
Developers Need Support, Too: A Survey of Security Advice for Software Developers

Yasemin Acar, Christian Stransky,∗ Dominik Wermke, Charles Weir,† Michelle L. Mazurek,‡ and Sascha Fahl
Leibniz University Hannover, ∗CISPA, Saarland University, †Security Lancaster, ‡University of Maryland

{acar,wermke,fahl}@sec.uni-hannover.de; stransky@cs.uni-saarland.de; c.weir1@lancaster.ac.uk; mmazurek@umd.edu

Abstract—Increasingly developers are becoming aware of the
importance of software security, as frequent high-profile se-
curity incidents emphasize the need for secure code. Faced
with this new problem, most developers will use their normal
approach: web search. But are the resulting web resources
useful and effective at promoting security in practice? Recent
research has identified security problems arising from Q&A re-
sources that help with specific secure-programming problems,
but the web also contains many general resources that discuss
security and secure programming more broadly, and to our
knowledge few if any of these have been empirically evaluated.
The continuing prevalence of security bugs suggests that this
guidance ecosystem is not currently working well enough:
either effective guidance is not available, or it is not reaching
the developers who need it. This paper takes a first step
toward understanding and improving this guidance ecosystem
by identifying and analyzing 19 general advice resources. The
results identify important gaps in the current ecosystem and
provide a basis for future work evaluating existing resources
and developing new ones to fill these gaps.

1. Introduction

The last two decades have seen explosive growth in the
creation and usage of software, as we now use computers
and digital devices to manage almost every aspect of our
lives: to communicate, to plan, to manage our finances, to do
our shopping, and to remember all our security information.
Software holds sensitive information about us, controls our
financial transactions, enables our personal communication
and social networking, and holds the intimate details of our
lives. This growth has led to a commensurate rise in the
number of people working as software developers. In 1997,
the Bureau of Labor Statistics estimated just over 500,000
computer programmers in the United States; by 2016, this
category had been revised into four sub-categories and more
than tripled, to 1.6 million employees [1].

The increasing ubiquity of software has also led to
the increasing ubiquity of security bugs and associated
attacks [2]. An important question, therefore, is how to
help the increasing population of developers adopt effective
security practices and write more secure code.1

Balebako et al. surveyed and interviewed more than 200
app developers and concluded most approached security

1. For simplicity, throughout this paper we refer to security and privacy
as security.

issues using web search, or by consulting peers [3]. A survey
by many of the current authors concluded the same, and also
determined experimentally the surprising result that pro-
grammers using digital books achieved better security than
those using web search [4]. Nadi et al. found that Java de-
velopers perceived cryptography APIs as too low-level and
preferred more task-based solutions in documentations [5].
Further work from several of the current authors concluded
that documentation is critical to security outcomes when
developers use unfamiliar cryptography APIs [6].

When developers search the internet for guidance, some
of the most popular results will often point to Stack Over-
flow.2 Oftentimes, the developer’s search will lead to a code
snippet on Stack Overflow, and the developer can be tempted
to copy and paste the snippet into their own code. This
behaviour has been shown to often lead to operational but
insecure code, widespread across hundreds of thousands of
apps [4], [6], [7], [8], [9], [10]. As Stack Overflow’s effect
on code security has been investigated in depth, we focus
our analysis elsewhere. Similarly, code completion systems
found in IDEs often are not evaluated for the evolving
context found in real-world situations [11].

Beyond crowdsourcing application-specific problems
and documenting particular APIs, the web also contains
many general resources about security and secure program-
ming. While we would hope that these resources are helpful,
to our knowledge few if any have been empirically tested
for effectiveness. Moreover, the continuing prevalence of
security bugs suggests that this guidance ecosystem is fun-
damentally broken: either effective guidance is not available
(if it is even possible), or it is not reaching the developers
who need it. We speculate that this web-based guidance
is particularly important for developers working outside of
large mainstream corporations, who do not have access to
professional security teams or well-developed toolchains and
frameworks supporting secure programming (e.g., Google’s
Tricorder [12]).

In this paper, we take a first step toward understanding
and improving this guidance ecosystem. We have identified
and analyzed 19 guidance websites, to understand what
currently available guidance says; what it does and does not
cover; and how it is structured. We found that, overall, this
general-purpose guidance does not often provide concrete
examples, tutorials, or exercises to help developers practice
the concepts being described. We also found that while some

2. https://stackoverflow.com/

critical topics like secure networking, user input validation,
and software testing are well represented, other important
concepts like program analysis tools, data minimization,
and social engineering are rarely mentioned. These results
provide a foundation for future research to fill gaps as well
as to empirically evaluate existing guidance.

2. Selecting Online Resources

We collected online developer resources relevant to se-
curity by searching for variations of “developer,” “security”
and “guide” on various online search engines. This gives
us a collection of links to online resources, some of them
collections of other online resources, which we exclude from
our analysis in favour of directly investigating the linked
resources themselves.

We found 19 sites designed to help developers with
security related questions. We excluded forum posts and
Q&A platforms such as Stack Overflow, and included guides
such as blog posts from authoritative sources and official
guidelines from software providers and non-profit organiza-
tions such as OWASP.3

We focused on those types of guidelines since they
carry authority for developers who feel the need to look
up security-related questions and concepts. The guidelines
we found covered mobile application security (Android, iOS
and Windows Mobile), web security, and general secure
programming. We focused on these three areas since they
cover the vast majority of today’s software development;
additionally, mobile and web security issues have received
a lot of attention from the security and privacy research
community in the past.

Table 1 shows the resources we analyzed. We use the
term ‘handbook’ to describe structured websites containing
relatively large amounts of information; ‘article’ to describe
smaller sites, mainly arranged linearly.

3. Evaluating Resources

We evaluated the 19 guides using a content-analysis-
based manual coding approach [13]. We first defined a code
book that listed desirable features that might be present in
a secure-development guide. These features are listed as the
heading to Table 4. We identified several main categories:

3.1. Source

The source category describes the author of a guide:
we distinguish between official guidelines written by a
framework/platform company, e.g., Google for Android or
Apple for iOS, and a third-party organization (for-profit or
non-profit, e.g., OWASP) providing a guide as a community
service.

3. cf. https://www.owasp.org

3.2. Content Organization

This category distinguishes different features that de-
scribe the content organization of a guide. We distinguish
two different types of guides: brief, single-section arti-
cles and more detailed, multi-section handbooks. We noted
whether a guide contained a tutorial, defined as a step-
by-step walkthrough of a specific real-world example, or
any exercises to help developers become familiar with a
certain security mechanism in a risk-free way. Whenever
we found code examples, we checked if they were ready
to use to solve certain small tasks, e.g., encrypting a file
or establishing a secure HTTPS connection. We thought
this to be important as ready-to-use code snippets can be
copied directly into the programmer’s source code without
major changes. We distinguish these ready-to-use snippets
from examples that present or describe specific API calls
one at a time rather than in usage context. In addition,
we checked whether a guide contained references to code
repositories such as GitHub or BitBucket. We noted when a
guide referenced external articles, blog or Wikipedia posts,
or other external information sources. We noted the last
time that the guide was updated as a measure of whether
it was outdated or maintained. Finally, we analyzed how
easy it was to find specific information in a guide: this
included checking whether a guide had multiple hierarchical
sections to avoid extensive scrolling, whether multiple levels
of information granularity were provided (e.g., for novices,
experienced programmers, and experts) and whether the
guide was easily searchable.

3.3. Covered Topics

We next analyzed the different topics that were covered
in the guides we examined. We started from an initial list
of topics we thought were important, and added others as
we encountered them in different guides. The final list of
topics included:
• Obfuscation: Motivation for code obfuscation obfus-

cation techniques and tools.
• Cryptography: Encrypted data storage, secure key

generation, etc.
• Secure networking: TLS/SSL, HTTPS, etc.
• Storage management: Backups, secure deletion, and

proper management of shared storage.
• Privileges: Responsible use of privileges, principle of

least privilege.
• User input: Proper validation of user input to avoid,

e.g., SQL injection, cross-site scripting, and memory
errors.

• Use of tools: Using of automated security-test tools in-
cluding linters and other program-analysis techniques.

• Mobile security: Mobile-specific topics including pri-
vacy implications of mobile device tracking and geolo-
cation.

• Library use: Using trusted libraries to avoid reinvent-
ing the security wheel, validating that selected libraries
do not introduce malicious behavior.

ID Title Organization Description

1. Safeguard your code: 17 security tips
for developers

InfoWorld, an online magazine for IT
and business professionals

Article dated 2013

2. Best Practices for Security & Privacy Google Online Android training materials from Google.

3. Secure Coding Practice Guidelines UC Berkeley Guidance on ways to satisfy application software security
requirements, mainly in the form of links to other
resources.

4. Start with Security: A Guide for
Business

US Government Federal Trade
Commission

Paper with guidelines on corporate IS security

5. Android Secure Coding Standard Software Engineering Institute, CMU Wiki with extensive guidelines.

6. Mobile Application Security: 15 Best
Practices for App Developers

Checkmarx, a development tool
vendor

Short blog article

7. Top 10 Secure Coding Practices Software Engineering Institute, CMU Short summary of 10 general secure coding principles

8. Secure Coding Guide Apple Extensive online handbook covering technical aspects of
iOS security

9. Secure Mobile Development Guide NowSecure, company specializing in
app security testing and support

Online handbook covering many aspects of mobile app
security.

10. Secure Coding Practices Quick
Reference Guide Project

OWASP, a not-for-profit dedicated to
application security

Checklist of around 100 short bullet-point entries around
general coding

11. Secure Coding Cheat Sheet OWASP More detailed handbook describing principles of general
coding.

12. Security Guidance for Applications Microsoft Handbook with security guidance for web applications
(outdated)

13. Security Checklist for Software
Developers

CERN, a research organization Site with general guidelines and tips for specific languages.

14. Website security Mozilla Extensive training article on web application security.

15. Web Fundamentals: Security and
Identity

Google Several tips on web app security, with emphasis on Google
tools.

16. Developer How To Guide SANS, a not-for-profit specializing in
software security training

Article on how to avoid three common web security
vulnerabilities.

17. 8 Tips for Better Mobile Application
Security

UpWork, a developer recruitment site Blog article

18. TOP 25 Most Dangerous Software
Errors

SANS with MITRE, a non-profit
research company

Handbook, exploring types of security errors

19. Intro to secure Windows app
development

Microsoft Extensive handbook to secure programming in the MS
Windows environment.

TABLE 1. THE 19 SECURITY GUIDES THAT WE IDENTIFIED AND ANALYZED.

• Testing: Measures for examining finished or deployed
systems, including code review, fuzzing and penetration
testing.

• Data minimization: Limiting the collection, storage,
and transmission of personal information to protect
users’ privacy.

• Regulations: Security and privacy laws and regulations
in various jurisdictions.

• Threat modeling: Design-level analysis of security
requirements.

• Logging: Keeping records to enable post-hoc auditing.
• Password advice: Guidelines for the secure creation

and storage of passwords (e.g., salting and hashing
stored passwords).

• Social engineering: Tricking people into making secu-
rity errors, such as giving away secret data improperly.

4. Results and Discussion

Table 4 provides an overview of our results.

Sources and Organization. We found that the majority
(>55%) of the resources we analyzed were written by
companies. All of these companies are in some way involved
in secure software development or benefit from it. In 16% of
cases, the guides were published as part of the official devel-
oper documentation written by the vendor of a development
framework such as Apple for iOS, Google for Android, and
Microsoft for Windows Mobile. Interestingly, about a third
of all guides were written by non-profit organizations like
OWASP.

Most of the guides for which we could identify update
times (10 of 15) were last updated within the last two years;
one (Microsoft web-application guidance, ID 12) could be
considered entirely obsolete, as it dated from 2003. These
findings suggest that when developers search for secure-
programming resources, they will frequently but not always
encounter up-to-date ones.

Overall, these resources did not tend to contain concrete,
low-level guidance. We found only five guides (IDs 5, 12,
15, 16, 19) that contained ready-to-use code snippets; most

Content Organization Covered Topics

Resource ID Source Last Update1 Ty
pe

2

R
ea

dy
to

us
e

co
de

A
PI

ex
am

pl
es

E
xe

rc
is

e
Tu

to
ri

al
s

R
ep

os
ito

ry
C

ita
tio

ns
L

ay
er

ed
In

fo
rm

at
io

n
Se

ar
ch

ab
le

Se
ct

io
ne

d

O
bf

us
ca

tio
n

C
ry

pt
og

ra
ph

y
Se

cu
re

N
et

w
or

ki
ng

St
or

ag
e

M
an

ag
em

en
t

Pr
iv

ile
ge

s
U

se
r

In
pu

t
U

se
of

To
ol

s
M

ob
ile

Se
cu

ri
ty

L
ib

ra
ry

U
se

Te
st

in
g

D
at

a
M

in
im

iz
at

io
n

R
eg

ul
at

io
ns

T
hr

ea
t

M
od

el
lin

g
L

og
gi

ng
Pa

ss
w

or
d

A
dv

ic
e

So
ci

al
E

ng
in

ee
ri

ng

ID 1 (InfoWorld) third-party 2013-02-04 a
ID 2 (Google Android) vendor ? h
ID 3 (UC Berkeley) organization ? a
ID 4 (US FTC) organization 2015-06 a
ID 5 (SEI, CMU) organization 2016-07-11 h
ID 6 (Checkmarx) third-party 2015-08-19 a
ID 7 (SEI, CMU, Top 10) organization 2011-03-01 a
ID 8 (Apple) vendor 2016-09-13 h
ID 9 (NowSecure) third-party 2017-03-05 h
ID 10 (OWASP, quick reference) non-profit 2010-08-11 h
ID 11 (OWASP, cheat sheet) non-profit 2017-04-18 h
ID 12 (Microsoft) vendor 2003-07-01 h
ID 13 (CERN) organization ? a
ID 14 (Mozilla) non-profit 2017-05-24 h
ID 15 (Google) vendor 2017-05-22 h
ID 16 (SANS) non-profit ? h
ID 17 (UpWork) third-party 2017-01-15 a
ID 18 (SANS, MITRE) non-profit 2011-07-27 h
ID 19 (Microsoft) vendor 2017-02-08 h
1 ?: date not specified 2 a: short article, h: detailed handbook
TABLE 2. FEATURES OF THE GUIDES, AS DETERMINED BY CONTENT ANALYSIS. A SHADED CIRCLE () INDICATES A GUIDE EXHIBITS THIS

FEATURE; AN EMPTY CIRCLE () INDICATES IT DOES NOT.

of these offered help on secure network connections using
TLS. An additional three guides included API examples
that do not rise to the level of snippets: Google’s Android
security and privacy guide (ID 2) exhibits the Android
cryptography API, Apple’s Secure Coding Guide (ID 8)
gives examples for platform-specific security mechanisms,
and NowSecure (ID 9) contains negative examples that
demonstrate how not to use their SSL API. Interestingly, all
these API examples come from mobile application guides.

Sadly, none of the guidelines we checked contained
exercises that would have helped developers to learn security
APIs or frameworks. Similarly, only the Microsoft Windows
handbook (ID 19) contained a tutorial introducing develop-
ers to secure web programming techniques or referenced an
external GitHub code repository with example code demon-
strating specific security features. Only six guides referenced
external information sources; a lack of such citations po-
tentially undermines a reader’s confidence in the guide’s
accuracy and inhibits further reading and learning. Overall,
these results provide evidence of an important guidance gap
noted in our prior work [4]: official documents and corporate
guidelines do not provide the same level of detail and focus
on utility as, for example, Q&A sites.

On the positive side, we were heartened to observe that
most guides provide layers of advice that can target readers
with different skill levels and are easily searchable.

Coverage of Topics. We found significant variation
in coverage across topics. Some important topics are well
covered: cryptography, secure networking, privilege man-

agement, and user input validation were all covered in at
least 14 guides, and testing was covered in 10. On the other
hand, there are several potentially critical topics with little to
no coverage. Social engineering, which is a source of many
security horror stories from phishing to recklessness with
USB drives, is covered by only four guides. Logging, which
is critical for being able to audit a system and understand any
potential problems, is covered by only seven. Despite years
of intensive research and commercial development creating
and improving program-analysis tools, these tools are also
only mentioned in seven guides. Another topic mentioned
in only seven guides is data minimization, a critical modern
concept in a world of exploding data mining. Some of
the guides we analyzed may be too old to recognize the
critical importance of data minimization; nonetheless it is
concerning that developers searching for security help may
not encounter it. Using and validating trusted libraries is an
important and well-regarded practice, but it is mentioned by
only six guides, perhaps because it is assumed to be implied.
Finally, we note that laws and regulations are mentioned
in only two guides. One might assume this is an issue for
lawyers and executives rather than for software developers,
but independent developers and small companies (the kind
of developers most likely to be searching for guidance on the
internet rather than talking to a company’s dedicated security
team) may not have separate compliance departments either.
Further, developers who have some knowledge of legal
requirements are less likely to make accidental errors that

violate regulations.
We speculate that these coverage limitations arise from

the nature of the authors creating these guides. The coverage
suggests a predominantly traditional approach to security,
based around technical support for developers. Looking at
the results, we may conclude that in future better results may
come from having a cross discipline team create the doc-
umentation, with representation from test, support, product
management, and legal experts.

5. Conclusion

Our brief survey of general security guidance available
on the web provides some insight into what developers—
especially those without formal security training and/or
without corporate security support—may encounter when
they search for information about how to write secure
code. They will find accessible information, appropriately
layered and searchable, with good coverage of cryptography,
secure networking and the handling of user input and privi-
leges. However there are significant areas of concern: some
readily available advice is outdated; most of this general-
purpose guidance does not provide concrete examples or
exercises; and some critical topics like program analysis
tools, logging/auditing, and data minimization are not well
represented. To remedy this would require a rather different
team of authors from traditional security writers: pedagog-
ical experts to generate exercises and tutorials, and human-
centred security experts and legal experts to deal with social
engineering and regulations.

Our prior work found that “official” guidance (from
Google and from books) could promote stronger security
outcomes than community-based guidance from Stack Over-
flow [4]. The results of this survey, however, underscore
another conclusion from that work: these “official” docu-
ments may not necessarily provide the content and format
that developers want or need in practice.

In this work, we take the preliminary step of identifying
and classifying a multitude of information sources. Further
work is needed to assess their quality, and to understand
how developers use these guides as well as how to increase
their effectiveness. Therefore, the question of how best to
organize online security help – guides, crowdsourcing sites,
aggregators that combine various sources of security advice
– as well as how to ensure that the quality of such advice
remains high – remains open.

Thus, our results suggest two paths for understanding
and improving the security-guidance ecosystem. First, we
must examine whether and which of the gaps we have
identified here—both in content and in format—represent
serious omissions, and which are filled by other resources
outside the scope of this paper. Second, we must continue

to empirically evaluate the existing guidance, to understand
which approaches do and don’t prove to be effective and
why. By understanding what current guidance is miss-
ing, where it succeeds, and where it fails, we can hope
to provide a framework for developing better guidance,
both now and as secure programming continues to evolve.

References

[1] Bureau of Labor Statistics, “Occupational Employment Statistics,”
2016. [Online]. Available: https://www.bls.gov/oes/tables.htm

[2] S. Morgan, “Top 2016 Cybersecurity Reports,” 2016. [Online].
Available: https://www.forbes.com/sites/stevemorgan/2016/05/09/top-
2016-cybersecurity-reports-out-from-att-cisco-dell-google-ibm-
mcafee-symantec-and-verizon/#2c8abdb51caf

[3] R. Balebako and L. Cranor, “Improving App Privacy: Nudging App
Developers to Protect User Privacy,” IEEE Security & Privacy,
vol. 12, no. 4, pp. 55–58, 2014.

[4] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky,
“You Get Where You’re Looking For: The Impact of Information
Sources on Code Security,” in Proc. 37th IEEE Symposium on Secu-
rity and Privacy (SP’16). IEEE, 2016.

[5] S. Nadi, S. Krüger, M. Mezini, and E. Bodden, ““Jumping Through
Hoops”: Why do Java Developers Struggle With Cryptography
APIs?” in Proc. 37th IEEE/ACM International Conference on Soft-
ware Engineering (ICSE’15). IEEE, 2016.

[6] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek,
and C. Stransky, “Comparing the Usability of Cryptographic APIs,”
in Proc. 38th IEEE Symposium on Security and Privacy (SP’17).
IEEE, 2017.

[7] J. Xie, H. R. Lipford, and B. Chu, “Why do programmers make
security errors?” in Proc. 2011 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC’11). IEEE, 2011.

[8] S. Fahl, M. Harbach, H. Perl, M. Koetter, and M. Smith, “Rethinking
SSL Development in an Appified World,” in Proc. 20th ACM Confer-
ence on Computer and Communication Security (CCS’13). ACM,
2013.

[9] S. Fahl, M. Harbach, Y. Acar, and M. Smith, “On The Ecological
Validity of a Password Study,” in Proc. 9th Symposium on Usable
Privacy and Security (SOUPS’13). USENIX Association, 2013.

[10] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes,
and S. Fahl, “Stack Overflow Considered Harmful? The Impact of
Copy&Paste on Android Application Security,” in Proc. 38th IEEE
Symposium on Security and Privacy (SP’17). IEEE, 2017.

[11] S. Proksch, S. Amann, S. Nadi, and M. Mezini, “Evaluating the
Evaluations of Code Recommender Systems: A Reality Check,” in
Proc. 31st IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE’16). ACM, 2016.

[12] C. Sadowski, J. v. Gogh, C. Jaspan, E. Sderberg, and C. Win-
ter, “Tricorder: Building a Program Analysis Ecosystem,” in Proc.
37th IEEE/ACM International Conference on Software Engineering
(ICSE’15). IEEE, 2015.

[13] K. Krippendorff, Content Analysis: An Introduction to Its Methodol-
ogy (2nd ed.). SAGE Publications, 2004.

https://www.bls.gov/oes/tables.htm
https://www.forbes.com/sites/stevemorgan/2016/05/09/top-2016-cybersecurity-reports-out-from-att-cisco-dell-google-ibm-mcafee-sym antec-and-verizon/#2c8abdb51caf
https://www.forbes.com/sites/stevemorgan/2016/05/09/top-2016-cybersecurity-reports-out-from-att-cisco-dell-google-ibm-mcafee-sym antec-and-verizon/#2c8abdb51caf
https://www.forbes.com/sites/stevemorgan/2016/05/09/top-2016-cybersecurity-reports-out-from-att-cisco-dell-google-ibm-mcafee-sym antec-and-verizon/#2c8abdb51caf

	1 Introduction
	2 Selecting Online Resources
	3 Evaluating Resources
	3.1 Source
	3.2 Content Organization
	3.3 Covered Topics

	4 Results and Discussion
	5 Conclusion
	References

