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Abstract

We identify a class of linearly constrained nonlinear optimization

problems with corner point optimal solutions. These include some

special polynomial fractional optimization problems with an objective

function equal to the product of some power functions of positive linear

functionals subtracting the sum of some power functions of positive lin-

ear functionals, divided by the sum of some power functions of positive

linear functionals. The powers are required to be all positive integers,

and the aggregate power of the product is required to be no larger

than the lowest power in both of the two sums. The result has appli-

cations to some optimization problems under uncertainty, particularly

in finance.

Key words: linear constraints, non-linear optimization, polynomial frac-

tional optimization, corner point optimal solutions.
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Introduction

It is well known that when the objective function and constraints of an

optimization problem are all linear, the search for the optimal solution is

greatly simplified so that we need only consider corner-point feasible (here-

after CPF) solutions. While we all know that this simplification, in general,

does not work for a problem with a nonlinear objective function, we ask the

question what conditions are needed to make it work. Surprisingly, little has

been said about this in the literature. In this paper we try to fill this gap

and identify a class of linearly constrained nonlinear optimization problems

which have corner point optimal solutions.

As expectations are linear in probabilities, we can naturally find applica-

tions of the above result to some optimization problems under uncertainty.

In particular, we present some examples to show how this result helps to

solve some interesting problems in finance. For example, we use the above

result to investigate the effects of background risk and wealth inequality on

downside risk aversion.

This paper is related to the studies on linearly constrained nonlinear

optimization problems in general. There is an extensive literature on this

topic though its focus is primarily on numerical algorithms for this class of

optimization problems.1 In particular, this paper is related to the studies

on linearly constrained polynomial and polynomial fractional optimization

problems.2 Moreover, this paper is related to the work of Charnes and

Cooper (1962) who show that linear fractional optimization problems can
1There are well over 400 different solution algorithms in solving different kinds of

linearly constrained optimization problems. See, for example, Kalantari (1985), Parpas et

al. (2006), Zhang and Wang (2008), and Jeyakumar and Li (2011).
2See, for example, Jeyakumar and Li (2011).
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be transformed to linear optimization problems.

The paper is also related to some studies on decision making under

uncertainty, in particular, the recent advancements in the theory of downside

risk aversion.3 Moreover, the paper is also closely related to the work of

Gollier and Kimball (1996) who develop a diffidence theorem which can solve

a large set of problems related to the effects of uncertainty on preferences.

The diffidence theorem deals with the situation where functions are all linear

in probabilities while our result is useful in the non-linear situation.

1 Two Lemmas

In this section we establish two lemmas which are crucial to the derivation

of our main results in the next section. Let x = (x1, ..., xk) ∈ Rk. Let

fi(x) and gj(x) be linear functions of x1, ..., xk, i = 1, ..., n, j = 1, ..., m.

Let s1, ..., sn, t1, ..., tm be positive integers. We now consider the following

inequality:
n∑

i=1

[fi(x)]si ≤ (<)Πm
i=1[gi(x)]ti. (1)

Let s̄ = maxi{si} and t =
∑m

i=1 ti. Following convention, let C s̄
s and

P (s̄, s) denote the number of s-combinations and the number of s-permutations

from a set of s̄ elements respectively. Let (
{1, ..., s̄}

j1, ..., js

) and [
{1, ..., s̄}

j1, ..., js

]

denote the set of all s-combinations and the set of all s-permutations of

{1, 2, ..., s̄} respectively, where s ≤ s̄. Let [
{1, ..., s̄}

(j1
1 , ..., j1

t1), ..., (j
m
1 , ..., jm

tm)
]

denote the set of all permutations of t =
∑m

i=1 ti numbers chosen from

{1, 2, ..., s̄}, where the order of the elements in each pair of the round brack-
3See the list of studies on downside risk aversion mentioned in Section 3.
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ets does not matter. Let A be a non-empty subset of Rk. We first present

the following lemma.

Lemma 1 Assume min{s1, ..., sn} ≥ t =
∑m

i=1 ti, and for all x ∈ A, fi(x) ≥

0, gj(x) ≥ 0, i = 1, 2, ..., n, j = 1, 2, ...,m. Inequality (1) is true for every

x ∈ A if and only if the following inequality is true for all xk ∈ A, k = 1, ..., s̄,

where s̄ = maxi{si}.4
n∑

i=1

1
C s̄

si

∑

(
{1, ..., s̄}

j1, ..., jsi

)

Π
jsi
k=j1

fi(xk)

≤ (<)
t1!...tm!
P (s̄, t)

∑

[
{1, ..., s̄}

(j1
1 , ..., j1

t1), ..., (j
m
1 , ..., jm

tm)
]

Πm
i=1Π

ji
ti

k=ji
1
gi(xk). (2)

Proof: See Appendix A.

Due to the generality of Lemma 1 in terms of the number of elements

involved, its proof requires complicated calculations; in particular, it involves

calculations of combinations, permutations, and their mixtures. But the

idea of the proof can be explained using the following simple example where

the number of elements involved is small. Consider the special case where

n = m = 2 and s1 = s2 = 2, t1 = t2 = 1. In this case (1) becomes

(f1(x))2 + (f2(x))2 ≤ (<)g1(x)g2(x), (3)

and (2) becomes

f1(x1)f1(x2) + f2(x1)f2(x2) ≤ (<)
1
2
[g1(x1)g2(x2) + g1(x2)g2(x1)] (4)

4Throughout this paper, k in the expression xk is not a power; it is a superscript

instead.
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If (4) is true for all x1, x2 ∈ A, then letting x1 = x2 = x, we conclude

that (3) is true for all x ∈ A. Thus we need only show that the con-

verse is true. To show this, as arithmetic mean is larger than geometric

mean, the right hand side of (4) is larger than
√

g1(x1)g2(x1)
√

g1(x2)g2(x2).

Now applying (3), we obtain that the right hand side of (4) is (strictly)

larger than
√

(f1(x1))2 + (f2(x1))2
√

(f1(x2))2 + (f2(x2))2. Now applying

Cauchy’s inequality we obtain that the above expression is larger than

f1(x1)f1(x2) + f2(x1)f2(x2). This proves that if (3) is true for all x ∈ A

then (4) is true for all x1, x2 ∈ A. This completes the proof of this special

case.

Let Σ be the set of feasible solutions from some given linear constraints

on x. Assume Σ is nonempty, bounded and closed. Let Σc be the set

of corner-point feasible (hereafter CPF) solutions. We have the following

lemma.

Lemma 2 Inequality (2) is true for all xi ∈ Σ, i = 1, ..., s̄, if and only if it

is true for all xi ∈ Σc, i = 1, ..., s̄, where s̄ = maxi{si}.

Proof: Let f(x1, ..., xs̄) denote the following function

−
n∑

i=1

1
C s̄

si

∑

(
{1, ..., s̄}

j1, ..., jsi

)

Π
jsi
k=j1

fi(xk)

+
t1!...tm!
P (s̄, t)

∑

[
{1, ..., s̄}

(j1
1 , ..., j1

t1), ..., (j
m
1 , ..., jm

tm)
]

Πm
i=1Π

ji
ti

k=ji
1
gi(xk), (5)

where t =
∑m

i=1 ti. As f(x1, ..., xs̄) is continuous and Σ is bounded and

closed, there must be an optimal solution to the following minimization
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problem:

min
x1,...,xs̄∈Σ

f(x1, ..., xs̄).

We now assert that the optimal value can be achieved at a feasible solution

(x1∗, ..., xs̄∗) such that x1∗, ..., xs̄∗ ∈ Σc, i.e., x1∗, ..., xs̄∗ are CPF solutions.

This can be shown as follows. Let (x1◦, ..., xs̄◦) be an optimal solution.

Suppose xi◦ is not a CPF solution. Then we must be able to replace it with

a CPF solution. To see this, consider the following minimization problem:

min
xi∈Σ

f(x1◦, ..., x(i−1)◦, xi, x(i+1)◦, ..., xs̄◦).

It is clear that f(x1◦, ..., x(i−1)◦, xi, x(i+1)◦, ..., xs̄◦) is a linear function of

xi. Thus this minimization problem is a linear programming problem.

Hence we must be able to achieve the optimal solution at a CPF solution

xi∗ = (xi∗
1 , ..., xi∗

k ) ∈ Σc. This proves the lemma. Q.E.D.

2 Main Results

We are now ready to present our main theorem.

Theorem 1 Assume min{s1, ..., sn} ≥
∑m

i=1 ti, where n, m, s1, ..., sn, t1, ..., tm

are all positive integers, and for all x ∈ Σ, fi(x) ≥ 0, gj(x) ≥ 0, i =

1, 2, ..., n, j = 1, 2, ...,m. Then the following two statements are true.

1. Inequality (1) is true for every x ∈ Σ, if and only if it is true for every

x ∈ Σc.

2. If there does not exist x ∈ Σ such that f1(x) = 0, f2(x) = 0, ...,

fl(x) = 0, and for all x ∈ Σ, Πm
i=1(gi(x))ti−

∑n
i=l+1(fi(x))si ≥ 0, then,

minx∈Σ Γ(x) = minx∈Σc Γ(x), where Γ(x) =
Πm

i=1(gi(x))ti−
∑n

i=l+1
(fi(x))si

∑l

i=1
(fi(x))si

.
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Proof: We first prove Statement 1. Applying Lemma 1 (with A = Σ), we

conclude that inequality (1) is true for every x ∈ Σ if and only if inequality

(2) is true for all xi ∈ Σ, i = 1, ..., s̄, where s̄ = maxi{si}. Applying Lemma

2, we conclude that inequality (2) is true for all xi ∈ Σ, i = 1, ..., s̄, if and

only if it is true for all xi ∈ Σc, i = 1, ..., s̄. The above two statements imply

that inequality (1) is true for every x ∈ Σ if and only if inequality (2) is true

for all xi ∈ Σc, i = 1, ..., s̄. Now applying Lemma 1 again (with A = Σc), we

obtain that inequality (2) is true for all xi ∈ Σc, i = 1, ..., s̄, if and only if

inequality (1) is true for every x ∈ Σc. The last two statements immeadiately

lead to the conclusion that inequality (1) is true for every x ∈ Σ if and only

if it is true for every x ∈ Σc. This proves the first statement.

To prove the second statement, note that as Σ is closed, for all x ∈ Σ,

fi(x) ≥ 0, and there does not exist x ∈ Σ such that f1(x) = 0, ..., fl(x) = 0,
∑l

i=1(fi(x))si must be bounded away from zero. As Σ is closed and bounded,

this implies that minx∈Σ
Πm

i=1(gi(x))ti−
∑n

i=l+1
(fi(x))si

∑l

i=1
(fi(x))si

= α ≥ 0 exists. Thus we

have minx∈Σc

Πm
i=1(gi(x))ti−

∑n

i=l+1
(fi(x))si

∑l

i=1
(fi(x))si

≥ α. But this inequality cannot

be strict; otherwise if minx∈Σc

Πm
i=1(gi(x))ti−

∑n

i=l+1
(fi(x))si

∑l

i=1
(fi(x))si

> α then, for all

x ∈ Σc,

Πm
i=1(gi(x))ti >

n∑

i=l+1

(fi(x))si + α
l∑

i=1

(fi(x))si .

Applying the first statement, we conclude that for all x ∈ Σ, the above

inequality is true, i.e., minx∈Σ
Πm

i=1(gi(x))ti−
∑n

i=l+1
(fi(x))si

∑l

i=1
(fi(x))si

> α, which causes

a contradiction. This proves the second statement. Q.E.D.

The second statement of the above theorem shows that if the nonlinear

objective function of the minimization problem has the required feature,

then the search for the solution to the nonlinear minimization problem is
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greatly simplified such that we need only consider CPF solutions.

In Theorem 1 the exponents s1, ..., sn, t1, ..., tm are required to be inte-

gers. This requirement can be relaxed for some cases. We have the following

result.

Proposition 1 Let s ≥
∑m

i=1 ti, where s, and ti, i = 1, ...m, are positive

real numbers, and for all x ∈ Σ, f1(x) ≥ 0, gj(x) ≥ 0, j = 1, 2, ..., m. Then

the following two statements are true.

1. The following inequality is true for every x ∈ Σ, if and only if it is

true for every x ∈ Σc:

[f1(x)]s ≤ Πm
i=1[gi(x)]ti. (6)

2. If for all x ∈ Σ, f1(x) > 0, then,

min
x∈Σ

Πm
i=1[gi(x)]ti

[f1(x)]s
= min

x∈Σc

Πm
i=1[gi(x)]ti

[f1(x)]s
. (7)

Proof: We only show the proof of the first statement. Then as in Theorem

1, the second statement is implied by the first statement.

As the necessity is obvious, we need only prove the sufficiency. From

Theorem 1, it is straightforward that if t1
s , ..., tm

s are rational, Proposition 1

is valid. Rewrite (6) as

f1(x) ≤ Πm
i=1[gi(x)]ti/s. (8)

Suppose the above inequality is valid for all x ∈ Σc while some of
t1
s , ..., tm

s are irrational. Without loss of generality, suppose tm
s is irra-

tional. Construct a sequence {δj |j = 1, 2, ...}, where δj > 0, j = 1, 2, ...,

and limj→∞ δj = 0. We have, for all x ∈ Σc,

f1(x)
Πm−1

i=1 [gi(x) + δj ]ti/s
< [gm(x) + δj ]tm/s, j = 1, 2, ....
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We can construct a sequence of rational numbers {vmj |vmj > tm/s, j =

1, 2, ...} such that limj→∞ vmj = tm/s and for all x ∈ Σc,5

f1(x)
Πm−1

i=1 [gi(x) + δj ]ti/s
< (1 + δj)[gm(x) + δj ]vmj , j = 1, 2, ....

After this, if tm−1

s is irrational we can do the same as above. That is,

with the same argument we can construct a sequence of rational numbers

{v(m−1)j |v(m−1)j > tm−1/s, j = 1, 2, ...} such that limj→∞ v(m−1)j = tm−1/s

and for all x ∈ Σc, j = 1, 2, ...,

f1(x)
Πm−2

i=1 [gi(x) + δj ]ti/s(1 + δj)[gm(x) + δj ]vmj
< (1 + δj)[gm−1(x) + δj ]v(m−1)j .

Hence by doing the same for all i = 1, ..., m, we can construct a sequence of

rational numbers {vij |vij > ti/s, i = 1, ..., l; j = 1, 2, ...} such that limj→∞ vij =

ti/s and for all x ∈ Σc, j = 1, 2, ...,

f1(x) ≤ (1 + δj)mΠm
i=1[gi(x + δj)]vij . (9)

As Theorem 1 implies that the above inequality is valid for all x ∈ Σ, letting

j → ∞ in (9), we immediately conclude that (8) is valid for all x ∈ Σ. Q.E.D.

Proposition 1 can be further extended; we have the following result.

5We need only require that 0 < vmj − tm/s < − ln (1+δj )

ln δj
; then, we have

(1 + δj)[gm(x) + δj ]
vmj − [gm(x) + δj]

tm/s

= [gm(x) + δj]
tm/s[(1 + δj)[gm(x) + δj ]

vmj−tm/s − 1]

≥ [gm(x) + δj]
tm/s[(1 + δj)δ

vmj−tm/s

j − 1]

≥ [gm(x) + δj]
tm/s[eln(1+δj )+(vmj−tm/s) ln δj − 1] > 0.
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Proposition 2 For θ ∈ [a, b], assume t(θ) ≥ 0 is a continuous function

and H(θ) is a cumulative probability distribution function.6 Assume for all

x ∈ Σ, f1(x) > 0, for all x ∈ Σ and all θ ∈ [a, b], g(x, θ) ≡ ν0(θ)+ ν1(θ)x1 +

... + νk(θ)xk > 0, where νi(θ) is a continuous function of θ, i = 0, 1, ..., k.

Then the following two statements are true.

1. If s ≥
∫ b
a t(θ)dH(θ) then, the following inequality is true for every

x ∈ Σ, if and only if it is true for every x ∈ Σc:

∫ b

a
t(θ) ln g(x, θ)dH(θ) ≥ s ln f1(x) + α, (10)

where α is a constant.

2. If for all x ∈ Σ, f1(x) > 1, and
∫ b

a
t(θ) ln g(x,θ)dH(θ)−α

lnf1(x) ≥
∫ b
a t(θ)dH(θ),

where α is a constant, then,

min
x∈Σ

∫ b
a t(θ) ln g(x, θ)dH(θ)− α

ln f1(x)
= min

x∈Σc

∫ b
a t(θ) ln g(x, θ)dH(θ)− α

ln f1(x)
.

(11)

Proof: Similar to Proposition 1, we need only prove the first statement, as

the second statement is implied by the first statement.

We need only prove the sufficiency. Note that as both t(θ) and ln g(x, θ)

are continuous functions of θ and H(θ) is an increasing and bounded func-

tion, the Riemann-Stieltjes integral
∫ b
a t(θ) ln g(x, θ)dH(θ) exists.

Suppose (10) is valid for all x ∈ Σc. We construct a sequence of partitions

of [a, b]: Pi = {θi1 = a, θi2, ..., θi(ji−1), θiji = b}, i = 1, 2, ..., such that Pi+1

is finer than Pi and limi→∞ mesh(Pi) = 0. As t(θ) is continuous, let θ◦ij ∈

[θi(j−1), θij ] be such that t(θ◦ij)(H(θij) − H(θi(j−1))) =
∫ θij

θi(j−1)
t(θ)dH(θ).

6In fact, H(θ) can be any increasing and bounded function.
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Thus we have

ji∑

j=1

t(θ◦ij)∆H(θij) =
∫ b

a
t(θ)dH(θ), i = 1, 2, ...,

lim
i→∞

ji∑

j=1

t(θ◦ij) lng(x, θij)∆H(θij) =
∫ b

a
t(θ) ln g(x, θ)dH(θ),

where ∆H(θij) = H(θij) − H(θi(j−1)). Let

δi ≡ max
x∈Σc

|
ji∑

j=1

t(θ◦ij) ln g(x, θij)∆H(θij)−
∫ b

a
t(θ) ln g(x, θ)dH(θ)|, i = 1, 2, ....

From the definition of Riemann-Stieltjes integral, we have limi→∞ δi = 0,

and from (10), we also have for all x ∈ Σc,

ji∑

j=1

t(θ◦ij) ln g(x, θij)∆H(θij) − s ln f1(x)− α ≥ −δi. (12)

Rewriting the last inequality, we obtain that for all x ∈ Σc,

Πji
j=1[g(x, θij)]

t(θ◦ij)∆H(θij) ≥ eα−δi [f1(x)]s, i = 1, 2, ....

As s ≥
∫ b
a t(θ)dH(θ) =

∑ji
j=1 t(θ◦ij)∆H(θij), applying Proposition 1, we

immediately conclude that the above inequality is valid for all x ∈ Σ. This

inequality is equivalent to (12). Letting i → ∞ in (12), we conclude that

(10) is valid for all x ∈ Σ. Q.E.D.

3 Applications

3.1 Optimization Under Uncertainty

The results obtained in the last section can be extended to optimization un-

der uncertainty. Let Ω be the set of random variables that satisfy Ewi(ε̃) =

0, i = 1, ..., ν, where w1(x), ..., wν(x) are linearly independent functions.
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Assume Ω is nonempty. Let Ων+1 be the set of random variables with

(ν + 1)-point distributions that satisfy Ewi(ε̃) = 0, i = 1, ..., ν.

We only present the extension of Theorem 1. Proposition 1 and Propo-

sition 2 can be extended in the same way.

Proposition 3 Assume min{s1, ..., sn} ≥
∑m

i=1 ti, where n, m, s1, ..., sn, t1, ..., tm

are all positive integers. Given nonnegative functions ui(x) and vj(x) with

expectations Eui(ε̃) and Evi(ε̃) well defined for all ε̃ ∈ Ω, where i = 1, ..., n,

j = 1, ..., m, the following two statements are true.7

1. The following inequality is true for all ε̃ ∈ Ω, if and only if it is true

for all ε̃ ∈ Ων+1.

n∑

i=1

[Eui(ε̃)]si ≤ Πm
i=1[Evi(ε̃)]ti. (13)

2. If there does not exist ε̃ ∈ Ω such that Eu1(ε̃) = 0, ..., Eul(ε̃) = 0, and

for all ε̃ ∈ Ω, Πm
i=1(vi(ε̃))ti−

∑n
i=l+1(Eui(ε̃))si ≥ 0 then, minε̃∈Ω Γ(ε̃) =

minε̃∈Ων+1 Γ(ε̃), where Γ(ε̃) =
Πm

i=1 [Evi(ε̃)]
ti−

∑n

i=l+1
(Eui(ε̃))

si

∑l

i=1
[Eui(ε̃)]si

.

The proof is almost the same as the proof in the linear case which can be

found in any textbook on optimization under uncertainty; thus it is omitted

for brevity. In the next section, we apply the above result to some interesting

problems in finance.

3.2 Applications in Finance

In the recent literature on decision making under uncertainty, downside risk

aversion has attracted considerable attention. Given a strictly increasing
7It is trivial to extend the above result to the case with inequality constraints. Thus

it is omitted for brevity.
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and concave utility function u(x), three downside risk aversion measures are

proposed in the literature, namely the prudence measure P (x) = −u′′′(x)
u′′(x) ,

D(x) = u′′′(x)
u′(x) , and the Schwarzian derivative S(x) = u′′′(x)

u′(x) − 3
2R2(x), where

R(x) = −u′′(x)
u′(x)

is the Arrow-Pratt risk aversion measure.8 The case of down-

side risk aversion is more complicated than risk aversion, and we show that

the result obtained in the last subsection is very useful when we characterize

utility functions regarding downside risk aversion.

3.2.1 Downside Risk Aversion and Background Risk

We now investigate the effect of background risk on downside risk aversion.

Given a utility function u(x), we ask the question under what conditions an

independent fair background risk ε̃ always increases the Schwarzian deriva-

tive S(x) = u′′′(x)
u′(x) − 3

2(u′′(x)
u′(x) )2.9 Let û(x) = Eu(x + ε̃), which is often called

the derived utility function. The Schwarzian derivative of the derived util-

ity function is Ŝ(x) = Eu′′′(x+ε̃)
Eu′(x+ε̃) − 3

2(Eu′′(x+ε̃)
Eu′(x+ε̃) )2. Thus our problem is to

characterize utility functions which satisfy the following condition

Eε̃ = 0 ⇒ Eu′′′(x + ε̃)
Eu′(x + ε̃)

− 3
2
(
Eu′′(x + ε̃)
Eu′(x + ε̃)

)2 ≥ S(x).

The above condition is equivalent to

Eε̃ = 0 ⇒ S(x)(Eu′(x + ε̃))2 +
3
2
(Eu′′(x + ε̃))2 ≤ Eu′′′(x + ε̃)Eu′(x + ε̃).

If for all x, S(x) ≥ 0, Proposition 3 is applicable to the above problem,

where ν = 1. Hence we immediately obtain the following result.
8See, for example, Kimball (1990), Keenan and Snow (2002, 2009, 2010), Modica and

Scarsini (2005), and Crainich and Eeckhoudt (2008).
9The other two downside risk aversion measures of the derived utility function û(x),

P̂ (x) = −Eu′′′ (x+ε̃)
Eu′′(x+ε̃) and D̂(x) = Eu′′′(x+ε̃)

Eu′(x+ε̃) , are linear fractionals and can be easily dealt

with by applying Gollier and Kimball’s (1996) Diffidence theorem.
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Proposition 4 Assume for all x, S(x) = u′′′(x)
u′(x)

− 3
2(u′′(x)

u′(x)
)2 ≥ 0. Then, the

following two conditions are equivalent.

• S(x) is increased by all fair risk ε̃.

• S(x) is increased by all binary fair risk ε̃, i.e., for all z ≥ 0 and y ≥ 0

S(x)[(u′(x − z)y + u′(x + y)z)2 +
3
2
(u′′(x − z)y + u′′(x + y)z)2]

≤ [u′(x − z)y + u′(x + y)z][u′′′(x − z)y + u′′′(x + y)z]. (14)

It is straightforward to extend the above result to an unfair background

risk. Moreover, from the above result we can derive a sufficient condition

(for both fair and unfair risk): S ′ ≤ 0 and S ′′ ≥ 0. The proof is omitted for

brevity.

3.2.2 Cautiousness and Background Risk

Cautiousness is defined as the ratio of prudence to risk aversion minus one,

which can be seen as a measure of downside risk aversion relative to risk

aversion.10 Given a utility function u(x), assume u′(x) < 0, u′′(x) 6= 0, and

u′′′(x) ≥ 0. Its cautiousness can be written as C(x) = u′(x)u′′′(x)
u′′2(x)

− 1. This

preference measure plays an important role in the theory of risk sharing.11

Hara et al. (2011) investigate the effect of background risk on cautiousness.

Their main result is a sufficient condition under which any fair background

risk will increase cautiousness. Here we will use Proposition 3 to derive a

necessary and sufficient condition. We have the following result.

Proposition 5 The following two conditions are equivalent.
10See, for example, Huang and Stapleton (2010).
11See Leland (1980), Hara et al. (2007), and Huang and Stapleton (2010).
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• For all fair risk ε̃

Eu′(x + ε̃)Eu′′′(x + ε̃)
[Eu′′(x + ε̃)]2

≥ u′(x)u′′′(x)
u′′2(x)

.

• For all binary fair risk the above inequality is true, i.e., for all z ≥ 0

and y ≥ 0

[u′(x − z)y + u′(x + y)z][u′′′(x − z)y + u′′′(x + y)z]

≥ u′(x)u′′′(x)
u′′2(x)

[u′′(x − z)y + u′′(x + y)z]2. (15)

Proof: Note that the inequality in the first condition is equivalent to

u′(x)u′′′(x)
u′′2(x)

[Eu′′(x + ε̃)]2 ≤ Eu′(x + ε̃)Eu′′′(x + ε̃).

Thus the problem is to characterize utility functions (u(x)) which satisfy

the following condition

Eε̃ = 0 ⇒ u′(x)u′′′(x)
u′′2(x)

[Eu′′(x + ε̃)]2 ≤ Eu′(x + ε̃)Eu′′′(x + ε̃).

Thus Proposition 3 is applicable to this case. Now applying Proposition 3,

we are clear that the inequality in the first condition is true if and only if it

is true for all binary fair risk. Q.E.D.

It is straightforward to extend the above result to an unfair background

risk. Moreover, from the above result we can derive a sufficient condition

(for both fair and unfair risk): C(x) ≥ −1
2 , C ′(x) ≤ 0, and C ′′(x) ≥ 0. The

proof is omitted for brevity.

3.2.3 Downside Risk Aversion and Wealth Inequality

We now investigate the effect of wealth inequality on the three downside risk

aversion measures. We use a standard one-period Arrow-Debreu economy

15



where all agents have the same beliefs and the same utility function u(x)

while they have different wealth. Assume that u(x) is strictly increasing

and concave and has a positive third derivative. Let different classes of

agents be indexed by θ ∈ (0,∞). The distribution of θ is characterized by a

distribution function F (θ). Let z be the future wealth per capita. Let agent

θ’s sharing rule be x(z, θ). We have Eθx(z, θ) = z, where Eθ denotes the

expectation under the distribution function F (θ). It is well known that in

this setup, an agent’s sharing rule satisfies the following condition

∂x(z, θ)
∂z

= T (x(z, θ))/Te(z), (16)

where Te(z) denotes the representative agent’s risk tolerance and T (x(z, θ))

is agent θ’s risk tolerance along her optimal payoff function.12 Moreover, the

representative agent’s risk tolerance is the mean of agents’ risk tolerance:

Te(z) = EθT (x(z, θ)). (17)

We call an economy a two-class economy if θ has a two-point distribution.

We now present the following result.

Proposition 6 Assume that all agents have the same beliefs and the same

utility function u(x) while they have different wealth. The following three

statements are true.

1. Prudence P (x) = −u′′′(x)
u′′(x) is always increased by wealth inequality in

all economies if and only if it is so in all two-class economies.

2. D(x) = u′′′(x)
u′(x) is increased by wealth inequality in all economies if and

only if it is so in all two-class economies.
12See, for example, Gollier (2001).
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3. Assume that for all x, the Schwarzian derivative S(x) = u′′′(x)
u′(x)

−
3
2(u′′(x)

u′(x) )2 ≥ 0. Then, S(x) is increased by wealth inequality in all

economies if and only if it is so in all two-class economies.

Proof: We first prove Statement 1. Differentiating both sides of (17) w.r.t z

and noting that cautiousness is equal to the rate of change in risk tolerance,

we obtain

Ce(z) = Eθ[C(x(z, θ))
∂x(z, θ)

∂z
],

where Ce(z) denotes the representative agent’s cautiousness and C(x(z, θ))

is agent θ’s cautiousness along her optimal payoff function. As cautiousness

is equal to the product of prudence and risk tolerance minus one, from the

above equation we have

Pe(z)Te(z) = Eθ[P (x(z, θ))T (x(z, θ))
∂x(z, θ)

∂z
],

where Pe(z) denotes the representative agent’s prudence respectively while

P (x(z, θ)) is agent θ’s prudence. From the above equation and (16) we

obtain

Pe(z) =
Eθ[P (x(z, θ))T 2(x(z, θ))]

[EθT (x(z, θ))]2
. (18)

Thus in the first statement, the problem is to characterize utility functions

which satisfy the following condition

Eθx(z, θ) = z ⇒ Pe(z) =
Eθ[P (x(z, θ))T 2(x(z, θ))]

[EθT (x(z, θ))]2
≥ P (z).

This condition is equivalent to

Eθx(z, θ) = z ⇒ Eθ[P (x(z, θ))T 2(x(z, θ))] ≥ P (z)[EθT (x(z, θ))]2.

It is clear that Proposition 3 is applicable to this case where ν = 1. Thus

applying Proposition 3, we conclude that Pe(z) ≥ P (z) for all wealth allo-
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cations if and only if it is valid for all two-class economies where θ follows a

two-point distribution. This proves the first result.

To prove the second result, noting that D(x) = u′′′(x)
u′(x) = P (x)R(x) and

T (x) = 1
R(x)

, from (18), we have

De(z) = Pe(z)Re(z) =
Eθ[P (x(z, θ))R(x(z, θ))T 3(x(z, θ))]

[EθT (x(z, θ))]3
. (19)

Hence we obtain De(z) = Eθ[D(x(z,θ))T 3(x(z,θ))]
[EθT (x(z,θ))]3 . The rest of the proof is very

similar to the proof of the first statement; thus it is omitted for brevity.

To prove the third result, noting that the Schwarzian derivative S(x) =
u′′′(x)
u′(x) − 3

2(u′′(x)
u′(x) )2 = P (x)R(x) − 3

2R2(x), from (17) and (19), Se(z) =

Pe(z)Re(z) − 3
2R2

e(x) is equal to

Eθ[P (x(z, θ))R(x(z, θ))T 3(x(z, θ))]
[EθT (x(z, θ))]3

−
3
2

[EθT (x(z, θ))]2
.

Rewrite it as

Eθ[(P (x(z, θ))R(x(z, θ))− 3
2R2(x(z, θ)))T 3(x(z, θ))]

[EθT (x(z, θ))]3
. (20)

Henec we obtain Se(z) = Eθ [S(x(z,θ))T 3(x(z,θ))]
[EθT (x(z,θ))]3

. Again, the rest of the proof is

very similar to the proof of the first statement, and it is omitted for brevity.

Q.E.D.

From the above result, we can derive a sufficient condition for prudence to

be always increased by wealth inequality: ( 1
P (x))

′′ ≤ 0; a sufficient condition

for u′′′(x)
u′(x) to be always increased by wealth inequality: (

√
u′(x)
u′′′(x))

′′ ≤ 0; a

sufficient condition for the Schwarzian derivative S(x) to be always increased

by wealth inequality: S(x) > 0 and (
√

1
S(x))

′′ ≤ 0. The proofs are omitted

for brevity.
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3.2.4 Other Examples

There are many other cases where the results obtained in the last secion are

useful. We give the following examples.

1. Minising variance.

Given a random variable ε̃, the variance of f(ε̃), a function of ε̃, has the

form Ef2(ε̃)− (Ef(ε̃))2. Thus Proposition 3 is applicable to the problem of

minimizing the variance of f(ε̃) subject to linear constraints.

2. Maximizing Sharpe ratio.

Given an asset’s future price S, the Sharpe ratio of a derivative with

payoff c(S) has the form Ec(S)−r
Ec2(S)−(Ec(S))2

= E(c(S)−r)
Ec2(S)−(Ec(S))2

, where r is the

risk-free interest rate. Thus Proposition 3 is applicable to the problem of

maximizing the Sharpe ratio of c(S) subject to linear constraints (assuming

Ec(S) ≥ r).

3. Minimizing skewness and kurtosis.

Given a fair risk ε̃, its skewness and kurtosis are equal to Eε̃3

(Eε̃2)
3
2

and

Eε̃4

(Eε̃2)2
. Thus Proposition 3 is applicable to the problem of minimizing the

skewness (if Eε̃3 ≥ 0) and kurtosis subject to linear constraints.

4 Conclusion

In this paper, we have identified a class of linearly constrained nonlinear

optimization problems with corner point optimal solutions. These include

some special polynomial fractional optimization problems which have an

objective function equal to the product of some power functions of positive

linear functionals subtracting the sum of some power functions of positive

linear functionals, divided by the sum of some power functions of positive

19



linear functionals. The powers are required to be all positive integers, and

the aggregate power of the product is required to be no larger than the lowest

power of the two sums. This result has applications to many optimization

problems under uncertainty, particulary in finance.
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Appendix A Proof of Lemma 1

To show that if for all x1, ..., xs̄ ∈ A, (2) is true then, for all x ∈ A, (1) is

true, given any x ∈ A, let x1 = ... = xs̄ = x in (2); we immediately obtain

(1). Thus we need only show that if for all x ∈ A, (1) is true then, for all

x1, ..., xs̄ ∈ A, (2) is true.

Given any x1, ..., xs̄ ∈ A, where s̄ = maxi{si}, let {j1, ..., jt} be a t-

combination of {1, ..., s̄}, where t =
∑m

i=1 ti. There are C s̄
t such combina-

tions. Denote the summation in the right hand side of (2) by Ξ. The sum

Ξ can be rewritten as

∑

(
{1, ..., s̄}

j1, ..., jt

)

∑

[
{j1, ..., jt}

(j1
1 , ..., j1

t1
), ..., (jm

1 , ..., jm
tm)

]

Πm
i=1Π

ji
ti

k=ji
1
gi(xk),

where
∑m

i=1 ti = t and [
{j1, ..., jt}

(j1
1 , ..., j1

t1), ..., (j
m
1 , ..., jm

tm)
] denotes the set of all

t-permutations of {j1, ..., jt}, where the order of the elements in each pair

of the round brackets does not matter. Note that there are t!
t1!...tm! such

t-permutations, i.e., there are t!
t1!...tm! items in the sum

∑

[
{j1, ..., jt}

(j1
1, ..., j

1
t1), ..., (j

m
1 , ..., jm

tm)
]

Πm
i=1Π

ji
ti

k=ji
1
gi(xk).

Because the arithmetic mean of these t!
t1!...tm! items is smaller than their

geometric mean, we obtain

Ξ ≥
∑

(
{1, ..., s̄}

j1, ..., jt

)

t!
t1!...tm!

[Π

[
{j1, ..., jt}

(j1
1, ..., j

1
t1), ..., (j

m
1 , ..., jm

tm)
]

Πm
i=1Π

ji
ti

j=ji
1
gi(xj)]

t1!...tm !
t! .
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Let [
{j1, ..., jt}

j1
1 , ..., j1

t1, ..., j
m
1 , ..., jm

tm

] denote the set of all t-permutations of

{j1, ..., jt}. We write it as [
{j1, ..., jt}

[j1
1, ..., j

1
t1], ..., [j

m
1 , ..., jm

tm]
] to stress that now

the order of the elements in each pair of the square brackets in the sec-

ond row does matter. It is straightforward that every t-permutation in

the set [
{j1, ..., jt}

(j1
1, ..., j

1
t1), ..., (j

m
1 , ..., jm

tm)
] is repeated t1!t2!...tm! times in the set

[
{j1, ..., jt}

[j1
1, ..., j

1
t1], ..., [j

m
1 , ..., jm

tm]
]. Hence from the preceding inequality, we have

Ξ ≥
∑

(
{1, ..., s̄}

j1, ..., jt

)

t!
t1!...tm!

[Π

[
{j1, ..., jt}

[j1
1 , ..., j1

t1
], ..., [jm

1 , ..., jm
tm]

]

Πm
i=1Π

ji
ti

j=ji
1
gi(xj)]

1
t! .

Now let Ak,i denote the set of t-permutations of {j1, ..., jt} with jk in the

ith pair of square brackets. It is clear that the number of items in Ak,i is

equal to ti(t−1)! and that [
{j1, ..., jt}

[j1
1, ..., j

1
t1], ..., [j

m
1 , ..., jm

tm]
] = ∪t

k=1∪m
i=1Ak,i. It

follows that in the product Π

[
{j1, ..., jt}

[j1
1, ..., j

1
t1], ..., [j

m
1 , ..., jm

tm]
]

Πm
i=1Π

ji
ti

j=ji
1
gi(xj),

for each k ∈ {1, ..., t} and each i ∈ {1, ..., l}, the factor gi(xjk) appears

ti(t − 1)! times. This implies that

Π

[
{j1, ..., jt}

[j1
1, ..., j

1
t1], ..., [j

m
1 , ..., jm

tm]
]

Πm
i=1Π

ji
ti

j=ji
1
gi(xj) = Πt

k=1Π
m
i=1[gi(xjk)]ti(t−1)!.
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Substituting this into the preceding inequality, we obtain

Ξ ≥
∑

(
{1, ..., s̄}

j1, ..., jt

)

t!
t1!...tm!

[Πt
k=1Π

m
i=1[gi(xjk)]ti]

1
t .

This together with (1) implies that

Ξ ≥
∑

(
{1, ..., s̄}

j1, ..., jt

)

t!
t1!...tm!

Πt
k=1[

n∑

i=1

[fi(xjk)]si ]
1
t .

Applying the generalized Hölder’s inequality, from the above inequality, we

obtain that13

Ξ ≥
∑

(
{1, ..., s̄}

j1, ..., jt

)

t!
t1!...tm!

n∑

i=1

Πt
k=1[fi(xjk)]

si
t .

Rewrite it as

Ξ ≥ t!
t1!...tm!

n∑

i=1

∆i, (21)

where

∆i =
∑

(
{1, ..., s̄}

j1, ..., jt

)

Πt
k=1[fi(xjk)]

si
t .

13From the generalized Hölder’s inequality, we have Πt
j=1||fj||pj ≥ ||Πn

j=1fj||r, where r ∈

(0,∞), p1, ..., pt ∈ (0,∞], and
∑t

i=1
1
pi

= 1
r
. Following convention, ||fj||pj =

∫
S
|fj|pj dµ.

In the special case where r = 1, p1 = ... = pt = t, when S = {1, ...,n}, applying the

counting measure, we obtain Πt
j=1(

∑n

i=1
at

ij)
1
t ≥

∑n

i=1
Πt

j=1aij, where for all i and j,

aij ≥ 0.
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For every t-combination (j1, ..., jt) of {1, ..., s̄} we do the following oper-

ation. We choose (si − t) numbers jt+1, ..., jsi from {1, ..., s̄} − {j1, ..., jt}.

There are C s̄−t
si−t different such choices in total. Now consider all t-combinations

of (j1, ..., jsi). There are Csi
t such t-combinations in total. For every such a

t-combination (k1, ..., kt) of {j1, ..., jsi}, we add a term [Πkt
j=k1

[fi(xj)]si ]
1
t to

∆i. After the operation for all t-combinations of {1, ..., s̄}, ∆i becomes ∆′
i

as follows:

∆′
i =

∑

(
{1, ..., s̄}

j1, ..., jt

)

∑

(
{1, ..., s̄} − {j1, ..., jt}

jt+1, ..., jsi

)

∑

(
{j1, ..., jsi}

k1, ..., kt

)

Πt
j=1[fi(xkj)]

si
t .

The total number of terms in ∆′
i is C s̄−t

si−tC
si
t times the original number of

terms in ∆i while every added term in ∆′
i is actually one of the original

terms in ∆i. Note as the operation is symmetric w.r.t all the original terms,

we can conclude that each original term is repeated by C s̄−t
si−tC

si
t times after

the operation.

In other words, if we allow all original terms to be repeated C s̄−t
si−tC

si
t

times and put them in a set, then this set of terms can be divided into groups

of Csi
t terms, and in every group all terms consist of the same si elements,

say {[fi(xj1)]
si
t , ..., [fi(xjsi )]

si
t }, chosen from {[fi(x1)]

si
t , ..., [fi(xs̄)]

si
t }, while

each of the si elements appears exactly Csi−1
t−1 times in the group. Such a

group of terms is said to be generated by the si elements. It is obvious that

the total number of such groups is

C s̄−t
si−tC

si
t

Csi
t

C s̄
t = C s̄−t

si−tC
s̄
t .

For every such a group, there is a si-combination (j1, ..., jsi) of {1, ..., s̄}

which corresponds to the si elements {[fi(xj1)]
si
t , ..., [fi(xjsi)]

si
t } which gen-

erate the group. Let Θ be the set of all these si-combinations of {1, ..., s̄}
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corresponding to each of the groups. As there are C s̄−t
si−tC

s̄
t such groups,

there must be C s̄−t
si−tC

s̄
t such si-combinations in Θ. Now for every such a

group generated by si elements {[fi(xj1)]
si
t , ..., [fi(xjsi)]

si
t }, we apply the

result that the geometric mean of all the terms in the group is smaller than

their arithmetic mean. Noting that there are Csi
t terms in the group and

each of the si elements appears exactly Csi−1
t−1 times in the group, we obtain

that the sum of the group is larger than

Csi
t Πsi

k=1{[fi(xjk)]
si
t

C
si−1
t−1 }

1

C
si
t = Csi

t Πsi
k=1fi(xjk).

Thus the sum of all the C s̄−t
si−tC

s̄
t groups is larger than Csi

t

∑
(j1 ,...,jsi)∈Θ

Πsi
k=1fi(xjk), where Θ is the set of si-combinations of {1, ..., s̄} resulted from

the above operation. It is obvious that (
{1, ..., s̄}

j1, ..., jt

) ⊂ Θ. Moreover, as the

operation is symetric w.r.t the s̄ elements {1, ..., s̄}, each si-combination of

{1, ..., s̄} must be repeated by the same times. Furthermore, as there are

C s̄−t
si−tC

s̄
t elements in Θ while there are in total C s̄

si
different si-combinations

of {1, ..., s̄}, each si-combination of {1, ..., s̄} must be repeated by
Cs̄−t

si−tC
s̄
t

Cs̄
si

times in Θ. It follows that

∆′
i ≥

C s̄−t
si−tC

s̄
t

C s̄
si

Csi
t

∑

(
{1, ..., s̄}

j1, ..., jsi

)

Πsi
k=1fi(xjk).

However, as ∆′
i is obtained by repeating every term in ∆i by C s̄−t

si−tC
si
t

times, we obtain

∆i =
∆′

i

C s̄−t
si−tC

si
t

≥ C s̄
t

C s̄
si

∑

(
{1, ..., s̄}

j1, ..., jsi

)

Πsi
k=1fi(xjk).
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Substituting the above result into (21), we have

Ξ ≥ t!
t1!...tm!

n∑

i=1

C s̄
t

C s̄
si

∑

(
{1, ..., s̄}

j1, ..., jsi

)

Πsi
k=1fi(xjk).

Substituting this into the right hand side of (2), we immediately obtain that

(2) is true for x1, ..., xs̄ ∈ A. As x1, ..., xs̄ ∈ A are arbitrarily given, we

conclude that (2) is true for all x1, ..., xs̄ ∈ A. Q.E.D.
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