
Modeling spatial processes with unknown
extremal dependence class
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Abstract

Many environmental processes exhibit weakening spatial dependence as events be-
come more extreme. Well-known limiting models, such as max-stable or generalized
Pareto processes, cannot capture this, which can lead to a preference for models that ex-
hibit a property known as asymptotic independence. However, weakening dependence
does not automatically imply asymptotic independence, and whether the process is
truly asymptotically (in)dependent is usually far from clear. The distinction is key
as it can have a large impact upon extrapolation, i.e., the estimated probabilities of
events more extreme than those observed. In this work, we present a single spatial
model that is able to capture both dependence classes in a parsimonious manner, and
with a smooth transition between the two cases. The model covers a wide range of
possibilities from asymptotic independence through to complete dependence, and per-
mits weakening dependence of extremes even under asymptotic dependence. Censored
likelihood-based inference for the implied copula is feasible in moderate dimensions
due to closed-form margins. The model is applied to oceanographic datasets with
ambiguous true limiting dependence structure.
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1 Introduction

The statistical modeling of spatial extremes has received much attention since the article of

Padoan et al. (2010) provided a method of inference for max-stable processes. The latter form

an important class of models for spatial extremes, as they arise as the only non-degenerate

limits of renormalized pointwise maxima of spatial stochastic processes. More precisely, let

Yi(s), i = 1, 2, . . ., be independent and identically distributed copies of a stochastic process

{Y (s) : s ∈ S} with index set S ⊂ R2. If there exist functions an(s) > 0, bn(s) such that

the limiting process

M(s) = lim
n→∞

max
1≤i≤n

Yi(s)− bn(s)

an(s)
(1)

has non-degenerate marginals, then M(s) is a max-stable process (de Haan and Ferreira,

2006, Chapter 9). A practical issue with max-stable processes is that their d-dimensional

densities (and hence the likelihood function) are difficult to evaluate, as the number of terms

involved equals the dth Bell number, which grows super-exponentially with d. As such,

spatial models for high threshold exceedances, which have simpler likelihoods, have become

more appealing; see e.g., Ferreira and de Haan (2014); Wadsworth and Tawn (2014); Engelke

et al. (2015); Thibaud and Opitz (2015) and de Fondeville and Davison (2016). The threshold

exceedance analogue of the max-stable process is known as the generalized Pareto process,

and has a similar asymptotic dependence structure in its joint tail region.

In order for limiting max-stable or generalized Pareto processes to provide good statis-

tical models, we require that the extremes of Y (s) are well represented by these processes,

i.e., adequate convergence has occurred. However, there are no guarantees on rates of con-

vergence, and in practice, limit models may not hold well. One way to assess the validity

of convergence is to assess whether the stability properties of limit models hold well: max-

stable copulas are invariant to the operation of taking pointwise maxima (max-stability),
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Figure 1: Estimate of the dependence summary χu in (2) (dots) for the significant wave
height data of §4.1 plotted against quantile, u. Gray lines are estimates from a stationary
bootstrap resampling procedure (see §4.1); dashed lines indicate the central 95% of bootstrap
samples, pointwise.

whilst generalized Pareto copulas are invariant to conditioning on threshold exceedances of

higher levels (threshold-stability). A graphical diagnostic for max-stability is presented in

Gabda et al. (2012), whilst for threshold-stability, one can examine plots of

χu := P{F1(Y1) > u, . . . , Fd(Yd) > u|F1(Y1) > u}, Yj = Y (sj) ∼ Fj, (2)

where the argument sj denotes the jth spatial location; if the data follow a generalized

Pareto process law, then this function should be constant as the quantile u tends to one

(Rootzén et al., 2017). For environmental data in particular, it is much more common to

see estimates of (2) decreasing as u → 1, indicating that dependence weakens with level

of extremeness. An example of this is given in Figure 1, for a dataset of significant wave

heights, to be analyzed in §4.1.

If the limit of χu defined in (2) as u→ 1 is positive for all sites s1, . . . , sd and all d ≥ 2,

the process Y (s) is termed asymptotically dependent, and eventually, possibly at much higher

levels, a generalized Pareto process should represent a suitable model for the data. If the limit

is zero for all sites s1, . . . , sd and all d ≥ 2, we term the process asymptotically independent ;

in such cases no generalized Pareto model would ever be suitable. Intermediate scenarios
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are possible, but owing to the structure of spatial data, it is common over small spatial

domains to assume that the process is either asymptotically dependent or asymptotically

independent, and we assume this here also. Determining a suitable model for the data

usually requires distinguishing between these two scenarios, since most models exhibit only

one type of dependence; choosing the incorrect class will lead to unsuitable extrapolation

into the joint upper tail (Ledford and Tawn, 1997; Davison et al., 2013).

In practice, because asymptotic properties are always difficult to infer, it is ideal to fit

spatial models encompassing both asymptotic dependence classes, and let the data speak for

themselves. To our knowledge, the only instance in the literature of such a hybrid spatial

extreme model is the max-mixture model of Wadsworth and Tawn (2012). However, in that

model, asymptotic independence only occurs at a boundary point of the parameter space,

thus inference methods allowing for this are non-regular. Moreover, the model is highly

parametrized and requires pairwise likelihood fitting methods.

In this paper, we address such deficiencies by presenting a class of spatial processes de-

scribed by a small number of parameters and making a smooth transition between the two

dependence paradigms. Specifically, we propose a novel class of spatial extremal models

that have non-trivial asymptotically dependent and asymptotically independent submodels

with the transition taking place in the interior of the parameter space. The latter property

allows us to quantify our uncertainty about the dependence class in a simple manner. Our

new spatial models can thus be viewed as similar in spirit to the generalized extreme-value

(GEV) distribution in the univariate case, which was introduced by von Mises (1954) and

Jenkinson (1955) as a three-parameter model combining the three limiting extreme-value

types (i.e., reversed Weibull, Gumbel and Fréchet), hence providing a way to make inference

without specifying the asymptotic distribution family prior to fitting the model. Further-

more, subject to model assumptions, standard hypothesis testing methods can be used to
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assess the evidence for asymptotic dependence over asymptotic independence, if so desired.

In encompassing both extremal dependence classes, our approach has similarities with

the bivariate model of Wadsworth et al. (2017). However our construction here is simpler

and substantially more amenable to higher-dimensional inference. Other related work that

allows for both asymptotic dependence structures in a spatial setting is the Gaussian scale

mixture models proposed in the recent work of Huser et al. (2017), but their models either

make the transition at a boundary point of the parameter space, or are inflexible in their

representation of asymptotic independence structures.

The paper is organized as follows. Section 2 describes the new spatial model and its

extremal dependence properties. Section 3 details censored likelihood inference, describes

a test for the asymptotic dependence class, and presents a simulation study validating the

methodology. The new model is then applied to two oceanographic datasets in Section 4,

while Section 5 concludes with some discussion. All proofs are deferred to Appendix A.

2 Model

2.1 Copula-based approach

The main goal of this work is to provide flexible extremal dependence structures for spatial

processes. As such, we take a copula-based approach and seek the construction of flexible

families of copulas for spatial extremal dependence. For a process with marginal distribution

functions Xj ∼ Fj, the d-dimensional copula function C, is defined as

C(u1, . . . , ud) = P{F1(X1) ≤ u1, . . . , Fd(Xd) ≤ ud}.

When the margins Fj, j = 1, . . . , d, are continuous, which will be the case throughout this

paper, the copula is unique (Sklar, 1959), and represents a multivariate distribution function

with standard uniform margins. In §2.2, we describe construction of a model whose copula
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displays interesting extremal dependence properties. Details of likelihood calculations of the

copula of the model we introduce are presented in Section 3.

2.2 Construction

Let {W (s) : s ∈ S ⊂ R2} be a stationary spatial process with standard Pareto margins, and

displaying asymptotic independence with hidden regular variation; a consequence of this is

that for any x ≥ 1,

P{W (sj) > x} = x−1,

P{W (sj) > x,W (sk) > x} = LW (x)x−1/ηW (h), k 6= j, (3)

where LW : (0,∞)→ (0,∞) is slowly varying at infinity, i.e., LW (ax)/LW (x)→ 1 as x→∞

for any a > 0, and 0 < ηW (h) < 1 for h = sj − sk 6= 0 (Ledford and Tawn, 1996; Resnick,

2002). Note that we exclude the further possibility ηW (h) = 1 (h 6= 0), LW (x) → 0 as

x → ∞, because this does not arise in models that we might naturally consider for W (s).

The parameter ηW (h), called the coefficient of tail dependence, summarizes the joint tail

decay of the process W (s) and it is a function of the lag vector h. For simplicity, in what

follows we will restrict ourselves to isotropic processes, and will therefore write ηW (h) (or, for

notational convenience, ηW , when no confusion can arise), where h = ‖h‖ = ‖sj − sk‖ ≥ 0

denotes the Euclidean distance between sites sj, sk ∈ S. Examples of models satisfying (3)

include marginally transformed Gaussian processes and inverted max-stable processes; see

§2.5 for more details.

With W (s) as described, let R be an independent standard Pareto random variable. Our

spatial dependence model is defined through the random field constructed as

X(s) = RδW (s)1−δ, δ ∈ [0, 1]. (4)

The following simple observation highlights why the parsimonious model defined in (4) is

potentially useful: when δ > 1/2 then Rδ is heavier-tailed than W 1−δ and this induces
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asymptotic dependence; when δ < 1/2 the converse is true, and this induces asymptotic

independence. These facts are formalized in §2.3.

Construction (4) has superficial similarities with the Gaussian scale mixture models stud-

ied by Huser et al. (2017), who multiply a Gaussian random field by a random effect that

determines the extremal dependence properties. However, in (4) the latent process W (s)

does not have Gaussian margins, resulting in a very different construction in practice, and

need not have a Gaussian copula structure, which yields a much wider class of models. In

practice, high-dimensional inference requires tractable densities for W (s) (see §3.1), leading

to the Gaussian copula as a natural choice in spatial settings. Alternative possibilities for

W (s) are discussed further in §2.5.

Remark 1. Representation (4) is convenient to study the asymptotic dependence properties

of the process X(s) using the theory of regular variation; see §2.3. However, as the copula

structure is invariant with respect to monotone marginal transformations, there is an infinite

number of ways to characterize the copula stemming from X(s), some of which may be

computationally more attractive or have appealing interpretations. For example, taking the

logarithm on both sides of (4), we obtain an additive structure

X̃(s) := δR̃ + (1− δ)W̃ (s), (5)

where R̃ := log(R) ∼ Exp(1) is independent of W̃ (s) := log{W (s)}, also with Exp(1)

margins. In Sections 3 and 4, copula and likelihood computations are based on expression (5).

The variable R in (4) or equivalently the variable R̃ in (5), may be interpreted in various

ways, shedding light on the extremal behavior of X(s). For example, by writing R̃ := {R̃(s) :

s ∈ S ⊂ R2}, it can be seen as a random process indexed by S with perfect dependence, so

the representation in (5) implies that X̃(s) can be interpreted as a mixture between perfect

dependence and asymptotic independence. This contrasts with Coles and Pauli (2002), who
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constructed hybrid bivariate models using a certain type of mixture between asymptotic

dependence and complete independence.

Alternatively, R or R̃ may be interpreted as an unobserved latent random factor im-

pacting simultaneously the whole region S, hence affecting the joint tail characteristics, and

making a link with the common factor copula models for spatial data introduced by Krupskii

et al. (2017). One major difference with our approach, however, is that here R̃ and W̃ (s) are

both on the unit exponential scale, whereas the location mixture copula models of Krupskii

et al. (2017) assume that W̃ (s) is a Gaussian process and that both components in (5) are

weighted equally, corresponding to δ = 1/2. Consequently, their exponential factor model

always displays asymptotic dependence. Other distributions for the random factor were in-

vestigated in Krupskii et al. (2017), but they all yield copulas with (non-trivial) asymptotic

dependence lying on the boundary of, or at a single point in, the parameter space.

We next study the dependence properties of model (4) for δ ∈ (0, 1) noting the simple

interpretations at the endpoints of the parameter space: it is clear from (4) or (5) that

perfect dependence arises as δ → 1, whilst the copula of W (s) is recovered as δ → 0.

2.3 Dependence properties

Owing to the simple construction of this process, it is sufficient to study bivariate dependence

to make more general conclusions. Comments on higher-dimensional dependence will be

made throughout the remainder of the section.

To examine the dependence properties of the process (4), we relate the behavior of the

bivariate joint survivor function on the diagonal, P(Xj > x,Xk > x), to the marginal survivor

function, P(Xj > x), where for simplicity we write Xj = X(sj) and so forth. We focus on a

bivariate version of the dependence measure (2),

χu(h) := P{Fj(Xj) > u | Fk(Xk) > u}, and Xj ∼ Fj, Xk ∼ Fk, (6)
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and its limit χ(h) := limu→1 χu(h), with h = ‖sj − sk‖. A value of χ(h) > 0 indicates

asymptotic dependence for this pair of sites, whilst χ(h) = 0 defines asymptotic indepen-

dence. Because the process X(s) has common margins with upper endpoint at infinity, the

limit may be equivalently expressed as

χ(h) = lim
x→∞

P(Xj > x,Xk > x)/P(Xj > x). (7)

When χ(h) = 0, alternative measures are needed to discriminate between the different levels

of dependence exhibited by asymptotically independent distributions. A widely satisfied

assumption, already made for the process W (s) in (3) (modulo the restriction made on the

coefficient of tail dependence), is

P(Xj > x,Xk > x) = LX{P(Xj > x)−1}P(Xj > x)1/ηX(h), (8)

where LX is slowly varying at infinity, and ηX(h) ∈ (0, 1] is the coefficient of tail dependence

for the process X(s). When ηX(h) = 1 and LX(x) → χ(h) > 0 as x → ∞, the pair of

variables (Xj, Xk)
T are asymptotically dependent, else they are asymptotically independent

and the value of ηX(h) summarizes the strength of extremal dependence in the joint upper

tail. For notational convenience, the dependence on distance h in χ(h) and ηX(h) may be

omitted when no confusion can arise.

2.3.1 Marginal distribution

The marginal distribution of the process (4) may be established for δ 6= 1/2 as follows:

1− FX(x) = P(Xj > x) = P{Wj > x1/(1−δ)R−δ/(1−δ)}

= P(R > x1/δ) + x−1/(1−δ)
∫ x1/δ

1

rδ/(1−δ)−2 dr

=
δ

2δ − 1
x−1/δ − 1− δ

2δ − 1
x−1/(1−δ), x ≥ 1, δ 6= 1/2. (9)

The case δ = 1/2 may either be established independently, or as a limit, from which we get

1− FX(x) = P(Xj > x) = x−2{2 log(x) + 1} x ≥ 1, δ = 1/2;

9



this is the survival function of a log-Gamma random variable with rate and shape parameters

both equal to two. Notice that margins are here available in closed form, unlike the Gaussian

scale mixture model of Huser et al. (2017), or the bivariate model of Wadsworth et al. (2017).

Since the copula is the object of interest in all of the above cases, this makes model (4)

computationally more appealing.

2.3.2 Joint distribution

We now derive the joint survivor function of a pair of variables (Xj, Xk)
T from the process

X(s) in (4), and then use this result in (7) and (8), combined with (9), to derive the

corresponding coefficients χ and ηX characterizing tail dependence of X(s) depending on

the value of δ.

Proposition 1. With definitions and notation as established above, the joint survivor func-

tion of (4) satisfies

P(Xj > x,Xk > x) =

{
L(x)x−1/{(1−δ)ηW }, if ηW ≥ δ/(1− δ),
E{min(Wj,Wk)

(1−δ)/δ}x−1/δ{1 + o(1)} if ηW < δ/(1− δ),

where L is slowly varying at infinity.

Corollary 1. If δ > 1/2, the pair (Xj, Xk)
T is asymptotically dependent with

χ = E
{

min(Wj,Wk)
(1−δ)/δ} 2δ − 1

δ
= E

(
min

[
W

(1−δ)/δ
j

E{W (1−δ)/δ
j }

,
W

(1−δ)/δ
k

E{W (1−δ)/δ
k }

])
> 0. (10)

If δ ≤ 1/2, the pair (Xj, Xk)
T is asymptotically independent, i.e., χ = 0. Furthermore, the

coefficient of tail dependence for the process (4) is

ηX =


1, if δ ≥ 1/2,

δ/(1− δ), if ηW/(1 + ηW ) < δ < 1/2,

ηW , if δ ≤ ηW/(1 + ηW ).

(11)

Remark 2. Analogous dependence summaries in d dimensions are simple to establish using

the same techniques of proof as for Proposition 1 and Corollary 1. Specifically, letting η1:dX
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and η1:dW denote d-dimensional counterparts of the coefficient of tail dependence, defined using

the d-dimensional joint survivor function, then expression (11) still holds with ηX and ηW

replaced by η1:dX and η1:dW . The d-dimensional analogue of χ generalizes expression (10), and

is discussed in Remark 3.

The case δ = 1/2 is of particular interest, since it represents a boundary between asymp-

totic dependence and asymptotic independence: according to Corollary 1 we have asymptotic

independence (χ = 0), but the coefficient of tail dependence ηX attains its boundary value

of 1. In this case, we therefore have LX(x) → 0 as x → ∞ in (8). Furthermore, the model

has the appealing property that χ↘ 0 as δ ↘ 1/2 and ηX ↘ ηW as δ ↘ ηW/(1 + ηW ). As

noted at the end of §2.2, as δ ↘ 0, the dependence structure of the W process is recovered.

Our model X(s) in (4) hence provides a smooth interpolation from the asymptotically in-

dependent submodel W (s) and perfect dependence, as the parameter δ varies in the unit

interval, and it transits through non-trivial asymptotically independent and asymptotically

dependent submodels.

2.4 Further dependence properties under asymptotic dependence

Here, we outline the connection to other well-known measures of dependence in the case

of asymptotic dependence. We focus firstly on a limiting measure, namely the so-called

exponent function, V : (0,∞)d → (0,∞) defined for all x1, . . . , xd > 0 by

V (x1, . . . , xd) = lim
t→∞

t
(
1− P

[
X1 ≤ F−1X

{
1− (tx1)

−1} , . . . , Xd ≤ F−1X

{
1− (txd)

−1}]) ,
which describes the joint dependence of the associated max-stable or generalized Pareto pro-

cess; see Davison et al. (2012), Cooley et al. (2012), Segers (2012) or Davison and Huser

(2015) for recent reviews on max-stable models. We then examine the sub-asymptotic be-

havior under asymptotic dependence, i.e., the mode of convergence towards such limiting

structures, which is important in practice for modeling extreme events at observable levels.
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Proposition 2. For X(s) as given in model (4) and δ > 1/2,

V (x1, . . . , xd) = E

[
max
j=1,...,d

W
(1−δ)/δ
j

E{W (1−δ)/δ
j }xj

]
=

2δ − 1

δ
E

{
max
j=1,...,d

W
(1−δ)/δ
j

xj

}
.

Remark 3. It follows from Proposition 2 that the d-dimensional extremal coefficient, θ1:d =

V (1, . . . , 1), is

θ1:d = E

[
max
j=1,...,d

W
(1−δ)/δ
j

E{W (1−δ)/δ
j }

]
=

2δ − 1

δ
E

{
max
j=1,...,d

W
(1−δ)/δ
j

}
∈ [1, d]. (12)

Furthermore the d-dimensional version of χ, χ1:d, in (6) equals

lim
u→1

P{FX(X1) > u, . . . , FX(Xd) > u | FX(X1) > u} =
2δ − 1

δ
E

{
min

j=1,...,d
W

(1−δ)/δ
j

}
,

which can be demonstrated directly or by using inclusion-exclusion relationships between these

parameters, such as outlined in Rootzén et al. (2017).

The behavior of χu − χ = P{FX(Xj) > u | FX(Xk) > u} − χ as u → 1, i.e., the rate at

which χu converges to its limit χ, determines the flexibility of a process for capturing sub-

asymptotic extremal dependence. Proposition 3 demonstrates that the parameterization of

model (4) gives flexibility in this rate, meaning that dependence can weaken above the level

used for fitting, whilst still allowing for the possibility of asymptotic dependence.

Proposition 3. For δ > 1/2,

χu − χ = χ
1− δ
δ

(
δ

2δ − 1

)(1−2δ)/(1−δ)

(1− u)(2δ−1)/(1−δ){1 + o(1)}, u→ 1. (13)

For comparison, generalized Pareto processes have χu ≡ χ for all u above a certain level

(Rootzén et al., 2017), whilst all max-stable processes have χu − χ � (1 − u), as u → 1.

However, as χ is a dependence measure on the scale of the observations rather than maxima,

it is less useful in the context of max-stable processes, where the summary (12) is typically

used instead. From Proposition 3, we observe a wide range of convergence rates, from very
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Figure 2: Left: Coefficient χu in (6) for model (4) plotted as a function of the threshold
u ∈ [0.9, 1] for δ = 0.1, 0.2, 0.3, 0.4, 0.45, 0.48, 0.5, 0.52, 0.55, 0.6, 0.7, 0.8, 0.9 (top to bottom)
and (Wj,Wk)

T with a Gaussian copula with correlation 0.4. Black dots at u = 1 denote
the limit quantities χ = limu→1 χu, and the green dashed curve (superimposed with δ = 0.1)
corresponds to the vector (Wj,Wk)

T , i.e., the case δ = 0. Right: Coefficient of tail depen-
dence ηX in (11) (solid colored curves) as a function of δ ∈ (0, 1) for ηW = 0.1, . . . , 0.9 (thin
to thick). The value ηW = 0.7 corresponds to the choice of (Wj,Wk)

T on the left panel.

rapid for δ near 1, to rates slower than (1 − u) for 1/2 < δ < 2/3. Note that for δ < 1/2,

the rate χu − χ is determined by the coefficient of tail dependence, ηX ; recall (8) and (11).

Figure 2 illustrates the flexibility in extremal dependence structures, by plotting χu in (6)

as a function of the threshold u and the limit quantity χ = limu→1 χu in (10), for a range of

values of δ ∈ (0, 1), and (Wj,Wk)
T following a Gaussian copula with correlation parameter

0.4. Figure 2 also displays the coefficient of tail dependence ηX defined in (8) and (11) as a

function of δ for ηW = 0.1, . . . , 0.9. The smooth transition from asymptotic dependence to

asymptotic independence taking place at δ = 1/2 can be clearly seen from these two plots.

Moreover, as is intuitive, the right panel of Figure 2 shows that the process X(s) in (4)

cannot reach lower levels of dependence than its underlying W (s) process.
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2.5 Example models

We conclude this section with some concrete suggestions for the W process that may be

useful in certain applications, such as those described in Section 4.

Example 1 (Gaussian process). Let {Z(s) : s ∈ S} be a stationary Gaussian process with

correlation function ρ(h), and standard Gaussian marginal distribution, denoted Φ. Then

W (s) = 1/[1− Φ{Z(s)}]

has a Gaussian copula, Pareto margins, and coefficient of tail dependence ηW (h) = {1 +

ρ(h)}/2. In this case, the value of χ(h) in (10) needs to be calculated either by Monte Carlo

or numerical integration, both of which are simple and quick.

Example 2 (Inverted max-stable process). Let {M(s) : s ∈ S} be a stationary max-stable

process with extremal coefficient function θ(h) ∈ (1, 2], and marginal distribution functions

Gs, s ∈ S. Then the process

W (s) = 1/Gs{M(s)}

has an inverted max-stable copula (Ledford and Tawn, 1996; Wadsworth and Tawn, 2012),

Pareto margins, and coefficient of tail dependence ηW (h) = 1/θ(h). The value of χ(h) in (10)

can be calculated as

χ(h) =
2δ − 1

δ
E{min(Wj,Wk)

(1−δ)/δ} =
2δ − 1

1− (1− δ){1 + ηW (h)}
, δ > 1/2. (14)

For this class of processes ηW (h) ∈ [1/2, 1) for h > 0, thus the range of χ(h) values can be

established for each δ. Moreover, the d-dimensional quantity χ1:d takes the same form as in

equation (14) with ηW (h) replaced by η1:dW ∈ [1/d, 1).

In what follows, we will principally take W (s) to have a Gaussian copula because the

resulting density is much simpler in high dimensions than that of the inverted max-stable
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process, which suffers the same explosion in the number of terms as a max-stable process

density. Pairwise or higher-dimensional composite likelihoods (see, e.g., Padoan et al., 2010;

Varin et al., 2011; Castruccio et al., 2016) offer an alternative approach, but we do not

explore this further here. Outside of a spatial context however, other dependence structures

may be preferred.

Example 3 (Non-spatial model). We remark that non-spatial use of the model (4) is also

possible, replacing the process W (s) with an asymptotically independent random vector

W = (W1, . . . ,Wd)
T with pairwise coefficients of tail dependence ηjkW < 1, j < k ∈ {1, . . . , d}.

For multivariate models in dimension d greater than two some care is required, however, as

model (4) allows only for d-wise asymptotic dependence (i.e., χ1:d > 0), or d-wise asymptotic

independence (i.e., χjk = 0, for all j < k ∈ {1, . . . , d}). Such assumptions are natural

in the context of spatial processes, but often less so for genuinely multivariate data. For

dimension d = 2 however, where χ1:2 > 0 is the complement of χ1:2 = 0, model (4) offers an

interesting alternative to that of Wadsworth et al. (2017) for bivariate data. The latter show

that the copula model defined by X = RW , where the radial variable R follows a unit scale

generalized Pareto distribution with shape parameter ξ ∈ R and max(W ) = 1, with R and

W independent, displays asymptotic dependence for ξ > 0 and asymptotic independence

for ξ ≤ 0. One advantage of model (4) is that a version with an asymmetric dependence

structure is simpler to implement, by selecting an asymmetric bivariate distribution for the

copula of W . We illustrate the improvement this can offer in §4.2.

3 Inference and Simulation

3.1 Censored likelihood

We wish to fit the dependence structure of model (4) to the extremes of spatial processes.

Since the dependence characteristics of the model are tailored towards appropriately cap-
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turing extremal dependence, we use a censored likelihood, which prevents low values from

affecting the estimation of the extremal dependence structure. Such an approach is now stan-

dard in inference for multivariate and spatial extremes, although different censoring schemes

have been adopted; see e.g. Smith et al. (1997), Wadsworth and Tawn (2012) and Huser

et al. (2016, 2017). We assume that we are working with a W process that has a density, so

that this is also true for the copula.

Assume that n independent replicates of a random process {Y (s) : s ∈ S ⊂ R2} are

observed at d spatial locations, s1, . . . , sd ∈ S. Denote the ith replicate at the jth location

by Yij, i = 1, . . . , n, j = 1, . . . , d. We assume that in its joint tail region, i.e., for observa-

tions above a high marginal threshold, the process Y (s) has the same copula as our model

X(s) defined in (4), but with possibly different marginal distributions Fs. To estimate the

dependence structure, we first transform the margins to uniform independently at each site

sj, j = 1, . . . , d. In Section 4, we use the semi-parametric procedure of Coles and Tawn

(1991), whereby the distribution function is estimated using the asymptotically-motivated

generalized Pareto distribution above a high marginal threshold, and the empirical distribu-

tion function below that threshold. The resulting variables are denoted Uij = F̂sj(Yij). An

alternative is to use the empirical distribution function throughout as in Huser et al. (2017).

This two-step approach is common practice in the copula literature and provides consistent

inference for the copula under mild regularity conditions (see, e.g., Joe, 2015).

The second step is to estimate the copula parameters using the transformed data based on

a censored likelihood. When fitting the copula stemming from model (4), the parameters to

be estimated are ψ = (δ,ψT
W )T ∈ Ψ = [0, 1]×ΨW ⊂ Rp, where ψW is a (p− 1)-dimensional

vector of parameters describing the W (s) process. Using the alternative representation
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X̃(s) = δR̃ + (1− δ)W̃ (s) in (5), the resulting copula C and its density c are

C(u1, . . . , ud;ψ) = F 1:d
X̃
{F−1

X̃
(u1), . . . , F

−1
X̃

(ud)}, (15)

c(u1, . . . , ud;ψ) = f 1:d
X̃
{F−1

X̃
(u1), . . . , F

−1
X̃

(ud)}
d∏
j=1

[
fX̃{F

−1
X̃

(uj)}
]−1

, (16)

where FX̃(x) = FX(ex) and fX̃(x) = fX(ex)ex with fX(x) = dFX(x)/dx, easily obtained in

closed form through (9). The functions FX̃ and fX̃ are the marginal distribution and density,

respectively, stemming from the X̃(s) process observed at the sites s1, . . . , sd, whilst

F 1:d
X̃

(x1, . . . , xd) =

∫ r?δ

0

FW̃
{

(1− δ)−1(x1 − δr), . . . , (1− δ)−1(xd − δr)
}
e−rdr,

f 1:d
X̃

(x1, . . . , xd) = (1− δ)−d
∫ r?δ

0

fW̃
{

(1− δ)−1(x1 − δr), . . . , (1− δ)−1(xd − δr)
}
e−rdr

represent the joint distribution function and density, respectively, of this process. Here,

r?δ = min(x1, . . . , xd)/δ, and FW̃ , fW̃ denote the joint distribution and density, respectively,

for the W̃ (s) process. The partial derivatives of the copula C(u1, . . . , ud;ψ) with respect to

any set of variables J ⊂ {1, . . . , d} of cardinality dJ may be expressed as

CJ (u1, . . . , ud;ψ) =
∂dJ∏
j∈J ∂uj

C(u1, . . . , ud;ψ)

= F 1:d
X̃,J {F

−1
X̃

(u1), . . . , F
−1
X̃

(ud)}
∏
j∈J

[
fX̃{F

−1
X̃

(uj)}
]−1

, (17)

where

F 1:d
X̃,J (x1, . . . , xd) = (1− δ)−dJ

∫ r?δ

0

FW̃ ,J
{

(1− δ)−1(x1 − δr), . . . , (1− δ)−1(xd − δr)
}
e−rdr,

with FW̃ ,J (x1, . . . , xd) = ∂dJFW̃ (x1, . . . , xd)/
∏

j∈J ∂xj. When the process W (s) is based on

a Gaussian copula, partial derivatives in (17) involve the multivariate Gaussian distribution

in dimension d−dJ . Although the unidimensional integrals appearing in (15), (16) and (17)

cannot be expressed in closed form, they can nevertheless be accurately approximated using

standard finite integration or (quasi) Monte Carlo methods. To estimate the parameters
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ψ = (δ,ψT
W )T ∈ Ψ, while avoiding influence of non-extreme data below high marginal

thresholds u?1, . . . , u
?
d, we maximize the censored log likelihood function defined as

`(ψ) =
n∑
i=1

log{Li(ψ)}, (18)

with contributions defined through the sets of indices Ji = {j : Uij > u?j} ⊆ {1, . . . , d} as

Li(ψ) =


C(u?1, . . . , u

?
d;ψ), Ji = ∅,

c(Ui1, . . . , Uid;ψ), Ji = {1, . . . , d},
CJi{max(Ui1, u

?
1), . . . ,max(Uid, u

?
d);ψ}, otherwise.

The set Ji determines whether the ith observation vector (Ui1, . . . , Uid)
T has threshold

exceedances in no, all, or some but not all components, respectively; therefore, these sets

may be different for each likelihood contribution i = 1, . . . , n. The estimator maximizing

(18) over Ψ is denoted by ψ̂. The performance of this inference approach is assessed in our

simulation study §3.2 and it is used in the application in §4.1.

Another possible censoring scheme is to use either the fully censored contribution

C(u?1, . . . , u
?
d;ψ) in (18) if Ji = ∅ (i.e., the variable Uij is lower than the threshold u?j

for all j = 1, . . . , d), or the completely uncensored contribution c(Ui1, . . . , Uid;ψ) otherwise.

This was used by Wadsworth and Tawn (2012), Opitz (2016) and Wadsworth et al. (2017),

and is adopted in the example of §4.2, where we compare fits of bivariate models.

3.2 Simulation study

3.2.1 Parameter estimation

To assess the performance of the maximum censored likelihood estimator ψ̂ defined through

(18), we simulated data from the copula defined by (4) at d = 2, 5, 10, 15 locations uniformly

generated in the unit square, [0, 1]2. We sampled n = 1000 independent replicates at these

locations, and considered the scenarios δ = 0.1, . . . , 0.9 (from asymptotic independence to

dependence) with W (s) defined by a Gaussian copula structure with powered exponential

correlation function ρ(sj, sk) = exp{−(‖sj − sk‖/λ)ν}, λ > 0, ν ∈ (0, 2]. Setting λ = 0.5
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Figure 3: Boxplots for the MLE δ̂ based on (18) setting the thresholds as u?j = 0.95, j =
1, . . . , d, for model (4) with δ = 0.1, . . . , 0.9 (left to right). The underlying process W (s) has
a Gaussian copula with correlation function ρ(sj, sk) = exp{−(‖sj − sk‖/λ)ν} and λ = 0.5,
ν = 1. The process was observed at d = 2 (red, left), 5 (green, second left), 10 (dark
blue, second right) and 15 (light blue, right) random locations in [0, 1]2, and n = 1000
replicates were simulated. True values are indicated by the orange horizontal segments,
and the boundary between asymptotic dependence and independence is indicated by the
horizontal dashed line at δ = 0.5. Boxplots are based on 100 independent simulations.

and ν = 1, we then estimated ψ = (δ, λ, ν)T by maximizing (18) with marginal thresholds

u?1 = · · · = u?d = 0.95, giving about 50 exceedances at each location. For identifiability

reasons, we fixed ν = 1 when d = 2. Because the process is almost perfectly dependent when

δ approaches unity, this creates numerical difficulties: to deal with this issue, we increase

the relative precision in the R function integrate used for the calculation of the integrals in

(15), (16) and (17) for larger values of δ. Figure 3 shows boxplots of estimated parameters

δ̂ based on 100 independent simulations.

Overall, the estimation procedure works as expected, with boxplots for δ approximately

centered around the true value, though a small bias appears for δ = 0.8, 0.9, which is due

to numerical instabilities and difficulties in identifying all three parameters in such strong

dependence scenarios, despite the higher numerical precision; recall Figure 2. As is typical

for a bounded parameter, the asymptotic normality of δ̂ looks to hold well when δ is not too
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close to 0 and 1, but the distribution displays some asymmetry near to the endpoints 0 and

1. Estimation seems to be easier when δ ≈ 1/2, which leads to small bias and variability.

As δ → 0, the copula structure of X(s) converges to that of the latent process W (s), here a

Gaussian copula, and therefore low values such as δ = 0.1, 0.2 yield very similar dependence

structures, leading to higher variability. Boxplots of λ̂ and ν̂ (see Supplementary Material)

suggest that results are better in the asymptotic independence case when δ ≤ 0.5. For larger

values of δ, the range λ is more variable and the smoothness parameter ν is slightly more

biased, owing to the very strong dependence. However, in practice, one could restrict the

parameter δ to 0 ≤ δ ≤ 0.8, say, as δ > 0.8 is very unlikely to occur in applications. For

all parameters δ, λ and ν, but particularly for ν, the fit improves significantly when more

locations are available.

3.2.2 Testing the dependence class

A major advantage of model (4) over currently available models for spatial extremes is that

we do not need to explicitly determine whether the data exhibit asymptotic dependence or

asymptotic independence in order to select an appropriate class of models. However, since so

much effort has previously been placed on determining the appropriate dependence class, we

present the details and simulation experiments of a model-based test for this here. Coles et al.

(1999) suggest using nonparametric estimators of the measure χu (defined slightly differently

to (6)) and its counterpart χ̄u, but when the threshold u increases to unity, the associated

uncertainty inflates dramatically. This renders any test based on these nonparametric estima-

tors almost useless in practice. To increase the power for discriminating between asymptotic

dependence and independence, a parametric model-based approach seems sensible and our

copula model (4) provides a very natural way to proceed, because the transition between

the two asymptotic paradigms takes place in the interior of the parameter space. We stress,

however, that the validity of such a test is reliant on modeling assumptions, and as such is
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best used in conjunction with other diagnostics. Standard likelihood theory can be invoked

to design tests for the null hypotheses

HAD
0 : δ > 1/2 (asympt. dependence) vs HAI

A : δ ≤ 1/2 (asympt. independence);

HAI
0 : δ ≤ 1/2 (asympt. independence) vs HAD

A : δ > 1/2 (asympt. dependence).

Let ψ̂ = (δ̂, λ̂, ν̂)T be the maximum likelihood estimator (MLE). We suggest using asymptotic

normality of ψ̂ to test for HAD
0 or HAI

0 , an assumption that should hold true if n is large and

δ is not too close to its boundaries 0 and 1. In particular, denoting the estimated variance

of δ̂ by v̂δ, the power of these tests at the level 100× (1− α)% can be computed as

P(reject HAD
0 | HAI

A holds) = P(δ̂ < 0.5−
√
v̂δz1−α | δ ≤ 0.5), (19)

P(reject HAI
0 | HAD

A holds) = P(δ̂ > 0.5 +
√
v̂δz1−α | δ > 0.5), (20)

respectively, where z1−α is the (1− α)-quantile of the standard normal distribution.

To compute the power curves (19) and (20), we drew 300 simulations of model (4) at

d = 2, 5, 10 locations in [0, 1]2 with n = 1000, 2000 independent replicates, under the same

setting as §3.2.1. Range λ = 0.5 and smoothness ν = 1 were fixed, and we considered a

sequence δ ∈ [0.3, 0.8] in steps of 0.02, estimating all parameters using the MLE based on

(18) with marginal thresholds u?1 = · · · = u?d = 0.95. The Hessian matrix at the MLE was

used in order to compute v̂δ as the (1, 1)-entry of the reciprocal Fisher information.

Figure 4 displays the proportion of null hypotheses rejected (i.e., the power curves (19)

and (20) when the corresponding null hypotheses are false), estimated using the 300 simu-

lations and plotted as a function of δ ∈ [0.3, 0.8]. As expected, for all dimensions, the power

to reject asymptotic dependence (respectively asymptotic independence) improves as δ → 0

(respectively δ → 1), and with higher dimensions, although there is little difference between

d = 5 and d = 10. Comparing left and right panels, increased sample size also improves

power, with a steeper transition around δ = 1/2. The departure from nominal levels for the
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Figure 4: Proportion of times the null hypotheses HAD
0 (dashed) and HAI

0 (solid) are rejected,
plotted against the true δ value, computed from 300 simulations. The horizontal dashed line
at 0.05 shows the nominal level used for the tests. The model (4) was simulated at d = 2 (red),
5 (green), and 10 (blue) sites in [0, 1]2 with n = 1000 (left), 2000 (right) replicates, using
an underlying Gaussian copula for W (s) with correlation function ρ(sj, sk) = exp{−(‖sj −
sk‖/λ)ν} and λ = 0.5, ν = 1. Parameters were estimated by maximum likelihood based on
(18) with marginal thresholds u?1 = · · · = u?d = 0.95.

Type I error however suggests that the Hessian may not give a good representation of the

asymptotic variance, possibly owing to numerical approximations. In Section 4.1 we suggest

using bootstrap methods to calculate uncertainty.

4 Oceanographic applications

4.1 Hindcast significant wave height data

Wadsworth and Tawn (2012) considered modeling the extremes of the winter observations

of a hindcast dataset of significant wave height, a measure of ocean energy, from the North

Sea. Calculating the coefficient of tail dependence η(h) for the wave height process, they

suggested that there was evidence for asymptotic independence of the process, although

strong spatial dependence between sites. Figure 1 suggests a high degree of ambiguity in

what the appropriate extremal dependence structure should be, since the summary χu is

decreasing as u increases, but not necessarily to a value of zero. This ambiguous situation

is replicated throughout numerous applications, and demonstrates the necessity for a model
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such as model (4) that can handle both scenarios.

Measurements of the hindcast are recorded at three-hourly intervals, yielding eight ob-

servations per day, over a period of 31 years. In total the dataset of winter (December,

January, February) wave heights consists of 22376 observations at 50 locations. Margins are

transformed to uniform using the semiparametric transformation of Coles and Tawn (1991).

The data are strongly temporally dependent and so we subsample to extract one realization

per day, giving 2797 observations. The resulting data still exhibit temporal dependence, but

this thinning eases the computational burden of model fitting, whilst the information loss

should be small. Finally, we select a subset of 20 sites to fit the model to, whilst using all

data for validation of the fit. Distance is measured in units of latitude (one unit ≈ 111km);

the range of distances between sites is 0.27–2.99 units.

Model (4) was fitted by maximum likelihood based on (18) with thresholds u?1 = · · · =

u?d = 0.95, assuming a Gaussian copula for the W process (Example 1); Table 1 reports the

results. The uncertainty measures are based on 200 bootstrap samples, created using the

stationary bootstrap (Politis and Romano, 1994). This procedure relies on sampling blocks

of geometric length; we sampled using an average length of 14 days, although any blocks that

reached the end of February (i.e., the end of one winter) were curtailed, so that observations

within a block are always consecutive. Figure 2 in the Supplementary Material shows that

this bootstrap procedure captures the temporal dependence in the extremes adequately.

The MLE of δ indicates asymptotic independence, although the 95% bootstrap confidence

interval includes values above 0.5, meaning that firm conclusions about the asymptotic de-

pendence class are difficult to draw; this further highlights the need for models that can

incorporate both scenarios. Whilst asymptotic independence is indicated, the value of δ

suggests that that our model is more suited than a simple Gaussian model. To reinforce

this, we also fit a Gaussian model, using the same censored likelihood scheme, with results
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Table 1: MLEs, standard deviations (SD) of bootstrap replications, and approximate 95%
confidence intervals (CI) for parameters of our model (4) (left) and the Gaussian process
(right). Figures given to the longer of two decimal places or significant figures.

MLE SD 95% CI MLE SD 95% CI
δ 0.46 0.039 (0.36,0.54) – – –
λ 3.19 0.26 (2.60,3.71) 3.84 0.17 (3.62,4.26)
ν 1.98 0.0033 (1.97,1.98) 1.97 0.0043 (1.96,1.98)
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Figure 5: Estimates of χu for the hindcast wave height data. Central black dots: empirical
estimate of χu from the temporally thinned data; dashed lines: approximate 95% confidence
intervals based on the stationary bootstrap procedure described in the text; dot-dash red
line: empirical estimate of χu from all data; thick solid blue line: fit from our model; thin
solid green line: fit from the Gaussian model. Left: data to which the model was fitted (from
20 sites); right: data to which the model was not fitted (from 30 sites).

reported on the right side of Table 1. Although the Gaussian model is nested within the

model we fit, testing is non-standard as it occurs at the boundary of the parameter space,

i.e., for δ = 0. The maximized log-likelihood for our model was 62 units higher than for

the Gaussian model, representing a clear improvement, although interpretation is difficult

as there is no explicit accounting for temporal dependence in the likelihood.

To assess the fit of the model, we consider two diagnostics. Figure 5 displays the fitted

value of χu, as defined in (2), for the subset of sites included in the model fit (left panel) and

the subset of sites excluded from the fit (right panel). Although the model was fitted using

censored likelihood above a 95%-quantile threshold, the fit looks good on the plotted range

u ∈ (0.9, 1). The Gaussian model clearly underestimates the dependence.

The second diagnostic we consider is the distribution of the number of threshold ex-
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ceedances, conditioning upon having at least one exceedance. The Supplementary Material

contains histograms of the distribution from our data sample and from the fitted model, and

suggests that the fitted model appears to capture this distribution quite well.

4.2 Newlyn oceanographic data

We fit a bivariate version of model (4), as discussed in Example 3, to the Newlyn oceano-

graphic data analyzed in Wadsworth et al. (2017) to illustrate an asymmetric construction,

and to compare with the symmetric models fitted therein. The data, shown in Figure 6,

comprise 2894 observations of wave height, surge and period, and we analyze them pairwise,

transforming to uniformity again using the semiparametric transformation of Coles and Tawn

(1991). To generate an asymmetric model, we assume that the copula of (W1,W2)
T is that

of an inverted Dirichlet max-stable distribution (recall Example 2). The bivariate Dirichlet

max-stable distribution (Coles and Tawn, 1991) has exponent function

V (x1, x2) =
1

x1

{
1− Be

(
αx1

αx1 + βx2
;α + 1, β

)}
+

1

x2
Be

(
αx1

αx1 + βx2
;α, β + 1

)
, α, β > 0,

where Be(·, a, b) is the Beta distribution function with shape parameters a and b. The

bivariate inverted max-stable distribution with Pareto margins has joint survivor function

P(W1 > w1,W2 > w2) = exp[−V {(logw1)
−1, (logw2)

−1}]. To ensure consistency with the

approach of Wadsworth et al. (2017), we use the censored likelihood described therein and

at the end of §3.1 for both models. That is, we use the full density contribution when either

variable is above a censoring threshold, which is set to the 95%-quantile in each margin.

Table 2 gives the Akaike Information Criterion (AIC) for the model of Wadsworth et al.

(2017) and our asymmetric model; improvements are seen for pairs involving wave period,

which shows a more asymmetric dependence structure than height and surge. One limitation

of this choice for (W1,W2)
T is that it cannot exhibit negative dependence, and as such, the

model is less flexible when it comes to accounting for dependence structures with weak
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Table 2: AIC for bivariate copula fits to the Newlyn data, using the symmetric model
of Wadsworth et al. (2017) (first row) and using our model with the asymmetric inverted
Dirichlet model (second row).

Height–Surge Period–Surge Height–Period
AIC WTDE 264.1 515.4 225.7
AIC asymmetric 267.3 493.8 181.6
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Figure 6: Newlyn wave data on approximate standard uniform margins. From left to right:
Height-Surge, Period-Surge, Height-Period.

asymptotic dependence (i.e., with small but positive χ). This does not appear to be an issue

for these asymptotically independent pairs, but alternative choices for (W1,W2)
T such as the

skew bivariate normal (Azzalini and Dalla Valle, 1996) could be used to overcome this.

5 Discussion

Motivated by deficiencies in existing frameworks for modeling spatial extremes, we presented

a parsimonious model that is able to capture the sub-asymptotic dependence behavior of

spatial processes. Importantly, both extremal dependence classes are captured, with rich

structures within each class, and a smooth transition between paradigms at the interior of

the parameter space.

Inference for model (4) is feasible in moderate dimensions, but computationally intensive

when W has a Gaussian copula, owing to the need to integrate expressions involving a

multivariate Gaussian distribution function. However, new quasi-Monte Carlo algorithms,
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such as those used by de Fondeville and Davison (2016), and the associated R package mvPot,

have the potential to increase scalability; their code was used to speed up the bootstrap

procedure in § 4.1. With the exception of the specific model used in de Fondeville and

Davison (2016), truly high-dimensional inference for spatial extreme-value models has yet to

be achieved, and our model is competitive with others in this aspect.

There are two notable limitations of the model (4). The first of these is that for δ > 1/3,

ηX(h) > 1/2 indicating a persistence of positive extremal association even as the lag h→∞.

This is, however, a common problem with many models for spatial extremes. Consequently,

the model is more suitable for smaller spatial regions or data for which this is not an issue.

The second limitation concerns the link between δ and the limiting value of χ(h) for δ > 1/2.

Since W (s) ≥ 1 we have min(Wj,Wk) ≥ 1 and consequently from (10), χ(h) ≥ (2δ − 1)/δ.

As can be observed from Figure 2 and equation (13), for values of δ near 1, the process (4)

behaves similarly to a generalized Pareto process. However, model (4) would be unable to

capture a weakly dependent generalized Pareto process, i.e., one for which χu(h) is constant

in u but its limit χ(h) is small and positive. In practice however, this is not likely to be

restrictive, since in our experience almost all environmental datasets display a decreasing χu

function.

Code and data Code for fitting the models described is available as Supplementary Mate-

rial and at http://www.lancaster.ac.uk/∼wadswojl/SpatialADAI. The NEXTRA hind-

cast data analyzed in § 4.1 are subject to restrictions. Access may be granted for academic

purposes by members of the North European Storm Study User Group (NUG); requests can

be made using the details at http://www.oceanweather.com/metocean/next/index.html.

The Newlyn wave data analyzed in § 4.2 are available as Supplementary Material.
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A Proofs

Proof of Proposition 1.

P(Xj > x,Xk > x) = P(Wj > x1/(1−δ)R−δ/(1−δ),Wk > x1/(1−δ)R−δ/(1−δ))

= P(Wj > S,Wk > S),

where S = x1/(1−δ)R−δ/(1−δ), so that S has support (0, x1/(1−δ)), and Lebesgue density fS(s) =

1−δ
δ
s(1−δ)/δ−1x−1/δ on this interval. Using assumption (3), we have

P(Wj > S,Wk > S) =
1− δ
δ

x−1/δ
∫ 1

0

s(1−δ)/δ−1 ds +
1− δ
δ

x−1/δ
∫ x1/(1−δ)

1

LW (s)s(1−δ)/δ−1/ηW−1 ds

= x−1/δ +
1− δ
δ

x−1/δ
∫ x1/(1−δ)

1

LW (s)s(1−δ)/δ−1/ηW−1 ds.

Consider the behavior of
∫ x1/(1−δ)
1

LW (s)s(1−δ)/δ−1/ηW−1 ds, which is convergent since we

have a well defined probability. We will apply Karamata’s Theorem (Resnick, 2006, Theorem

2.1) and so distinguish between the cases when the index of regular variation is R −1. The

notation g ∈ RVρ denotes that a function g is regularly varying at infinity with index ρ ∈ R.

Case 1: (1 − δ)/δ − 1/ηW − 1 ≥ −1 i.e., ηW ≥ δ/(1 − δ). By Karamata’s Theorem∫ x
1
L(s)sθ ds ∈ RVθ+1 when θ ≥ −1. Thus∫ x1/(1−δ)

1

LW (s)s(1−δ)/δ−1/ηW−1 ds = L̃(x)x1/δ−1/{ηW (1−δ)},

where L̃ is a new SV function, using also a result on composition of regularly varying functions

(Resnick, 2006, Prop. 2.6 (iv)). Overall in Case 1 we thus have

P(Xj > x,Xk > x) = L(x)x−1/{ηW (1−δ)},

for some slowly varying function L, noting that terms of order x−1/δ are absorbed into L

when ηW > δ/(1− δ).

28



Case 2: (1 − δ)/δ − 1/ηW − 1 < −1 i.e., ηW < δ/(1 − δ). By Karamata’s Theorem∫∞
x
L(s)sθ ds ∈ RVθ+1 when θ < −1. We have∫ x1/(1−δ)

1

LW (s)s(1−δ)/δ−1/ηW−1 ds =

∫ ∞
1

LW (s)s(1−δ)/δ−1/ηW−1 ds−
∫ ∞
x1/(1−δ)

LW (s)s(1−δ)/δ−1/ηW−1 ds,

(21)

and so the second term on the right-hand side the is regularly varying of index 1/δ−1/{ηW (1−

δ)}. The first term on the right-hand side of expression (21) is established by noting that

E{min(Wj,Wk)
(1−δ)/δ} =

∫ ∞
0

P{min(Wj,Wk)
(1−δ)/δ > t} dt

= 1 +

∫ ∞
1

LW{tδ/(1−δ)}t−δ/{ηW (1−δ)} dt = 1 +
1− δ
δ

∫ ∞
1

LW (s)s(1−δ)/δ−1/ηW−1 ds.

Overall in Case 2 we thus have

P(Xj > x,Xk > x) = E{min(Wj,Wk)
(1−δ)/δ}x−1/δ − L(x)x−1/{ηW (1−δ)}

= E{min(Wj,Wk)
(1−δ)/δ}x−1/δ{1 + o(1)},

since ηW (1− δ) < δ.

Proof of Corollary 1. Since X has common margins and upper endpoint infinity, the ex-

tremal dependence class is determined by the limit

χ = lim
x→∞

P(Xj > x,Xk > x)

P(Xj > x)
.

If δ > 1/2: Then P(Xj > x) ∼ δ
2δ−1x

−1/δ. We have δ/(1− δ) > 1 so we must be in Case 2,

and

χ = E{min(Wj,Wk)
(1−δ)/δ}2δ − 1

δ
> 0,

with expression (10) following as

E{W (1−δ)/δ
j } =

∫ ∞
1

w(1−δ)/δ−2 dw =
δ

2δ − 1
. (22)
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If δ = 1/2: Consider the relation (8), and note that since P(Xj > x)−1 is regularly varying

with limit infinity, then the composition LX{P(Xj > x)−1} =: L∗(x) is slowly varying at

infinity; cf. Resnick (2006, Prop. 2.6(iv)). For δ = 1/2, we have

P(Xj > x) = x−2{2 log(x) + 1}, P(Xj > x,Xk > x) = E{min(Wj,Wk)}x−2{1 + o(1)},

since ηW < 1 by assumption, which puts us in Case 2. We thus have

P(Xj > x,Xk > x) = L∗(x)P(Xj > x),

so that ηX = 1 and

L∗(x) ∼ E{min(Wj,Wk)}
{2 log(x) + 1}

→ 0, x→∞.

If δ < 1/2 Then P(Xj > x) ∼ 1−δ
1−2δx

−1/(1−δ). If ηW ≥ δ/(1− δ) then we are in Case 1 and

the survivor function is L(x)x−1/{ηW (1−δ)}. Otherwise if ηW < δ/(1− δ) we are in Case 2 and

the survivor function decays like x−1/δ. In both cases this leads to χ = 0 with coefficient of

tail dependence,

ηX =

{
δ/(1− δ) if ηW < δ/(1− δ)
ηW otherwise.

During the proofs of Propositions 2 and 3, we will need results on the quantile function

q(t) := F−1X {1− 1/t}, which we give in the following Lemma.

Lemma 1. For δ > 1/2, the marginal quantile function q(t) = F−1X (1− 1/t) satisfies

q(t) =

(
δ

2δ − 1

)δ
tδ

[
1− (1− δ)

(
δ

2δ − 1

)(1−2δ)/(1−δ)

t(1−2δ)/(1−δ){1 + o(1)}

]
, t→∞.

Proof. The quantile function is obtained by solving 1− FX{q(t)} = t−1, which leads to

δ

2δ − 1
q(t)−1/δ

{
1− 1− δ

δ
q(t)(1−2δ)/{δ(1−δ)}

}
= t−1
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and thus

q(t)

{
1− 1− δ

δ
q(t)(1−2δ)/{δ(1−δ)}

}−δ
=

(
δ

2δ − 1

)δ
tδ. (23)

Since q(t)→∞ as t→∞, and (1− 2δ)/{δ(1− δ)} < 0 for δ > 1/2, expression (23) leads to

q(t) =

(
δ

2δ − 1

)δ
tδ{1 + o(1)}, t→∞,

which can be fed back into (23) to give the result claimed.

Proof of Proposition 2. When δ > 1/2, the exponent function V (x1, . . . , xd) is obtained from

the limit

V (x1, . . . , xd) = lim
t→∞

t(1− P[X1 ≤ F−1X {1− (tx1)
−1}, . . . , X1 ≤ F−1X {1− (txd)

−1}]).

Using Lemma 1, we have q(tx) =
(

δ
2δ−1

)δ
(tx)δ{1 + o(1)}, and so

1− P{X1 ≤ q(tx1), . . . , X1 ≤ q(txd)} = P

{
max
j=1,...,d

Xj

q(txj)
> 1

}
= P

[
max
j=1,...,d

RδW 1−δ
j(

δ
2δ−1

)δ
(txj)δ{1 + o(1)}

> 1

]

=

∫ 1

0

P

[
max
j=1,...,d

W
(1−δ)/δ
j(

δ
2δ−1

)
xj{1 + o(1)}

> tu

]
du

=
1

t

∫ t

0

P

[
max
j=1,...,d

W
(1−δ)/δ
j(

δ
2δ−1

)
xj{1 + o(1)}

> z

]
dz.

For sufficiently large t, an integrable function of the form P

[
K maxj=1,...,d

W
(1−δ)/δ
j

( δ
2δ−1)xj

> z

]
,

1 < K <∞, dominates the integrand over (0,∞) and thus the above integral tends to∫ ∞
0

P

{
max
j=1,...,d

W
(1−δ)/δ
j(
δ

2δ−1

)
xj

> z

}
dz = E

{
max
j=1,...,d

W
(1−δ)/δ
j

xj

}(
2δ − 1

δ

)
,

and hence

lim
t→∞

t[1− P{X1 ≤ q(tx1), . . . , Xd ≤ q(txd)}] = E

{
max
j=1,...,d

W
(1−δ)/δ
j

xj

}(
2δ − 1

δ

)

= E

[
max
j=1,...,d

W
(1−δ)/δ
j

E{W (1−δ)/δ
j }xj

]
,

the final line following by equation (22).
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Proof of Proposition 3. The function

χu = P{FX(Xj) > u | FX(Xk) > u} =
P{Xj > F−1X (u), Xk > F−1X (u)}

1− u
.

Lemma 1 gives the behavior of F−1X (u) = q{(1 − u)−1}, whilst the proof of Proposition 1

provides P(Xj > x,Xk > x) = E{min(Wj,Wk)
(1−δ)/δ}x−1/δ − L(x)x−1/{ηW (1−δ)}, giving

P{Xj > F−1X (u), Xk > F−1X (u)}
1− u

= E{min(Wj,Wk)
(1−δ)/δ}F

−1
X (u)−1/δ

1− u
− L{F−1X (u)}F

−1
X (u)−1/{ηW (1−δ)}

1− u

= χ

[
1 +

1− δ
δ

(
δ

2δ − 1

)(1−2δ)/(1−δ)

(1− u)(2δ−1)/(1−δ){1 + o(1)}

]
− L{(1− u)−1}(1− u)δ/{ηW (1−δ)}−1{1 + o(1)}.

with constant terms absorbed in to L. Since (2δ−1)/(1−δ) < δ/{ηW (1−δ)}−1 for ηW < 1,

the result follows.
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