schrödinger

equation is integrable by quadratures; see [14, 63]. In this section, we introduce an analogue

AΣ for an admissible linear system. In the subsequent section, we link this to the result from

[26].

We introduce these state rings in this section, and develop a calculus for Rx which is the

counterpart of Pöppe’s functional calculus for Hankel operators from [61, 62]. As we see in

subsequent sections, our theory of state rings has wider scope for generalization.

Definition (Differential rings). (i) Let R be a ring with ideal J , and let ∂ : R → R be a

derivation. Then RJ = {r ∈ R : ∂(r) ∈ J } gives a subring of R, the ring of constants relative

to J . When R is an algebra over C and J = 0, we call R0 the constants; see [63].
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(ii) Let H and H0 be separable complex Hilbert spaces, let L(H) be the ring of bounded

linear operators on H. Let S be a subring of C∞((0,∞);L(H)) and B be a subring of

C∞((0,∞);L(H0)); that is we suppose that each T ∈ S is a differentiable function of x ∈ (0,∞)

as we indicate by writing Tx; we suppose further that dTx/dx ∈ S, and that (d/dx)(ST ) =

(dS/dx)T + S(dT/dx). Then S is a differential ring. When I ∈ S and θ ∈ C, we identify θI

with θ to simplify notation.

Definition (State ring of a linear system). Let (−A,B,C) be a linear system such that

A ∈ L(H). Suppose that:

(i) S is a differential subring of C∞((0,∞);L(H));

(ii) I, A and BC are constant elements of S;
(iii) e−xA, Rx and Fx = (I + Rx)

−1 belong to S.
Then S is a state ring for (−A,B,C).
Lemma 4.1. Suppose that (−A,B,C) is a linear system with bounded A and that Rx gives

a solution of Lyapunov’s equation (1.3) such that I + Rx is invertible for x > 0 with inverse

Fx.

Then the free associative algebra S generated by I, R0, A, F0, e
−xA, Rx and Fx is a state

ring for (−A,B,C) on (0,∞). For all t > 0, there exists a ring homomorphism St : S → S
given by St : G(x) 7→ G(x+ t) such that St commutes with d/dx

Proof. We can regard S as a subring of Cb((0,∞),L(H))), so the multiplication is well

defined. Then we note that BC = AR0 + R0A belongs to S, as required. We also note that

(d/dx)e−xA = −Ae−xA and that Lyapunov’s equation (1.3) gives

d

dx
(I +Rx)

−1 = (I + Rx)
−1(ARx +RxA)(I + Rx)

−1, (4.1)

which implies
dFx
dx

= AFx + FxA− 2FxAFx. (4.2)

with the initial condition

AF0 + F0A− 2F0AF0 = F0BCF0. (4.3)

Hence S is a differential ring.

We can map I 7→ I, e−xA 7→ e−(x+t)A, R0 7→ e−tAR0e
−tA, Rx 7→ e−tARxe

−tA and

Fx 7→ (I + e−tARxe
−tA)−1, and thus produce a ring homomorphism G(x) 7→ G(x + t) which

satisfies (d/dx)StG(x) = G′(x+ t) = St(d/dx)G(x).

Definition (Products and brackets). (i) Given a state ring S for (−A,B,C), and let B be any

differential ring of functions from (0,∞) → L(H0). Let

AΣ = spanC{An1 , An1FxA
n2 . . . FxA

nr : nj ∈ N}. (4.4)

(ii) On S we introduce the associative product ∗ by

P ∗Q = P (AF + FA− 2FAF )Q, (4.5)
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which is distributive over the standard addition, and the derivation ∂ : S → S by

∂P = A(I − 2F )P +
dP

dx
+ P (I − 2F )A, (4.6)

(iii) Let ⌊ · ⌋ : S → B be the linear map

⌊Y ⌋ = Ce−xAFxY Fxe
−xAB (Y ∈ S), (4.7)

so that x 7→ ⌊Y ⌋ is a function (x0, x1) → L(H0).

Proposition 4.2. Then (AΣ, ∗, ∂) is a differential ring, and there is a homomorphism of

differential rings (AΣ, ∗, ∂) → (B, ·, d/dx) given by P 7→ ⌊P⌋.
Proof. The basic observation is that dF/dx = AF + FA− 2FAF , so one can check that

∂(P ∗Q) = (∂P ) ∗Q+ P ∗ (∂Q); (4.8)

hence (S, ∗, ∂) is a differential ring.

We can multiply elements in S by concatenating words and taking linear combinations.

Since all words in AΣ begin and end with A, we obtain words of the required form, hence AΣ

is a subring. To differentiate a word in AΣ we add words in which we successively replace each

Fx by AFx + FxA− 2FxAFx, giving a linear combination of words of the required form.

From the definition of Rx, we have ARx + RxA = e−xABCe−xA, and hence

Fxe
−xABCe−xAFx = AFx + FxA− 2FxAFx, (4.9)

which implies

⌊

P
⌋⌊

Q
⌋

= Ce−xAFxPFxe
−xABCe−xAFxQFxe

−xAB

= Ce−xAFxP (AFx + FxA− 2FxAFx)QFxe
−xAB

=
⌊

P (AFx + FxA− 2FxAFx)Q
⌋

= ⌊P ∗Q⌋. (4.10)

Moreover, the first and last terms in ⌊P⌋ have derivatives

d

dx
Ce−xAFx = Ce−xAFxA(I − 2Fx),

d

dx
Fxe

−xAB = (I − 2Fx)AFxe
−xAB, (4.11)

which implies (3.7).

The bracket operation satisfies

d

dx

⌊

P
⌋

=
⌊

A(I − 2Fx)P +
dP

dx
+ P (I − 2Fx)A

⌋

= ⌊∂P⌋. (4.12)

For x0 ≥ 0 and 0 < φ < π, let Sx0

δ be the translated sector Sx0

δ = {z = x0 + w : w ∈
C \ {0}; | argw| < δ} and let H∞(Sx0

δ ) the the bounded holomorphic complex functions on
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Sx0

δ . Then let H∞
∞ = ∪x0>0H

∞(Sx0

δ ) be the algebra of complex functions which are bounded

on some translated sector Sx0

δ , with the usual pointwise multiplication.

Theorem 4.3. Let (−A,B,C) be a (2, 2)-admissible linear system withH0 = C as in Theorem

2.2, so (e−zA) for z ∈ S0
φ is a bounded holomorphic semigroup on H. Let Θ0 = {P ∈ AΣ :

⌊P⌋ = 0}.
(i) Then (AΣ, ∗, ∂) is a differential ring with bracket ⌊·⌋;
(ii) there is a homomorphism of differential rings ⌊ · ⌋ : (AΣ, ∗, ∂) → (H∞

∞ , ·, d/dz);
(iii) Θ0 is a differential ideal in (AΣ, ∗, ∂) such that AΣ/Θ0 is a commutative differential

ring, and an integral domain.

Proof (i) In this case A is possibly unbounded as an operator, so we use the holomorphic

semigroup to ensure that products and brackets are well defined. We observe that AΣ has

a grading AΣ = ⊕∞
n=1An, where An is the span of the elements that have total degree n

when viewed as products of A and F . For Xn ∈ An and Ym ∈ Am, we have Xn ∗ Ym ∈
An+m+2 ⊕An+m+3 and ∂Xn ∈ An+1 ⊕An+2.

Also we have Ake−zA ∈ L(H) for all z ∈ S0
φ and ‖Ake−zA‖L(H) → 0 as z → ∞ in S0

φ;

hence RzA
k → 0 and AkRz → 0 in L(H) as z → ∞ in S0

φ. Hence there exists an increasing

positive sequence (xk)
∞
k=0 such that AkFz − Ak ∈ L(H) for all z ∈ Sxk

φ and AkFz − Ak → 0

in L(H) as z → ∞ in Sxk

φ . Let Xn ∈ An and consider a typical summand AFzA
kFz . . .A in

Xn; we replace each factor like AkFz by the sum of Ak(Fz − I) and Ak where k ≤ n; then we

observe that there in an initial factor Ce−zA and a final factor e−zAB in ⌊Xn⌋; hence ⌊Xn⌋
determines an element of H∞(Sxn

φ ).

(ii) We can identify H∞
∞ with the algebraic direct limit H∞

∞ = limn→∞H∞(Sx0+n
φ ). By

the principle of isolated zeros, the multiplication on H∞
∞ is consistently defined, and H∞

∞ is

an integral domain. Now each f ∈ H∞
∞ gives f ∈ H∞(Sx0

φ ) so f ′ ∈ H∞(Sx0+1
φ ) by Cauchy’s

estimates, so f ′ ∈ H∞ − ∞. From (i) we deduce that ⌊ · ⌋ : ⊕∞
n=1An → ∪∞

n=1H
∞(Sxn

φ ) is

well-defined and the bracket is multiplicative with respect to ∗, and behaves naturally with

respect to differentiation.

(iii) We check that ⌊ . ⌋ is a trace on (AΣ, ∗, ∂), by computing

⌊P ∗Q⌋ = trace
(

Ce−xAFPFe−xABCe−xAFQFe−xAB
)

= trace
(

Ce−xAFQFe−xABCe−xAFPFe−xAB
)

= ⌊Q ∗ P⌋. (4.13)

Hence Θ0 contains all the commutators P ∗Q−Q∗P , and Θ0 is the kernel of the homomorphism

⌊ · ⌋, hence is an ideal for ∗. Also, we observe that for allQ ∈ Θ0, we have ∂Q ∈ Θ0 since ⌊∂Q⌋ =
(d/dx)⌊Q⌋ = 0. Hence Θ0 is a differential ideal which contains the commutator subspace of

(AΣ, ∗), so AΣ/Θ0 is a commutative algebra. Also, ∂ determines a unique derivation ∂̄ on

S/Θ0 by ∂̄Q = ∂Q+Θ0 for all Q ∈ S; hence AΣ/Θ0 is a differential algebra.

We can identify AΣ/Θ0 with a subalgebra of H∞
∞ , which is an integral domain.

Remarks 4.4 (i) Pöppe [61, 62] introduced a linear functional ⌈ . ⌉ on Fredholm kernels K(x, y)

on L2(0,∞) by ⌈K⌉ = K(0, 0). In particular, let K,G,H, L be integral operators on L2(0,∞)
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that have smooth kernels of compact support, let Γ = Γφ(x)
have kernel φ(s + t + 2x), let

Γ′ = d
dxΓ and G = Γψ(x)

be another Hankel operator; then the trace satisfies

⌈Γ⌉ = − d

dx
trace Γ (4.14)

⌈ΓKG⌉ = −1

2

d

dx
trace ΓKG (4.15)

⌈(I + Γ)−1Γ⌉ = −trace
(

(I + Γ)−1Γ′
)

, (4.16)

⌈KΓ⌉⌈GL⌉ = −1

2
⌈K(Γ′G+ ΓG′)L⌉, (4.17)

where (4.17) is known as the product formula. The easiest way to prove (4.15)-(4.18) is to

observe that Γ′G+ ΓG′ is the integral operator with kernel −2φ(x)(s)ψ(x)(t), which has rank

one. These ideas were subsequently revived by McKean [48]. Our formulas (4.5) and (4.6)

incorporate a similar idea, and are the basis of the proof of Proposition 4.2. The results we

obtain appear to be more general than those of Pöppe, and extend to periodic linear systems.

(ii) Mumford [57] considers the ring R1 of complex functions that are holomorphic on

some neighbourhood of zero, and the ring R2 = C∞
c (R;C) of compactly supported smooth

functions; Mulase [56] considers the differential ring R3 = C[[x]] of formal complex power

series; McKean and van Moerbeke [50] consider the ring R4 = C∞(T;C) of smooth periodic

function; then Rj is a differential rings with respect to D = d/dx, and one can form the rings

Rj{D} = {
∑n

k=−∞ ak(x)D
j : n < ∞; ak ∈ Rj ,−∞; k ≤ n} of pseudo differential operators.

In this paper we use a differential ring (A, ∗, ∂) of operators on state space.

In the literature on inverse scattering, as in [4], the operator Rx appears implicitly in var-

ious formulas, especially in the special case in which A has finite rank and may be represented

by a matrix. The following result extends a special case of the Sylvester–Rosenblum theorem

[8]. The formula (4.18) resembles the expressions used to obtain soliton solutions of KdV , as

in [35, (14.12.11)].

For the remainder of this section, we let A be a n×n complex matrix with eigenvalues λj
(j = 1, . . . , m) with geometric multiplicity nj such that λj + λk 6= 0 for all j, k ∈ {1, . . . , m};
let K = C(e−λ1t, . . . , e−λmt, t). Also, let B ∈ Cn×1 and C ∈ C1×n.

Proposition 4.5. (i) There exists a solution Rt to Lyapunov’s equation (1.3) with initial

condition BC, such that the entries of Rt belong to K, and τ (t) ∈ K;

(ii) φ ∈ K satisfies a linear differential equation with constant coefficients.

(iii) Suppose further that all the eigenvalues of A are simple. Then there exists an in-

vertible matrix S such that S−1B = (bj)
n
j=1 ∈ Cn×1 and CS = (cj)

n
j=1 ∈ C1×n and the tau

function is given by

τ (t;µ) =1 +

n
∑

j=1

bjcje
−2λjt

2λj

+
∑

(j,k),(m,p):j 6=m;k 6=p

(−1)j+k+m+p bjbmckcpe
−(λj+λk+λm+λp)t

(λj + λm)(λk + λp)
+ . . .
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+

n
∏

j=1

bjcj
2λj

∏

1≤j<k≤n

(λj − λk)
2

(λj + λk)2
e
−2
∑n

j=1
λjt. (4.18)

Proof.(i) By the hypothesis, we can introduce a chain of circles Σ that go once round each λj
in the positive sense and have all the points −λk in their exterior. Then by [8], the matrix

R0 =
−1

2πi

∫

Σ

(A+ λI)−1BC(A − λI)−1dλ (4.19)

gives a solution to the equation −AR0−R0A = −BC. To see this, one considers (A+λI)R0+

R0(A− λI) and then uses the calculus of residues.

By the Riesz functional calculus, we also have

e−tA =
1

2πi

∫

Σ

(

λI −A
)−1

e−tλdλ; (4.20)

hence by Cauchy’s residue theorem, there exist complex polynomials pj and qj , and integers

mj ≥ 0 such that

e−tA =
m
∑

j=1

qj(t)e
−tλjpj(A), (4.21)

where qj(t) is constant if the corresponding eigenvalue is simple. We let Rt = e−tAR0e
−tA,

which gives a solution to Lyapunov’s equation with initial condition −BC. From (4.21), we

see that all the entries of Rt belong to K. By the Laplace expansion of the determinant, we

see that all entries of τ (t) = det(I + Rt) also belong to K.

(ii) We take φ(t) = Ce−tAB ∈ K by (4.21). Also, we introduce the characteristic polyno-

mial of (−A) by det(λI +A) =
∑n

j=0 ajλ
j . Then by the Cayley–Hamilton theorem.

n
∑

j=0

aj
djφ(t)

dtj
= 0. (4.22)

(iii) We recall Cauchy’s determinant formula. For xr and ys complex numbers such that

xrys 6= 1, the determinant satisfies

det
[ 1

1− xjyk

]n

j,k=1
=

∏

1≤j<k≤n(xj − xk)
∏

1≤m<p≤n(ym − yp)
∏

1≤r,s≤n(1− xrys)
. (4.23)

There exists an invertible matrix S such that SAS−1 is the n × n diagonal matrix D =

diag(λ1, . . . , λn), and we observe that

Rt =
[bjcke

−(λj+λk)t

λj + λk

]n

j,k=1
(4.24)
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satisfies d
dtRt = −[bjcke

−(λj+λk)t]nj,k=1 and −DRt−RtD = −[bjcke
−(λj+λk)t]nj,k=1; so Rt gives

a solution of the Lyapunov equation with generator −D and initial condition given by the rank-

one matrix−S−1BCS = −[bjck]
n
j,k=1. Hence the tau function is given by τ (t;µ) = det(I+µRt)

for this matrix, and there is an expansion

det
[

δjk +
µbjcke

−(λj+λk)x

λj + λk

]n

j,k=1
=

∑

σ⊆{1,...,n}

µ♯σ det
[bjcke

−λjx−λkx

λj + λk

]

j,k∈σ
(4.25)

in which each subset σ of {1, . . . , n} of order ♯σ, contributes a minor indexed by j, k ∈ σ.

Letting xr = λr and yr = −1/λr in the Cauchy determinant formula, we obtain the identity

det
[bjcke

−λjx−λkx

λj + λk

]

j,k∈σ
=
∏

j∈σ

bjcje
−2λjx

2λj

∏

j,k∈σ:j 6=k

λj − λk
λj + λk

. (4.26)

In the next three sections, we give significant examples of differential rings associated with

linear systems.

5. The diagonal Green’s function and the stationary KdV hierarchy

In this section, we obtain properties of AΣ in terms of A. Thus we obtain some sufficient

conditions for some differential equations to be integrable. Throughout this section, we suppose

that the hypotheses of Theorem 4.3 are in force, so the any finite set of elements of AΣ

are holomorphic functions on a some sector Ω containing (x0,∞) for some x0 ≥ 0. We

do not generally require u to be real valued, although in Theorem 5.2(iv) we impose this

further condition so that we can compare our results with the classical spectral theory for the

Schrödinger equation on the real line.

Definition (Stationary KdV hierarchy). (i) Let f0 = 1 and f1 = (1/2)u. Then the KdV

recursion formula is

4
d

dx
fm+1(x) = 4f1(x)

d

dx
fm(x) + 4

d

dx

(

f1(x)fm(x)
)

− d3

dx3
fm(x). (5.1)

(ii) Let gk = f ′k for k = 1, 2, . . . .

(iii) If u satisfies fm = 0 for all m greater than or equal to some m0, then u satisfies the

stationary KdV hierarchy and is said to be an algebro-geometric (finite gap) potential; see

[29,14] .

(iv) Suppose that u(x) → 0 as x→ ∞, and likewise for all the partial derivatives ∂ℓu/∂xℓ;

suppose further that fj(x) → 0 as x → 0 as x → ∞ for all j = 1, 2, . . .. Then we say that the

fj are homogeneous solutions of the KdV hierarchy, and write f̂j for fj to indicate that the

system of differential equations (5.1) has no arbitrary constants of integration.

Proposition 5.1. Let AΣ be as in Theorem 4.3. Then fm = (−1)m2⌊A2m−1⌋ satisfies the

stationary KdV hierarchy (Novikov’s equations), since

4
d

dx
⌊A2m+3⌋ = d3

dx3
⌊A2m+1⌋+ 8

( d

dx
⌊A⌋

)

⌊A2m+1⌋+ 16⌊A⌋
( d

dx
⌊A2m+1⌋

)

. (5.2)
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Proof. (i) We have the basic identities

⌊A(I − 2F )A(I − 2F )X⌋ = ⌊A2X⌋ − 2⌊A⌋⌊X⌋; (5.3)

−2A(AF + FA− 2FAF ) = A(I − 2F )A(I − 2F )−A2 (5.4)

and their mirror images. Hence

d

dx
⌊A2m+1⌋ = ⌊A(I − 2F )A2m+1 +A2m+1(I − 2F )A⌋, (5.5)

so

d2

dx2
⌊A2m+1⌋ = ⌊A(I − 2F )A(I − 2F )A2m+1 + 2A(I − 2F )A2m+1(I − 2F )A

+A2m+1(I − 2F )A(I − 2F )A

− 2A(AF + AF − 2FAF )A2m+1 − 2A2m+1(AF + FA− 2FAF )A⌋
= ⌊A(I − 2F )A(I − 2F )A2m+1 + 2A(I − 2F )A2m+1(I − 2F )A

+A2m+1(I − 2F )A(I − 2F )A

+A(I − 2F )A(I − 2F )A2m+1 − A2m+1 +A2m+3(I − 2F )A(I − 2F )A−A2m+3⌋
= 2⌊A(I − 2F )A2m+1(I − 2F )A⌋ − 2⌊A2m+3⌋
= 2⌊A(I − 2F )A(I − 2F )A2m+1⌋ − 2⌊A2m+3⌋
+ ⌊A(I − 2F )A(I − 2F )A2m+1⌋+ 2⌊A2m+1(I − 2F )A(I − 2F )A⌋

= 2⌊A(I − 2F )A2m+1(I − 2F )A⌋+ 2⌊A2m+3⌋
− 4⌊A2m+1⌋⌊A⌋ − 4⌊A⌋⌊A2m+1⌋. (5.6)

Now we differentiate the first summand of the final term

d

dx
2⌊A(I − 2F )A2m+1(I − 2F )A⌋

= 2⌊A(I − 2F )A(I − 2F )A2m+1(I − 2F )A⌋+ 2⌊A(I − 2F )A2m+1(I − 2F )A(I − 2F )A⌋
− 4⌊A(AF + FA− 2FAF )A2m+1(I − 2F )A⌋ − 4⌊A(I − 2F )A2m+1(AF + FA− 2FAF )A⌋

= 2⌊A(I − 2F )A(I − 2F )A2m+1(I − 2F )A⌋+ 2⌊A(I − 2F )A2m+1(I − 2F )A(I − 2F )A⌋
+ 2⌊A(I − 2F )A(I − 2F )A2m+1(I − 2F )A⌋ − 2⌊A2m+3(I − 2F )A⌋
+ 2⌊A(I − 2F )A2m+1(I − 2F )A(I − 2F )A⌋ − 2⌊A(I − 2F )A2m+3⌋

= 4⌊A(I − 2F )A(I − 2F )A2m+1(I − 2F )A⌋+ 4⌊A(I − 2F )A2m+1(I − 2F )A(I − 2F )A⌋
− 2⌊A(I − 2F )A2m+3 +A2m+3(I − 2F )A⌋

= −8⌊A⌋⌊A2m+1(I − 2F )A⌋+ 4⌊A2m+3(I − 2F )A⌋

− 8⌊A⌋⌊A(I − 2F )A2m+1⌋+ 4⌊A(I − 2F )A2m+3⌋ − 2
d

dx
⌊A2m+3⌋

= −8⌊A⌋⌊A(I − 2F )A2m+1 +A2m+1(I − 2F )A⌋

+ 4⌊A(I − 2F )A2m+3 +A2m+3(I − 2F )A⌋ − 2
d

dx
⌊A2m+3⌋

= −8⌊A⌋ d
dx

⌊A2m+1⌋+ 2
d

dx
⌊A2m+3⌋; (5.7)
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hence
d3

dx3
⌊A2m+1⌋ = −8⌊A⌋ d

dx
⌊A2m+1⌋+ 4

d

dx
⌊A2m+3⌋ − 8

d

dx

(

⌊A⌋⌊A2m+1⌋
)

; (5.8)

which gives the stated result.

Definition (Diagonal Greens function). Let (−A,B,C) be as in Theorem 2.2. Then the

diagonal Green’s function is g0(x; ζ)/
√
ζ where

g0(x; ζ) = (1/2) + ⌊A(ζI − A2)−1⌋. (5.9)

The notation g0(x; ζ) is chosen to indicate a generating function and also the diagonal of

a Green’s function; now we explain the latter connection. Let C+ = {λ ∈ C : ℑλ > 0} be the

open upper half plane.

Theorem 5.2. Let (−A,B,C) be as in Theorem 2.2.

(i) Then g0(x; ζ) is bounded and continuously differentiable in x and has a unique asymp-

totic expansion depending on the odd powers of A,

g0(x; ζ) ≍
1

2
+

⌊A⌋
ζ

+
⌊A3⌋
ζ2

+
⌊A5⌋
ζ3

+ . . . (ζ → −∞); (5.10)

(ii) g0(x; ζ) satisfies Drach’s equation

d3g0
dx3

= 4(u+ ζ)
dg0
dx

+ 2
du

dx
g0 (x > x0;−ζ > ω); (5.11)

(iii) there exists x1 > 0 such that

ψ±(x, ζ) =
√

g0(x,−ζ) exp
(

∓
√

−ζ
∫ x

x1

dy

2g0(y;−ζ)
)

(5.12)

satisfies

−ψ′′
±(x; ζ) + u(x)ψ±(x, ζ) = ζψ±(x; ζ) (x > x1, ζ > ω). (5.13)

(iv) Suppose that u is a continuous real function that is bounded below, and that ψ±

from (iii) satisfy ψ+(x; ζ) ∈ L2((0,∞);C) and ψ−(x; ζ) ∈ L2((−∞, 0);C) for all ζ ∈ C+.

Then L = − d2

dx2 +u(x) defines an essentially self-adjoint operator in L2(R;C), and the Greens

function G(x, y; ζ) which represents (ζI − L)−1 has a diagonal that satisfies

G(x, x; ζ) =
g0(x;−ζ)√

−ζ . (5.14)

Proof. (i) Let π− θ < arg λ < θ, so λ and −λ both lie in Sθ, hence ζ = λ2 satisfies 2π− 2θ <

arg ζ < 2θ, so ζ lies close to (−∞, 0). Then ζI−A2 is invertible and |ζ|‖(ζI−A2)−1‖L(H) ≤M .

The function

g0(x; ζ) =
1

2
+ Ce−xA(I +Rx)

−1A(ζI − A2)−1(I +Rx)
−1e−xAB (x > 0) (5.15)
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is well defined by Theorem 2.2(iii).

To obtain the asymptotic expansion, we note that e−xA(I+Rx)
−1 and (I+Rx)e

−xA involve

the factor e−xA, where (e−zA) is a holomorphic semigroup on Sθ−π/2. Hence A2j+1e−xA ∈
L(H) and by Cauchy’s estimates there exist x0,M0 > 0 such that ‖A2j+1e−xA‖L(H) ≤M0(2j+

1)! for all x ≥ x0 > 0. As in Proposition 3.1, we have an asymptotic expansion of

e−zA
(

(λI −A)−1 − (λI +A)−1
)

= −e−zA
∫ ∞

0

eλse−sA ds− e−zA
∫ ∞

0

e−λse−sA ds

= e−zA
( A

λ2
+
A3

λ4
+ . . .+

A2j−1

λ2j

)

+
e−zA

λ2j+1

∫ ∞

0

A2j+1e−sA(esλ − e−λs) ds, (5.16)

in which all the summands are in L(H) due to the factor e−zA for z ∈ Sθ−π/2. Hence

Ce−xAe−xA(I+Rx)
−1

∫ ∞

0

A2j+1e−sA(esλ−e−sλ) ds(I+Rx)−1e−xAB → 0 (x > 0) (5.17)

as λ→ i∞, or equivalently ζ → −∞, so

g0(x, ζ) =
1

2
+Ce−xA(I+Rx)

−1
(A

ζ
+
A3

ζ2
+. . .+

A2j−1

ζj

)

(I+Rx)
−1e−xAB+O

( 1

ζj+1

)

. (5.18)

This gives the asymptotic series; generally, the series is not convergent since the implied

constants in the term O(ζ−(j+1)) involve (2j + 1)!.

(ii) From Proposition 5.1 we have

4
d

dx

∞
∑

m=0

⌊A2m+3⌋
ζm+1

=
d3

dx3

∞
∑

m=0

⌊A2m+1⌋
ζm+1

+ 8
( d

dx
⌊A⌋

)

∞
∑

m=0

⌊A2m+1⌋
ζm+1

+ 16⌊A⌋ d
dx

∞
∑

m=0

⌊A2m+1⌋
ζm+1

; (5.19)

the required result follows on rearranging.

Conversely, suppose that g0 as defined in (5.9) has an asymptotic expansion with coeffi-

cients in C∞((0,∞);C) as ζ → −∞ and that g0(x; ζ) satisfies (5.11). Then the coefficients

of ζ−j satisfy a recurrence relation which is equivalent to the systems of differential equations

(5.1).

The asymptotic expansion is unique in the following sense. Suppose momentarily that

t 7→ ⌊Ae−tA2⌋ is bounded and repeatedly differentiable on (0,∞), with M,ω > 0 such that

|⌊Ae−tA2⌋| ≤Meωt for t > 0, and that there is a Maclaurin expansion

⌊Ae−tA2⌋ = ⌊A⌋ − ⌊A3⌋t+ ⌊A5⌋t2
2!

− . . .+O(tk) (5.20)

on some neighbourhood of 0+. Then by Watson’s Lemma, the integral
∫∞

0
⌊Ae−tA2⌋etζ dt has

an asymptotic expansion as ζ → −∞, where the coefficients give the formula (5.10).
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(iii) Since (e−tA)t>0 is a contraction semigroup on H, we have D(A2) ⊆ D(A) and

‖Af‖2H ≤ 2‖A2f‖H‖f‖H for all f ∈ D(A2) by the Hardy-Littlewood-Landau inequality, so

‖ζf + A2f‖H ≥
√
ζ‖Af‖H for ζ > 0. We deduce that A2 − 2A + ζI is invertible for ζ > 9

and generally for all ζ ∈ C such that ℜζ is sufficiently large. By Proposition 5.1 and the

multiplicative property of the bracket, we have

1

2g0(x;−ζ)
= 1 +

⌊

2A(ζI + A2 − 2A)−1
⌋

, (5.21)

and we observe that g0(x;−ζ) → 1/2 as x→ ∞, so there exists x1 > 0 such that g0(x,−ζ) > 0

for all x > x1 and the differential equation integrates to

g0
d2g0
dx2

− 1

2

(dg0
dx

)2

= 2(u− ζ)g20 +
ζ

2
. (5.22)

So we can define ψ(x; ζ) as in (5.13), and then one verifies the differential equation for ψ(x; ζ)

by using (5.22).

(iv) By a theorem of Weyl [32, 10.1.4], L is of limit point type at ±∞, and there exist

nontrivial solutions ψ±(x; ζ) to −ψ′′
±(x; ζ) + u(x)ψ±(x; ζ) = ζψ±(x; ζ) such that ψ+(x; ζ) ∈

L2(0,∞) and ψ−(x; ζ) ∈ L2(−∞, 0), and these are unique up to constant multiples. Also the

inverse operator (−ζI + L)−1 may be represented as an integral operator in L2(R;C) with

kernel G(x, y; ζ), which has diagonal

G(x, x; ζ) =
ψ+(x; ζ)ψ−(x; ζ)

Wr(ψ+( ; ζ), ψ−( ; ζ))
(ℑζ > 0), (5.23)

Given ψ∓ as in (iii), we can compute ψ+(x; ζ)ψ−(x; ζ) = g0(x;−ζ) and their Wronskian is

Wr(ψ+, ψ−) =
√
−ζ, hence the result.

Remarks 5.3 (i) The importance of the diagonal Greens function is emphasized in [30].

Gesztesy and Holden [29, Lemma 1.6.1] obtain an asymptotic expansion of the diagonal

G(x, x; ζ) which is consistent with Theorem 5.2(i). Under conditions discussed in (5.48), we

have similar asymptotics as −ζ → ∞.

(ii) Let ψ and ϕ be solutions of −f ′′ + uf = ζf for some u ∈ C2(R;C) such that

Wr(ψ, ϕ)2 = −ζ, and then let g(x) = ψ(x)ϕ(x). By differentiating, one checks that gg′′ −
(g′)2/2 − 2(u − ζ)g2 = C for some constant C, and one can evaluate C = −Wr(ψ, ϕ)2/2.

Hence

ρ(x) =
√

g(x) exp
(

±
√

−ζ
∫ x

0

dy

2g(y)

)

(5.24)

gives a solution of −ρ′′ + uρ = ζρ.

(iii) Drach observed that one can start with the differential equation (5.11), and pro-

duce the solutions (5.24); see [14]. He showed that Schrödinger’s equation is integrable by

quadratures, if and only if (5.11) can be integrated by quadratures for typical values of ζ, and

Brezhnev translated his results into the modern theory of finite gap integration [14]. Hav-

ing established integrability of Schrödinger’s equation by quadratures, one can introduce the
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hyperelliptic spectral curve E with g < ∞ and proceed to express the solution in terms of

the Baker–Akhiezer function. Hence one can integrate the equation and express the solution

in terms of the Riemann’s theta function on the Jacobian of E , as in [43]. Our presentation

follows Drach’s; one advantage is that we can deal with rather degenerate solutions of differ-

ential equations, such as occur in the theory of solitons, and can evade technicalities regarding

special points on Jacobians of compact Riemann surfaces.

Proposition 5.4. (i) In the context of Theorem 4.3, suppose that there exists a non-zero

odd complex polynomial p0(X) such that ⌊p0(A)⌋ = 0. Then C[u, du/dx, . . . , ] is a Noetherian

differential ring for d/dx and the usual multiplication.

(ii) In particular, (i) holds when A2 is algebraic.

Proof. (i) It follows from Proposition 5.1 that ⌊A2j−1⌋ = cju
(2j)+Pj(u, u

′, . . . , u(2j−1)) where

P is a complex polynomial, and cj 6= 0. Adding multiples of such identities, and using the

hypotheses, we deduce that there exists m such that

d2mu

dx2m
= Q2m

(

u,
du

dx
, . . . ,

d2m−1u

dx2m−1

)

, (5.25)

where Q2m is a complex polynomial which is determined by p0 and the fj . By repeatedly differ-

entiating this identity, and substituting back, one can obtain polynomials Qn such that u(n) =

Qn(u, du/dx, . . . , d
n−1u/dxn−1), for all n ≥ 2m. Hence C[u, du/dx, . . . , d2m−1u/dx2m−1] gives

all of C[u, du/dx, . . . , ].

Since u is meromorphic on the domain Ω, the algebra C[u, du/dx, . . . , d2m−1u/∂x2m−1] is

an integral domain, and we have shown it to be closed under differentiation. By mappingXj 7→
dju/dxj for j = 0, . . . , 2m− 1, we obtain a short exact sequence of algebra homomorphisms

0 → J → C[X0, . . . , X2m−1] → C
[

u,
du

dx
, . . . ,

d2m−1u

dx2m−1

]

→ 0, (5.26)

where the ideal J is prime. Hence C[u, du/dx, . . . , d2m−1u/dx2m−1] is finitely generated as

an algebra. Also, the C[X0, . . . , X2m−1]/J is naturally isomorphic as an algebra to the co

ordinate ring C[V ], where V is the affine variety {z ∈ C2m : f(z) = 0, ∀f ∈ J}.
(ii) If A2 is algebraic, then there exists a monic complex polynomial such that p(A2) = 0,

hence Ap(A2) = 0 and (i) applies.

Proposition 5.5. Suppose that ⌊A2n+1⌋ = 0 for some n ≥ 0.

(i) Then u = −4⌊A⌋ is finite gap;

(ii) −d2/dx2 + u commutes with a differential operator of odd order;

(iii) Schrödinger’s equation can be integrated by quadratures over C[u, du/dx, . . . , ].

(iv) The image of (A, ∂A, . . . , ∂2nA) ∈ A2n+1
Σ under ⌊ · ⌋ equals (u, u′, . . . , u(2n)), where

(u.u′, . . . , u(2n)) satisfy a system of polynomial equations which determine a complex algebraic

variety.
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Proof. (i) Note that the hypothesis does not change if we apply the translation (−A,B,C) 7→
(−A, e−tAB,C) so that u(x) 7→ u(x+ t).Then u = −4⌊A⌋ satisfies

f1 = (1/2)u+ (1/2)c1 = −2⌊A⌋+ (1/2)c1;

f2 = −(1/8)u′′ + (3/8)u2 + (c1/4)u+ (c2/2)− c1/8 = 2⌊A3⌋ − c1⌊A⌋+ (c2/2)− c1/8, . . . .(5.27)

Under the hypotheses of Theorem 4.3, all of the cj vanish since u and its derivatives converge

to zero as x→ ∞, so the fj are homogeneous solutions of KdV hierarchy. By Proposition 5.1,

fm(x) = 0 for all m > n.

(ii) With L = −d2/dx2 + u, we have an ordinary differential operator

P2n+1 =
n
∑

j=0

(

fn−j
d

dx
− 2−1 dfn−j

dx

)

(−L)j (5.28)

so that

[L, P2n+1] = 2f ′n+1. (5.29)

(iii) By Propositions 5.1 (ii) and 5.4, we have a Noetherian differential ring

C[u, du/dx, . . . , ; ζ; g, g, g′′]. (5.30)

We aim to prove that we can obtain all elements of this ring by quadratures overC[u, du/dx, . . . , ],

and thereby solve Schrödinger’s equation. We observe that 2ζng0(x; ζ) is a monic polynomial

of degree n in ζ. Changing notation, we introduce F (x;λ) =
∑n

ℓ=0 fn−ℓ(x)λ
ℓ where the co-

efficients of F , as a monic polynomial of degree n in λ, are polynomials in u and its spatial

derivatives, since fj ∈ A. Hence

p(λ) =
1

2
F (x;λ)

∂2F (x;λ)

∂x2
− 1

4

(∂F (x;λ)

∂x

)2

− (u(x)− λ)F (x;λ)2 (5.31)

is a polynomial of degree 2n+ 1 in λ, with coefficients in A, which is actually independent of

x, so p(λ) ∈ C[λ]. Now we introduce

ψ±(x;λ) =
√

F (x;λ) exp
(

±µ
∫ x dξ

F (ξ;λ)

)

, (5.32)

which satisfies
ψ′′
λ

ψλ
=

1

F (x;λ)2
(

(u− λ)F (x;λ)2 + p(λ) + µ2
)

; (5.33)

hence ψλ gives the solution to Schrödinger’s equation ψ′′
±(x;λ) = (u− λ)ψ′′

±(x;λ) when (λ, µ)

lies on

E = {(λ, µ) : µ2 = −p(λ)}. (5.34)

(iv) This follows from an argument of Mumford [57]. We introduce the polynomials in λ:

U(λ; x) = F ; W (λ; x) = (λ− u(x))F +
1

2

∂2F

∂x2
; V (λ; x) =

i

2

∂F

∂x
(5.35)
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which have degrees n, n+1 and n− 1 respectively, for typical x, and the coefficients are given

by the fj and their partial derivatives with respect to x. Then we have a monic polynomial

p(λ) = U(λ; x)W (λ; x) + V (λ; x)2 (5.36)

of degree 2n+ 1, where the leading terms are

U = λn + λn−1f1 + . . . , V = (i/2)f ′1λ
n−1 + . . . , W = λn+1 + (f1 − u)λn + . . . . (5.37)

Then E gives a hyperelliptic curve over C of genus g ≤ n. The Picard group Pic(E) is the set

of divisors on E , modulo linear equivalence as in [65]. Then the Jacobian J is the subgroup of

Pic(E) consisting of equivalence classes that have degree zero; this group J gives an Abelian

variety which may be determined algebraically by arguments presented in [57]. There is a

Riemann theta function ϑ which is entire and quasi-periodic on J , and has zero set θ0 = {z ∈
J : ϑ(z) = 0}. When we replace u(x) by translation to u(x + t), we make a corresponding

automorphism p(λ) 7→ p(λ; t), U(λ; x) 7→ U(λ; x, t), etc. One can then differentiate with

respect to the parameter t, and thus introduce a vector field D∞ on J .

One can also introduce a vector field Dθ on J and the meromorphic function ℘(z) =

D2
∞ logϑ on J \ θ0. Comparing our calculations with those of Mumford, we obtain D∞ =

(i/2)∂/∂x and 4℘ + d = u/2 for some constant d. Thus we can regard x as a coordinate for

motion along the vector field determined by D∞ in the tangent space to J , and u = 8℘ + 2d

as an extension of u to a function on J \ θ0. Likewise, the functions fj , gk of (5.1) may

be extended to complex functions on J \ θ0 give rise to an embedding J \ θ0 → C2g+1

by z 7→ (℘,D∞℘, . . . , D
2n
∞℘). By analogy, in the context of Theorem 5.3 we can regard

(A, ∂A, . . . , ∂2nA) ∈ A2n+1
Σ as coordinates for the Jacobian. See [49, article 9].

Example 5.6. Suppose that A satisfies ⌊a3A3 + a1A⌋ = 0, which is the first non trivial case

of Proposition 5.4. Then a3f2 − a1f1 = 0, so

a3
(

−u′′/16 + 3u2/16 + c1u/8 + c2/4− c1/16
)

− (a1/4)u− (a1/4)c1 = 0. (5.38)

Hence we can identify V with a curve X2
1 = p(X0) where p is a cubic; see [49]. In the context

of Theorem 4.3, we have u(x) → 0 as x→ ∞ along with u′, u′′, so the solution has the form

u(x) =
2a1
a3

sech2

√

−a1
4a3

(x+ γ), (5.39)

with constant γ ∈ C, as is familiar from the theory of solitons. However, (5.37) also has

solutions in terms of Weierstrass’s elliptic function ℘, and in section 7 we construct linear

systems with potential ℘.

(ii) For g > 1, does there exist a linear system such that the corresponding potential is

the ℘ function for a hyperelliptic curve of genus g? We obtain a partial solution of this in

section 7, by using the Schottky–Klein prime function.
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Proposition 5.7. Suppose that g0(xj , ζj) = 0 and ∂g0
∂ζ (xj , ζj) 6= 0 for some xj > x0 and

nonzero ζj ∈ C \ Spec(A2).

(i) Then there exist ε > 0 and a differentiable family of solutions of (5.13) which are

parametrized by an arc {µj(t) : xj−ε < t < xj+ε)} passing through ζj such that ψ(t, µj(t)) =

0;

(ii) Dubrovin’s equation holds

dµj
dx

(t) =
±
√
ζ

∂g0
∂ζ (t, µj(t))

. (5.40)

Proof. (i) First we make an observation about the zeros of g0(x, ζ). The exponential matrix

exp
(

t





0 1 0
0 0 1
0 4ζ 0





)

(5.41)

has entries that are entire functions of ζ of order ρ, where ρ ≤ 1/2. We deduce that the general

solution g(x, ζ) of (5.11) may be written as an entire function of ζ of order ρ ≤ 1/2, so there

exist functions g1(x) and µj(x) such that

g(x, ζ) = g1(x)(ζ − µ0(x))
∞
∏

j=1

(

1− ζ

µj(x)

)

. (5.42)

We can, of course, divide this by any function of ζ and still have a solution of the linear

differential equation; in particular, we obtain g0(x, ζ) in this way.

Let xj > x0 and suppose that g0(xj , ζj) = 0 where ζj ∈ C\Spec(A2) so that ζ 7→ g0(xj , ζ)

is holomorphic. By hypothesis, we have ∂g0
∂ζ (xj , ζj) 6= 0, which rules out the possibility of a

multiple zero at ζj in the factorization (). Now we apply the implicit function theorem to

the formula g0(t, ζ) = 0, noting that ζ 7→ g0(xj , ζ) has a simple zero at ζ = ζj . By Rouché’s

theorem and the calculus of residues, there exist ε1, ε2 > 0 such that the contour integral

µj(t) =
1

2πi

∫

C(ζj ,ε1)

z ∂g0∂ζ (t, z)dz

g0(t, z)
(5.43)

determines a continuously differentiable function µj : (xj − ε2, xj + ε2) → C which satisfies

µj(xj) = ζj and
∂g0
∂x

(t, µj(t)) +
∂g0
∂ζ

(t, µj(t))
dµj
dx

(t) = 0. (5.44)

(ii) By (5.22), we have ∂g0
∂x (xj , ζj)

2 = ζ 6= 0 hence Dubrovin’s equation holds. Also

dµj/dx 6= 0, so µj determines a differentiable arc in C \ Spec(A2). Then for ζ = µj(t) on

this arc, ψ+(x, µj(t))ψ−(x, µj(t)) = g0(x, µj(t)) vanishes at x = t, so one of the solutions

ψ±(x;µj(t)) satisfies ψ±(t;µj(t))) = 0 for all t ∈ (xj − ε3, xj + ε3) for some 0 < ε3 < ε1.

If ζj ∈ R and g0(x, ζ) is real-valued for all (x, ζ) ∈ R2 in a neighbourhood of (xj, ζj), then

we can choose the arc {µj(t) : t ∈ (xj − ε3, xj + ε3)} to be an open subinterval of R.
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Definition (Characteristic function). For (−A,B,C) as in Theorem 2.2 let

ϕ(λ; x) =

∫ λ

0

ig0(x;−ζ)√
−ζ dζ, (5.45)

and define the characteristic function by

∆(λ; x) = 2 cosϕ(λ; x) (2π − 2θ < arg λ < 2θ). (5.46)

Gesztesy and Simon [30] have developed another approach to G(x, x; ζ) for self-adjoint

Schrödinger operators which involves the xi function and Krein’s spectral shift; see also [34].

We adopt their terminology from [30, (6.8)] in the following context. To understand the sign

conventions, it helps to bear in mind that, for L self-adjoint, the diagonal Greens function

G(x, x; ζ) is purely imaginary for ζ in the essential spectrum of L.

Suppose that (λj) is a non-zero complex sequence such that

(i) (ℜλj)∞j=0 is increasing;

(ii)
∑∞

j=0 1/(1 + |ℜλj|α) converges for all α > 1/2;

(iii)
∑∞
n=1 |λ2n−1 − λ2n| converges.

By (ii), we can introduce the functions

Fe(λ) =
∞
∏

j=0

(

1− λ

λ2j

)

, Fo(λ) =
∞
∏

j=1

(

1− λ

λ2j−1

)

, (5.47)

which are entire and of order ρ ≤ 1/2. Then F0(λ)/Fe(λ) is meromorphic with only simple

zeros and poles, so

E =
{

(z, λ) : z2 =
Fo(λ)

Fe(λ)

}

(5.48)

determines a hyperelliptic curve of genus g ≤ ∞. There exists a homology basis of E which

includes loops αj around [λ2j−1, λ2j]. Let µj(x) lie on αj .

Definition (Discretely dominated). Then g0 is discretely dominated if there exist such data,

with only the µj depending upon x and

g0(x,−ζ) =
1

2
√
λ0 − ζ

g
∏

j=1

µj(x)− ζ
√

(λ2j − ζ)(λ2j−1 − ζ)
(ℑζ > 0). (5.49)

Gesztesy and Simon provide several examples of real potentials such that g0 is discretely

dominated; our constants are consistent with their Example 3.2. The µj(x) are referred to

as Dirichlet eigenvalues, or tied eigenvalues, while the differential equation (5.40) was derived

by Dubrovin for real finite-gap periodic potentials. Given the general form (5.49), the further

analysis reduces to the system of coupled differential equations for dµj(x)/dx. When g0 is

discretely dominated, its properties are most easily understood in terms of conformal mapping.
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In the following, we define the square root function by s(λ) =
√
λ = |λ|1/2 exp(i arg(λ)/2),

where −π < arg λ ≤ π is the principal value of the argument, and recall that h∗(λ, x) = h(λ̄, x̄).

Proposition 5.8. (i) Suppose that (⌊A2j−1⌋)∞j=1 is a sequence of real functions of x ∈ R.

Then ϕ∗(λ; x) = ϕ(λ; x).

(ii) Suppose that g0 is discretely dominated with λ0 = 0 and λj real, and suppose that

that ∆(λ; x) is real for all λ ∈ R. Then λ 7→ ϕ(λ; x) gives a conformal map of the upper half

plane onto a slit domain in the first quadrant with possible vertical slits at nπ, for n ∈ N, and

λ 7→ ∆(λ; x) is entire.

Proof. (i) By the uniqueness of asymptotic expansions in Theorem 5.2(i), we have g∗0(x; ζ) =

g0(x; ζ), and since s∗(ζ) = s(ζ), we deduce that ϕ∗(λ; x) = ϕ(λ; x) for x ∈ R and λ ∈ C \R.

At this stage, we do not claim that ϕ is continuous across the real axis.

(ii) Suppose that λ0 < λ1 < λ2 < . . . < λ2g and λ2j−1 < µj < λ2j for j = 1, . . . , g; then

for c0 ≥ 0, let

ϕ(λ) =

∫ λ

0

1

2
√
ζ

g
∏

j=1

µj − ζ
√

(λ2j − ζ)(λ2j−1 − ζ)
dζ + ic0. (5.50)

Then ϕ is holomorphic for {λ ∈ C : ℑλ > 0} with ϕ(λ)/
√
λ → 1 as |λ| → ∞; the image of

λ ∈ (−∞, 0) is the subinterval (ic0, i∞) of the imaginary axis; whereas the image of (0,∞)

consists of horizontal line segments running from left to right, interspersed by vertical lines

running upwards then downwards, and the horizontal line segment together run towards ∞.

For all sufficiently large c0 > 0, the image of {λ ∈ C : ℑλ > 0} is a domain Ω in the

first quadrant, with boundary consisting of horizontal and vertical line segments. This is

a degenerate case of the Schwarz–Christoffel map, in which the triple λ2j−1 < µj < λ2j
corresponds to a degenerate triangle on the edge of Ω; two of the vertices of the degenerate

triangle may coincide, giving a slit.

Now suppose c0 = 0, and observe that ∆(λ; x) is real, if and only if either ϕ(λ; x) ∈ R or

there exists n ∈ Z such that ϕ(λ; x)− nπ ∈ iR. We deduce that the only possible slits are at

ℜϕ(λ; π) = nπ for some n ∈ N, that all slits are vertical, and each starts and finishes at the

same point on the real axis.

We apply the Schwarz reflection principle. By (i), ∆∗(λ; x) = ∆(λ; x), so we need to

check continuity across λ ∈ R Whereas
√
ζ is discontinuous across (−∞, 0), we only need

deal with cos
√
ζ, which is continuous. More precisely, by (i), the function ϕ(λ; x) satisfies

ϕ(λ; x) = ϕ∗(λ; x), and g(x;−ζ) and s(−ζ)2 are continuous across (−∞, 0), hence ϕ(λ; x)2

is holomorphic across (−∞, 0), so ∆(λ; x) is holomorphic across (−∞; 0); likewise, ∆(λ; x) is

holomorphic across the spectral bands [λ2j, λ2j+1]. As λ approaches a spectral gap (λ2j−1, λ2j)

the image ϕ(λ; x) approaches a slit on the boundary of Ω; now cos(kπ ± iy) = (−1)k cosh y,

so ∆(λ; x) takes the same value, irrespective of which side λ approaches from, hence ∆(λ; x)

is continuous across R and defines an entire function.

6. The differential ring of a periodic linear system

In this section we obtain analogues of Theorem 4.3 for periodic groups. First we formulate

the notion of a periodic linear system, where we take section 4 as our guide. We show that
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the corresponding τ functions have properties analogous to those in Theorem 4.3. For periodic

and meromorphic u, the differential equation −ψ′′ + uψ = λψ is known as the complex Hill’s

equation. We show how periodic linear systems appear in the Floquet solutions, and obtain

a counterpart of Proposition 5.5. Previous authors [22, 28 37, 73] explored the connection

between Hill’s equation and scattering solutions of Schrödinger’s equation on the line. In the

current paper, we show how Lyapunov’s equation is the basis for some analogies. In section 7

we consider particular examples, which exhibit subtle effects.

For periodic linear systems, the defining integral for Rx in Proposition 2.1 does not con-

verge, and the contour integral for R0 in Proposition 4.5 is inapplicable; nevertheless, we can

adapt a result of Bhatia, Dacis and McIntosh discussed in [8] and otherwise construct Rx
satisfying (1.3).

Lemma 6.1. Let B ∈ L1(H) and C ∈ L(H), and let (e−tA)t∈R be a bounded and strongly

continuous group of operators on H.

(i) The space D(A∞) is dense.

(ii) Suppose that the spectrum of A does not intersect the spectrum of −A. Then there

exists E ∈ L1(H) such that Rx = exAEexA gives a solution to the Lyapunov equation− d
dxRx =

ARx + RxA such that AR0 + R0A = BC and Rx is trace class for all x ∈ R.

(iii) Suppose that the range of E is contained in D(A∞) and AkE ∈ L1(H) for all k. Then

τζ(x) = det
(

I + (ζI + A)(ζI − A)−1exAEexA
)

(x ∈ R) (6.1)

has an asymptotic expansion in powers of ζ−j as ζ → ±∞.

(iv) Suppose further that (exA) is periodic with period 2π. Then the spectrum of A is

contained in iZ and the coefficients in the asymptotic expansion are periodic with period π.

Proof. (i) By standard results [21], A2 generates an analytic semigroup

etA
2

=
1√
4πt

∫ ∞

−∞

e−s
2/4tesA ds (t > 0). (6.2)

The domains of the powers of A satisfy D(A) ⊇ D(A2), and D(A∞) is dense.

(ii) The main problem is to find E such that EA+AE = BC. By a theorem of Sz.-Nagy,

the group (e−tA) is similar to a group of unitaries, so there exists an invertible operator S and

a unitary group (Ut)t∈R such that e−tA = SUtS
−1. Hence the spectrum of A lies on iR and

is a closed subset. By hypothesis, there exists δ > 0 such that the spectra of A and −A are

separated by δ and σ(A) ∪ σ(−A) does not intersect [−iδ, iδ]. By Plancherel’s theorem, we

can construct f ∈ L1(R;C) such that f̂(ξ) = 1/ξ for all ξ ∈ R such that |ξ| ≥ δ. Then the

integral

E =

∫ ∞

−∞

e−xABCe−xAf(x)dx (6.3)

has a weakly continuous integrand in L1(H), and is absolutely convergent with

‖E‖L1(H) ≤
∫ ∞

−∞

‖B‖L1(H)‖C‖L(H)M
2|f(x)| dx (6.4)
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hence E is trace class. Using the spectral representation of Ut, one can show that AE+EA =

BC. Next we introduce Rx = e−xAEe−xA which gives a one parameter family of trace class

operators such that −dRx

dx = ARx +RxA. On verifies this identity on D(A) and then observes

that both sides are trace class.

(iii) For all ζ ∈ R we can invert ζI −A, and there is an asymptotic expansion

(ζI +A)(ζI −A)−1Ee2xA =
(

I +
2A

ζ
+

2A2

ζ2
+ . . .

)

Ee2xA (6.5)

valid as ζ → ±∞. The result follows.

(iv) If (exA) is periodic with period 2π, then (exA)x∈R is bounded, and the spectrum of

A is contained in iZ.

Example 6.2. Let H = L2(R/2πZ; dθ/(2π)) and A : einθ 7→ i(1 + |n|)einθ, so (etA) is a

2π periodic strongly continuous unitary group. Also, (eitA)t>0 gives a strongly continuous

contraction semigroup eitA :
∑

n∈Z
ane

inθ 7→ e−t
∑

n∈Z
ane

−|n|teinθ. For comparison, the

Poisson semigroup is Pr :
∑

n∈Z
ane

inθ 7→
∑

n∈Z
anr

|n|einθ, so eitA = e−tPe−t for t > 0.

Definition (Periodic linear system). (i) Let (e−xA)x∈R be a strongly continuous group of

operators on H such that e2πA = I and A is invertible. Suppose further that E is trace class

operators on H, and that B : H0 → H and C : H → H0 are bounded linear operators, such

that AE + EA = BC and either B is trace class, or B and C are Hilbert–Schmidt. Then

Σ∞ = (−A,B,C;E) is a periodic linear system with input and output space H0 and state

space H. (Unlike in Theorem 2.2, we generally take H = H0 so the linear system has infinitely

many inputs and outputs.)

(ii) Moreover, if (e−xA)x∈R is uniformly continuous, or equivalently A ∈ L(H), we say

that (−A,B,C;E) is a uniform periodic linear system.

(iii) The τ function of Σ∞ is τ (x) = det(I+e−xAEe−xA); then let u(x) = −2 d2

dx2 log τ∞(x)

be the potential.

(iv) Let Φ(x) = Ce−xAB be the operator scattering function so that φ(x) = traceΦ(x) is

the (scalar) scattering function.

(v) Let Rx = e−xAEe−xA, then we introduce Fx = (I + e−xAEe−xA)−1.

(vi) Let Spec(A) be the spectrum of A as an operator in H, let P = C ∪ {∞} be the

Riemann sphere and introduce the periodic linear system

Σλ =
(

−A, (λI + A)(λI −A)−1B,C; (λI + A)(λI −A)−1E
)

(λ ∈ P \ Spec (A)) (6.6)

and its accompanying tau function τλ.

(vii) We also introduce the (non commutative) algebra S = C{I, A,BC, Fx}, and then

let A be the subring of S spanned by An1 and by the ordered products An1FAn2 . . . FAnr for

nj ∈ N.

Definition (Bracket and ∗ product). (i) As in Lemma 4.1, we introduce on S the product ∗
and derivation ∂ by

P ∗Q = P (AF + FA− 2FAF )Q, ∂P = A(I − 2F )P +
dP

dx
+ P (I − 2F )A. (6.7)
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(ii) We also introduce the bracket ⌊ . ⌋ : S → M(L1(H)) :

⌊P⌋ = Ce−xAFPFe−xAB. (6.8)

(iii) Let ⌊A⌋ = {⌊P⌋ : P ∈ A} and Θ = {P ∈ A : trace⌊P⌋ = 0}, which is a linear

subspace, and not necessarily a ring. Then A/Θ = {trace⌊P⌋ : P ∈ A}, so that A/Θ is

analogous to the differential ring generated by the potential u.

Theorem 6.3. Let (−A,B,C;E) be a uniform periodic linear system.

(i) Then τλ(x) is holomorphic except at finitely many singularities; so x 7→ τλ(x) is entire,

while λ 7→ τλ(x) is holomorphic on P \ Spec(A) ;
(ii) there is a homomorphism of complex differential rings (A, ∗, ∂) → MC(L(H0)) given

by X 7→ ⌊X⌋;
(iii) the potential u is meromorphic and π-periodic on C and belongs to A/Θ.
(iv) Also, let T (x, y) = −Ce−xAFxe−yAB. Then

∂2

∂x2
T (x, y)− ∂2

∂y2
T (x, y) = −2

( d

dx
T (x, x)

)

T (x, y), (6.9)

and u(x) = −2 d
dxtraceT (x, x).

Proof. (i) First we show that A is an algebraic operator. By periodicity, the group (e−xA)x∈R

is bounded and hence by Sz.-Nagy’s theorem, exA is similar to a unitary group on H, so A is

similar to a skew symmetric operator. By uniform continuity, A is bounded, and hence has

spectrum contained in {−iN, . . . , iN} for some integer N ; see [21]. Consequently, there exists

a monic polynomial p such that p(A) = 0. As in Proposition 4.5, Ce−xAB satisfies a linear

differential equation with constant coefficients.

Hence A is an invertible algebraic operator, so as in (4.21), A−1 is a polynomial in A and

(λI+A)(λI−A)−1 ∈ S for all λ in the resolvent set of A. Observe that (λI+A)(λI−A)−1 is a

polynomial in A with coefficients that are rational functions of λ, and holomorphic except when

λ is in the spectrum of A; in particular it is holomorphic on {λ : |λ| < 1} ∪ {λ : |λ| > ‖A‖}.
We also introduce polynomials pj for each point in the spectrum of A such that pj(ik) =

δjk for k = −N, . . . , N , and since A is similar to a skew operator, we deduce that

e−xA =
N
∑

j=−N ;j 6=0

pj(A)e
−ijx. (6.10)

Hence τλ is a holomorphic function of λ, except at λ ∈ Spec(A), which is a finite set.

(ii) First we check that (S, ∗, ∂) is a complex differential ring for (−A,B,C;E) and for

Σλ. By (4.19), the operator E belongs to S and hence by (6.10) Rx = e−xAEe−xA also belongs

to S. Hence we have

d

dx
Rx = −e−xAAEe−xA − e−xAEAe−xA = −e−xABCe−xA. (6.11)
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By the Riesz theory of compact operators, Fx is a meromorphic operator-valued function of

x, and so AF + FA− 2FAF = Fe−xABCe−xAF , hence

dF

dx
= AF + FA− 2FAF ; (6.12)

so that

∂(P ∗Q) = (∂P ) ∗Q+ P ∗ (∂Q); (6.13)

thus (S, ∗, ∂) is a differential ring. Moreover ⌊ . ⌋ : (S, ∗, ∂) → (S, ·, d/dx) is a homomorphism

of differential rings, in the sense that

d

dx
⌊P⌋ = ⌊∂P⌋, ⌊P⌋⌊Q⌋ = ⌊P ∗Q⌋. (6.14)

Note that A is a subring of S, and hence ⌊A⌋ is also a differential ring.

(iii) Since e−xA is an entire operator function, we deduce that τ∞ is entire, and π periodic

since τ∞(x) = det(I + e2xAE) and e2πA = I. When τ∞(x) 6= 0, we have

d

dx
log det(I + e−xAEe−xA) = −trace

(

(I + e−xAEe−xA)−1e−xA(AE +EA)e−xA
)

= −trace
(

(I + e−xAEe−xA)−1e−xABCe−xA
)

= −trace
(

Ce−xA(I + e−xAEe−xA)−1e−xAB
)

= −trace
(

Ce−xAFe−xAB
)

, (6.15)

and hence

u = −2
d2

dx2
log det(I + e−xAEe−xA)

= −4traceCe−xAFAFe−xAB

= −4trace ⌊A⌋; (6.16)

so u belongs to A0 = {trace⌊P⌋ : P ∈ A}. Likewise, the derivatives u(j) belong to A0 since

⌊A⌋ is a differential ring.

(iv) By repeated differentiation, we have

∂2

∂x2
T (x, y) = −Ce−xA

(

FA2 − 4FAFA− 4FA2F + 8FAFAF
)

e−yAB,

∂2

∂y2
T (x, y) = −Ce−xA

(

FA2
)

e−yAB (6.17)

while the Lyapunov equation gives

−2
( d

dx
T (x, x)

)

T (x, y) = 4Ce−xAFAFc−xABCe−xAFe−yAB

= 4Ce−xAFA(AF + FA − 2FAF )e−yAB, (6.18)
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hence the result. In [12, Lemma 7.2] we obtained a variant of this formula via an integral

equation in the style of Gelfand–Levitan, under special commutativity conditions.

Definition (Solutions of Hill’s equation). (i) Let u ∈ C2(R;C) be π-periodic, and consider

Hill’s equation in the form

d

dx

[

ψ
ψ′

]

=

[

0 1
u(x)− λ 0

] [

ψ
ψ′

]

. (6.19)

Let Fλ(x) be the fundamental solution matrix, and ∆(λ) = trace(Fλ(π)) the discriminant.

(ii) The multiplier curve is E = {p = (λ, ρ) : ρ2 −∆(λ)ρ+ 1 = 0}, as in [22].

(iii) A Floquet solution consists of a nonzero function f such that −f ′′(x) + q(x)f(x) =

λf(x) and f(x + π) = ρf(x) for some λ. We call λ the eigenvalue and ρ the multiplier, and

(λ, ρ) lies on E .
(iv) In particular, when ρ = 1, we say that f is periodic, and when ρ = −1, we say that

f is anti periodic. Then (λ,±1) is a branch point on E .
(v) Suppose that u is real-valued; then L = −d2/dx2 + u is essentially self-adjoint. The

Bloch spectrum of Schrödinger’s operator consists of those λ ∈ C such that there exists a

nontrivial and bounded solution f of −f ′′ + uf = λf . Real potentials are said to belong to

the same spectral equivalence class if their multiplier curves are equal. See [47, 50].

(vi) The Dirichlet eigenvalues (µj)
∞
j=1 are the µ such that

−y′′(x;µ) + u(x)y(x, µ) = µy(x;µ)

y(0;µ) = 0 = y(π;µ) (6.20)

has a nontrivial solution. Replacing u(x) by u(x + t) we obtain the Dirichlet eigenvalues

(µj(t))
∞
j=1.

The following result is related to results from Brett’s thesis [13], and relates to the case

in which the Gelfand–Levitan equation is scalar-valued, as in Proposition 3.1 and [27]. Given

a periodic linear system (−A,B,C), we introduce

Sx =

∫ x

0

e−tABCetA dt, Vx =

∫ x

0

etABCetA dt (6.21)

which satisfy the Lyapunov equation

d

dx

[

V 0
0 S

]

=

[

A 0
0 −A

] [

V 0
0 S

]

+

[

V 0
0 S

] [

A 0
0 A

]

+

[

BC 0
0 BC

]

. (6.22)

Let Wx = Vx − Sx and

L(x, y) = −CexA(I +Wx)
−1(eyA − e−yA)B; (6.23)

then let Zx = Vx + Sx and

K(x, y) = −CexA(I + Zx)
−1(eyA + e−yA)B. (6.24)
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Proposition 6.4. Let (−A,B,C) be a periodic linear system with H0 = C such that φ(x) =

CexAB is even and suppose there exist E,E− ∈ L1(H) such that AE + EA = BC and

−AE− +E−A = BC.

(i) Then the potential w(x) = −2 d2

dx2 log det(I +Wx) is periodic, and

ϕ(x) =
sin kx

k
+

∫ x

0

L(x, y)
sin ky

k
dy (6.25)

satisfies

−ϕ′′(x) + w(x)ϕ(x) = k2ϕ(x)

ϕ(0) = 0, ϕ′(0) = 1. (6.26)

(ii) Also the potential u(x) = −2 d2

dx2 log det(I + Zx) is periodic and

ψ(x) = cos kx+

∫ x

0

K(x, y) cos ky dy (6.27)

satisfies

−ψ′′(x) + u(x)ψ(x) = k2ψ(x)

ψ(0) = 1, ψ′(0) = −2CB. (6.28)

Proof. (i) We have

det(I +Wx) = det(I + exAEexA − e−xAE−e
xA − E +E−) (6.29)

which is periodic. Also, L(x, 0) = 0 and

L(x, x) = − d

dx
log det(I +Wx). (6.30)

One can verify that

φ(x+ y)− φ(x− y) + L(x, y) +

∫ x

0

L(x, t)
(

φ(t+ y)− φ(t− y)
)

dt = 0. (6.31)

and with w(x) = 2 d
dxL(x, x), we deduce that

∂2L

∂x2
− ∂2L

∂y2
= w(x)L(x, y) (6.32)

and by manipulating the Gelfand–Levitan equation, one deduces the differential equation for

ϕ.

(iii) We have

det(I + Zx) = det(I + exAEexA + e−xAE−e
xA − E − E−), (6.33)
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which is periodic, with ∂
∂yK(x, 0) = 0 and

K(x, x) = − d

dx
log det(I + Zx). (6.34)

Then we verify that

φ(x+ y) + φ(x− y) +K(x, y) +

∫ x

0

K(x, t)
(

φ(t+ y) + φ(t− y)
)

dt = 0. (6.35)

and with u(x) = 2 d
dxK(x, x), we have

∂2K

∂x2
− ∂2K

∂y2
= u(x)K(x, y); (6.36)

then by manipulating the Gelfand–Levitan equation, one deduces the differential equation for

ψ.

Given Proposition 6.4, it is tempting to seek a version of Proposition 6.1 for periodic

linear systems, and try to express the general solution of Hill’s equation in terms of quotients

of tau functions of periodic linear systems. The following result indicates the restriction that

must be imposed upon u for such a representation to be valid.

Proposition 6.5. Suppose that Σ = (−A,B,C;E) is a uniformly periodic linear system

with H0 = H such that for all but finitely many λ ∈ C, Hill’s equation has a pair of linearly

independent solutions of the form

ψλ(x) = eνx
n
∏

j=1

τζj (x− aj)

τηj (x− bj)
(6.37)

for some ν, aj , bj , ζj, ηk depending upon λ .

(i) Then u is a Picard potential, in the sense that Hill’s equation has a meromorphic

general solution for all but finitely many λ ∈ C ;

(ii) u is finite gap as a potential for Hill’s equation, and there exists a differential operator

P2g+1 of order 2g + 1 such that

P 2
2g+1 =

2g
∏

j=0

(L− λj) (6.38)

for some λj ∈ C such that ∆2(λj) = 4, and the diagonal Greens function g0 is discretely

dominated and satisfies (5.49).

(iii) Suppose further that u is real-valued. Then the Bloch spectrum of L is associated

with a hyperelliptic algebraic complex curve

E0 =
{

(µ, λ) ∈ C2 : µ2 =

2g
∏

j=0

(λ− λoj)
}

∪
{

(∞,∞)
}

(6.39)
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where λoj a simple real zero of ∆(λ)2 − 4 = 0, and such that the λ ∈ σB give real points (µ, λ)

on E0.
Proof. (i) In this case x 7→ det(I+e−xAEe−xA) is entire and hence ψλ is meromorphic; hence

there exists a meromorphic fundamental system of solutions on C. Since τ is periodic, we

have φλ(x + π) = eνπφλ(x), so that ψλ is a Floquet solution with Floquet exponent πν. By

choosing a pair of solutions with Floquet exponents ±πν(λ), we obtain a fundamental solution

matrix such that ∆(λ) = 2 coshπν(λ).

(ii) This is a particular case of the Burchnall–Chaundry theorem, and the required P2g+1

is given in the proof of Proposition 5.5. See [29, Theorem 4.1] for details. Also, for periodic

u ∈ C2(R,C), Gesztesy and Weikard [29] obtain the formula (4.31) where the λj are the

periodic eigenvalues which correspond to periodic solutions of (6.19). The µj(x) are referred

to as Dirichlet eigenvalues, or tied eigenvalues.

(iii) The set of all λ that give ρ = ±1 is called the periodic spectrum. Such a u has periodic

spectrum λ0 < λ1 ≤ λ2 < λ3 ≤ . . . , where for λ2j there exists a periodic eigenfunction, while

for λ2j+1 there exists an anti periodic eigenfunction. We have σB = ∪∞
k=0[λ2k, λ2k+1], where

many of these intervals are abutting. For real x, we deduce that just as ψλ(x) in (6.19) has

parameters ν, aj , ηj , bj and ηj for j = 1, . . . , n and gives a solution of Hill’s equation with λ,

the complex conjugate ψλ(x) has parameters ν̄, āj , ζ̄j, b̄j and η̄j for j = 1, . . . , n and hence

gives a solution of Hill’s equation with λ̄. We select ψλ with Floquet exponent πν, and φλ̄
with Floquet exponent πν̄, and observe that ψλ̄(x) = ψλ(x) as they both solve Hill’s equation

with λ and have the same Floquet exponent πν.

Note that τ∞(x) is real and non zero for real x, since x 7→ u∞(x) : R → R is twice

continuously differentiable, and such that Hill’s equation has two linearly independent Floquet

solutions ψλ(x) for all but finitely many ζ. Then Gesztesy and Weikard proved [31, Theorem

4.1] that u∞(x) is finite gap, and hence that the discriminant equation ∆(λ)2 − 4 = 0 has

only finitely many zeros that are simple, namely λo0 < . . . < λo2g. Hence the Bloch spectrum

is ∪g−1
j=0 [λ

0
2j , λ

o
2j+1] ∪ [λo2g,∞) and each point in the interior of this union of real intervals

corresponds to a pair of real points on the curve E .

Example 6.6. Let u ∈ C2(R;R) be a finite gap Hill’s potential. Here the fundamental

solution matrix is real for all λ ∈ R, hence ∆(λ) ∈ R for all λ ∈ R. Hochstadt observed that

the simple periodic spectrum (λoj ) determines the double periodic spectrum and the nontrivial

roots λ′j of ∆
′(λ) = 0, so we can write

∆′(λ)
√

4−∆(λ)2
= c3

∏g
j=1(λ− λ′j)

√

∏2g
j=0(λ− λoj )

. (6.40)

McKean and van Moerbecke [50] proved that the set of potentials with simple periodic spectrum

λ00 < . . . < λo2g gives a 2g sheeted cover of the cell [λ01, λ
o
2] × . . . × [λo2g−1, λ

o
2g] in which the

Dirichlet spectrum lives. We select one such potential q such that µj = λ′j . Then

ϕ(λ) = cos−1 ∆(λ)

2
= −

∫ λ

0

∆′(ζ)dζ
√

4−∆(ζ)2
(6.41)
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gives a conformal mapping from the upper half plane {λ : ℑλ > 0} to a slit domain, as in

Proposition 5.8.

7. Linear systems on the complex torus, and the hyperelliptic prime function

In this section, we show that there are significant examples of periodic linear systems which

satisfy the hypotheses of the previous section. In order to give explicit formulas, we do not

seek the greatest generality in the presentation. We start with genus one, for which our results

are most complete, and then progress to hyperelliptic cases.

Definition (Elliptic functions). (i) For ω1, ω2 ∈ C \ {0} with ℑ(ω2/ω1) > 0 uppose let

Λ = Z2ω1 + Z2w2 be a lattice, and let T = C/Λ be the corresponding torus. A meromorphic

function on C is elliptic (of the first kind) if it is doubly periodic with respect to Λ. A

meromorphic function is elliptic of the second kind if there exist multipliers ρj ∈ C such that

f(z+2ωj) = ρjf(z); so that f is quasi-periodic with respect to Λ. A meromorphic function is

elliptic of the third kind if there exist aj , bj ∈ C for j = 1, 2 such that f(z+2ωj) = eajz+bjf(z).

See [43, 49].

(ii) Let ω ∈ C have ℑω > 0; then Jacobi’s elliptic theta function is

ϑ1(x | ω) = i
∞
∑

n=−∞

(−1)ne(2n−1)πix+(n+1/2)2πiω (x ∈ C), (7.1)

which is elliptic of the third kind on with respect to Z+ ωZ.

Lemma 7.1. (i) Let δ be a positive divisor on C/Λ. Then there exists a uniformly periodic

linear system with tau function τ , where τ is elliptic of the third kind with zero divisor δ.

(ii) Let η be a divisor on C/Λ of degree zero. Then there exists a pair of uniformly

periodic linear systems with tau functions τ0 and τ1 such that τ1/τ0 is elliptic of the second

kind with η the divisor of its poles and zeros.

(iii) Let γ =
∑n
j=1 δaj −

∑n
j=1 δbj be a divisor of degree zero, where

∑n
j=1(aj − bj) ∈ Λ.

Then there exists a pair of uniformly periodic linear systems with tau functions τ1 and τ0 such

that τ1/τ0 is elliptic of the first kind with γ the divisor of the poles and zeros.

Proof (i) We introduce q = eπiω and introduce Jacobi’s elliptic function of the third kind by

the product

ϑ3(x) =
∞
∏

n=1

(1− q2n)
∞
∏

n=1

(1 + 2q2n−1 cos 2πx + q4n−2). (7.2)

Observing that

det

(

[

1 0
0 1

]

+ q2n−1

[

cos 2πx sin 2πx
− sin 2πx cos 2πx

]

)

= 1+ 2q2n−1 cos 2πx+ q4n−2, (7.3)

one introduces

An = Cn =

[

0 π
−π 0

]

, Bn = 2En =

[

q2n−1 0
0 q2n−1

]

(7.4)
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so that AnEn +EnAn = BnCn. By forming the direct sum
⊕∞

n=1(An, Bn, Cn;En) can easily

construct a linear system (−A,B,C;E) with H = H0 = ⊕∞
n−1C

2×1 that generates a uniform

periodic semigroup and with tau function ϑ3(x)/c for c =
∏∞
n=1(1− q2n).

We then introduce ϑ1(x) = −ieπixq1/4ϑ3(x + ω/2 + 1/2). By simple manipulations of

(7.22), one shows that ϑ1 is entire and elliptic of the third kind, and from the product formula

it is evident that ϑ1 has a simple zero at x = 0 and no others in the fundamental cell of C/Λ.

In section 7 of [11] we likewise obtained a uniform periodic linear system with tau function

ϑ1(x).

Given a positive divisor δ =
∑n

j=1 δaj , we can form block diagonal sums, and obtain a

periodic linear system with tau function τ0(x) =
∏n
j=1 ϑ1(x− aj), so τ0 is elliptic of the third

kind with simple zeros at a1, . . . , aj and the points congruent to these with respect to Λ.

(ii) Given η =
∑

j δaj −
∑

k δbk , we introduce periodic linear systems with tau functions

τ1 and τ0 as in (i) so that

τ0(x)

τ1(x)
=

n
∏

j=1

ϑ1(x− aj)

ϑ1(x− bj)
(7.5)

is elliptic of the second kind with zeros a1, . . . , an and poles b1, . . . , bn listed according to

multiplicity modulo Λ.

(iii) In the particular case of (ii) in which
∑n

j=1(aj − bj) ∈ Λ, then τ0/τ1 is elliptic of the

first kind, as in Abel’s theorem.

Proposition 7.2. Suppose that u is elliptic of the first kind, and that Hill’s equation −ψ′′(x)+

u(x)ψ(x) = λψ(x) has a meromorphic fundamental system of solutions for some λ ∈ C. Then

Hill’s equation has a nontrivial elliptic solution of the second kind, which may be expressed

as a quotient of tau functions that arise from uniformly periodic linear systems and systems

with finite-dimensional state space.

Proof. The first part is conventionally attributed to Picard. Let Vλ be the vector space of

meromorphic solutions of Hill’s equation, and suppose that Vλ has dimension two. Observe

that the monodromy operators Tj : ψ(z) 7→ ψ(z + 2ωj) are commuting operators such that

Tj(Vλ) ⊆ Vλ for j = 1, 2 since u is elliptic, so we can take Λ to be the group generated by T1
and T2. Then T1 and T2 have a common eigenvector, which gives an elliptic solution of the

second kind. (Furthermore, if T1 or T2 has distinct eigenvalues as an operator on Vλ, then

there exists a fundamental system of elliptic functions of the second kind; in particular, this

happens for T1 when ∆(λ)2 − 4 6= 0.)

Let ψ be a solution that is elliptic of the second kind hence has the form

ψ(x) = ebx+c
∏n
j=1 ϑ1(x− aj)

∏n
j=1 ϑ1(x− bj)

. (7.6)

The initial exponential factor ebx+c is the tau function of a linear system with state space

C, while the quotient of ϑ1 functions can be realized from a pair of uniformly periodic linear

systems by Lemma 7.1.
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Example 7.3. (Lamé’s equation). (i) By [49, page 132] there exists a constant e2 such that

℘(x) = e2 +
(ϑ′1(0)ϑ3(x)

ϑ1(x)ϑ3(0)

)2

, (7.7)

where Weierstrass’s function ℘ is meromorphic and doubly periodic with respect to Z+ ωZ.

The fundamental example of a finite gap elliptic differential equation is Lamé’s equation.

Let (X,Z) = (℘(x), ℘′(x)) and (Y,W ) = (℘(y), ℘′(y)) be points on the elliptic curve T =

{(X,Z) : Z2 = 4X3 − g2X − g3} ∪ {(∞,∞)}, where g32 − 27g23 6= 0, with Klein’s invariant

J = g32/(g
3
2 − 27g23), and K = C(X)[Z] is the elliptic function field. Then Lamé’s equation is

− d2

dx2
ψ(x) + ℓ(ℓ+ 1)℘(x)ψ(x) = λψ(x) (7.8)

and we write Ψ(X) = ψ(x) to convert between coordinates on the curve and the torus. See

[44] for a detailed discussion of various forms of the solutions.

To solve the case ℓ = 1, we introduce

ψ2(x, α) = −2q1/4e(ζ(α)−2αη1/π)x
ϑ1(x− α)

ϑ1(α)ϑ1(x)

∞
∏

n=1

(1− q2n)3, (7.9)

which satisfies Lamé’s equation with λ = −℘(α) and is such that α 7→ ψ2(x, α) is dou-

bly periodic and meromorphic, and x 7→ ψ2(x, α) is elliptic of the second kind; moreover

ψ2(x, α)ψ2(−x, α) = ℘(α) − ℘(x). By Lemma 7.1, ψ2(x, α) can be expressed as a quotient of

tau functions from periodic linear systems.

(ii) The Lamé example is fundamental, since several elementary examples can be derived

from it. In each of the following, γ and the potential u are meromorphic functions on a

Riemann surface E and ψ satisfies the addition rule

ψ(x + y) =
ψ′(x)ψ(y)− ψ(x)ψ′(y)

γ(x)− γ(y)
. (7.10)

and each entry can be obtained from periodic linear systems by taking a limit of the real or

imaginary period to infinity.

E u(x) ψ(x) γ(x) τ (x)
P1 g(g + 1)/x2 (g + 1)/x −(g + 1)/x2 xg(g+1)/2

C/πZ g(g + 1)cosec2x (g + 1) cotx −(g + 1)cosec2x (sinx)g(g+1)/2

C/πiZ g(g + 1)cosech2x (g + 1) cothx −(g + 1)cosech2x (sinhx)g(g+1)/2

C/Λ 2℘(x | Λ) ψ2(x, α) −℘(x | Λ) ϑ1(x | Λ)

(7.11)

Lemma 7.1 extends to symmetric compact Riemann surfaces of genus g ≥ 2 via the

Schottky–Klein function ̟, which depends upon the Schottky’s model for E . In Schottky’s

model, E arises as the quotient of C∞ = C ∪ {∞} under the action of a discrete subgroup

of PSL(2,C). A Riemann surface E is said to be symmetric if there exists an anti-conformal
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involution ϕ : E → E . Whereas the defining formula for ̟ does not seem well adapted

for computation, Crowdy et al [5,17, 18,70] have recently devised algorithms which facilitate

computing ̟ in geometrical contexts which arise in applied mathematics.

Example 7.4 (Schottky’s model). To each T ∈ PSL(2,C), we associate the Möbius transfor-

mation

T =

[

a b
c d

]

: z 7→ az + b

cz + d
. (7.12)

In particular, each T ∈ PSL(2,R) gives a Möbius transformation which preserves R ∪ {∞},
and is said to be Fuchsian. Let γ̂0 be the unit circle C(0, 1), and let γ̂j for j = 1, . . . , g

be Jordan curves inside γ̂0 which are mutually exterior to one another. Let ϕ be the anti

conformal involution of C∞ consisting of reflection in γ̂0, as in ϕ(z) = 1/z̄ then we obtain γ̂−j
by reflecting γ̂j in γ̂0 via ϕ so γ̂−j are Jordan curves in the exterior of γ̂0; then γ̂±1, . . . , γ̂±g
are mutually exterior. The fundamental region is the set F which is exterior to all the 2g

Jordan curves γ̂±j for j = 1, . . . , g, so F has 2g holes, and comes equipped with the anti

conformal involution ϕ. Let T̂j ∈ PSL(2,C) map γj to γ̂−j and the exterior of γ̂j with respect

to C∞ onto the interior of γ̂−j . Then we introduce the group Γ which is generated by T̂j for

j = 1, . . . , g. Let D0 = D(0, 1) be the interior of γ̂0 and Dj the interior of γ̂j for j − 0, . . . , g;

then let DΓ = D0 \ ∪gj=1Dj , so that DΓ is a set with g holes. Then we can form the Schottky

double of DΓ by attaching another copy of DΓ to itself along the curves γj for j = 0, . . . , g to

form a symmetric Riemann surface E with genus g.

Now we separate off the identity transformation, and pair up all other transformations

with their inverses, so there is a partition Γ = {I} ∪ ⋃∞
k=1{Tk, T−1

k }, where Tk(z) = (akz +

bk)/(ckz + dk). By classical results summarized in [3], there exists a singular set E0 such that

Γ acts properly discontinuously on C∞ \ E0, the set E0 is perfect and nowhere dense, and

E0 has Lebesgue area measure zero. Given any relatively compact domain D′ contained in

C∞ \ E0, there exist only finitely many points −dk/ck ∈ D′; hence there exists a nonempty

domain D′′ ⊂ D′ such that D′′ does not contain −dk/ck or ∞.

Definition (Prime function). Suppose momentarily that the following product converges for

some z, ζ ∈ D′′; then the product defines the Schottky–Klein prime function of E by

̟(z, ζ) = (z − ζ)

∞
∏

k=1

z − Tk(ζ)

z − Tk(z)

ζ − Tk(z)

ζ − Tk(ζ)
. (7.13)

Each factor in this product is a cross-ratio, hence does not change when Tk is replaced by T−1
k .

We write T−k = T−1
k for k = 1, 2, . . .. See [7, Chapter 7] for other functional relations.

Proposition 7.5. Suppose that Γ is a non elementary Fuchsian group such that the limit

set is a proper subset of R, and let ζ0 ∈ F have ℑζ0 > 0. Then there exists a sequence of

uniformly periodic linear systems Σk with tau functions τk, and a constant c1 such that

̟(eiθ, ζ0)

̟(eiφ, ζ0)
= c1

∞
∏

k=−∞

τk(θ)

τk(φ)
. (7.14)
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Proof. Burnside [15] showed that for Γ such a Fuchsian group, the series
∑

k |ckz + dk|−2

converges for all ℑz > 0; he referred to such groups as groups of the first class, a terminology

which is no longer current. The set of limit points of (Tk(ζ0))
∞
k=−∞ is contained in the limit

set of Γ, hence is a proper subset of R. Akaza considered the property

∞
∑

k=1

1

|ck|2
<∞ (7.15)

and showed that this is equivalent to the absolute and uniform convergence of various Poincare

series of dimension (−2), and this property holds in the present context. Hence the series

∑

k

( 1

Tk(s)− z
− 1

Tk(s)− ζ

)

T ′
k(s) (7.16)

converges for all s ∈ D′′, and ζ, z ∈ γ̂0, as in Theorem A of [3]. Upon integrating (7.16), and

noting Appendix A of [5] we obtain

∏

T∈Γ

T (ζ0)− z

T (ζ0)− ζ
= C

̟(z, ζ0)

̟(ζ, ζ0)
, (7.17)

for some constant C; we write this as a convergent product

C
̟(z, ζ0)

̟(ζ, ζ0)
=

∞
∏

k=1

(akζ0 + bk)− (ckζ0 + dk)z

(akζ0 + bk)− (ckζ0 + dk)ζ
. (7.18)

Now we introduce a periodic linear system for each k, as specified by the matrices

Ak =

[

0 1
−1 0

]

, Ek =

[

αk βk
γk δk

]

, (7.19)

with coefficients to be determined. We have

τk(θ) = det
(

I + eθAE
)

= 1 + (αkβk − γkδk) + (αk + δk) cos θ + (γk − βk) sin θ, (7.20)

so we choose complex αk and βk to solve the quadratic equation

akζ0 + bk
ckζ0 + dk

=
1− α2

k − β2
k

ckζ0 + dk
− αk + iβk, (7.21)

(for instance, one can choose βk = iαk), then let

δk = −αk − (ckζ0 + dk), γk = βk − i(ckζ0 + dk). (7.22)

Let z = eiθ and ζ = eiφ so z and ζ lie on the circle γ̂0, which lies inside F , and the product

(7.18) converges. The identity (7.14) follows from our choice of Ak and Ek.
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Remarks 7.6 (i) Lemma 7.1 is a particular case of Proposition 7.5. When g = 1 and γ̂1 =

C(0, q) for some 0 < q < 1, the concentric circles γ̂1 and γ̂−1 bound an annulus, from which

one can construct a model of the torus C/(Z2ω1 + Z2ω2) where ω1 = log 1/q and ω2 = πi,

by identifying points on the inner and outer circles as in [48, p 48]. Here the Schottky–Klein

function for the complex torus is

̟(ζ, z) = (ζ − z)
∞
∏

n=1

(1− q2(ζ/z + z/ζ) + q4n)

(1− q2n)2
, (7.23)

which strongly resembles the formula for ϑ3 as given in (7.2), and the analogy with the product

for ϑ1 is closer still; see [48 p135], and [18]. By contrast, for g ≥ 2, the universal cover of E is

the hyperbolic upper half plane C+ rather than C, and Γ is a non abelian group.

(ii) The function z 7→ ̟(z, ζ) is holomorphic and has a first order zero at z = ζ, and no

other zeros in F ; hence ̟(z, ζ) can be used to build meromorphic functions on E with zeros

and poles, subject to Abel’s theorem. Baker [7] describes the functional equation of ̟, viewing

z 7→ ̟(z, ζ) as an automorphic function with respect to the action of Γ.

(iii) By Koebe’s retrosection theorem, any compact Riemann surface can be uniformized

by a Schottky group, as in the preceding discussion, where Γ is some discrete subgroup of

PSL(2,C). In Proposition 7.5, we have chosen Γ to be a Fuchsian group so as to simplify the

geometry and to identify a class of Schottky groups for which the product (7.13) converges;

in this case, one can choose the γ̂j to be circles with centres on R. The Riemann surface E is

not to be confused with C+/Γ. There are alternative definitions of ̟ which avoid the infinite

product (7.13); see [5] for an existence theorem for ̟ which is based on potential theory.

(iv) Fay and Mumford [23, 57] introduce ̟ via Fay’s prime form, and their theory leads

naturally to theta functions on the Jacobi variety of E . Let E be a symmetric compact Riemann

surface of genus g. Then E has a prime form E, and we suppose that ϕ : E → E satisfies

E(ϕ(ζ), ϕ(z)) = E(ζ, z). (7.24)

Then the Schottky–Klein function ̟ : E × E → C satisfies

E(ζ, z) =
̟(ζ, z)√
dζdz

, (7.25)

and the functional relations

̟(ζ, z) = −̟(z, ζ), ̟(1/ζ̄, 1/z̄) =
−̟(ζ, z)

ζz
. (7.26)

Example 7.7. The following configuration was studied by Burnside [16]. Let 1 < e1 <

e2 < . . . < e2g−1 < e2g, and let γ̂−j be the circle with centre (e2j−1 + e2j)/2 and radius

(e2j − e2j−1)/2; then we let γ̂0 be the circle with centre 0 and radius 1, and let γ̂j be the

inversion of γ̂−j in γ̂0 for j = 1, . . . , g. This gives us 2g+1 circles with centres on R such that
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γ̂±j for j = 1, . . . , g are 2g circles with mutually disjoint interiors, and we can construct the

Schottky surface E as above. Baker [7] shows that the functions

X(ζ) =
(̟(ζ,−1)̟(1, ζ0)

̟(ζ, 1)̟(−1, ζ0)

)2

,

Y (ζ) =
̟(ζ,−1)̟(1, ζ0)

̟(ζ, 1)̟(−1, ζ0)

g
∏

j=1

̟(ζ, e2j−1)̟(e2j , ζ0)

̟(ζ, e2j)̟(e2j−1, ζ0)
(7.27)

are meromorphic and invariant under the action of Γ, so Y (T (ζ)) = Y (ζ) for all T ∈ Γ. Hence

X defines a rational function of degree two on E → C∞, with double pole at ζ = 1 and a double

zero at ζ = −1, hence E is hyperelliptic. To identify the corresponding curve, let λj = X(ej),

then Z = X
∏g
j=1(X − λ2j−1). Baker [7] shows that E is the closure of the complex curve

{

(X,Z) ∈ C2 : Z2 = X

2g
∏

j=1

(X − λj)
}

. (7.28)

Renumbering the λj if needs be, we can consider (λ2j−1, λ2j) as consecutive gaps. By Abel’s

theorem, there exists a discrete subgroup Λ of Cg of full rank such that the map

J : δζ − δζ0 7→
(

∫ ζ

ζ0

Xj−1dX

Z

)g

j=1
∈ Cg (mod Λ) (7.29)

extends via Z-linear combinations and defines a surjective group homomorphism from the

divisors on E of degree zero onto the quotient group Cg/Λ. Thus one can identify the Picard

variety with Cg/Λ via the Jacobian map J , which is an isomorphism of abelian groups.

Marcenko showed that the set of finite gap potentials is norm dense in L2([0, π];R); see[25]

for more on spectral gaps for L2 potentials.

8. Kadomtsev–Petviashvili differential equations

For a meromorphic complex function u(x, y, s), the KP equation is

∂

∂x

(∂3u

∂x3
− 6u

∂u

∂x
+ 4λ

∂u

∂x
+ 4α

∂u

∂s

)

+ 3β2 ∂
2u

∂y2
= 0, (8.1)

where the α, β, λ ∈ C are parameters. In this section, we use (2, 2)-admissible linear systems,

one can produce solutions to the KP equations via scattering functions and the Gelfand–

Levitan equation. Zakharov and Shabat [72] considered the associated scattering function φ,

which we take to be a meromorphic complex function φ(x, y, z, t) that satisfies the linear KP

equations

α
∂φ

∂t
+
∂3φ

∂x3
+
∂3φ

∂z3
+ λ

(∂φ

∂x
+
∂φ

∂z

)

= 0 (8.2)

and

β
∂φ

∂y
+
∂2φ

∂x2
− ∂2φ

∂z2
= 0. (8.3)
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Definition (GL equation for KP ). The appropriate version of the Gelfand–Levitan equation

for the linear KP equations is

φ(x, z; y, t) +K(x, z; y, t) +

∫ ∞

x

K(x, s; y, t)φ(s, z; y, t)ds = 0 (x < z). (8.4)

For a solution K(x, z; y, t), define the potential by

u(x; y, t) = −2
d

dx
K(x, x; y, t). (8.5)

Remark. Note that in comparison with [72], our potential has an extra minus sign. We regard

(x, z) as the main variables, (x, x) as the diagonal and (y, t) as parameters which describe the

deformation of solutions of the integral equation. We write ∂
∂x to indicate differentiation with

respect to the first variable, ∂
∂z to indicate differentiation with respect to the second variable,

and d
dx to indicate differentiation along the diagonal.

We shall introduce a suitable family of admissible linear systems such that u arises as

their tau function, and solve the Gelfand–Levitan equation in a similar way to section 2.

Definition. Given (2, 2) admissible linear systems (−A1, B0, C0) and (−A2, B0, C0) as in

Theorem 2.2 with A1, A2 ∈ L(H). We write (−A1,−A2;B0, C0) for brevity, which is not to be

confused with the notation (A,B,C,D) which is used as shorthand for the colligation matrix

of a linear system. Let

C(y; t) = C0e
t(A3

1+λA1)/α−yA
2
1/β (8.6)

B(y; t) = et(A
3
2+λA2)/α+yA

2
2/βB0. (8.7)

Then let

φ(x, z; y; t) = C(y; t)e−xA1e−zA2B(y; t), (8.8)

Rx = Rx(y, t) =

∫ ∞

x

e−A2sB(y; t)C(y; t)e−A1sds, (8.9)

and

K(x, z; y; t) = −C(y; t)e−xA1(I + Rx)
−1e−zA2B(y; t). (8.10)

The signs before A2
1 and A2

2 in (8.6) and (8.7) are purposefully different. We do not assume

that A1 and A2 commute, so that φ really does depend upon y in general. When A1 = A2,

the formula (8.9) reduces to our usual R operator in the style (1.7), Proposition 8.1 reduces to

Proposition 2.4, and ψ reduces to a Hankel type kernel ψ(x, z; y, t) = φ(x+ z; t), independent

of y.

Zakharov and Shabat used this method for finite rank A1 and A2 to produce soliton

solutions of KP . For solutions in the style of Proposition 4.5, see [35, Proposition 14.12].

In order to ensure that various products and brackets are well defined, we have imposed the

condition A1, A2 ∈ L(H); some of the results hold under less stringent conditions.

Proposition 8.1. (i) Then φ(x, z; y; t) satisfies the scattering equations (8.2) and (8.3) for

the KP equation.
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(ii) K(x, z; y; t) satisfies the integral equation (8.4) and

K(x, x; y; t) =
d

dx
log det(I +Rx). (8.11)

(iii) there exists x0 such that K(x, z; y; t) and the corresponding u from (8.5) satisfy

∂2K

∂x2
− ∂2K

∂z2
+ β

∂K

∂y
= u(x; y; t)K(x, z; y; t) (x0 < x < z). (8.12)

Proof. (i) Since the operators are all bounded, the functions are differentiable and one can

verify the differential equations, without assuming that A1 and A2 commute.

(ii) The linear system

Σ̂ =
(

[

−A1 0
0 −A2

]

,

[

B0 0
0 B(y; t)

]

,

[

0 −C0

C(y; t) 0

]

)

(8.13)

is (2, 2) admissible and by Theorem 2.2 the corresponding R̂x operator

R̂x =

[

0 −
∫∞

x
e−sA1B0C0e

−sA2ds
∫∞

x
e−sA2B(y; t)C(y; t)e−sA1ds 0

]

, (8.14)

is trace class as in Proposition 2.4. Hence

φ(x, z; y, t) +K(x, z; y, t) +

∫ ∞

x

K(x, s; y, t)φ(s, z; y, t)ds

= C(y; t)e−xA1e−zA2B(y; t)− C(y; t)e−xA1 (I + Rx)
−1e−zA2B(y; t)

− C(y; t)e−xA1(I +Rx)
−1

∫ ∞

x

e−sA2B(y; t)C(y; t)e−sA1e−zA2B(y; t)ds

= C(y; t)e−xA1

(

I − (I + Rx)
−1 − (I + Rx)

−1Rx

)

e−zA2B(y; t)

= 0, (8.15)

as in the proof of Proposition 2.4. One then verifies the determinant identity (8.11), which

involves the bottom left entry of R̂x satisfying the asymmetric Lyapunov equation

d

dx
Rx = −A2Rx −RxA1 = −e−xA2B(y; t)C(y; t)e−xA1 (x > 0). (8.16)

(iii) The solution of the integral equation is unique for large enough x since ‖e−xA1‖ → 0

and ‖e−xA2‖ → 0 exponentially fast as x → ∞; hence Ψ(x; z; y; t) → 0 exponentially fast as

x→ ∞. Using the scattering equation (8.2), one shows by differentiating (8.4) repeatedly that

∂2

∂x2
K(x, z; y; t)− ∂2

∂z2
K(x, z; y; t) + β

∂

∂y
K(x, z; y; t)

and u(x; y; t)K(x, z; y; t) both satisfy the equation which appears when (8.4) is multiplied by

u(x; y; t), and so by uniqueness are equal.
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Theorem 8.2. The potential u associated with τ (x, y, t) from (−A1,−A2;B(y; t), C(y; t))

satisfies the KP equation (8.1).

The proof involves a calculation which extends the results of sections 4 and 5, and we

split this into two Lemmas.

Definition (Product and bracket). In the notation of Proposition 8.1, let Fx = (I + Rx)
−1.

Let B be any differential ring of functions from (0,∞) → L(H0), then let

A = spanC
{

An1
1 Am1

2 Ap11 , A
n1
1 Am1

2 Ap11 FxA
n2
1 . . . FxA

nr
1 Amr

2 Apr1 : nj , mj, pj ∈ Z+

}

(8.17)

be the algebra generated by I, A1, A2 and F . On A we introduce the associative product ∗ by

P ∗Q = P (A1F + FA2 − F (A1 +A2)F )Q, (8.18)

which is distributive over the standard addition, and the derivation ∂ : A → A by

∂P = (A2 − (A1 +A2)F )P +
dP

dx
+ P (A1 − F (A1 + A2)), (8.19)

Then let the bracket ⌊ · ⌋ : A → B be the linear map

⌊Y ⌋ = Ce−xA1FxY Fxe
−xA2B (Y ∈ A). (8.20)

Lemma 8.3. Then (A, ∗, ∂) is a differential ring, and the bracket gives a homomorphism of

differential rings ⌊ · ⌋ : (A, ∗, ∂) → (B, ·, d/dx).
Proof. The basic observation is that dF/dx = A1F + FA2 − F (A1 +A2)F , so one can check

that

d

dx

(

A1F + FA2 − F (A1 + A2)F
)

=
(

A1 − F (A1 + A2)
)

(
(

A1F + FA2 − F (A1 + A2)F
)

+
(

A1F + FA2 − F (A1 + A2)F
)(

A2 − (A1 + A2)F
)

(8.21)

so that

d

dx
P
(

A1F + FA2 − F (A1 +A2)F
)

Q

=
dP

dx

(

A1F + FA2 − F (A1 +A2)F
)

Q

+ P
(

A1 − F (A1 + A2)
)(

A1F + FA2 − F (A1 + A2)F
)

Q

+ P
(

A1F + FA2 − F (A1 +A2)F
)(

A2 − (A1 + A2)F
)

Q

+ P
(

A1F + FA2 − F (A1 +A2)F
)dQ

dx
, (8.22)

so by adding the terms at either end of this expression, one shows that

∂(P ∗Q) = (∂P ) ∗Q+ P ∗ (∂Q). (8.23)
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Now we consider the bracket, and find from Lyapunov’s equation that

⌊P⌋⌊Q⌋ = Ce−xA1FPFe−xA2BCe−xA1FQFe−xA2B

= Ce−xA1FPF (A2S + SA1)FQFe
−xA2B

= Ce−xA1FP (A1F + FA2)− F (A1 + A2)F )QFe
−xA2B

= ⌊P ∗Q⌋; (8.24)

and

d

dx
⌊P⌋ = d

dx
Ce−xA1FPFe−xA2B

= Ce−xA1F
(

(

A2 − (A1 +A2)F
)

P +
dP

dx
+ P

(

A1 − F (A1 + A2)
)

)

Fe−xA2B

= ⌊∂P⌋. (8.25)

With the usual operator multiplication, let A0 be the subalgebra of A that is generated by

I, A1, and A2. Let J be the ideal in A generated by F ; then the powers Jn give a decreasing

chain of ideals such that ∩∞
n=1J

n = {0}; any product including n factors of F belongs to

Jn. Now A/J is isomorphic as an algebra to A0, and ∂(Jn) ⊆ Jn, so there are induced

maps ∂̃ : (Jn/Jn+1) → (Jn/Jn+1); in particular ∂̃ : A/J → A/J may be identified with

P 7→ A2P +PA1 on A0. Thus we may regard A as a graded algebra consisting of polynomials

in F with a (noncommutative) algebra A0 of coefficients. We regard ∂ as the sum of the

derivation d/dx, the multiplications X 7→ A2X + XA1 which typically preserve the degree,

and the multiplications X 7→ −(A1 + A2)FX and X 7→ −XF (A1 + A2) which can raise the

degree by one at most.

Lemma 8.4. The function

w = 4α
∂u

∂t
+ 4λ

∂u

∂x
+
∂3u

∂x3
− 6u

∂u

∂x
(8.26)

is the image under the bracket ⌊·⌋ of the sum of terms

6A4
1 − 12A2

2 + 6A4
2

+12(A1 + A2)FA2(A1 − A2)
2 − 12(A2

1 − A2
2)A1F (A1 + A2)

+6(A2
1 + 2A2A1) + A2)

2F (A2
1 −A2

2)− 6(A2
1 −A2

2)F (A
2
1 + 2A2A1 +A2

2)

+12(A2
1 −A2

2)F (A1 +A2)F (A1 + A2)− 12(A1 + A2)F (A1 +A2)F (A
2
1 − A2

2). (8.27)

Proof. We introduce the ordered products, in which powers of A2 powers occur before powers

of A1,

A(1) = A1 +A2, A(2) = A2
1 + 2A2A1 +A2

2, A(3) = A3
1 + 3A2A

2
1 + 3A2

2A1 +A3
2, . . . (8.28)
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and the coefficients are as in Pascal’s triangle. It suffices to compute

W = 4α∂tU + 4λ∂U + ∂3U − 3U ∗ ∂U − 3∂U ∗ U, (8.29)

since w = ⌊W ⌋ by Lemma 8.3. The terms from (8.29) are given in the following multiplication

table (8.30). Starting with U = −2A(1), we have derivatives

∂U = −2A(2) + 4A(1)FA(1),

∂2U = −2A(3) + 6A(2)FA(1) + 6A(1)FA(2) − 12A(1)FA(1)FA(1),

∂3U = −2A(4) + 8A(3)FA(1) + 8A(1)FA(3) + 12A(2)FA(2)

− 24A(1)FA(1)FA(2) − 24A(1)FA(2)FA(1) − 24A(2)FA(1)FA(1)

+ 48A(1)FA(1)FA(1)FA(1); (8.30)

these products exhibit a high degree of symmetry. The only proof known to the authors is

applying ∂ repeatedly, then patiently multiplying out and gathering the various products. To

respect the symmetry of terms, we use

U ∗ ∂U + ∂U ∗ U = 4A(1)FA2A
(2) + A(2)A1FA

(1) + A(2)FA2A
(1) + A(1)A1FA

(2)

− 8A(2)FA(1)FA(1) − 8A(1)FA(2)FA(1) − 8A(1)FA(1)FA(2)

− 4(A2
1 − A2

2)FA
(1)FA(1) + 4A(1)FA(1)F (A2

1 −A2
2)

+ 16(1)FA(1)FA(1)FA(1). (8.31)

We likewise introduce

α∂tU = 2(A3
2 + λA2)(A1 +A2) + 2(A1 + A2)(A

3
1 + λA1)

− 2(A3
1 +A3

2 + λA1 + λA2)F (A1 +A2)

− 2(A1 + A2)F (A
3
1 +A3

2 + λA1 + λA2) (8.32)

and

β2∂2yU = −2(A5
1 + A2A

4
1 − 2A2

2A
3
1 − 2A3

2A
2
2 +A4

2A1 + A5
2)

+ 2(A1 + A2)F (A
4
1 − 2A2

1A
2
2 +A4

2) + 2(A4
1 − 2A2

1A
2
2 + A4

2)F (A1 +A2)

+ 4(A2
1 − A2

2)F (A
3
1 +A2A

2
1 − A2

2A1 −A3
2)

+ 4(A3
1 + A2A

2
1 −A2

2A1 − A3
2)F (A

2
1 −A2

2)

− 4(A2
1 − A2

2)F (A1 +A2)F (A
2
1 −A2

2)

− 4(A1 + A2)F (A
2
1 −A2

2)F (A
2
1 −A2

2)

− 4(A2
1 − A2

2)F (A
2
1 −A2

2)F (A1 +A2). (8.33)

Then one checks that W reduces to the combination (8.29).
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Proof of Theorem 8.2 Let Θ = {X ∈ A : ⌊X⌋ = 0} and observe that Θ contains the

commutator subspace spanned by Q ∗ P − P ∗Q. The final two terms in W are of degree two

in F , which would give terms of degree three in ∂W , which do not appear in the formula for

∂2yU . Hence we replace them by terms of degree one, before differentiating; or equivalently, we

show that 4β2∂2yU + ∂W belongs to Θ. We have

0 = ⌊A2
1 − A2

2⌋⌊A1 +A2⌋ − ⌊A1 +A2⌋⌊A2
1 − A2

2⌋
= ⌊(A2

1 − A2
2)(A1F + FA2 − F (A1 +A2)F )(A1 + A2)⌋

− ⌊(A1 + A2)(A1F + FA1 − F (A1 +A2)F (A
2
1 −A2

2)⌋
= ⌊(A2

1 − A2
2)(A1F + FA2)(A1 + A2)− (A1 +A2)(A1F + FA2)(A

2
1 −A2

2)⌋
− ⌊(A2

1 − A2
2)F (A1 +A2)F (A1 + A2)− (A1 +A2)F (A1 + A2)F (A

2
1 −A2

2)⌋. (8.34)

So when we replace the final two terms of degree two by terms such as (A2
1 − A2

2)(A1F +

FA2)(A1 +A2), we obtain the following collection of terms of degree one

12(A1 +A2)FA2(A
2
1 −A2

2)− 12(A2
1 −A2

2)A1F (A1 +A2)

+6(A2
1 + 2A2A1 + A2

2)F (A
2
1 −A2

2)− 6(A2
1 −A2

2)F (A
2
1 + 2A2A1 +A2

2)

+6(A2
1 + 2A2A1) + A2)

2F (A2
1 −A2

2)− 6(A2
1 −A2

2)F (A
2
1 + 2A2A1 +A2

2)

+12(A2
1 −A2

2)A1F (A1 +A2) + 12(A2
1 −A2

2)FA2(A1 +A2)

−12(A1 +A2)A1F (A
2
1 −A2

2)− 12(A1 +A2)FA2(A
2
1 −A2

2)

= −12(A2
1 −A2

2)F (A
2
1 − A2

2). (8.35)

Now we compute

∂
(

6A4
1−12A2

2 + 6A4
2 − 12(A2

1 − A2
2)F (A

2
1 −A2

2)
)

= 6A2A
4
1 − 12A3

2A
2
1 + 6A5

2 + 6A5
1 − 12A2

2A
3
1 + 6A4

2A1

− (A1 + A2)F (6A
4
1 − 12A2

2A
2
1 + 6A2

2)− (6A4
1 − 12A2

2A
2
1 −A4

2)F (A1 + A2)

− 12A2(A
2
1 − A2

2)F (A
2
1 −A2

2)− 12(A2
1 −A2

2)F (A
2
1 − A2

2)A1

+ 12(A1 +A2)F (A
2
1 − A2

2)F (A
2
1 −A2

2) + 12(A2
1 −A2

2)F (A
2
1 − A2

2)F (A1 +A2)

− 12(A2
1 −A2

2)(A1F + FA2 − F (A1 +A2)F )(A
2
1 −A2

2)

= 6A5
1 + 6A2A

4
1 − 12A2

2A
3
1 − 12A3

2A
3
1 + 6A2A

4
1 + 6A5

1

− 6(A1 + A2)F (A
4
1 − 2A2

2A
2
1 +A4

1)− 6(A4
1 − 2A2

2A
2
1 + A4

1)F (A1 +A2)

+ (−12(A2A
2
1 + 12A3

2 − 12A3
1 + 12A2

2A1)F (A
2
1 − A2

2)

+ (A2
1 − A2

2)F (−12A3
1 + 12A2

2A1 − 12A2A
2
1 + 12A3

1)

+ 12(A1 +A2)F (A
2
1 − A2

2)F (A
2
1 −A2

2) + 12(A2
1 −A2

2)F (A
2
1 − A2

2)F (A1 +A2)

+ 12(A2
1 −A2

2)F (A1 + A2)F (A
2
1 −A2

2). (8.36)

By comparing this with (8.27) we obtain the result.
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9. The Baker–Akhiezer function for KP

In this final section, we obtain solutions to the time dependent Schrödinger equation in the

form of quotients of tau functions for a family of admissible linear systems. When u satisfies

KP , one can choose w so that the operators

β
∂

∂y
+ L = β

∂

∂y
− ∂2

∂x2
+ u(x; y, t) (9.1)

and
∂

∂t
+M =

∂

∂t
+

∂3

∂x3
− 3

2
u(x; y, t)

∂

∂x
− 3

4

∂u

∂x
− 3αw(x; y, t) (9.2)

commute. In the following result, we obtain an explicit form for a common eigenfunction for

both these operators, so

(

β
∂

∂y
+ L

)

ψζ = 0 =
( ∂

∂t
+M

)

ψζ . (9.3)

By analogy with (3.2), we call a particular family of solutions the Baker–Akhiezer function.

Definition (Baker–Akhiezer function). Consider the linear system (−A1, A2;B(y, t), C(y, t))

from Theorem 8.2, with spectral parameter ζ, and Rx = Rx(y, t) as in (8.9). Then the Baker–

Akhiezer function is

ψζ(x; y, t) = eζx−ζ
2y/β−ζ3t det(I + Rx(ζI +A1)(ζI − A2)

−1)

det(I +Rx)
, (9.4)

defined on ζ ∈ C \ Spec(A2).

Proposition 9.1. Let αw(x; y, t) = ∂K
2∂y (x, x; y, t).

(i) Then β ∂
∂y + L and ∂

∂t +M commute;

(ii) The Baker–Akhiezer function ψζ is meromorphic in (x, y, t) ∈ C3;

(iii) also ψζ satisfies

−∂
2ψζ(x; y, t)

∂x2
+ u(x; y, t)ψζ(x; y, t) + β

∂ψζ(x; y, t)

∂y
= 0, (9.5)

(iv) and satisfies

∂ψζ
∂t

+
∂3ψζ
∂x3

− 3

2
u(x; y, t)

∂ψζ
∂x

− 3

4

∂u

∂x
ψζ(x; y, t)− 3w(x; y, t)ψζ(x; y, t) = 0. (9.6)

Proof (i) We have

α
∂w

∂x
(x; y, t) =

1

2

∂

∂y

dK

dx
(x, x; y, t) =

1

4

∂u

∂y
(x; y, t), (9.7)

which is what one needs to make the operators commute.
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(ii) The function (x, y, t) 7→ Rx is entire from C3 → L1(H), hence

det(I + (ζI +A1)Rx(ζI − A2)
−1) (9.8)

is entire and ψζ is a quotient of entire functions, hence is meromorphic.

(iii) By some simple manipulations of the determinants, we have

ψζ(x; y, t) = eζx−ζ
2y/β−ζ3t det(I + ((ζI − A2)Rx + (A2Rx +RxA1)(ζI −A2)

−1)

det(I + Rx)

= eζx−ζ
2y/β−ζ3t det(I +Rx + (ζI − A2)

−1(A2Rx + RxA1))

det(I +Rx)

= eζx−ζ
2y/β−ζ3t det(I + (I +Rx)

−1(ζI −A2)
−1(A2Rx +RxA1)); (9.9)

so by Lyapunov’s equation, we have

ψζ(x; y, t) = eζx−ζ
2y/β−ζ3t det(I + (I + Rx)

−1(ζI − A2)
−1e−xA2B(y, t)C(y, t)e−xA1 )

= eζx−ζ
2y/β−ζ3t

(

1 + trace(I +Rx)
−1(ζI − A2)

−1e−xA2B(y, t)C(y, t)e−xA1

)

= eζx−ζ
2y/β−ζ3t

(

1 + C(y, t)e−xA1(I + Rx)
−1(ζI − A2)

−1e−xA2B(y, t)
)

(9.10)

since B(y, t)C(y, t) has rank one; then we write this as

ψζ(x; y, t) = eζx−ζ
2y/β−ζ3t

(

1− C(y, t)e−xA1 (I +Rx)
−1

∫ ∞

x

e−zA2eζ(z−x) dzB(y, t)
)

= eζx−ζ
2y/β−ζ3t

(

1 +

∫ ∞

x

K(x, z; y, t)eζ(z−x) dz
)

. (9.11)

Now we calculate

∂ψζ
∂y

= −(ζ2/β)eζx−ζ
2y/β−ζ3t +

∫ ∞

x

∂

∂y
K(x, z, y, t)eζz−ζ

2y/β−ζ3t dz (9.12)

and

∂ψζ
∂x

= ζeζx−ζ
2y/β−ζ3t − eζx−ζ

2y/β−ζ3tK(x, x; y, t) +

∫ ∞

x

∂

∂x
K(x, z; y, t)eζz−ζ

2y/β−ζ3t dz

(9.13)

hence

∂2ψζ
∂x2

= ζ2eζx−ζ
2y/β−ζ3t − ζeζx−ζ

2y/β−ζ3tK(x, x; y, t) + eζx−ζ
2y/β−ζ3t d

dx
K(x, x; y, t)

− ∂

∂x
K(x, x; y, t)eζx−ζ

2y/β−ζ3t +

∫ ∞

x

∂2

∂x2
K(x, z; y, t)eζx−ζ

2y/β−ζ3t dz. (9.14)
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Integrating by parts, we obtain

∫ ∞

x

∂2

∂z2
K(x, z; y, t)eζz−ζ

2y/β−ζ3tdz

= − ∂

∂z
K(x, x; y, t)eζx−ζ

2y/β−ζ3t − ζ

∫ ∞

x

∂

∂z
K(x, z; y, t)eζz−ζ

2y/β−ζ3t dz

= − ∂

∂z
K(x, x; y, t)eζz−ζ

2y/β−ζ3t +K(x, x; y, t)eζx−ζ
2y/β−ζ3t

+ ζ2
∫ ∞

x

K(x, z; y, t)eζx−ζ
2y/β−ζ3t dz; (9.15)

recalling the (8.10), and the definition of u(x; y, t), we deduce the differential equation for ψζ .

(iv) One starts with

ψζ(x, y, t) = eζx−ζ
2y/β−ζ3t +

∫ ∞

x

eζz−ζ
2y/β−ζ3tK(x, z; y, t)dz. (9.16)

Then by manipulating the Gelfand–Levitan equation, one deduces (9.6).

Let (ζj) be a sequence of distinct complex numbers and (ψζj )
∞
j=1 a corresponding sequence

of distinct solutions of the pair of equations (9.4) and (9.5), where u is as in (8.5) and fixed.

Then, taking derivatives in the x-variable, one forms the Wronskian

∆n = Wr
(

ψζ1 , . . . , ψζn
)

(9.17)

and introduces a sequence of new potentials and new Baker–Akhiezer functions by

un(x, y, t) = u(x, y, t)− 2
∂2

∂x2
log∆n(x, y, t) (9.18)

Ψn(x, y, t) =
∆n+1(x, y, t)

∆n(x, y, t)
. (9.19)

Corollary 9.2. (Matveev) Then Ψn and un satisfy (9.5), and the corresponding (9.6).

Proof. Matveev [46] showed that this follows from Proposition 9.1 by direct calculation.

Remarks 9.3 (i) Corollary 9.2 enables us to generate a sequence of solutions (un) of the KP

equation. If all the (ψζj ) belong to a differential field (F , ∂∂x , ∂∂y , ∂∂t ), then (un) and (Ψn)
∞
n=1

also belong to F . The case in which u = 0 and ψζ(x; y, t) = eζx−ζ
2y/β−ζ3t gives soliton

solutions to KP .

(ii) If the potential u, which appears as a coefficient of L in Proposition 9.1 does not

depend upon y, then we can reduce Proposition 9.1(i) to a Lax equation ∂L
∂t = [L,M ]. The

results of this section are applicable even when the determinant quotient (9.4) indeed depends

upon y.
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(iii) Krichever and Novikov [41, 42] consider Baker–Akhiezer functions ψζ(x, t) that are

meromorphic with respect to the spectral parameter ζ and produce examples based upon

quasi-periodic theta functions; in particular, the function ψ2(x, ζ) of section 7 is meromorphic;

see [39, 32]. Proposition 9.1 does not assert that ζ 7→ τζ(x, t) is meromorphic on C and the

case when the state space H has infinite dimension is problematic. In the rest of this section

we circumvent this problem by introducing infinitely many time variables, and acting on the

linear systems with a type of infinite dimensional Lie group. However, Segal and Wilson [64,

Proposition 6.11] have identified τζ functions that are meromorphic.

Definition (i) For fixed A1, A2 ∈ L(H), let ΣA1,A2
be the set of Σ = (−A1,−A2;B,C)

that give a (2, 2) admissible linear system, where B : C → H and C : H → C vary. Let

C∞
η = {(aj)∞j=0 ∈ C∞ : lim supj→∞ |aj |1/j ≤ η} be the space of coefficients of complex power

series with radius of convergence greater than or equal to 1/η, which may be identified with

the algebra of holomorphic functions D(0, η) → C. Let

V (t) = exp
(

∞
∑

j=1

tjA
j
2

)

, W (t) = exp
(

−
∞
∑

j=1

tj(−A1)
j
)

(t = (tj) ∈ C∞
0 ). (9.20)

and extend to t ∈ C∞
η with η > 0 when the series converge absolutely. There is an action ρ of

C∞
0 on ΣA1,A2

which is given by

ρ(t) :
(

−A1,−A2, B, C
)

7→
(

−A1,−A2, V (t)B,CW (t)
)

(t ∈ C∞
0 ). (9.21)

(ii) (Tau function). The tau function of the right-hand side of (9.21) is defined to be

τ (x; t) = det
(

I + V (t)RxW (t)
)

(t = (tj)
∞
j=1) (9.22)

where Rx =
∫∞

x
e−vA2BCe−vA1dv.

(iii) (Spectral shift). We introduce [s] = (sj/j)∞j=1 so that for sufficiently small |s|, ρ
extends to

ρ([s]) :
(

−A1,−A2, B, C
)

7→
(

−A1,−A2, (I − sA2)
−1B,C(I + sA1)

)

, (9.23)

then choose ζ = 1/s with ζ ∈ C \ Spec(A2) so that the spectral shift is

(

−A1,−A2, B, C
)

7→
(

−A1,−A2, (I − A2/ζ)
−1B,C(I +A1/ζ)

)

. (9.24)

Then we define the Baker–Akhiezer function by

ψζ(x; t) = exp
(

xζ +
∞
∑

j=1

ζjtj

)τ (x; t+ [1/ζ])

τ (x; t)
(t = (tj)

∞
j=1). (9.25)

This matches with the definition used in Proposition 9.1 when we choose

(t1, t2, t3, t4, . . .) = (tλ/α, y/β, t/α, 0, . . .). (9.26)
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(iv) (Sato’s integral). The Sato integral is

∫

|ζ|=r

τ
(

x; t+[1/ζ]
)

τ
(

x; t′− [1/ζ]
)

exp
(

∞
∑

j=1

(tj − t′j)ζ
j
)

dζ (t = (tj)
∞
j=1, t

′ = (t′j)
∞
j=1 ∈ C∞

0 ).

(9.27)

Theorem 9.5. Suppose that A1, A2 ∈ L(H) be as in Theorem 2.2. Then Sato’s integral

vanishes identically for all r > max{‖A1‖, ‖A2‖}.
Proof We consider the integral

S(t, y) =

∫

|ζ|=r

exp
(

−2
∞
∑

j=1

ζjyj

)τ (x, t+ y + [1/ζ])τ (x, t− y − [1/ζ])

τ (x, t+ y)τ (x, t− y)
dζ (9.28)

which as in (9.8) we can write as

∫

|ζ|=r

(

1 + Ce−xA2W (t + y)(I + V (t+ y)RxW (t+ y))−1V (t+ y)e−xA2(ζI −A2)
−1B

)

×
(

1− C(ζI +A1)
−1e−xA1W (t − y)(I + V (t− y)RxW (t− y))−1V (t− y)e−xA2B

)

× exp
(

−2

∞
∑

j=1

ζjyj

)

dζ (9.29)

which we split as a sum of four terms: first we have

∫

|ζ|=r

exp
(

−2

∞
∑

j=1

ζjyj

)

dζ = 0, (9.30)

by Cauchy’s theorem; the second is

∫

|ζ|=r

exp
(

−2

∞
∑

j=1

ζjyj

)

Ce−xA2W (t+ y)(I + V (t+ y)RxW (t+ y))−1V (t+ y)e−xA2(ζI − A2)
−1Bdζ

= 2πiCe−xA1W (t + y))(I + V (t+ y)RxW (t+ y))−1V (t+ y)e−xA2 exp
(

−2

∞
∑

j=1

yjA
j
2

)

B

= 2πiCe−xA1W (t + y))(I + V (t+ y)RxW (t+ y))−1V (t− y)e−xA2B; (9.31)

by the residue theorem; the third is

−
∫

|ζ|=r

exp
(

−2
∞
∑

j=1

ζjyj

)

C(ζI + A1)
−1e−xA1W (t− y)

× (I + V (t− y)RxW (t− y))−1V (t− y)e−xA2B dζ

= −Ce−xA1 exp
(

−2

∞
∑

j=1

(−A1)
jyj

)

W (t − y)(I + V (t− y)RxW (t− y))−1V (t− y)e−xA2B

= −Ce−xA1W (t+ y)(I + V (t− y)RxW (t− y))−1V (t− y)e−xA2B (9.32)
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likewise; and finally

−
∫

|ζ|=r

exp
(

−2
∞
∑

j=1

ζjyj

)

Ce−xA2W (t+ y)(I + V (t+ y)RxU(t+ y))−1V (t+ y)e−xA2(ζI −A2)
−1

× BC(ζI +A1)
−1e−xA1W (t− y)(I + V (t− y)RxW (t− y))−1V (t− y)e−xA2B dζ (9.33)

which involves

J(y) =

∫

|ζ|=r

exp
(

−2
∞
∑

j=1

ζjyj

)

(ζI −A2)
−1BC(ζI + A1)

−1dζ. (9.34)

This integral resembles (4.40), and likewise gives a solution to a type of Lyapunov equation.

Now

−1

2

∂J

∂y1
+ JA1 =

∫

|ζ|=r

exp
(

−2
∞
∑

j=1

ζjyj

)

(ζI − A2)
−1BCdζ

= 2πiV (−2y)BC (9.35)

and

−1

2

∂J

∂y1
− A2J =

∫

|ζ|=r

exp
(

−2

∞
∑

j=1

ζjyj

)

(ζI − A2)
−1BCdζ

= 2πiBCW (2y) (9.36)

so by subtracting and applying the residue theorem, we have

A2J + JA1 = 2πi(V (−2y)BC − BCW (2y)). (9.37)

Then we introduce J0 = 2πi(V (−2y)R0 − R0W (2y)), which satisfies

A2J0 + J0A1 = 2πiV (−2y)(A2R0 + R0A1)− 2πi(A2R0 +R0A1)W (2y)

= 2πi(V (−2y)BC −BCW (2y)) = A2J + JA1, (9.38)

by Lyapunov’s equation. By the uniqueness of solution of this equation, we deduce that

J(y) = J0 = 2πi
(

V (−2y)R0 − R0W (2y)
)

. (9.39)

Then, combining the terms (9.30), (9.31), (9.32) and (9.33) via (9.39), we have

S(y, t) = 2πiCW (t+ y)e−xA1

(

(I + V (t+ y)RxW (t+ y))−1 − (I + V (t− y)RxW (t − y))−1

− (I + V (t+ y)RxW (t + y))−1V (t+ y)e−xA1Je−xA2W (t− y)

× (I + V (t− y)RxW (t − y))−1
)

V (t− y)e−xA2B

= 2πiCW (t+ y)e−xA1(I + V (t+ y)RxW (t+ y))−1
(

(I + V (t− y)RxW (t− y))

− (I + V (t− y)RxW (t − y)) + (V (t+ y)RxW (t+ y)− V (t− y)RxW (t − y))
)

× (I + V (t− y)RxW (t − y))−1V (t− y)e−xA2B

= 0, (9.40)
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as required.

Corollary 9.6.(i) For s0, s1, s2, s3 ∈ C, let σjk = (sj − sk)τ (x; t + [sj] + [sk]). Then Fay’s

identity holds

σ0,1σ2,3 − σ0,2σ1,3 + σ0,3σ1,2 = 0; (9.41)

(ii) for the Wronskian with derivatives in the x-variable, the differential form of Fay’s

identity holds

Wr
(

τ
(

x; t+ [s1]
)

, τ
(

x; t+ [s2]
))

=
s1 − s2
s1s2

det

[

τ (x; t) τ (x; t+ [s2])
τ (x; t+ [s1]) τ (x; t+ [s1] + [s2])

]

; (9.42)

(iii) the second-order differential identity holds

∂2

∂ζ∂x
log τ

(

x; t+ [1/ζ]
)

= 1− τ (x; t)τ (x; t+ 2[1/ζ])

τ (x; t+ [1/ζ])2
. (9.43)

Proof. (i) See [66] and [2]. We have written the result in the style of a Plücker relation.

(ii) See [66] and [2]. This spectral addition rule has a similar style to the Toda equation

(3.18).

(iii) We divide (ii) by τ (x; t+[s1])τ (x; t+[s2]) so as to obtain
∂
∂x log τ (x; t+[s2])/τ (x; t+[s1])

on the left-hand side; then we differentiate with respect to s2, thus obtaining

( ∂2

∂s2∂x

)

s2=s1
log τ (x; t+ [s2]) = − 1

s21

(

1− τ (x; t)τ (x; t+ 2[s1])

τ (x; t+ [s1])2

)

; (9.44)

then we change variables to s1 = 1/ζ. This resembles the proof in [57, II 3.124].
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