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Introduction

Asset variance and covariance are fundamental for financial risk management and

many finance applications. With the advent of tick-by-tick high-frequency data, the

estimation of univariate variances and multivariate covariance matrices has attracted

more attention from econometricians. Many of the proposed high-frequency variance

and covariance estimators are based on time-domain measurements. In this thesis,

we investigate variance and covariance estimators constructed on the price domain:

the price duration based variance and covariance estimators. A price event occurs

when the absolute cumulative price change equals or exceeds a pre-specified threshold

value. The time taken between two consecutive price events is a price duration.

Intuitively, shorter durations are indicative of higher volatility.

The duration-based approach provides a new angle to look at the high-frequency

data, additionally, the duration based variance and covariance estimators are shown

to be more efficient than competing time-domain high-frequency estimators. The

information advantage of the duration based approach is demonstrated through two

empirical applications, a volatility forecasting exercise and an out-of-sample global-

minimum-variance portfolio allocation problem. The duration based estimators are

shown to provide both better forecasting performance and better portfolio allocation

13



results. The paper in Chapter 2 is under the first round Revise&Resubmit to the

Journal of Business & Economic Statistics.

In Chapter 2, we discuss the estimation of univariate variance using price dura-

tions. Variance estimation using high-frequency data needs to take into account the

effect of market microstructure (MMS) noise, including discrete transaction times,

discrete price levels, and bid/ask spreads, as well as price jumps. The price duration

estimator has a built-in feature to be robust to large price jumps, while its robust-

ness against the MMS noise is achieved through a careful selection of the threshold

value that defines a price event. We discuss the selection of this optimal threshold

value through both simulation and empirical evidence.

We devise both a non-parametric and a parametric estimator. For the estima-

tion of integrated variance at a daily frequency, the non-parametric duration based

variance estimator suffices, while the parametric estimator additionally provides us

with an instantaneous variance estimator.

As an empirical application to 20 DJIA stocks, we compare the volatility fore-

casting performance of three classes of volatility estimators, including the realized

volatility, the option implied volatility, and the price duration based volatility es-

timators, on one-day, one-week, and one-month horizons. Forecasting comparisons

among individual estimators, as well as in a combination setup, are considered. The

duration based estimators, especially the parametric price duration volatility esti-

mator, are found to provide more accurate out-of-sample forecasts.

In Chapter 3, we introduce a covariance matrix estimator using price durations.

In the multivariate setting, there is the additional issue of nonsynchronous trade

14



arrival times when estimating a high-dimensional variance-covariance matrix using

tick-by-tick transaction data. Through simulation, we assess the effects of the last-

tick time-synchronization method and MMS noise on the duration based covariance

estimator, and compare its accuracy and efficiency with other candidate covariance

estimators.

Since the covariance matrix is estimated on a pairwise basis, it is not guaranteed

to be positive semi-definite (psd). To reduce the number of negative eigenvalues

produced by a non-psd matrix, we devise an averaging estimator which is the average

of a wide range of duration based covariance matrix estimators. This estimator is

applied to a portfolio of 19 DJIA stocks on an out-of-sample global minimum variance

portfolio allocation problem where the objective is to minimize the one-day ahead

portfolio variance. A simple shrinkage technique is used to improve non-psd and

ill-conditioned matrices. The price duration covariance matrix estimator is shown

to provide a comparably low portfolio variance while yielding considerably lower

portfolio turnover rates than previous estimators.
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1.1 Introduction

Volatility modelling and estimation has a vast and ever-growing literature. We first

briefly review parametric volatility models that have a long history, see Andersen,

Bollerslev and Diebold (2002) and Taylor (2005) for more comprehensive reviews.

We then turn to the more recently popularised high-frequency, nonparametric real-

ized variance estimators, some of which are used is our later empirical applications

for comparison purpose, for a more elaborate review. Finally, we review the use of

parametric and nonparametric volatility estimators in volatility forecasting.

It is widely observed in empirical data that financial return volatility is time-

varying and highly persistent. In measuring volatility, there are two main ap-

proaches, the parametric and nonparametric approaches. Under the parametric

approach, models differ in their assumptions about the expected volatility and in

the variables included in the information set. In contrast, the nonparametric volatil-

ity estimation approach is data-driven and quantify volatility directly. Models can

also be classified based on the nature of variables included in the information set,

for example, the ARCH class of models parameterize the expected volatility as a

function of past observed returns only, while the stochastic volatility (SV) class of

models rely on latent state variables to model the volatility process. Models also

differ in terms of the time interval at which the volatility measure applies, i.e.,

discrete-time or continuous-time/instantaneous volatility measures. We review the

parametric volatility models in Section 1.2, where the continuous-time SV models as

well as the discrete-time ARCH-type and SV models are included. In Section 1.3, we

review the more recently developed nonparametric realized variance estimators. The

17



detailed theoretical foundations of popular nonparametric estimators are elaborated

in Section 1.4.

Another important group of volatility estimators is the option-implied volatility

measures which extract forward-looking volatility information from option prices.

The estimation of option-implied volatilities typically involves a parametric model

for the returns and an information set including option prices. If the number of

available option prices exceeds the number of latent state variables, it is possible to

back out the option-implied volatility, see for example Renault (1997). The most

recent innovation in the option-implied volatility literature is the model-free implied

volatility, which will be reviewed in Section 1.4.7.

1.2 Parametric volatility modelling

The parametric approach in modelling volatility has a long history and a large econo-

metrics literature has been devoted to the theoretical foundation and development

of this approach, see Bollerslev, Chou and Kroner (1992) for a review. Under this

approach, there is the popular ARCH class of models, where the expected volatility

is formulated based on directly observed variables including past returns; there is

also the stochastic volatility class of models, specified either in continuous-time or

discrete-time, whose formulations involve latent state variables.

1.2.1 Continuous-time models

It is natural to think of volatility as evolving continuously in time, since volatility is

both time-varying and highly persistent. Continuous-time models let the volatility

18



process be governed by independent sources of random variables. An influential spec-

ification is given by the square-root volatility model of Heston (1993). This model

is particularly attractive as it allows for closed-form solutions for option prices. An-

other popular one-factor model is the Ornstein-Uhlenbeck process for log-volatility,

as studied by Scott (1987) and Wiggins (1987). Yet the one-factor models do not

seem to fit the real data well. In order to obtain more satisfactory empirical fits,

researchers have developed the more complex multi-factor parametric specifications,

as shown in Duffie, Pan and Singleton (2000) and Barndorff-Nielsen and Shephard

(2001).

1.2.2 Discrete-time models

1.2.2.1 ARCH-type univariate and multivariate volatility models

Since returns are observed discretely in real data, it is often more convenient to work

with parametric models that are constructed in discrete time. In addition, compared

to stochastic volatility models, ARCH models include only observable variables in

the model specification. This feature has greatly facilitated the parameter estimation

procedures since the traditional maximum likelihood methods would suffice. Surveys

of the ARCH class of models include Diebold and Lopez (1995), Engle and Patton

(2001) and Engle (2004).

The ARCH model was first introduced by Engle (1982). A more general specifica-

tion, called the GARCH model, was developed by Bollerslev (1986). Later, Glosten,

Jagannathan and Runkle (1993) developed the GJR-GARCH model to capture the

leverage effect which depicts the negative correlation between the current return
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innovations and future expected variances. The EGARCH model of Nelson (1991)

ensures all parameters to be positive. The IGARCH model of Engle and Bollerslev

(1986) imposes a unit root condition on the conditional variance so as to accommo-

date the highly persistent volatility process. This feature has also been addressed

by the fractionally integrated ARCH models, as in Ding, Granger and Engle (1993),

Baillie, Bollerslev and Mikkelsen (1996), Bollerslev and Mikkelsen (1988), Robinson

(2001), and Zumbach (2004).

In the multivariate setting, conditions need to be imposed to ensure that the

covariance matrices are positive definite. Bollerslev, Engle and Wooldridge (1988)

proposed a diagonal GARCH model and Engle and Kroner (1995) proposed the

BEKK GARCH model that guarantees the covariance matrices to be positive defi-

nite. Bollerslev (1990) developed the constant conditional correlation model, which

was later extended by Engle (2002) and Tse and Tsui (2002) to incorporate time-

varying conditional correlations. Other innovations include the regime-switching

dynamic correlation model of Pelletier (2006), the sequential conditional correlation

model of Palandri (2006) and the matrix EGARCH model of Kawakatsu (2006).

1.2.2.2 Stochastic volatility models

The SV models differ from the ARCH class of models in that SV models include

latent state variables in modelling the volatility process. Motivated by the mixture-

of-distributions hypothesis proposed by Clark (1973) and further extended by Epps

and Epps (1976), Tauchen and Pitts (1983), Andersen (1996) and Andersen and

Bollerslev (1997), the SV models typically include two stochastic innovations, one
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for the conditional mean of the observed return and one for the latent volatility

process. Reviews of the discrete-time SV models can be found in Taylor (1994) and

Shephard (2005).

Developments in the discrete-time SV models are in parallel to the developments

in the ARCH class of models. Many SV models are based on an autoregressive

structure and were developed to capture the long-run dependence in the volatility

process, for instance, the fractionally integrated SV models estimated by Breidt,

Crato and Lima (1998) and Harvey (2002).

1.3 Nonparametric realised volatility estimation

using high-frequency data

In the past two decades, the newly available high-frequency asset return data affords

us an opportunity to move away from the hard-to-estimate parametric models, and

towards the flexible and simple-to-implement nonparametric approach in volatility

estimation. The most obvious such measure is the ex-post squared return, or the

realized variance, whose formal definition is given in Section 1.4.1. The realised

variance measure can utilise the rich information in high-frequency data without

building models. Yet this measure is quite noisy, so it needs increasingly finer sam-

pled squared returns to achieve efficiency.

However, to sample returns at infinitely short intervals is infeasible in real data

due to the presence of market microstructure (MMS) noise, coming from discrete

price grids, bid/ask spreads, discrete trade arrivals, and other market microstructure
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frictions, see Stoll (2000) for a review. Sampling returns sparsely mitigates the im-

pact of MMS frictions while sacrificing efficiency. The choice of an optimal sampling

interval was first addressed by the volatility signature plot of Andersen, Bollerslev,

Diebold and Labys (2000), where the squared returns are plotted against the sam-

pling frequencies. This plot serves as an informal tool to determine the highest pos-

sible sampling frequency at which the impact of noise is negligible. More advanced

techniques to determine the optimal sampling frequency usually take into account

the bias-efficiency tradeoff, which can be conveniently captured by the root-mean-

squared-error measure, see for example Ait-Sahalia, Mykland and Zhang (2005) and

Bandi and Russell (2008).

Early high-frequency variance estimators were mainly designed to be robust to

the first-order correlations induced by iid MMS noise. They include the MA and AR

filters, see for example Andersen, Bollerslev, Diebold and Ebens (2001), Corsi, Zum-

bach, Muller and Dacorogna (2001), Areal and Taylor (2002), and Bollen and Inder

(2002). To the same end, Zhou (1996) first proposed a kernel-based estimator by

adding the first-order autocovariance to the realized variance. Range-based volatil-

ity measures that involve only two price observations so as to be less susceptible to

bid/ask bounces are discussed in Alizadeh, Brandt and Diebold (2002) and Brandt

and Diebold (2006). Comprehensive surveys on the noise-robust volatility estima-

tors using high-frequency data can be found in Bandi and Russell (2006), Barndorff-

Nielsen and Shephard (2006), Ait-Sahalia (2007), and McAleer and Medeiros (2008).

In the following sections, we will focus on several popular nonparametric volatility

estimators that have recently been proposed and illustrate their abilities to accom-
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modate different assumptions of the market microstructure noise component as well

as price jumps.

1.4 Popular nonparametric volatility estimators

The high-frequency variance estimation literature typically focuses on estimating the

integrated variance, which is basically the realized variance (RV) without noise and

price jump components. The formal definition of integrated variance will be given

shortly in Section 1.4.1. There are in general three nonparametric approaches to es-

timate the integrated volatility using the high-frequency price data: the subsampling

method of Zhang, Mykland and Ait-Sahalia (2005) and Ait-Sahalia, Mykland and

Zhang (2011) by linearly combining RV’s of different frequencies; the kernel-based

estimator of Barndorff-Nielsen, Hansen, Lunde and Shephard (2008a) through linear

combinations of autocovariances; and the pre-averaging approach of Podolskij and

Vetter (2009) and Jacod, Li, Mykland, Podolskij and Vetter (2009) by averaging

the neighborhood log-price observations to approximate the efficient return process.

Closely related to the subsampling approach is the OLS framework of Nolte and

Voev (2012), which jointly estimates the integrated variance of the underlying effi-

cient return as well as the noise variance. The three approaches differ in their ability

to accommodate assumptions about noise. The MMS noise could be both serially

dependent and correlated with the efficient price process. The subsampling approach

can accommodate the time-dependence feature of MMS noise; the kernel-based esti-

mator can be applied to the case where noise is endogenous and autocorrelated up to

the lag of the autocovariances; while the pre-averaging approach can accommodate
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even more complex structures of MMS noise, such as some rounding. The observed

prices contain jumps due to economic announcements and news arrivals. Barndorff-

Nielsen, Kinnebrock and Shephard (2008b) designed a nonparametric separation of

jumps from the quadratic variation, whose formal definition will shortly be given in

Section 1.4.1, giving rise to the realized bipower (RBV) variation, which estimates

the variation of the continuous component of the jump-diffusion process.

1.4.1 General setup

The observed log-price, Yt, can be decomposed into two components, the efficient

log-price, Xt, and the MMS noise component, εt,

Yt = Xt + εt. (1.1)

Assumptions about MMS noise vary. As shown in Hansen and Lunde (2006), MMS

noise is time-dependent. The assumption about MMS noise is very important in

deriving the asymptotic behaviors of integrated variance (InV) estimators and will

be discussed in the following sections.

In the most general setup, we assume the efficient log-price, Xt, follows a semi-

martingale plus jumps process,

dXt = µtdt+ σtdBt + κtdqt, (1.2)

where µt and σt are the drift and instantaneous volatility, and Bt is the standardized

Brownian motion. qt is a counting process where dqt = 1 corresponds to a jump at
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time t and dqt = 0 when no jump occurs. κt is the jump size at time t if dqt = 1. λt

captures the intensity of the jump arrival process and could be time-varying, but does

not allow for infinite activity jumps. The leverage effect could be accommodated

through dependence between σt and Bt. The integrated volatility 〈X,X〉t can be

defined as:

〈X,X〉t =
t∫

0

σ2
t dt. (1.3)

As jumps and the MMS noise are of the same asymptotic order, it can be difficult

to separate them. In deriving the asymptotic statistics of the InV estimators, some

studies assume one of the two to be zero. In sections 1.4.2 and 1.4.3, the jump

component is assumed to be zero.

Assume M is the number of evenly spaced intra-period observed log-price Yt,i,

i = 1, . . . ,M , for period t. The quadratic variation (QV ) of [X]t is defined as:

[X]t = plim
M→∞

M∑
i=1

(Xi −Xi−1)2 . (1.4)

Under equation (1.2), we have:

[X]t =
t∫

0

σ2(s)ds+
qt∑
j=1

κ2
tj
, (1.5)

where tj are the jump times. Thus, the quadratic variation of the efficient log-

price Xt is decomposed into the integrated volatility and the sum of squared jumps

through t.
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The continuously compounded intra-period returns are

rt,i = Yt,i − Yt,i−1 = ∆Yt,i. (1.6)

Realized volatility for period t is given by the sum of squared returns for the observed

series Y ,

RVt =
M∑
i=1

r2
t,i, (1.7)

Thus, the realized variance, defined as the sum of squared returns of the observed se-

ries, Y , includes the integrated variance, the sum of squared jumps, and the variance

of the MMS noise.

1.4.2 Two-scaled realized volatility

The idea of the TSRV estimator is to calculate RV over two time scales, a fast scale

and a slow scale, average the results over the sampling period and take a suitable

linear combination of the two scales in order to eliminate the MMS noise effects and

obtain an asymptotically unbiased estimator of 〈X,X〉t. To account for the serial

dependence of noise, Ait-Sahalia et al. (2011) suggest to simply adjust the sampling

frequency of the fast time scale.

Assume Xt,i follows a simple diffusion process, corresponding to equation (1.2)

with λ(t) = 0. Further assume εt,i is iid. Define

[Y, Y ](all)t =
M∑
i=1

(∆Yt,i)2 (1.8)
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As the sampling frequency M → ∞, the integrated variance is also close to zero,

making [Y, Y ](all)/2M a consistent estimator of the variance of the noise term:

Êε2 = 1
2M [Y, Y ](all)t . (1.9)

This is the fast time scale. To construct the slow time scale, partition the original

series of M observations into K subgrids, where M/K → ∞ as M → ∞. To

obtain the kth subgrid, where k = 1, . . . , K, start at the kth observation and fix

the sampling interval according to the average size of the subsample MK = M−K+1
K

.

Estimates from the K subsamples are then averaged, giving rise to the slow-scale

estimator, [Y, Y ](K)
t :

[Y, Y ](K)
t = 1

K

K∑
k=1

[Y, Y ](k)
t . (1.10)

Under sparse sampling, the variation of the slow-scale estimator is lessened and bias

from noise is lowered by a factor of M̄/M . By combining the two time scales, the

unbiased estimator of 〈X,X〉 can be constructed as

〈̂X,X〉t = [Y, Y ](K)
t − M̄K

M
[Y, Y ](all)t (1.11)

This is the TSRV estimator proposed by Zhang et al. (2005). The above asymptotic

analysis assumes noise is serially-independent. To extend the TSRV estimator to be

robust to time-dependent MMS noise, Ait-Sahalia et al. (2011) suggest decreasing

the sampling frequency of the fast time scale to reduce the dependence induced by

noise. The fast scale is now replaced by a subsampled RV over J subgrids, [Y, Y ](J)
t .
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A general TSRV estimator can be defined for 1 ≤ J < K ≤M as

〈̂X,X〉
(J,K)
t = [Y, Y ](K)

t︸ ︷︷ ︸
slow time scale

−MK

MJ

[Y, Y ](J)
t︸ ︷︷ ︸

fast time scale

. (1.12)

The estimator in equation (1.11) results when we set J = 1 in the general TSRV

estimator of equation (1.12). When noise is serially independent, the estimator of

equation (1.11) is asymptotically consistent. When noise is serially correlated at lag

h > 1, one need to choose J = h+ 1 to break the correlation.

The optimal number of subgrids K∗ can be computed as K∗ = O(N2/3), but

Ait-Sahalia et al. (2011) show the general TSRV estimator is quite robust to the

choice of (J,K). The sampling interval of the fast time scale can be from a few

seconds to two minutes, and the slow time scale from five to ten minutes.

1.4.3 Flat-top realized kernel

Compared to the TSRV estimator, the kernel estimator of Barndorff-Nielsen et al.

(2008a) can accommodate the endogeneity feature of the MMS noise. Similar to

Ait-Sahalia et al. (2011), Xt is assumed to follow a simple semi-martingale process

without jumps.

Denote γ0(Yt) as the realized variance of observed log-prices, and γh(Yt) as the

autocovariance of observed log-prices at lag h,

γh(Yt,i) =
M∑
i=1

rt,irt,i−h, (1.13)

where h = 1, . . . , H and rt,i is the observed return defined in equation (1.6).
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The realized kernel correction of noise is constructed as the weighted sum of the

sum of “forward” and “backward” autocovariances:

K(Yt,i)− γ0(Yt,i) =
H∑
h=1

k

(
h− 1
H

)
{γh(Yt,i) + γ−h(Yt,i)} (1.14)

where k(x), x ∈ [0, 1], is a weight function, with k(0) = 1, k(1) = 0.

The weight function k(x) affects the rate of convergence. When k(0) = 1, k(1) =

0, and H = C0M
2/3, where C0 is a constant to minimize the asymptotic variance,

the estimator has a convergence rate of M−1/6; when k′(0) = 0, k′(1) = 0, and

H = C0M
1/2, the fastest possible convergence rate of n−1/4 is achieved.

The optimal bandwidth H∗ = C∗ξM1/2, where ξ2 = ω2/
√
t
∫ t

0 σ
4
udu. In order to

get H∗ one has to estimate
√
t
∫ t

0 σ
4
udu and ω2. In practical applications, Barndorff-

Nielsen, Hansen, Lunde and Shephard (2009) suggest using the subsampled RV of

different frequencies to approximate
√
t
∫ t

0 σ
4
udu and ω2. The variance and autoco-

variances in equation 1.14 can be calculated using 1-min returns, as suggested by

Barndorff-Nielsen et al. (2008a).

1.4.4 The OLS framework for jointly estimating return and

noise variances

Nolte and Voev (2012) use the general OLS framework to jointly estimate the in-

tegrated variance and the noise variance, denoted as ω2 in this section. The OLS

framework can accommodate different dependence structures of noise and jumps in

the efficient price process.
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The full grid of M observations is divided into k subgrids, with the number of

subgrids k = 1, . . . , K. Thus, for h = 1, . . . , k and i = 0, . . . , M−h
k

, {tik+h} denotes

the hth subgrid for a sampling frequency of k ticks. The number of returns on the

hth subgrid is Mh,k = M−h
k
− 1. The realized variance on this subgrid is:

E[RV h,k(Mh,k)] =
Mh,k∑
i=1

r2
ik+h. (1.15)

Under the simple assumption of iid noise without jumps, the RV is composed of

InV and the noise variance:

E[RV h,k(Mh,k)] = InV + 2Mh,kω
2. (1.16)

Equation (1.15) can fit into a regression framework of the form:

yh,k = c+ β0Mh,k + εh,k, k = 1, . . . , K, h = 1, . . . , k, (1.17)

where yh,k = RV h,k(Mh,k), and the number of observations is S(S + 1)/2. c and β0

estimate InV and 2ω2, respectively.

Then proceed to the case when noise is time-dependent. Denote γq = E[ετετ−q]

as the autocovariance of MMS noise at lag q, where q = 1, . . . , Q. q is a multiple of

seconds.

As shown by Nolte and Voev (2012),

E[RV h,k(Mh,k)] ≈ InV + 2Mh,kγ(0)− 2
Q∑
q=1

Mh,k(q)γ(q), (1.18)
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where Mh,k(q) is the number of returns within the (h, k)-subgrid spanning q time

units. The equation could be made exact under the assumption that γq = 0 for

q > Q.

Corresponding to equation 1.17, the regression now takes the form:

yh,k = c+ β′xh,k + εh,k, k = 1, . . . , K, h = 1, . . . , k, (1.19)

where yh,k = RV h,k(Mh,k) and xh,k = (Mh,k,Mh,k(1), . . . ,Mh,k(Q))′. As before,

c estimates InV , while now β0, β1, . . . , βQ estimate 2γ(0),−2γ(1), . . . ,−2γ(Q), re-

spectively.

Nolte and Voev (2012) argue that the endogeneity feature of the MMS noise can

be thought of as stemming from the incomplete absorption of information into the

efficient price. They proposed a model of Yt to accommodate that source of noise

and incorporate that feature into the OLS framework which results in an estimator

that is robust to endogenous noise.

1.4.5 Realized Bipower variation

At the highest sampling frequencies, there is mounting evidence of the existence of

jumps in asset price processes. Specifically, the arrival of important news such as

economic announcements or earnings reports typically induce a discrete jump.

The Staggered Bipower Variation (BV ) methods were developed by Barndorff-

Nielsen and Shephard (2006) and Huang and Tauchen (2005) to detect jumps, as

the lag-1 staggered BV of returns are more robust to noise than BV. Note that the

BV method detects cumulative jumps over a relatively long interval, such as one
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day, which is different from the group of jump estimation methods that detect local

jumps individually, such as the technique introduced in Lee and Mykland (2012).

The bipower variation is

BVt = µ−2
1

(
M

M − 1

) M∑
i=2
|rt,i−1||rt,i| =

π

2

(
M

M − 1

) M∑
i=2
|rt,i−1||rt,i| (1.20)

where, µ1 =
√

2/π, is the expectation of the absolute value of a standard normally

distributed variable. When there is no noise and the return process follows equation

(1.2), BVt provides a consistent estimator of the integrated variance:

lim
M→∞

BVt =
t∫

t−1

σ2(s)ds (1.21)

The difference, RVt −BVt, estimates the pure jump contribution.

The effect of the MMS noise is to induce correlation in the two adjacent returns,

rt,i−1 and rr,i. The correlation could be broken by using staggered returns as in

|rt,j−2||rt,j|, or more generally as in |rt,i−(j+1)||rt,i|, where the nonnegative integer j

denotes the offset. The general staggered bipower measure is

BVj,t = µ−2
1

(
M

M − 1− j

)
M∑

i=2+j
|rt,i−(1+j)||rt,i|, j ≥ 0. (1.22)

The staggered BV is reduced to the BV defined in equation (1.20) if j = 0.

Without staggering, the jump test statistics tend to be biased downward, in favor

of finding fewer jumps in the presence of noise. However, extra lagging (j=2) may

lead to overrejection. Returns need to be staggered up to the level that just breaks
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the serial dependence of the observed returns induced by the MMS noise.

1.4.6 Bipower downward semi-variance

It is well-established that downward movements of prices have important impact on

future volatility. In the high-frequency setting, identifiable downward movements

are mainly from jumps as the drift term approaches zero as the sampling frequency

increases. It is thus tempting to try separating cumulative negative jumps of the

day from the total realized variance for risk management and volatility forecasting

purposes.

As a starting point for extracting negative jumps, Barndorff-Nielsen et al. (2008b)

introduced the downside semivariance, (RS−), for the efficient return process Xt,

defined as

RS− =
M∑
i=1

(Xi −Xi−1)21lXi−Xi−1≤0 (1.23)

where 1l x is the indicator function taking the value of 1 if the argument x is true.

Under the in-fill asymptotics,

RS−
p→ 1

2

t∫
0

σs
2ds+

∑
i≤M

(∆Xi)21l ∆Xi≤0. (1.24)

Thus RS− focuses on squared negative jumps. The corresponding upside realized

semivariance is

RS+ =
i≤M∑
i=1

(Xi −Xi−1)21lXi
−Xi−1 ≥ 0 p→ 1

2

t∫
0

σs
2ds+

∑
i≤M

(∆Xi)21l ∆Xi≥0, (1.25)
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which maybe of particular interest to investors who have short positions in the

market such as the hedge funds. Of course,

RV = RS− +RS+. (1.26)

The mean and standard deviation of RS− is slightly higher than half the realized

BV . The difference of the two estimates the squared negative jumps, denoted by

Barndorff-Nielsen et al. (2008b) as BPDVt:

BPDVt = RS−t − 0.5BVt. (1.27)

With BVt defined in equation (1.20),

BPDV =
M∑
i=1

(Xi −Xi−1)21lXi−Xi−1 ≤ 0− 1
2µ
−2
1

M∑
i=2
|Xi −Xi−1||Xi−1 −Xi−2|

p→
∑
i≤M

(∆Xi)21l ∆Xi≤0. (1.28)

As the above is the asymptotic statistic for the efficient price process Xt, the

MMS noise may dominate the statistic in the limit if the observed price data are

used directly. The pre-averaging method for de-noising the observed process Yt could

be used here to get the efficient return process Xt first.
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1.4.7 Model-free option-implied volatility estimator and im-

plementation

The model-free implied volatility estimator, MFIV, derived by Britten-Jones and

Neuberger (2000) entirely from no-arbitrage conditions, is non-parametric in nature

and does not rely on any option pricing formula. In particular, Britten-Jones and

Neuberger (2000) show that the risk-neutral expected quadratic variation of the

logarithm of the stock price between the current date and a future date is fully

specified by a continuum of European OTM options expiring on the future date:

EQ[QV0,T ] = 2 exp(rT )

 F0,T∫
0

p(K,T )
K2 dK +

∞∫
F0,T

c(K,T )
K2 dK

 , (1.29)

where c(K,T ) and p(K,T ) are the call and put prices for the strike price K, F0,T is

the forward price at time 0 for a transaction at the expiry time T .

The key assumption required to derive equation (1.29) is that the stochastic

process for the underlying asset price is continuous, but when there are relatively

small jumps, Jiang and Tian (2005) demonstrate that the MFIV is still an excellent

approximation of the expected QV of the logarithm of the stock price.

As the model-free expectation defined by equation (1.29) is a function of option

prices for all strikes, a potential problem arises from the limited number of option

prices observed in practice. This is an important issue when forecasting stock price

volatility, because stocks (unlike stock indices) have few trade strikes. To obtain

sufficient option prices to approximate the integrals in equation (1.29) accurately, it

is necessary to rely on implied volatility curves which can be estimated from small
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sets of observed option prices.

Taylor, Yadav and Zhang (2010) and Poon and Granger (2003) implement a

variation of the practical strategy of Malz (1997), who proposed estimating the

Black-Scholes implied volatility curve as a function of the Black-Scholes delta, which

might be preferred over the strike price, since delta has the boundary values of 0 and

exp(−rT ), while the values of strike prices are not finite in theory. Delta is defined

here by the equations:

∆(K) = ∂C/∂F0,T = exp(−rT )Φ(d1(K)), (1.30)

with

d1(K) = log(F0,T/K) + 0.5σ̂2T

σ̂
√
T

. (1.31)

Following Liu, Shackleton, Taylor and Xu (2007) and Taylor et al. (2010), σ̂ is

a constant that permits a convenient one-to-one mapping between ∆(K) and K.

Typically, σ̂ is the volatility implied by the option price whose strike is nearest to

the forward price, F0,T .

To ensure positivity of the delta-IV curve, it is simplest to first fit a curve through

logarithms of IV and then convert the estimates of log-IV’s back by taking expo-

nentials. The quadratic specification is the simplest function that captures the basic

properties of the volatility smile.
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1.5 Volatility forecasting

Volatility forecasting is a classic topic in finance research. Comprehensive surveys

can be found in Figlewski (1997) and Poon and Granger (2003). Early studies

compare option-implied volatility forecasts (IV) with those from time-series models,

such as the ARMA-type short memory models, the ARFIMA-type long memory

models, and GARCH-type models using daily returns: see Pong, Shackleton, Taylor

and Xu (2004) for a comprehensive comparison. The majority favor IV as a superior

predictor of future RV: see for example Jorion (1995), Christensen and Prabhala

(1998), Blair, Poon and Taylor (2001), Pong et al. (2004), Giot and Laurent (2007),

and Bali and Weinbaum (2007). Some, however, are unable to draw a conclusion

or provide evidence that return-based measures contain incremental information:

see for example Day and Lewis (1992), Canina and Figlewski (1993) and Martens

and Zein (2004). Becker, Clements and White (2007) compare IV from the S&P

500 index, VIX, with a wide array of model-based volatility forecasts (MBF) in an

encompassing framework where all MBF’s are collected in one vector and compared

with VIX for incremental information. Although VIX is found to be a superior

forecast relative to any single model, it does not contain economically important

information incremental to that contained in all MBF’s put together. Thus, VIX in

their view is a combination forecast capturing a wide range of available information

in different volatility models.

The most recent important innovation in option-implied volatility forecasts ex-

ploits information contained in combinations of option prices that do not rely on

any option pricing formula. Jiang and Tian (2005) apply the theoretical results of
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Britten-Jones and Neuberger (2000), derived in a pure diffusion setting, and demon-

strate that MFIV is still an excellent approximation of QV when the underlying price

process contains small jumps. The 30-min index return variance is their forecast ob-

ject and they compare the informational efficiency of MFIV with that of 5-min RV

for a horizon of one month. They find that the MFIV subsumes all information con-

tained in Black-Scholes IV and past RV, suggesting that MFIV is a more efficient

forecast for future volatility. Taylor et al. (2010) compare the information content

of MFIV, ATM IV, and historical stock returns using the ARCH model, for 149 US

firms and the S&P 100 index. They find that, for one-day ahead forecast, the op-

tion forecasts are more informative for firms with more actively traded options, and

options are more informative for 85% of the firms when the forecast horizon extends

till the expiry date of the options. Busch, Christensen and Nielsen (2011) study

the forecast of future 5-min RV in the foreign exchange, stock (S&P 500 Index),

and bond markets by separating RV into RBV and jump components and applying

the HAR model with ATM IV as an additional variable. They find that ATM IV

contains incremental information about future volatility in all three markets. Mar-

tin, Reidy and Wright (2009) assess the relative forecast performance of ATM IV,

MFIV, and noise-robust measures of integrated volatility, including TSRV, RK, and

RBV estimators using ARFIMA and ARMA models for three Dow Jones Industrial

Average (DJIA) Stocks and the S&P 500 index, over a 2001-2006 evaluation period.

They find that, MFIV performs poorly as a forecast of future volatility for both the

three individual stocks and the index, while ATM IV is given strong support as a

superior forecast of individual stock volatility, and the qualitative results are robust
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to the measure used to proxy future volatility.

Apart from the above empirical comparisons of forecast performances, several re-

cent studies have performed a more analytical assessment by explicitly accounting for

MMS noise in the analytical derivation of RV forecasts. This strand of literature uti-

lizes simulations and analytical tools together with empirical applications to compare

the R2’s from the regressions of future integrated variances on the forecast variables.

Andersen, Bollerslev and Meddahi (2011) explore the theoretical forecasting perfor-

mance of alternative volatility measures, including TSRV and RK, and suggest that

the simple subsampled estimator obtained by averaging standard sparsely sampled

realized volatility measures perform on par with the best alternative noise-robust

measures. Ghysels and Sinko (2011) study the similar problem using a mixed data

sampling (MIDAS) regression framework along with an extensive empirical study of

30 Dow Jones stocks, and find that the subsampled and TSRV estimators perform

the best in a prediction context. Bandi, Russell and Yang (2013) re-examine the

linear forecasting problem and go a step further by allowing time-variation in the

second moment of MMS noise. Interestingly, they find that the frequency choices

under the conditional optimization of sampling frequency, assuming time-varying

second moment of noise, are very close to those that would be obtained from the

unconditional optimization, assuming time-invariant second moment of noise. In re-

lated work, Ait-Sahalia and Mancini (2008) compare the forecasting performance of

TSRV and RV considering a number of stochastic and jump diffusions and provide

simulation and empirical evidence that TSRV largely outperforms RV.
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1.6 Remarks

The volatility estimation literature has seen a move away from the hard-to-estimate

parametric models towards the easy-to-implement nonparametric methods, made

possible by the rich information provided by the recently available high-frequency

asset price data. More nonparametric uni- and multivariate volatility estimators are

being developed to accurately estimate asset return variances and covariances. The

volatility forecasting literature has taken into account the fast-growing nonparamet-

ric variance estimation methods, yet for now there is no clear conclusion as to which

group of volatility estimators is most informative about the future return variation.
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Chapter 2

More accurate volatility

estimation and forecasts using

price durations
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Abstract

We investigate price duration variance estimators that have long been ignored in

the literature. We show i) how price duration estimators can be used for the esti-

mation and forecasting of the integrated variance of an underlying semi-martingale

price process and ii) how they are affected by a) important market microstructure

noise effects such as the bid/ask spread, irregularly spaced observations in discrete

time and discrete price levels, as well as b) price jumps. We develop i) a simple-

to-construct non-parametric estimator and ii) a parametric price duration estima-

tor using autoregressive conditional duration specifications. We provide guidance

how these estimators can best be implemented in practice by optimally selecting a

threshold parameter that defines a price duration event. We provide simulation ev-

idence that price duration estimators give lower RMSEs than competing estimators

and forecasting evidence that they extract relevant information from high-frequency

data better and produce more accurate forecasts than competing realized volatility

and option-implied variance estimators, when considered in isolation or as part of a

forecasting combination setting.

Keywords: Price durations; Volatility estimation; High-frequency data; Market

microstructure noise; Forecasting.
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2.1 Introduction

Precise volatility estimates are indispensable for many applications in finance. We

focus on price duration based variance estimators, that in contrast to GARCH, real-

ized volatility (RV ) type and option-implied variance estimators have received very

little attention in the literature so far. We show how price duration estimators can

be used to estimate and forecast the integrated variation (IV ) of an underlying semi-

martingale process. We investigate how market microstructure noise effects, such

as the bid/ask spread, irregularly spaced price observations and price discreteness,

and also price jumps, affect, individually and jointly, price duration based integrated

variance estimators in terms of bias and efficiency.

Within the class of price duration variance estimators we develop i) a simple-to-

construct non-parametric estimator and ii) a parametric price duration estimator on

the basis of dynamic autoregressive conditional duration (ACD) specifications. We

show how these estimators can be robustified against market microstructure noise

(MMS) influences by optimally choosing the threshold parameter that determines

the size of the price change which defines a price duration event. Through simulation

evidence, we show that the price duration estimators produce lower RMSEs. Within

a forecasting setup we provide evidence for Dow Jones Industrial Average (DJIA)

index stocks that price duration variance estimators extract relevant information

from (high-frequency) data better, and produce more accurate variance forecasts,

than competing RV -type and option-implied variance estimators, when considered

either in isolation or as part of a forecasting combination.
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Over the last decade RV -type quadratic variation estimators1 following Ander-

sen et al. (2001) and Barndorff-Nielsen and Shephard (2002) have become the stan-

dard tool for the construction of daily variance estimators by exploiting intra-day

high-frequency data. In the presence of MMS noise three main approaches for the

estimation of the integrated variance exist. The sub-sampling method of Zhang et

al. (2005) and Ait-Sahalia et al. (2011) combines RV estimators computed on dif-

ferent return sampling frequencies and gives rise to the two-scale and multi-scale

realized variance estimators. The Least Squares based IV estimation framework

of Nolte and Voev (2012) is related to this and allows for the joint estimation of

IV and the moments of market noise. Barndorff-Nielsen et al. (2008a) develop the

class of realized kernel estimators and Podolskij and Vetter (2009) and Jacod et al.

(2009) introduce the pre-averaging based IV estimators. Liu, Patton and Sheppard

(2015) compare the accuracy of these and further estimators across multiple asset

classes and conclude that a simple five-minute RV estimator is rarely significantly

outperformed.

Essentially RV -type variance estimators are based on the idea of aggregating,

over a daily horizon, say, squared (log-) price changes computed on fixed intra-

day intervals, typically of five minutes. Hence they impose structure on the time-

dimension, but keep the outcomes in the price domain flexible. Price duration based

variance estimators are based on the opposite consideration: here structure is im-

posed on the price domain by fixing the price change size, but allowing the time to

1In the absence of price jumps we simply refer to integrated variance estimators.
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generate such price changes (price durations) to vary. From an information point of

view, price durations condition on the complete history of the price process after a

previous price event, while RV -type estimators can be and actually are constructed

from a sparser information set that only requires knowledge of the prices at the

start and end of an interval. It is precisely this potential information advantage that

makes price duration based variance estimators attractive and it is surprising that

over the last two decades only a handful of studies analyzed them in any depth. A

notable but neglected working paper by Andersen, Dobrev and Schaumburg (2008)

provides analytic results for diffusion processes which shows that duration estima-

tors are much more efficient than RV estimators. A further attractive feature of

price duration based variance estimation is that in its parametric form, i.e. with

a parametric form assumption for the dynamic price duration process, not only an

integrated variance estimator but also a local (intra-day, spot) variance estimator

can be obtained.

After Cho and Frees (1988) the next reference introducing price duration vari-

ance estimators is Engle and Russell (1998), which includes ACD specifications.

Gerhard and Hautsch (2002) and more recently Tse and Yang (2012) also develop

price duration based variance estimators using ACD specifications to govern the

price duration dynamics. All three ACD studies start from a point process concept

to construct volatility estimators, but do not relate the estimators to a desirable

underlying theoretical concept such as the integrated variation of a Brownian semi-

martingale process. These studies also provide little guidance on the practical task
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of selecting a good price change threshold when MMS noise effects are present, which

is important for implementation. Our study fills these gaps.

The derivation of duration based volatility estimators in this paper is initially

done in a pure diffusion setting. Following Engle and Russell (1998) and Tse and

Yang (2012), we approximate the integrated variance of the diffusion process by

that of a step process, whose conditional instantaneous variance can be related to

the conditional intensity function of the price duration. The integral of the instan-

taneous variance of this step process provides an estimate of IV and the estimation

error goes to zero as the threshold size approaches zero. We then consider the effect

that transaction prices are either bid or ask prices and rely on Monte Carlo evi-

dence to analyse the joint influence of bid/ask spreads, irregularly spaced discrete

trading times and discrete price levels, as well as price jumps, upon our duration

based integrated variance estimators. We find, on the basis of both simulations and

empirical evidence, that the existence of bid and ask prices biases the duration based

variance estimates upwards while discrete time transactions yield downward biases.

Both effects diminish for a large enough and increasing price change threshold pa-

rameter. Other sources of biases are end of day effects, discrete prices and potential

jumps. Their magnitudes are quantified either theoretically or through Monte Carlo

evidence. It is noteworthy that price duration variance estimators possess by con-

struction some robustness regarding large price jump events.

To compare the accuracy and the information content of price duration based
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estimators with estimators from RV and also option-implied classes, we conduct

a comprehensive forecasting study. We perform both individual and combination

forecasts, on 20 DJIA stocks over 11 years from 2002 to 2012, over three horizons,

one day, one week, and one month. We find that the duration based class of variance

estimators generally perform better than RV type and option-implied estimators.

The parametric price duration estimators, in isolation, yield more accurate forecasts

than their non-parametric counterparts and all other estimators (RV and option-

implied type) over all three horizons. However, no individual estimator alone seems

to subsume all relevant information and combining forecasts from the three consid-

ered classes of estimators significantly improves the forecast accuracy. Our findings

confirm the theoretical prediction of Andersen et al. (2008) that duration based vari-

ance estimators contain more relevant information than RV -type estimators. Our

results also contribute to the debate in the volatility forecasting literature about the

accuracy of high-frequency estimators relative to option-implied estimators. While

Blair et al. (2001), Jiang and Tian (2005), Giot and Laurent (2007), and Busch et

al. (2011) find that option-implied estimators provide the most accurate volatility

forecasts for stock indices, the opposite conclusion favouring high-frequency estima-

tors is supported in Bali and Weinbaum (2007), Becker et al. (2007) and Martin

et al. (2009). Our univariate forecasts provide clear evidence that high-frequency

estimators (of which duration based estimators are best) are more accurate than

option-implied alternatives for our sample period and our sample of 20 DJIA stocks.

The rest of the paper is organized in the following way: Section 2.2 lays out the
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theoretical foundations for the duration based integrated variance estimators and

includes a theoretical discussion on market microstructure noise effects. Section 2.3

describes the high-frequency data used subsequently and provides descriptive results

that motivate the simulation study. Section 2.4 contains the simulation study that

assesses the effects of market microstructure noise components on our duration based

integrated variance estimators, provides guidance on the choice of a preferred price

change threshold value, and compares the accuracy and efficiency of the duration

based estimator with competing estimators. Section 2.5 contains the empirical anal-

ysis of our estimators including a discussion on the construction of the parametric

duration based integrated variance estimators and empirical evidence on the choice

of a preferred price change threshold value. Section 2.6 contains the forecasting

study and Section 2.7 concludes.

2.2 Theoretical foundation

In Section 2.2.1 we provide the theoretical foundations for parametric and non-

parametric duration based integrated variance estimators in a pure diffusion setting

in the absence of MMS noise. Section 2.2.2 provides theoretical results for duration

based integrated variance estimators in the presence of bid and ask transaction

prices and price jumps. The analysis of further market microstructure noise effects

and their interplay is deferred to the simulation study in Section 2.4.
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2.2.1 Duration based integrated variance estimators: pure

diffusion setting

Initially we assume that the efficient log-price, Xt, follows a pure diffusion process

with no drift, represented by

dXt = σX,tdBt. (2.1)

For each trading day and a selected threshold δ, a set of event times {td, d =

0, 1, ...} is defined in terms of absolute cumulative price changes exceeding δ, by

t0 = 0 and

td = inf
t>td−1

{|Xt −Xtd−1| = δ}, d ≥ 1. (2.2)

Let xd = td − td−1 denote the time duration between consecutive events and let

Id−1 denote the complete price history up to time td−1. For the conditional distri-

bution xd|Id−1, we denote the density function by f(xd|Id−1), the cumulative den-

sity function by F (xd|Id−1) and the intensity (or hazard) function by λ(xd|Id−1) =

f(xd|Id−1)/(1− F (xd|Id−1)).

Following Engle and Russell (1998) and Tse and Yang (2012), duration based

variance estimators rely on a relationship between the conditional intensity function

and the conditional instantaneous variance of a step process. The step process

{X̃t, t ≥ 0} is defined by X̃t = Xt when t ∈ {td, d ≥ 0} and by X̃t = X̃td−1 whenever

td−1 < t < td. The conditional instantaneous variance of X̃t equals

σ2
X̃,t = lim

∆→0

1
∆ var(X̃t+∆ − X̃t|Id−1), td−1 < t < td. (2.3)
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As ∆ approaches zero we may ignore the possibility of two or more events between

times t and t+ ∆, so that the only possible outcomes for X̃t+∆− X̃t can be assumed

to be 0, δ and −δ. The probability of a non-zero outcome is determined by λ(x|Id−1)

and consequently

σ2
X̃,t = δ2λ(t− td−1|Id−1), td−1 < t < td. (2.4)

The integral of σ2
X̃,t

over a fixed time interval provides an approximation to the

integral of σ2
X,t over the same time interval, and the approximation error disappears

as δ → 0.

Let there be N price duration times during a day, then the general duration

based estimator of integrated variance, IV , is given by

ĨV =
tN∫
0

σ2
X̃,tdt =

N∑
d=1

δ2
td∫

td−1

λ(t− td−1|Id−1)dt

= −δ2
N∑
d=1

ln(1− F (xd|Id−1)). (2.5)

The above estimator ignores price variation between the last price event of the

day at time tN and the end of the day, teod, which is expected to be of minor

importance when δ is relatively small. A natural bias corrected general duration

based integrated variance estimator is therefore

ĨV + = −δ2
N∑
d=1

ln(1− F (xd|Id−1)) + δ2
teod∫
tN

λ(t− tN |IN)dt. (2.6)

In practice, we do not know the true intensity function. We must therefore either
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estimate the functions λ(.|.) or we can replace the summed integrals in (2.5) by their

expectations. As these expectations are always one, the non-parametric, duration

based variance estimator, NPDV , is simply

NPDV = Nδ2. (2.7)

This equals the quadratic variation of the approximating step process over a

single day, which we may hope is a good estimate of the quadratic variation of the

diffusion process over the same time interval. An equation like (2.7), for the special

case of constant volatility, can be found in the early investigation of duration based

methods by Cho and Frees (1988). Relying on this setup and for N large it is

immediately clear that the downward bias introduced by ignoring end of day effects

is equal to 0.5δ2, as in expectation we omit (counting) half an event at the end of

the day. The bias corrected non-parametric estimator is therefore given by

NPDV+ = (N + 0.5)δ2. (2.8)

A parametric implementation of (2.5) requires selection of appropriate hazard

functions λ(.|.). As first suggested by Engle and Russell (1998), we assume the

durations xd = td − td−1 have conditional expectations ψd determined by Id−1 and

that scaled durations are independent variables. More precisely,

xd = ψdεd, with ψd = E[xd|Id−1], (2.9)
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and the scaled durations εd are i.i.d., positive random variables which are stochasti-

cally independent of the expected durations ψd.

Autoregressive specifications for ψd are standard choices, such as the autoregres-

sive conditional duration (ACD) model of Engle and Russell (1998), the logarithmic

ACD model of Bauwens and Giot (2000), the augmented ACD model of Fernandes

and Grammig (2006) and others reviewed by Pacurar (2008). These specifications

do not accommodate the long-range dependence present in our durations data. As a

practical alternative to the fractionally integrated ACD model of Jasiak (1999), we

develop the heterogenous autoregressive conditional duration (HACD) model in the

spirit of the HAR model for volatility introduced by Corsi (2009). Short, medium

and long range effects are arbitrarily associated with 1, 5 and 20 durations, and our

HACD specification is then

ψd = ω + αxd−1 + β1ψd−1 + β2(ψd−5 + . . .+ ψd−1) + β3(ψd−20 + . . .+ ψd−1). (2.10)

A flexible shape for the hazard function can be obtained by assuming the scaled

durations have a Burr distribution, as in Grammig and Maurer (2000) and Bauwens,

Giot, Grammig and Veredas (2004). The general Burr density and cumulative den-

sity functions, as parameterized by Lancaster (1997) and Hautsch (2004), are given

by

f(y|ξ, η, γ) = γ

ξ
(y
ξ

)γ−1[1 + η(y/ξ)γ]−(1+(1/η)), y > 0, (2.11)

and

F (y|ξ, η, γ) = 1− [1 + η(y/ξ)γ]−1/η, y > 0, (2.12)
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with three positive parameters (ξ, η, γ). The Weibull special case is obtained when

η → 0 and its special case of an exponential distribution is given by also requiring

γ = 1. The mean µ of the general Burr distribution is

µ = ξc(η, γ), with c(η, γ) = B(1 + γ−1, η−1 − γ−1)/η1+(1/γ), (2.13)

with B(., .) denoting the Beta function. For each scaled duration the mean is 1

so that ξ is replaced by 1/c(η, γ). For each duration xd (having conditional mean

ψd) we replace ξ by ψd/c(η, γ). From (2.5) our parametric, duration based variance

estimator, PDV , is therefore

PDV = δ2

η

N∑
d=1

ln
(

1 + η

[
c(η, γ)xd

ψd

]γ)
. (2.14)

When we implement (2.14), we take account of the intraday pattern in the

durations data. The duration xd−1 in (2.10) is replaced by the scaled quantity

x∗d−1 = xd−1/sd−1 and each expected duration ψd−τ is replaced by the scaled quan-

tity ψ∗d−τ = ψd−τ/sd−τ , with sd−τ the estimated average time between events at

the time-of-day corresponding to duration d − τ ; each term sd−τ is obtained from

a Nadaraya-Watson kernel regression of price durations against time-of-day using

one month of durations data. Then ψd is replaced by sd/ψ
∗
d, so the scaled duration

xd/ψd in (2.14) is simply x∗d/ψ
∗
d. End of day bias correction is obtained by adding

0.5δ2 as above.

The theoretical framework above is for the logarithms of prices. It is much easier

53



to set the threshold to be a dollar quantity related to the magnitude of the bid/ask

spread. We then replace the log-price Xt in (2.2) by the price Pt = exp(Xt). As a

small change δ in the price is equivalent to a change δ/Pt in the log-price, we redefine

the estimators (including end of day bias correction) to be

NPDV+ = δ2
N∑
d=1

1/P 2
d−1 + 0.5δ2/P 2

N (2.15)

and

PDV+ = δ2

η

N∑
d=1

ln
(

1 + η

[
c(η, γ)xd

ψd

]γ)
/P 2

d−1 + 0.5δ2/P 2
N . (2.16)

While the non-parametric estimator can easily be constructed with a reasonable

number of events N , for example during a day, the additional parametric form

assumption of the parametric estimator also guarantees a volatility estimator for

small N and yields for example a local (intraday) volatility estimator.

2.2.2 Market microstructure noise

We first consider how the bid/ask spread, which is arguably the most important

market microstructure noise component for transaction price datasets, affects our

duration based volatility estimators. In particular, assume that at general times t

we observe a noisy price

Yt = Pt + 0.51tς, (2.17)

where ς denotes the size of the bid/ask spread. Pt is the unobserved true price and

1t is an indicator variable which equals 1 when Yt represents an ask price and -1

when Yt represents a bid price. We assume that ς is constant throughout the day
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and that Yt takes prices on the bid or the ask side with equal probability 0.5. A

price event occurs when

|Ytd − Ytd−1| =
∣∣∣(Ptd − Ptd−1) + 0.5(1td − 1td−1)ς

∣∣∣ ≥ δ, (2.18)

and can be triggered by either the unobserved efficient price change component

(Ptd − Ptd−1) or the bid/ask spread component 0.5(1td − 1td−1). The bid/ask spread

component can take on three values, -1, 0 and 1, which together with an upward

(downward) move of the diffusion component constitutes three possible scenarios:

1) A value of 0 corresponds to the case when both the first price and the last

price of the price duration lie on the same side of the limit order book, i.e. bid-bid or

ask-ask. In both cases the diffusion component alone has to change by δ to trigger

a price event which is equivalent to the case in which we observe no noise.

2) A value of 1 (-1), i.e. bid-ask (ask-bid), together with an upward (downward)

moving diffusion component implies that the diffusion component only has to in-

crease (decrease) by δ − ς (assuming δ > ς)2 to trigger a price event, which is on

average less than in the no noise case (when δ → 0). Hence, we observe more of

these price events within a day than in the no noise case which contributes to an

upward biased variance estimator.

3) A value of -1 (1), i.e. ask-bid (bid-ask), together with an upward (downward)

moving diffusion component implies that the diffusion component now has to increase

(decrease) by δ+ ς to trigger a price event, which is on average more than in the no

2In practice δ will always be chosen to be larger than ς. We discuss the case δ < ς in the context
of the simulation study in Section 2.4.
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noise case. Hence, we observe less of these price events within a day, than in the no

noise case which contributes to a downward biased variance estimator.

Scenario 2) is more likely to occur than scenario 3) and hence the bid/ask spread

component creates on balance a positively biased duration based volatility estimator.

For an explanation let us consider only the upward move case: For a given δ it is

more likely that a price duration is closed with an ask price (scenario 2) than a

bid price (scenario 3), as once the efficient price has entered into the ς/2 distance

window below the δ threshold any transaction price on the ask side (but not the

bid side) will immediately trigger a price event, while triggering the event by a bid

price would require the efficient price to pass the corresponding ς/2 distance window

above the δ threshold.

A larger spread level ς will lead to a wider ς window around the δ price change

threshold and hence further increase the positive bias, while the selection of a large

enough threshold δ for a given spread level will reduce the bias.

Note that the explanation above makes the implicit assumption that bid and ask

transaction prices can occur anywhere within the ς window, which is guaranteed not

only under the assumption of bid and ask prices being observed in continuous time,

but also under the assumption of irregularly spaced observed bid and ask transaction

prices. In the case of irregularly spaced observed transaction prices a further time

discretization noise component needs to be addressed. We delegate this considera-

tion to the simulation study in Section 2.4.

Let us further consider jumps with a jump size of κ and consider the case when
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a jump occurs

|Yt − Yt−1| = |(Pt − Pt−1) + 0.5(1t − 1t−1)ς + κ| . (2.19)

As we expect κ � δ, a price jump would most likely trigger an immediate price

event. Yet its impact on the integrated variance estimator is mitigated as κ would

be substantially truncated. In addition, as the occurrences of large jumps are rare, we

expect them to have very limited influence on the duration based variance estimator.

In the simulation study in Section 2.4, we further evaluate the performance of

our duration based variance estimators under different market microstructure noise

scenarios. To obtain some representative input parameters for this study we first

carry out a descriptive analysis of our high-frequency data.

2.3 Data properties

In the empirical analysis we use 20 of the 30 stocks of the Dow Jones Industrial

Average (DJIA) index. The tick-by-tick trades and quotes data spanning 11 years

(2769 tading days) from January 2002 to December 2012 are obtained from the New

York Stock Exchange (NYSE) TAQ database and are time-stamped to a second.

The stocks selected have their primary listing at NYSE without interruption during

the sample period.3

The raw data is cleaned using the method of Barndorff-Nielsen et al. (2009). Data

entries that meet one or more of the following conditions are deleted: 1) entries out

3From the list of 30 DJIA stocks as of December 2012, CSCO, INTC, and MSFT are excluded
as their primary listing is at NASDAQ; BAC, CVX, HPQ, PFE, TRV, UNH, and VZ are excluded
because of incomplete NYSE data samples.
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of the normal 9:30am to 4pm daily trading session; 2) entries with either bid, ask

or transaction price equal to zero; 3) transaction prices that are above the ask price

plus the bid/ask spread or below the bid price minus the bid/ask spread; 4) entries

with negative bid/ask spread; 5) entries with spread larger than 50 times the median

spread of the day. When multiple transaction, bid or ask prices have the same time

stamp, the median price is used.

For our analysis we merge the individual trades and quotes files using a refined

Lee and Ready algorithm as outlined in Nolte (2008) to identify trades with corre-

sponding bid and ask quotes, which yields associated buy and sell indicators as well

as bid/ask spreads.

The list of stocks and descriptive statistics for the whole sample period are pre-

sented in Table 2.1. Table 2.1 shows means and medians for bid/ask spreads and

inter-trade durations, as well as means for the price levels and volatilities for all

stocks, sorted in the ascending order of their mean spread level in the first column.

The mean values of bid/ask spreads range from 1.4 to 3.5 cents, and from 3.55 to

7.01 seconds for trade durations. The corresponding medians range from 1 to 2

cents, and 2 to 3 seconds, respectively, implying right-skewed distributions for both

variables. Table 2.1 also presents means and medians for a simple measure of a jump

frequency. A jump is recorded when the absolute value of a price change exceeds

five times the average bid/ask spread for a given day. Both mean and median values

indicate that there are about 1 to 2 of these jump events on average per day. We

also observe that the average level of volatility across the whole sample period lies

between 15% and 31%, while the average price level ranges from $26 to $108. We
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clearly observe that the average bid/ask spread is increasing with the average price

level. In our empirical analysis we divide our stocks into 4 groups on the basis of

their bid/ask spread levels and select 4 reference stocks: Home Depot (HD), Mc-

Donald’s (MCD), American Express (AXP), and International Business Machines

(IBM).

To obtain an idea of the time variation of the key variables, we plot (log) bid/ask

spread, (log) trade duration, and (log) annualized volatility calculated using Equa-

tion (2.15) for AXP from 2002 to 2012 in Figure 2.1. We observe that periods

of higher volatility coincide with periods of wider bid/ask spreads and lower trade

durations. We observe very much the same pattern for all other stocks.

In Section 2.4, we carry out a comprehensive simulation study to analyze the

properties of the duration based variance estimators. We will consider as bench-

mark the simulation scenario with 25% annualized volatility and 6 seconds average

trade duration, which correspond approximately to the average volatility and trade

duration levels in Table 2.1. To assess the effect of bid/ask spread, we will consider

scenarios with spreads from 1 to 4 ticks. To assess the effect of time-discretization,

we will consider scenarios with shorter trade durations of 3, 1 and 0.5 seconds. To

assess the effect of jumps, we set the jump intensity to be 1 per day as a benchmark.

We also examine the case where there are 100 small jumps per day for compari-

son. In both cases, the jump variance accounts for 20% of the total daily integrated

variance.
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2.4 Simulation results

We separate the MMS noise into time-discretization (∆), bid/ask spread (ς), and

price-discretization components. We investigate the separate and combined effects

of the noise components as well as jumps on the non-parametric duration based

volatility estimator, NPDV (or NP for convenience), in a Monte Carlo study with

10,000 replications. Specifically, we assess the performance of the NP estimator

under different levels of: 1) time-discretization, 2) bid/ask spread, 3) jump size and

intensity.

The performance of the duration based integrated variance estimator depends on

the selection of a preferred threshold value. Following the discussion of the two main

sources of noise, bid/ask spread and time-discretization, we will discuss in Section

2.4.3 the tradeoff between efficiency and bias in the context of choosing a preferred

threshold value δ∗.

Finally, in Section 2.4.6 we compare through simulation the accuracy and effi-

ciency of the duration based variance estimator with other RV estimators, including

the Two-scaled RV (TSRV) and Realised Kernel (RK) estimators, which are also

included in Section 2.6 for volatility forecasting comparisons.

2.4.1 Time-discretization

Let us consider a discrete-time setting with a fixed time period, e.g. a trading day.

∆ is the discretization time interval and Yi∆ is the (noisy) price, i = 0, . . . ,M , where

M the number intraday periods. Yi∆ consists of a discretized efficient price process

Xi∆ and a noise component.
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Discretizing Xt in (2.1), yields a time-discretized diffusion component

Xt −Xt−∆ = σX
√

∆Zt. (2.20)

Zt is a standard normally distributed random variable and σX is the daily integrated

volatility, which is assumed to be constant.

In implementation, we first discretize the diffusion process on a half-second inter-

val so that there are 46800 efficient returns from a standard normal distribution in a

6.5-hour daily trading session. Upon this foundation process, we sample trade points

according to random Bernoulli distributions with probabilities 1/2, 1/6, and 1/12,

resulting in three other time-discretized processes with average inter-trade times ∆

of 1, 3, and 6 seconds respectively.

Ratios of the NP variance estimates over the true integrated variance are plotted

in Figure 2.2. We investigate how the average trade duration, ∆, and the thresh-

old value, δ, affect the time-discretization noise, keeping the annualized4 integrated

volatility at 25% and no price variation outside trading sessions.

Time-discretization decreases the number of events observed, due to the absence

of price points that may have defined price events. As ∆ decreases, the number of

price points increases and N approaches its true value (in the case when prices are

observed continuously). Thus, given δ, a smaller ∆ leads to more accurate estimates

of the integrated variance represented by the unit line in Figure 2.2, while increasing

δ for a given ∆ reduces the bias introduced by time-discretization.

4Using 252 trading days per year.
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2.4.2 Bid/ask spread and time-discretization

As shown in Section 2.2.2, introduction of a bid/ask spread and corresponding bid

and ask transaction prices biases the duration based variance estimates upwards,

and the bias increases with the size of the spread ς, and decreases with the threshold

value δ when δ > ς. We now consider discrete time, with an average ∆ of 6 seconds,

bid and ask transaction prices generated by Yt = Pt+0.51tς, with σX corresponding

to 25% annualized volatility. The transaction price takes either the bid or the ask

side with probability 0.5 and the variables 1t are i.i.d.

Figure 2.3 shows ratios of the NP variance estimates over the true integrated

variance. A deviation from the unit line indicates a bias. The hump-shaped curves

occur as a result of the bid/ask spread component bias when the spread is relatively

large. When δ < ς, one bid/ask bounce is enough to trigger a price event and N is

inflated in comparison to the case when ς → 0 (dotted line). N does not decrease

much as δ increases as long as δ < ς, causing the NP estimate, Nδ2, to increase

rapidly, until δ = ς. When δ further increases so δ > ς, the influence of bid/ask

bounces is mitigated by the price changes from the efficient price component as

a price event is now increasingly caused by the cumulative efficient price changes

rather than by the bid/ask spread component. The bid/ask spread has the largest

influence around the point where δ = ς.

As δ increases past ς, the NP estimates start to stabilize, since both the time-

discretization and the bid/ask spread biases are reduced by larger threshold values

of δ. We observe two scenarios: 1) for smaller bid/ask spread levels (here 1 and

2 ticks) the negative bias contribution of the time-discretization is partially off-set
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by the positive contribution of the bid/spread components and the curves in Figure

2.3 for these cases tend to the unit line from below; 2) for larger bid/ask spread

levels (here 3 and 4 ticks) the negative bias contribution of the time-discretization

is, as discussed above, clearly dominated by the positive contribution of the bid/ask

spread component and the curves in Figure 2.3 for these cases tend after the initial

hump to approach the unit line from above.

2.4.3 Bias versus efficiency: the preferred threshold value

In reality we have no influence on the size of the bid/ask spreads nor the length of the

trade durations, yet we must choose a threshold level δ for the implementation of our

estimators. From Sections 2.4.1 and 2.4.2 we know that the bias of the NP estimator

decreases for a large enough threshold value, regardless of the bid/ask spread level.

But, increasing the threshold level will inevitably result in a decreasing number of

price events over the course of a day, rendering the NP estimates more dispersed

and hence less efficient. Figure 2.4 shows this effect, as the standard deviation of

the NP variance estimates is seen to increase over the range of δ from 0 to 15 ticks.

To illustrate this trade-off we present in Figure 2.5 mean squared error (MSE)

statistics for the NP estimator over the range of δ from 5 to 15 ticks, for 2-tick and

3-tick bid/ask spread levels. These are on average realistic bid/ask spread levels

as shown in Table 2.1. For the 2-tick bid/ask spread case, the minimum MSE lies

at δ∗ = 7 ticks, while for the 3-tick spread case, the minimum is given for δ∗ = 8

ticks. As these MSE minimum implying δ thresholds value increase with the size of

the bid/ask spread, we suggest for practical implementations to choose a preferred
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threshold δ∗ equal to 2.5 to 3.5 times the bid/ask spread. A threshold in the range

of 3 to 6 times the bid-ask spread is recommended in Andersen et al. (2008) for a

different duration based estimator. Further guidance about the choice of δ∗ on the

basis of bias-type curves, similar to those in Figure 2.3, for real data is presented in

Section 2.5.2.

2.4.4 Price-discretization

In reality transaction prices are recorded as multiples of a minimum tick size, usu-

ally 1 cent. To account for this additional price-discretization component of market

microstructure noise in our simulation study we now consider a setup in which,

in addition to the above, bid and ask prices and consequently transaction prices

are recorded discretely as multiples of 0.01 (one tick). First we obtain mid-quote

prices by rounding the efficient price to the nearest half-cent price (50.005, 50.015,

etc.) when ς/0.01 is an odd number and to the nearest cent when ς/0.01 is an even

number. The resulting ask and bid prices are then given by “mid-quote+ς/2” and

“mid-quote−ς/2”, respectively. As before, trades arrive on average every 6 seconds

and transaction prices take either the bid or the ask price according to a Bernoulli

distribution with equal probability. Figure 2.6 shows that price-discretization pro-

duces less smooth patterns within our curves. The general effects of bid/ask spreads

and time-discretization are, however, unchanged and the estimates still tend to the

unit line as δ increases beyond ς.
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2.4.5 Jumps

To investigate how potential jumps affect our duration based integrated variance

estimators, we consider the simulation setup of Section 2.4.2 and allow for price

jumps. The size of jumps is set to be normally distributed with mean zero and a

total expected daily variance of 20% of the true daily integrated variance. Jumps are

simulated to arrive according to a random Poisson distribution. The jump intensity

determines the standard deviation of the jump size and we consider two potential

scenarios: 1) one large jump on average and 2) 100 small jumps on average during

a day.

As discussed in Section 2.2.2, due to a truncation of price changes at δ, rare

large jumps are expected to have little influence on the duration based variance

estimates and indeed in scenario 1) there is no visible impact5 as N is large and

an increase of one potential additional price event, triggered by an expected single

large jump, results only in a tiny upward bias of the NP estimator in the order of

1/N . In scenario 2) the standard deviation of the jump size is 3.5 ticks. Here, on

the contrary, we do observe in Figure 2.7 that small jumps increase the integrated

variance estimates by around 16.3% in comparison to the no jump case. In this case

estimates are inflated considerably as small jumps are mixed with the diffusion price

changes and effectively increase the number of price events by a non-trivial amount.

In reality we expect there to be less than one large jump per day, to which the

duration based estimator in its current form is quite robust, and at most even only

a small number of detectable smaller jumps per day. In fact many studies focussing

5We omit the graph for brevity.
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on the detection of large jumps find on average less than a jump per week (e.g.

Andersen, Bollerslev and Dobrev (2007)). Lee and Hannig (2010) investigate the

occurrence of big and small jumps in stock indices and individual stocks and find

roughly one big jump every third day and 0.6 small jumps per day for individual

stocks with even fewer jumps detected in stock indices. Nonetheless, if the number

of jumps is known (or can be estimated) a bias correction for jumps can readily be

obtained.

2.4.6 Simulation comparison of different estimators

In Table 2.2, we present the simulation results under three reasonable scenarios

where we compare the duration based variance estimators (with threshold values set

as a range of multiples of spread, ς), with the two-scale RV (TSRV ), realized kernel

(RK)6 and the subsampled 5-minute RV estimators. In scenario 1, ∆ = 4 seconds,

ς = 1.5 ticks; in scenario 2, ∆ = 6 seconds, ς = 2 ticks; and in scenario 3, ∆ = 10

seconds, ς = 3 ticks.

The duration based estimator tends to be more efficient, showing lower standard

deviations, but also more biased, especially compared to the RK estimators. Overall,

given an appropriate threshold value, such as 2.5 to 3.5 times the spread, the duration

based estimator gives the lowest RMSEs.

6Both the cubic kernel and the Parzen kernel are used for the construction of the RK estimator.
For the estimation of the optimal bandwidth H∗, we use 10 minutes sub-sampled RV to approxi-
mate the square-root of integrated quarticity and the 30 seconds sub-sampled RV to approximate
the noise variance as suggested by Barndorff-Nielsen et al. (2009). c∗ = 3.68 for the cubic kernel
and c∗ = 3.51 for the Parzen kernel as stated in Table II by Barndorff-Nielsen et al. (2008a). The
variance and auto-covariances are calculated using 1 minute returns, as suggested by Barndorff-
Nielsen et al. (2008a). For the TSRV estimator, the fast scale is 30 seconds and the slow scale is
5 minutes.
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2.5 Empirical analysis

2.5.1 Parametric duration based variance estimator

For the implementation of the parametric duration based variance estimator, PDV ,

we consider three distributional assumptions for εd in equation (2.9): Exponential,

Weibull, and Burr distributions. Price durations are obtained for a range of threshold

values δ and are scaled each month, as described after equation (2.14), using a daily

seasonality function obtained from a Nadaraya-Watson kernel regression. Maximum

likelihood estimations (MLE) of the duration models represented by equations (2.9)

and (2.10) under the three distributional assumptions are performed on a monthly

basis.

We perform likelihood ratio (LR), Ljung-Box (LB), and density forecast (DF)

tests to assess the goodness-of-fit of the models. The LR test compares the overall

model fit between two nested models on the basis of their likelihood values. The LB

test has the null hypothesis of i.i.d. distributed εd. The DF test of Diebold et al.

(1998) tests the null hypothesis that the assumed distribution for εd is actually the

true distribution and relies on a probability integral transformation of εd, namely

the c.d.f. F (εd), which under the null is i.i.d. U(0, 1) distributed. Provided that

the HACD specification in (2.10) accommodates long-range dependence of the price

durations data appropriately, and the assumed distribution for εd reflects the true

distribution of the scaled duration, neither the LB nor the DF test should be rejected.

All tests are performed, for each of the 132 months from January 2002 to Decem-

ber 2012, over a selected range of δ threshold values (between 2 to up to 20 ticks) for
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four reference stocks: HD, MCD, AXP and IBM. In the interest of brevity, all tests

results are relegated to the Appendix. The conclusion is unequivocal: conditional

Burr distributions fit the price durations data best. As an illustration, Table 2.3

presents the parameter values for the Burr-HACD model for AXP in 2008, with δ

equal to 12 ticks, together with LB and DF tests results. As expected, we observe

that, although there is some variation over the months, generally price durations are

very persistent with an average β1 equal to 0.64 and an average α equal to 0.22. The

parameters η and γ have values that are significantly different from 0 and 1, respec-

tively, which shows that the Burr specification provides a better fit than the Weibull

or Exponential specifications. The LB tests’ p-values at lag 50 for the generalized

model residuals indicate that the null hypotheses can only be rejected in 2 out of

12 cases at a 5% significance level and shows that generally the HACD specification

dynamics provides a satisfactory fit. The density forecasting tests’ p-values reveal

that the null hypotheses can be rejected in 5 out of 12 cases at the 5% level and indi-

cates that there is scope to further improve, especially through the choice of a more

flexible density function for εd, upon the Burr-HACD specification. The selection of

more flexible densities than the Burr density usually comes with the cost of losing

some computational tractability and we refrain from considering them in this paper.

Taken together, the fit provided by the Burr-HACD specification is good, also in the

light of Section 2.6 that focuses on out-of-sample forecasting comparisons.
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2.5.2 The preferred threshold value

As discussed in Section 2.4.3, the selection of δ∗ needs to take into account the

tradeoff between improving efficiency and reducing bias: a larger δ reduces bias

while a smaller δ improves efficiency. In the simulation study we know the true

value of the integrated variance, and their MSE statistics for sensible simulation

setups suggest that a threshold value δ∗ should preferably be chosen to lie within

the range of 2.5 to 3.5 times the bid/ask spread. In this section we provide a number

of selective empirical results that support the conclusions of the simulation study

and provide further guidance on how to select a preferred threshold δ∗. The results

presented in this section focus on the reference stock AXP.7

We start by considering NP variance estimates in October 2008, when volatility

peaked during the financial crisis. This month is governed by high uncertainty and

average bid/ask spread levels of 4.6 ticks in this month are amongst the highest

in our sample period. Figure 2.8 plots the NP variance estimates for the first 20

trading days of October 2008 for stock AXP, over the range of threshold values from

2 ticks to 15 ticks. We observe that, even during this high bid/ask spread level

regime, duration based variance estimates first increase with the chosen threshold

value and then stabilize, which is a stabilizing pattern that is similar to the one

shown in Figure 2.3 for the simulation setting.

The results of the simulation study suggest that estimates are less biased once

stabilization has been achieved and pinpointing the lower bound of this stabilizing

region would provide a good trade-off between bias and efficiency and a good choice

7Results for the other stocks are available from the authors upon request.
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for the preferred threshold value δ∗. To obtain a better picture of this stabilizing

behavior, and its relationship to the level of the bid/ask spread in reality, we consider

the full data sample for AXP. We divide the 132 months into 6 groups based on

their average spread levels and obtain for each group daily NP variance estimates

(annualized) for δ between 2 and 15 ticks and show their averages across days in

Figure 2.9. The 6 groups represent in ascending average spread level order the lower

1/3, the middle 1/3 and then the upper 1/3, subdivided into 4 ascending groups

(1/12 each), of the data. Table 2.4 shows the distribution of the 6 groups across the

132 month in the data sample. It should be noted that many of the high bid/ask

spread level months, besides the ones during the financial crisis, are in the early

years of the data sample when trading was less liquid, and consequently many of the

low bid/ask spread level months are concentrated at the end of the data sample.

Figure 2.9 shows the stabilizing behavior of the duration based variance estimates

very clearly and, upon visual inspection, we observe that the threshold value at the

point where the estimates start to stabilize, δ∗, is roughly three times the average

bid/ask spread which is in line with the guidance obtained from the simulation study.

We will use the “three-times-bid/ask-spread” rule henceforth as guidance to select δ∗

for the computation of the PDV and NP estimators in the subsequent forecasting

study.

Table 2.19 in the Appendix presents goodness-of-fit results (LB and DF tests) of

the Burr-HACD model for all 20 stocks, with the price durations obtained by setting

the threshold value to be δ∗. It confirms that, when the threshold value is set to

be three times the average bid/ask-spread, the Burr-HACD fits the price durations
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data well.

2.6 Volatility forecasts evaluation

To assess the quality of our duration based variance estimators we conduct a compre-

hensive forecasting study. We compare our duration based variance estimators with

variance estimators from two other important classes: RV -type and option-implied.

Our target volatility measures are the realized one-day, one-week, and one-month

ahead 5-minute realized volatilities. From the class of duration based variance es-

timators we consider the PDV estimator based on the Burr-HACD specification

discussed above, with parameters estimated monthly, variance estimates computed

on the basis of previous month parameter values and δ∗ equal to three times the

bid/ask spread of the previous month to avoid any forward information bias. We

also consider NP variance estimators with δ∗ equal to three times the bid/ask spread

of the previous day, NPd, and δ∗ equal to three times the bid/ask spread of the pre-

vious month, NPm. From the class of RV -type variance estimators we consider a

realised kernel, RK, a two-scale realized variance, TSRV , a bi-power realized vari-

ance, BV , and a sub-sampled 5 minute realized variance, RV , estimator.8 From

the class of option-implied variance estimators we consider an at-the-money implied

volatility, ATM , a model free implied volatility (with implied volatility curves fitted

as a quadratic function of delta), MFIV2, and a second model free implied volatil-

ity estimator obtained from cubic functions of delta, MFIV3.9 In the interest of

8The cubic kernel is used here. The construction of the RK and TSRV estimators is the same
as described in Section 2.4.6.

9The options data, which cover the same time period as the high-frequency trades and quotes
data, are obtained from the OptionMetrics database. We directly employ the Black-Scholes implied
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brevity, we present results only for the best performing estimators in the RV -type

and option-implied classes10: RK and ATM . We find that the ATM option-implied

volatility estimator gives more accurate forecasts of future volatility than both model

free option-implied volatility estimators. This result is consistent with the finding

of Martin et al. (2009) showing that when three individual stocks are considered

ATM estimators outperform model free estimators. For stock indices, as for exam-

ple considered by Jiang and Tian (2005), model free estimators are usually found

to show superior forecasting performance. In contrast to individual stocks, there is

normally a more liquid and larger set of index options available, which allows for a

more accurate approximation of the delta-implied-volatility-curves necessary for the

construction of model free estimators. In the analysis below all estimators are used

in an annualized form.

2.6.1 Individual forecasts

We employ a HAR-type forecasting equation,

RVn:n+h = c+ b1Zn−1 + b2Zn−5:n−1 + b3Zn−22:n−1 + εn:n+h. (2.21)

volatility (IV ), including the at-the-money implied volatility, provided by OptionMetrics. We
retain options with time-to-maturities between 7 and 42 calendar days, and with positive bid-
quotes and positive bid-ask spreads. Nearest-to-maturity options are usually chosen, but if they
provide less than four (five) IV ’s for fitting the quadratic (cubic) curve, we switch to the second
nearest-to-maturity day. For the construction of the model-free implied volatility estimator, we
follow Taylor et al. (2010) and estimate the IV curve as a function of the Black-Scholes delta. We
construct two versions of MFIV by fitting quadratic and cubic functions to the delta-IV curves.
To prevent delta/IV points from clustering on one side of the curve, we require at least four (five)
delta/IV observations a day, and at least one delta below 0.3, at least one above 0.7, and at least
one between 0.3 and 0.7. In addition, we exclude extreme deltas larger than 0.99 or smaller than
0.01.

10Results for the other estimators can be obtained from the authors upon request.
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Here Zn represents the day-n volatility estimate from one of the five estimators dis-

cussed above (PDV , NPd, NPm, RK, ATM). Both Zn−h:n−1 and RVn:n+h aggregate

h terms and are in their logarithmic forms: Zn−h:n−1 = 0.5 log(∑n−1
s=n−h Z

2
s ), similarly

for RVn:n+h, h=1,5, or 22, with RVn the day-n 5-minute realized volatility. For one

day (h = 1) ahead forecasts the in-sample estimation period for the HAR model

ranges from 1 February 2002 to 29 January 2010 (2013 trading days) and the first

out-of-sample forecast is obtained for 1 February 2010. For one week (h = 5) and

one month (h = 22) horizons forecasts are constructed similarly and a total of 735,

731 and 714 out-of-sample predictions are obtained for h = 1, 5 and 22, respectively,

with the final predictions made in December 2012. All forecasts are constructed

using a rolling window of explanatory variables.

Figures 2.10, 2.11, and 2.12 show root-mean-squared-errors, RMSE, of the fore-

casts from the five different estimators, for one day, one week, and one month hori-

zons. The 20 firms on the horizontal axis are sorted in ascending order of their

RMSEs obtained from the PDV estimator.

Over all three forecasting horizons, PDV generally produces the lowest RMSEs.

To assess whether two competing forecasts perform significantly differently we per-

form a modified Diebold-Mariano (DM) test, using a squared error loss function.

The DM test tests the null hypothesis of equal predictive ability of two competing

forecasts by assessing the significance of their average loss differentials. For the 5%

significance level, results are presented in Table 2.5. Each figure counts the num-

ber of significantly negative/positive loss differentials out of the 20 firms for the

corresponding (estimators) pair in the first row. The figures in the “−”, “+” rows
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respectively count the number of firms that favor the first and second estimator.

The first three columns compare forecasts based on the three estimators from

the duration based variance class. Over all three horizons PDV estimators lead

to significantly more accurate forecasts than the two corresponding nonparametric

duration based variance estimators. Note that a NP estimator for a given day uses

only information from this specific day, while the PDV estimator for a given day

uses additionally also information from past price durations for example through

the dynamic Burr-HACD specification. Hence, the PDV estimator is based on a

richer information set whose exploitation yields more precise variance estimators

and consequently more accurate forecasts. The information advantage of this richer

information set (together with a careful Burr-HACD model selection) also seems to

dominate any additional model estimation noise from estimating the Burr-HACD

specification. Moreover, NPm performs better than NPd which could stem from

a smoothing effect of NPm as it uses monthly average bid/ask spread levels to

construct δ∗ while NPd relies on daily average bid/ask spread levels that are more

volatile.

Columns 4-6 compare forecasts of duration based variance estimators with those

from RK. PDV leads to more precise forecasts than RK over all three horizons. The

two non-parametric estimators perform better than RK over the one-day horizon,

on par with RK over the one-week horizon, and are marginally better over the

one-month horizon.

Columns 7-9 compare forecasts of duration based variance estimators with those

from ATM option-implied variance estimators. Also here, the duration based vari-
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ance estimators generally produce more accurate forecasts than ATM over all three

horizons.

The last column compares forecasts from ATM with those from RK. RK shows

better performance than ATM over the one-day and one-week horizons but performs

on par with ATM over the one-month horizon. ATM estimators perform better as

the forecasting horizon extends to one month. Forecasting comparisons between the

ATM option-implied volatility estimators and the RV estimators constructed from

historical high-frequency returns are well documented in the existing literature. For

example, Blair et al. (2001), Pong et al. (2004), and Taylor et al. (2010) find that,

when the forecast horizon matches the maturity of the corresponding options, which

is usually chosen to be around one month, the option-implied volatility estimator

shows a better forecasting performance than estimators constructed from historical

return data. Martin et al. (2009) and Busch et al. (2011) compare noise- and jump-

robust RV measures, including RK, TSRV and BV , with ATM and draw similar

conclusions. Over the one-month horizon, we find that RK and ATM perform

similarly and hence we do not find ATM to be a superior predictor of the one-

month ahead future volatility.

Overall, among individual volatility estimators, PDV gives the most accurate

forecasts over all three horizons. The easy-to-construct non-parametric duration

based variance estimators also outperform the established RK and ATM variance

estimators in most cases. We conclude that the duration-variance estimators can

extract information for integrated variance estimation and forecasting better than

RV -type and option-implied variance estimators.
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2.6.2 Combinations of forecasts

To address the question whether different integrated variance estimators extract dif-

ferent and potentially complementary information from historical data, that when

combined leads to improved forecasting accuracy, we perform a combination fore-

casting study, in which estimators from the three classes above are used within an

encompassing forecasting setup:

RVn:n+h = c+
3∑
v=1

[bv,1 bv,2 bv,3][Zv,n−1 Zv,n−5:n−1 Zv,n−22:n−1]′ + εn:n+h. (2.22)

We consider two combinations: COM1, with [Z1 Z2 Z3] = [PDV RK ATM ], and

COM2 with [Z1 Z2 Z3] = [NPm RK ATM ]. These two combination forecasts are

then compared with forecasts based on the three individual PDV , RK, and ATM

estimators. Their RMSEs over the three forecasting horizons are plotted in Figures

2.13, 2.14, and 2.15. The 20 firms on the horizontal axis are sorted in ascending

order of their RMSEs obtained from the COM1 estimator.

Figures 2.13, 2.14, and 2.15 show that in general the combination forecasts are

more accurate than any of the individual estimators based forecasts. Yet over longer

horizons of one week/one month, PDV outperforms the combination forecasts in

one/two cases. The corresponding DM tests are performed to assess whether these

differences are significant at the 5% level.

In Table 2.6, the first 6 columns show that the combination forecasts are more

accurate than any individual estimator based forecast. The last column compares

the combination forecast using PDV with the one using NPm: over all three horizons
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and as established from the comparison above of the single estimator forecasts, the

PDV -based combination forecast is more accurate.

Taken together, combining information from different sources improves forecast

accuracy, and the parametric duration based variance estimator seems to extract

relevant information better than the nonparametric estimator.

2.7 Conclusion

Duration based variance estimators are calculated by using the times of price change

events; an event occurs when the magnitude of the price change since the previous

event first equals or exceeds some threshold value. These estimators have been ne-

glected in previous research, despite their potentially superior efficiency compared

with realized variance estimators. The potential for superior efficiency occurs be-

cause duration based estimators make use of the complete path of prices, while

standard RV estimators discard almost all prices for liquid securities such as the

DJIA stocks studied in this paper. Market microstructure noise obscures theoreti-

cal comparisons and, furthermore, requires careful consideration to be given to the

selection of the threshold value.

We use both Monte Carlo methods and real price data to recommend that an

appropriate choice of the threshold is three times a measure of the average bid/ask

spread. For this choice, duration based estimators have relatively small bias and

relatively high efficiency (i.e. low mean squared error). We propose both parametric

and nonparametric duration based estimators and find that they both forecast fu-

ture volatility more accurately than either RV -type estimators or implied-volatility
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estimators for three forecast horizons (one day, one week and one month), when the

forecasts are out-of-sample predictions from heterogeneous autoregressive models.

Diebold-Mariano tests show that many of the forecast improvements are significant

at the 5% level; for example, comparing the parametric duration estimator with the

realized kernel estimator gives 10 significant results for the 20 stocks studied at a

one-day horizon, 10 significant for the one-week horizon and 5 significant for the

one-month horizon, with all significant differences favouring the duration estimator.

Calculation of the nonparametric duration estimator from a complete record of

transaction prices is a trivial task. The parametric estimator is more accurate but

does require the estimation of a parametric model for price events, which requires

specifying intensity functions for durations whose conditional expectations are func-

tions of previous durations. We recommend considering duration based estimators

of integrated variation whenever transaction prices are available because of their

potential to provide more accurate estimates and forecasts.

The duration based variance estimates are generally more biased than competing

estimators. Further research shall be undertaken to reduce the bias of the variance

estimates using price durations. The bias of the duration based variance estima-

tors stems partly from the insufficiency of transaction price data, due to the time-

discretization noise. Thus experiments can be undertaken on quote data, which may

contain less time-discretization as well as bid/ask spread noise.
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Table 2.1: Descriptive statistics for 20 DJIA stocks

Stock bid/ask spread trade duration number of jumps price volatility

mean median mean median mean median mean mean
T 0.014 0.01 6.06 3.00 1.21 1.00 28.88 0.22
GE 0.014 0.01 4.58 2.00 0.98 1.00 27.95 0.24
DIS 0.015 0.01 6.01 3.00 1.63 1.00 29.60 0.24
HD 0.016 0.01 5.48 3.00 1.57 1.00 34.30 0.24
AA 0.016 0.01 6.82 3.00 1.32 1.00 25.59 0.31
KO 0.017 0.01 5.96 3.00 1.84 1.00 51.62 0.16
JPM 0.017 0.01 4.11 2.00 2.02 1.00 38.68 0.28
MRK 0.017 0.01 5.78 3.00 2.11 1.00 40.37 0.20
MCD 0.018 0.01 6.36 3.00 1.91 1.00 52.18 0.19
WMT 0.018 0.01 4.92 2.00 1.88 1.00 52.19 0.17
XOM 0.019 0.01 3.55 2.00 2.34 1.00 68.62 0.19
JNJ 0.018 0.01 5.40 3.00 2.11 1.00 61.36 0.15
DD 0.019 0.01 6.84 3.00 1.82 1.00 42.74 0.22
AXP 0.020 0.01 5.90 3.00 2.10 1.00 44.46 0.25
PG 0.020 0.01 5.41 3.00 2.31 1.00 66.14 0.15
BA 0.026 0.02 6.54 3.00 2.50 2.00 63.88 0.22
UTX 0.026 0.02 6.96 3.00 2.73 2.00 69.98 0.19
CAT 0.028 0.02 6.14 3.00 2.02 1.00 69.99 0.23
MMM 0.029 0.02 7.01 3.00 2.47 2.00 84.10 0.17
IBM 0.035 0.02 5.18 3.00 2.35 2.00 108.00 0.17

Notes: This table presents descriptive statistics for the bid/ask spread (in USD),
the time between consecutive transactions (in seconds), the number of large price
jumps per day, the transaction price, and the annualized volatility. A “large jump”
is recorded when the absolute value of a price change exceeds 5 times the average
bid/ask spread of the day. “Volatility” is calculated using (2.15) and then annualized.
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Figure 2.1: Bid/ask spread, trade duration and volatility for American Express
(AXP)

-1.5
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1
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log(annualized volatility)

log(spread)

log(trade duration)

Notes: Time series of trade duration, volatility, and bid/ask spread from 2002 to
2012. Bid/ask spread is the average spread in USD per day (logarithm) and trade
duration is the average duration per day (in seconds, logarithm). The annualized
volatility (logarithm) is calculated using Equation (2.15).

Figure 2.2: The time-discretization noise

Notes: NP variance estimates divided by σ2
X . Average inter-trade times ∆ are 6,

3, 1, and 0.5 seconds from the bottom to the top. σX = 0.25 per year. Thresholds
δ are from 0 to 15 ticks. P0 = 50, tick size = 0.01.
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Figure 2.3: Combined effect of spread and time-discretization: bias

Notes: NP variance estimates divided by σ2
X , with the range of thresholds δ from 0

to 15 ticks. Bid/ask spreads ς from bottom to the top are 0 to 4 ticks. σX = 0.25
per year. ∆ is 6 seconds on average. P0 = 50, tick size=0.01.

Figure 2.4: Standard deviations of the NP variance estimator

Notes: Standard deviations of the NP variance estimates over the range of
thresholds δ from 0 to 15 ticks. Bid/ask spreads ς from bottom to the top are 0 to
4 ticks. σX = 0.25 per year. ∆ is 6 seconds on average. P0 = 50, tick size=0.01.
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Figure 2.5: Plot of MSE as a function of the threshold value

Notes: MSE of the NP variance estimates over the range of δ from 5 to 15 ticks.
Bid/ask spreads ς are 2 and 3 ticks. σX = 0.25 per year. ∆ is 6 seconds on average.
P0 = 50, tick size=0.01.

Figure 2.6: Including price-discretization noise

Notes: NP variance estimates divided by σ2
X . Prices are multiples of one tick.

Bid/ask spreads ς from bottom to the top are 0 to 4 ticks. ∆ is 6 seconds on
average. Thresholds δ are from 0 to 15 ticks. σX = 0.25 per year. P0 = 50, tick
size=0.01.
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Figure 2.7: 100 small jumps a day

Notes: NP variance estimates divided by σ2
X . The discretization interval is 6

seconds on average. There are on average 100 small jumps a day, with a total
variance of 20% of the integrated variance. Bid/ask spreads from bottom to the top
are 0 to 4 ticks. The discretization interval is 6 seconds on average. Thresholds δ
are from 0 to 15 ticks. σ = 0.25 per year. P0 = 50, tick size=0.01.

Table 2.2: Simulation comparison with other estimators

Scenario 1 Scenario 2 Scenario 3

δ Bias STD RMSE Bias STD RMSE Bias STD RMSE
1ς -0.0143 0.0012 0.0143 -0.0147 0.0013 0.0147 -0.0039 0.0021 0.0044
1.5ς -0.0142 0.0012 0.0143 -0.0092 0.0020 0.0094 -0.0017 0.0035 0.0039
2ς -0.0096 0.0019 0.0098 -0.0069 0.0024 0.0074 -0.0018 0.0038 0.0042
2.5ς -0.0073 0.0025 0.0077 -0.0054 0.0030 0.0062 -0.0008 0.0052 0.0053
3ς -0.0059 0.0031 0.0066 -0.0046 0.0040 0.0061 -0.0006 0.0056 0.0056
3.5ς -0.0057 0.0030 0.0064 -0.0037 0.0044 0.0058 -0.0006 0.0071 0.0071
4ς -0.0048 0.0037 0.0061 -0.0030 0.0050 0.0058 -0.0001 0.0079 0.0079
4.5ς -0.0039 0.0044 0.0058 -0.0025 0.0056 0.0061 0.0003 0.0087 0.0087
5ς -0.0032 0.0050 0.0059 -0.0021 0.0063 0.0066 0.0009 0.0095 0.0095

RKcubic -0.0004 0.0088 0.0088 -0.0005 0.0088 0.0088 -0.0000 0.0093 0.0093
RKParzen -0.0004 0.0109 0.0109 -0.0001 0.0108 0.0108 -0.0004 0.0114 0.0114
TSRV -0.0026 0.0080 0.0085 -0.0025 0.0081 0.0084 -0.0015 0.0081 0.0082
5min 0.0003 0.0081 0.0081 0.0009 0.0081 0.0081 0.0029 0.0081 0.0086

Notes: Scenario 1: ∆ = 4 seconds, ς = 1.5 ticks; Scenario 2: ∆ = 6 seconds,
ς = 2 ticks; Scenario 3: ∆ = 10 seconds, ς = 3 ticks. δ’s are set as a range
of multiples of spread, ς. σX = 0.25 per year. P0 = 50, tick size=0.01. Bias is
calculated by subtracting the mean estimate of the annualized variance from the true
annualized variance, σ2

X = 0.0625, STD is the standard deviation of the estimates
of the annualised variance, and RMSE is the associated root mean squared error.
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Table 2.3: Illustrative parameter values and tests results: AXP, year 2008, with
threshold value equal to 12 ticks

Month Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

ω 0.053 0.173 0.035 0.077 0.161 0.167 0.020 0.085 0.008 0.031 0.025 0.067
(0.015) (0.059) (0.011) (0.044) (0.083) (0.043) (0.008) (0.028) (0.003) (0.007) (0.010) (0.028)

α 0.223 0.261 0.179 0.234 0.197 0.177 0.137 0.229 0.242 0.294 0.208 0.234
(0.027) (0.042) (0.027) (0.053) (0.067) (0.028) (0.019) (0.044) (0.026) (0.029) (0.033) (0.044)

β1 0.727 0.462 0.835 0.643 0.683 0.652 0.866 0.346 0.675 0.436 0.644 0.676
(0.078) (0.154) (0.093) (0.161) (0.317) (0.075) (0.074) (0.167) (0.059) (0.103) (0.135) (0.139)

β2 -0.014 0.032 -0.015 0.008 0.004 0.017 -0.031 0.086 0.002 0.050 0.015 0.006
(0.021) (0.030) (0.017) (0.031) (0.051) (0.015) (0.014) (0.037) (0.011) (0.018) (0.024) (0.023)

β3 0.004 -0.002 0.002 0.001 -0.003 -0.004 0.007 -0.004 0.004 0.000 0.003 0.000
(0.003) (0.003) (0.001) (0.005) (0.004) (0.003) (0.002) (0.004) (0.002) (0.001) (0.002) (0.003)

γ 1.396 1.344 1.449 1.377 1.238 1.432 1.536 1.391 1.274 1.316 1.554 1.532
(0.035) (0.053) (0.042) (0.063) (0.048) (0.048) (0.038) (0.058) (0.030) (0.027) (0.052) (0.068)

η 0.518 0.421 0.480 0.475 0.187 0.424 0.533 0.383 0.478 0.481 0.571 0.552
(0.050) (0.074) (0.056) (0.089) (0.059) (0.062) (0.051) (0.077) (0.043) (0.038) (0.067) (0.087)

LL -0.834 -0.907 -0.842 -0.900 -0.917 -0.908 -0.889 -0.896 -0.755 -0.810 -0.857 -0.770
LB50 0.051 0.951 0.643 0.200 0.097 0.057 0.349 0.291 0.044 0.016 0.678 0.761
DF 0.000 0.749 0.193 0.515 0.307 0.623 0.000 0.030 0.586 0.034 0.002 0.432
obs. 2848 1416 2298 1287 1237 1668 3099 1336 3689 4884 2237 1303

Notes: The first 14 rows are the parameter estimates and robust standard errors
in parentheses for the Burr-HACD model in (2.9), (2.10) and (2.11). LL are the
average log-likelihood values (over the number of duration observations), LB50 and
DF are the p-values for LB statistics (at 50 lags) and DF tests, respectively; and the
last row contains the number of duration observations for each month.

Figure 2.8: Daily NP estimates for AXP: October 2008

Notes: Daily NP estimates for the first 20 trading days of October 2008 for stock
AXP, over the range of threshold values from 2 to 15 ticks (ordered generally from
bottom to top).
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Figure 2.9: AXP: relationship between variance, threshold and bid/ask spread level

Notes: The average spreads of groups 1 to 6 for AXP are 1.4, 1.6, 1.8, 2.1, 2.9, and
4.1 ticks. One tick equals one cent. Diamonds indicate three times the respective
average spread.

Table 2.4: Bid/ask spread level groups, AXP

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Jan. 5 6 2 2 2 1 5 3 1 1 1
Feb. 6 5 2 2 2 1 4 2 1 1 1
Mar. 5 2 2 1 1 2 4 1 1 1 1
Apr. 5 3 2 2 2 1 3 2 1 1 2
May 5 3 2 2 2 2 4 3 2 1 2
Jun. 6 4 1 1 2 2 4 1 1 1 2
Jul. 6 4 2 1 2 4 5 2 2 2 2
Aug. 6 3 1 1 2 5 5 2 1 3 2
Sep. 6 3 1 1 2 4 6 1 1 3 1
Oct. 6 3 2 2 1 4 6 1 1 3 2
Nov. 6 2 2 2 1 5 5 2 1 2 1
Dec. 6 2 2 1 1 4 4 1 1 1 1

Figure 2.10: RMSEs, individual forecast, one-day ahead

Notes: The firms are sorted in ascending order of the RMSEs of the PDV forecasts.
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Figure 2.11: RMSEs, individual forecast, one-week ahead

Notes: The firms are sorted in ascending order of the RMSEs of the PDV forecasts.

Figure 2.12: RMSEs, individual forecast, one-month ahead

Notes: The firms are sorted in ascending order of the RMSEs of the PDV forecasts.

Table 2.5: Diebold-Mariano test summary results, individual forecasts, 10 pairs, 3
horizons, 20 firms

pair PDV -NPd PDV -NPm NPm-NPd PDV -RK NPd-RK NPm-RK PDV -ATM NPd-ATM NPm-ATM RK-ATM

horizon ONE DAY
- 16 15 9 10 5 4 18 14 14 14
+ 0 0 0 0 1 1 0 0 0 0
horizon ONE WEEK
- 19 18 7 10 1 1 10 2 4 4
+ 0 0 0 0 1 1 0 0 0 1
horizon ONE MONTH
- 16 16 2 5 1 1 2 0 0 0
+ 0 0 0 0 0 0 0 0 0 0

Notes: Each figure counts the number of significantly (5%) negative/positive loss
differentials (out of the 20 firms) for the corresponding pair in the first row.
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Figure 2.13: RMSEs, combination forecast, one-day ahead

Notes: The firms are sorted in ascending order of the RMSEs of the COM1
estimates.

Figure 2.14: RMSEs, combination forecast, one-week ahead

Notes: The firms are sorted in ascending order of the RMSEs of the COM1
estimates.

Figure 2.15: RMSEs, combination forecast, one-month ahead

Notes: The firms are sorted in ascending order of the RMSEs of the COM1
estimates.
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Table 2.6: Diebold-Mariano test summary results, combination forecasts, 7 pairs, 3
horizons, 20 firms

pair COM1-PDV COM1-RK COM1-ATM COM2-PDV COM2-RK COM2-ATM COM1-COM2

horizon ONE DAY
- 16 20 20 12 20 20 16
+ 0 0 0 0 0 0 1
horizon ONE WEEK
- 12 18 19 4 16 14 15
+ 0 0 0 1 0 0 0
horizon ONE MONTH
- 1 3 6 0 3 5 3
+ 0 0 0 1 0 0 0

Notes: Each figure counts the number of significantly (5%) negative/positive loss
differentials (out of the 20 firms) for the corresponding pair in the first row.
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2.8 Appendix: Comparison of density functions

For the choice of a suitable density function for the scaled price durations we first

consider LR tests for the four reference stocks: HD, MCD, AXP and IBM. The

results in Tables 2.7, 2.10, 2.13 and 2.16 show that the Burr density is preferred over

the Weibull and Exponential densities most of the time over a wide range of price

change threshold values δ.

Corresponding LB test results for LB statistics with lags 30 and 50 are presented

in Tables 2.8, 2.11, 2.14 and 2.17. For the majority of the months the null hypothesis

of i.i.d. distributed generalized residuals cannot be rejected at the 1% and 5% sig-

nificance levels, which indicates that the price duration dynamics are well captured

by the HACD specification.

The associated density forecast (DF) test results in Tables 2.9, 2.12, 2.15 and

2.18 show that the Burr density clearly outperforms the other two distributional

assumptions, by giving the highest percentages of months in which the null is not

rejected at either the 1% or 5% significance level. From the three densities considered

the Burr density provides the best fit for the scaled price durations.

Overall, the test results for the four reference stocks indicate that the HACD-

Burr combination fits the price duration data best.

Finally, we present in Table 2.19 the LB and DF tests results for all 20 stocks,

when the price change threshold δ is selected using the “3-times-spread” rule. We

observe that the HACD-Burr model fits the price durations data well.
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Table 2.7: LR test results, HD

δ(ticks) 2 3 4 5 6 7 8 9 10

Wei. vs. Burr 505.77 260.88 155.93 100.55 67.86 45.56 35.09 24.14 21.30
Exp. vs. Burr 574.24 307.80 189.89 127.16 87.73 63.65 51.02 38.30 34.75
Exp. vs. Wei. 68.47 46.92 33.96 26.32 19.72 18.34 16.15 13.91 13.85
Wei. vs. Burr 1.00 1.00 1.00 1.00 1.00 0.95 0.93 0.74 0.68
Exp. vs. Burr 1.00 1.00 1.00 1.00 1.00 0.99 0.96 0.89 0.84
Exp. vs. Wei. 0.78 0.75 0.69 0.69 0.67 0.69 0.63 0.61 0.61

Notes: The first three rows are the LR test statistics (averaged over 132 months),
and the last three rows are LR test results presented as percentages of the months
in which the null is rejected at the 1% significance level. The assumed density under
the null is stated first in the 1st column.

Table 2.8: LB test results for 30 and 50 lags, HD

δ(ticks) 2 3 4 5 6 7 8 9 10

30 lags 1% significance level
Exp. 0.98 0.95 0.97 0.98 0.97 0.98 0.94 0.92 0.89
Weibull 0.97 0.94 0.95 0.98 0.95 0.98 0.93 0.92 0.92
Burr 0.87 0.86 0.90 0.92 0.95 0.95 0.94 0.86 0.89

30 lags 5% significance level
Exp. 0.86 0.89 0.91 0.90 0.93 0.93 0.89 0.87 0.85
Weibull 0.82 0.85 0.88 0.86 0.89 0.92 0.87 0.87 0.86
Burr 0.66 0.70 0.78 0.76 0.80 0.83 0.81 0.77 0.80

50 lags 1% significance level
Exp. 0.94 0.96 0.96 0.96 0.98 0.99 0.96 0.92 0.89
Weibull 0.93 0.95 0.96 0.96 0.96 0.98 0.95 0.93 0.92
Burr 0.87 0.91 0.93 0.90 0.96 0.99 0.96 0.87 0.90

50 lags 5% significance level
Exp. 0.82 0.86 0.91 0.89 0.92 0.95 0.90 0.86 0.86
Weibull 0.79 0.83 0.90 0.86 0.90 0.95 0.88 0.86 0.88
Burr 0.67 0.73 0.81 0.80 0.88 0.89 0.83 0.80 0.86

Notes: The upper part of the table are LB test results for 30 lags, and the lower part
are the results for 50 lags. Significance levels of 1% and 5% are considered. Each
figure is the proportion of months in which the null is not rejected.
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Table 2.9: DF test results, HD

δ(ticks) 2 3 4 5 6 7 8 9 10

1% significance level
Exp. 0.00 0.00 0.01 0.03 0.11 0.34 0.31 0.52 0.53
Weibull 0.00 0.02 0.02 0.08 0.21 0.36 0.49 0.60 0.67
Burr 0.21 0.57 0.69 0.80 0.86 0.95 0.92 0.88 0.89

5% significance level
Exp. 0.00 0.00 0.00 0.01 0.03 0.20 0.23 0.32 0.44
Weibull 0.00 0.00 0.01 0.04 0.11 0.25 0.30 0.45 0.53
Burr 0.14 0.43 0.56 0.67 0.76 0.85 0.80 0.81 0.83

Notes: DF test results for significance levels of 1% and 5% are presented. Each
figure is the proportion of months in which the null that the assumed density is the
true density is not rejected.

Table 2.10: LR test results, MCD

δ(ticks) 2 3 4 5 6 7 8 9 10

Wei. vs. Burr 460.17 268.57 181.59 129.51 91.43 68.76 52.41 40.05 32.77
Exp. vs. Burr 577.22 328.81 219.52 156.81 113.24 86.20 62.74 53.14 46.29
Exp. vs. Wei. 117.05 60.24 37.93 27.09 21.33 17.38 10.87 12.03 12.24
Wei. vs. Burr 1.00 1.00 0.99 0.98 0.95 0.88 0.84 0.78 0.73
Exp. vs. Burr 1.00 1.00 0.99 0.99 0.97 0.93 0.84 0.88 0.84
Exp. vs. Wei. 0.87 0.64 0.57 0.55 0.50 0.52 0.45 0.46 0.45

Notes: The first three rows are the LR test statistics (averaged over 132 months),
and the last three rows are LR test results presented as percentages of the months
in which the null is rejected at the 1% significance level. The assumed density under
the null is stated first in the 1st column.
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Table 2.11: LB test results for 30 and 50 lags, MCD

δ(ticks) 2 3 4 5 6 7 8 9 10

30 lags 1% significance level
Exp. 0.93 0.96 0.98 0.95 0.98 0.99 0.93 0.93 0.89
Weibull 0.92 0.96 0.96 0.95 0.98 0.98 0.93 0.94 0.92
Burr 0.90 0.87 0.89 0.86 0.94 0.96 0.91 0.90 0.86

30 lags 5% significance level
Exp. 0.83 0.86 0.88 0.86 0.87 0.96 0.88 0.90 0.83
Weibull 0.82 0.83 0.86 0.83 0.86 0.95 0.84 0.89 0.85
Burr 0.73 0.67 0.74 0.76 0.82 0.89 0.77 0.80 0.77

50 lags 1% significance level
Exp. 0.90 0.92 0.97 0.95 0.98 0.99 0.90 0.92 0.88
Weibull 0.90 0.92 0.97 0.95 0.98 0.98 0.89 0.93 0.90
Burr 0.89 0.89 0.92 0.92 0.96 0.98 0.89 0.89 0.86

50 lags 5% significance level
Exp. 0.85 0.87 0.88 0.89 0.96 0.98 0.86 0.86 0.86
Weibull 0.84 0.86 0.87 0.88 0.92 0.97 0.85 0.86 0.88
Burr 0.76 0.73 0.77 0.80 0.86 0.91 0.79 0.81 0.80

Notes: The upper part of the table are LB test results for 30 lags, and the lower part
are the results for 50 lags. Significance levels of 1% and 5% are considered. Each
figure is the proportion of months in which the null is not rejected.

Table 2.12: DF test results, MCD

δ(ticks) 2 3 4 5 6 7 8 9 10

1% significance level
Exp. 0.00 0.04 0.11 0.15 0.27 0.39 0.51 0.51 0.48
Weibull 0.01 0.07 0.18 0.21 0.34 0.43 0.57 0.63 0.61
Burr 0.24 0.55 0.75 0.80 0.83 0.92 0.88 0.85 0.84

5% significance level
Exp. 0.00 0.00 0.07 0.08 0.13 0.27 0.43 0.38 0.36
Weibull 0.01 0.03 0.10 0.13 0.23 0.32 0.40 0.47 0.48
Burr 0.14 0.45 0.61 0.70 0.72 0.83 0.83 0.80 0.76

Notes: DF test results for significance levels of 1% and 5% are presented. Each
figure is the proportion of months in which the null that the assumed density is the
true density is not rejected.
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Table 2.13: LR test results, AXP

δ(ticks) 2 3 4 5 6 7 8 9 10 11 12

Wei. vs. Burr 678.13 382.69 253.40 172.94 128.72 98.31 74.79 59.54 44.10 35.64 28.78
Exp. vs. Burr 759.60 435.54 292.96 206.03 155.16 121.43 94.94 75.91 59.25 52.71 42.91
Exp. vs. Wei. 81.47 52.85 39.56 29.77 26.70 22.26 19.39 18.16 15.46 15.49 14.66
Wei. vs. Burr 1.00 1.00 1.00 1.00 0.99 0.99 0.96 0.95 0.89 0.77 0.65
Exp. vs. Burr 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.95 0.95 0.89 0.84
Exp. vs. Wei. 0.64 0.71 0.72 0.72 0.66 0.63 0.63 0.64 0.65 0.60 0.63

Notes: The first three rows are the LR test statistics (averaged over 132 months),
and the last three rows are LR test results presented as percentages of the months
in which the null is rejected at the 1% significance level. The assumed density under
the null is stated first in the 1st column.

Table 2.14: LB test results for 30 and 50 lags, AXP

δ(ticks) 2 3 4 5 6 7 8 9 10 11 12

30 lags 1% significance level
Exp. 0.93 0.93 0.95 0.98 0.98 0.97 0.96 0.97 0.95 0.87 0.92
Weibull 0.91 0.93 0.95 0.97 0.95 0.96 0.96 0.96 0.95 0.88 0.92
Burr 0.86 0.86 0.82 0.92 0.90 0.92 0.89 0.89 0.92 0.89 0.90

30 lags 5% significance level
Exp. 0.79 0.89 0.86 0.90 0.92 0.91 0.83 0.91 0.92 0.83 0.90
Weibull 0.73 0.88 0.85 0.88 0.89 0.90 0.83 0.92 0.91 0.82 0.90
Burr 0.60 0.69 0.67 0.75 0.73 0.82 0.77 0.81 0.83 0.77 0.82

50 lags 1% significance level
Exp. 0.89 0.95 0.98 0.97 0.98 0.96 0.94 0.98 0.95 0.87 0.91
Weibull 0.89 0.95 0.97 0.95 0.96 0.97 0.95 0.98 0.95 0.89 0.92
Burr 0.85 0.92 0.88 0.89 0.92 0.94 0.93 0.96 0.92 0.90 0.90

50 lags 5% significance level
Exp. 0.74 0.89 0.86 0.90 0.92 0.95 0.89 0.96 0.92 0.83 0.89
Weibull 0.73 0.88 0.83 0.88 0.89 0.95 0.89 0.94 0.91 0.85 0.89
Burr 0.65 0.75 0.77 0.79 0.80 0.88 0.85 0.83 0.86 0.80 0.85

Notes: The upper part of the table are LB test results for 30 lags, and the lower part
are the results for 50 lags. Significance levels of 1% and 5% are considered. Each
figure is the proportion of months in which the null is not rejected.
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Table 2.15: DF test results, AXP

δ(ticks) 2 3 4 5 6 7 8 9 10 11 12

1% significance level
Exp. 0.00 0.00 0.00 0.02 0.08 0.13 0.27 0.35 0.45 0.46 0.52
Weibull 0.00 0.00 0.00 0.04 0.12 0.16 0.34 0.45 0.54 0.55 0.64
Burr 0.14 0.45 0.57 0.70 0.74 0.82 0.83 0.86 0.86 0.85 0.86

5% significance level
Exp. 0.00 0.00 0.00 0.01 0.02 0.06 0.16 0.20 0.30 0.30 0.40
Weibull 0.00 0.00 0.00 0.02 0.05 0.08 0.22 0.27 0.36 0.48 0.51
Burr 0.11 0.35 0.42 0.51 0.66 0.64 0.74 0.76 0.78 0.74 0.80

Notes: DF test results for significance levels of 1% and 5% are presented. Each
figure is the proportion of months in which the null that the assumed density is the
true density is not rejected.
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Table 2.19: Diagnostic test results for 20 DJIA stocks

LB30(1%) LB30(5%) LB50(1%) LB50(5%) DF(1%) DF(5%)

HD 0.93 0.84 0.95 0.83 0.80 0.68
MCD 0.91 0.75 0.94 0.80 0.82 0.73
AXP 0.88 0.69 0.91 0.77 0.73 0.55
IBM 0.94 0.80 0.95 0.83 0.73 0.57
AA 0.90 0.75 0.92 0.80 0.80 0.70
BA 0.87 0.73 0.92 0.82 0.87 0.79
CAT 0.95 0.84 0.95 0.86 0.67 0.51
DD 0.91 0.82 0.96 0.86 0.82 0.67
DIS 0.92 0.78 0.98 0.84 0.92 0.78
GE 0.96 0.80 0.93 0.85 0.82 0.62
JNJ 0.91 0.72 0.91 0.77 0.80 0.68
JPM 0.89 0.70 0.89 0.77 0.58 0.42
KO 0.90 0.73 0.94 0.81 0.83 0.73
MMM 0.96 0.83 0.97 0.89 0.79 0.69
MRK 0.90 0.77 0.92 0.86 0.77 0.61
PG 0.92 0.73 0.94 0.80 0.77 0.63
T 0.92 0.81 0.93 0.84 0.81 0.70
UTX 0.92 0.81 0.96 0.88 0.86 0.69
WMT 0.95 0.78 0.92 0.80 0.79 0.61
XOM 0.91 0.77 0.94 0.83 0.44 0.28
Avg. 0.92 0.77 0.94 0.82 0.77 0.63

Notes: LB and DF test results from the MLE of the HACD-Burr model in equations
(2.9), (2.10) and (2.11). The price durations are obtained with δ∗ given by the “3-
times-spread” rule. Each figure in the table is the proportion of months in which the
null is not rejected at the stated significance level.
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Chapter 3

High-frequency covariance matrix

estimation using price durations
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Abstract

We propose a price duration based covariance estimator using high frequency trans-

actions data. The effect of the last-tick time-synchronisation methodology, together

with effects of important market microstructure components is analysed through a

comprehensive Monte Carlo study. To decrease the number of negative eigenvalues

produced by the non positive-semi-definite (psd) covariance matrix, we devise an

average covariance estimator by taking an average of a wide range of duration based

covariance matrix estimators. Empirically, candidate covariance estimators are im-

plemented on 19 stocks from the DJIA. The duration based covariance estimator is

shown to provide comparably accurate estimates with smaller variation compared

with competing estimators. An out-of-sample GMV portfolio allocation problem is

studied. A simple shrinkage technique is introduced to make the sample matrices

psd and well-conditioned. Compared to competing high-frequency covariance ma-

trix estimators, the duration based estimator is shown to give more stable portfolio

weights over the sample period while maintaining a comparably low portfolio vari-

ance.

Keywords: Price durations; Covariance estimation; High-frequency data; Mar-

ket microstructure noise; Minimum variance portfolio.
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3.1 Introduction

Asset correlations play a crucial role in many finance applications. Estimation of

a high-dimensional variance-covariance matrix using low frequency data, such as

daily data, typically requires a long time span, making it difficult to catch the most

recent trend in the changes of asset correlations. The advent of tick-by-tick high-

frequency data brings both opportunities and challenges. On the one hand, with

high-frequency data we can greatly shorten the estimation window. On the other

hand, the presence of market microstructure (MMS) noise and non-synchronous

trade arrival times in the high-dimensional setting complicates the implementation

of the standard covariance estimator in calendar time.

In this paper, we propose a high frequency covariance matrix estimator using

price durations. A price duration is defined as the time taken for the absolute cu-

mulative price/return changes to exceed a threshold value. This matrix estimator

takes the average of a range of duration based covariance matrix estimators to gain

efficiency and reduce the number of negative eigenvalues. We show through simu-

lation the effects of MMS noise and the last-tick time-synchronization method on

this duration based covariance estimator. Compared to other candidate covariance

estimators in terms of bias and efficiency, the duration based estimator shows compa-

rable bias but lower standard deviation. In an out-of-sample (OTS) global minimum

variance (GMV) portfolio allocation exercise, the duration based covariance matrix

estimator performs on par with competing estimators in terms of GMV portfolio

variance while yielding considerably lower portfolio weight turnover rates.

In the existing literature, the effect of MMS noise on univariate variance estima-
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tion has been widely studied. Three main approaches are proposed: the subsampling

approach of Zhang et al. (2005) and Ait-Sahalia et al. (2011), the realised kernel es-

timator of Barndorff-Nielsen et al. (2008a), and the pre-averaging approach of Jacod

et al. (2009).

In the multivariate case, Epps (1979) document the observation that as the sam-

pling frequency of stock returns increases, the corresponding return correlations

have a strong tendency towards zero. Reno (2003) investigate the dynamics un-

derlying the Epps effect and show that this effect can largely be explained by the

non-synchronization of price observations and the consequent lead-lag relationships

between asset prices. Later, different time-synchronization schemes have been pro-

posed, including the last-tick method by Zhang (2011) and the refresh time method

by Barndorff-Nielsen, Hansen, Lunde and Shephard (2011). Hayashi and Yoshida

(2005) (HY) propose the first high frequency covariance estimator that accounts for

the time-synchronization effect by taking the cumulative sum of the cross-product

of all overlapping returns in the absence of noise. To enhance the HY estimator,

Voev and Lunde (2007) propose a procedure to correct for MMS noise bias for the

HY estimator and a subsampling version of the bias-corrected estimator; Griffin and

Oomen (2011) propose a lead-lag adjustment to a sparse sampling implementation

of the HY estimator that is more efficient when the level of MMS noise is high.

As an extension to the three approaches in estimating univariate variances, the

multivariate counterparts are proposed, including the realized kernel (RK) covari-

ance estimator by Barndorff-Nielsen et al. (2011), the two-scale (TS) covariance

estimator by Zhang (2011), and the pre-averaging covariance estimator by Chris-
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tensen, Kinnebrock and Podolskij (2010). The RK estimator of Barndorff-Nielsen

et al. (2011) is constructed under the Refresh Time sampling scheme, where trade

arrivals of different stocks are synchronised based on the slowest member. This sam-

pling scheme has the drawback that it throws away a significant amount of data

especially when the sample contains some very illiquid stocks. Other estimators are

proposed to make more efficient use of data. Lunde, Shephard and Sheppard (2016)

refine the realized kernel covariance estimator into a composite realized kernel where

univariate realized kernels are used to estimate variances and bivariate realized ker-

nels estimate correlations. Hautsch, Kyj and Oomen (2012) introduce a blocking and

regularization approach where the S&P500 stocks are grouped according to liquidity

so as to reduce data loss. As a frequency domain extension of the RK estimator,

Park, Hong and Linton (2016) propose a Fourier realized kernel covariance estimator

for which no explicit time-alignment is required. Another interesting high-frequency

covariance estimator is the quasi-maximum likelihood estimator of Ait-Sahalia, Fan

and Xiu (2010) that is free of any tuning parameter.

The rest of the paper is organized as follows. Section 3.2 lays out the theoreti-

cal foundation. Section 3.3 summarizes data properties. Section 3.4 shows through

simulation: 1) for one pair of assets, the effects of the last-tick time-synchronization

method and MMS noise on the duration based covariance estimator; 2) for a co-

variance matrix of 19 assets, the negative eigenvalue problem and its mitigation by

taking an average over a wide range of duration based covariance matrix estimators.

Section 3.5 presents empirical comparison of the duration based covariance matrix

estimator with other high-frequency covariance estimators in terms of accuracy and
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efficiency as well as results on an OTS GMV portfolio allocation problem.

3.2 Theoretical foundation

We will compose the duration based covariance matrix on a pairwise basis. Three

approaches in computing the covariance of a pair of assets using individual variances

are laid out in Section 3.2.1. The non-parametric duration based variance estimator,

NPDV, is used to calculate variances. The derivation of NPDV is in Section 3.2.2.

3.2.1 Three approaches

We will first lay out the three approaches in estimating covariance through variances.

Later through simulation we will show the relative efficiency and bias of the three

approaches.

Assume the two efficient log-price processes, X1t and X2t, are pure diffusion

processes with no drift. The weighted sum of the two diffusion processes follows:

d(X1t + θX2t) = σX1tdB1t + θσX2tdB2t, (3.1)

where θ is a weighting parameter. For the two Brownian processes, dB1t ·dB2t = ρtdt.

From now on we keep σt and ρt constant through the estimation interval, usually

one trading day, so we drop the subscript t. Let X(θ) = X1 + θX2 and σ2
X(θ) denote

the variance of the above process, then

σ2
X(θ) = σ2

X1 + θ2σ2
X2 + 2θρσX1σX2 . (3.2)
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When θ = 1, σ2
X(θ) = σ2

(X1+X2), and we have:

σ2
(X1+X2) = σ2

X1 + σ2
X2 + 2ρσX1σX2 . (3.3)

When θ = −1, σ2
X(θ) = σ2

(X1−X2), and we have:

σ2
(X1−X2) = σ2

X1 + σ2
X2 − 2ρσX1σX2 . (3.4)

Let V̂ ar(·) denote the estimate of σ2
(·), Ĉov(X1, X2) the estimate of ρσX1σX2 .

Then from equations (3.3) and (3.4), we have three methods to calculate Ĉov(X1, X2):

Ĉov1(X1, X2) = 1
2(V̂ ar(X1 +X2)− V̂ ar(X1)− V̂ ar(X2)); (3.5)

Ĉov2(X1, X2) = 1
2(V̂ ar(X1) + V̂ ar(X2)− V̂ ar(X1 −X2)); (3.6)

Ĉov3(X1, X2) = 1
4(V̂ ar(X1 +X2) + V̂ ar(X1 −X2)). (3.7)

Note that Ĉov3(X1, X2) = 1
2(Ĉov1(X1, X2) + Ĉov2(X1, X2)). V̂ ar(·) will be cal-

culated using the non-parametric duration-based variance estimator, NPDV (or

NP ), as derived below.

3.2.2 NPDV

The derivation of the univariate non-parametric duration based variance estimator,

NPDV, is exactly the same as in Chapter 2 and Nolte, Taylor and Zhao (2016).

Initially we assume that the univariate efficient log-price, Xt, follows a pure
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diffusion process with no drift, represented by

dXt = σX,tdBt. (3.8)

For each trading day and a selected threshold δ, a set of event times {td, d =

0, 1, ...} is defined in terms of absolute cumulative log-price changes exceeding δ, by

t0 = 0 and

td = inf
t>td−1

{|Xt −Xtd−1| = δ}, d ≥ 1. (3.9)

Let xd = td − td−1 denote the time duration between consecutive events and let

Id−1 denote the complete price history up to time td−1. For the conditional distri-

bution xd|Id−1, we denote the density function by f(xd|Id−1), the cumulative den-

sity function by F (xd|Id−1) and the intensity (or hazard) function by λ(xd|Id−1) =

f(xd|Id−1)/(1− F (xd|Id−1)).

Following Engle and Russell (1998) and Tse and Yang (2012), duration based

variance estimators rely on a relationship between the conditional intensity function

and the conditional instantaneous variance of a step process. The step process

{X̃t, t ≥ 0} is defined by X̃t = Xt when t ∈ {td, d ≥ 0} and by X̃t = X̃td−1 whenever

td−1 < t < td. The conditional instantaneous variance of X̃t equals

σ2
X̃,t = lim

∆→0

1
∆ var(X̃t+∆ − X̃t|Id−1), td−1 < t < td. (3.10)

As ∆ approaches zero we may ignore the possibility of two or more events between

times t and t+ ∆, so that the only possible outcomes for X̃t+∆− X̃t can be assumed
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to be 0, δ and −δ. The probability of a non-zero outcome is determined by λ(x|Id−1)

and consequently

σ2
X̃,t = δ2λ(t− td−1|Id−1), td−1 < t < td. (3.11)

The integral of σ2
X̃,t

over a fixed time interval provides an approximation to the

integral of σ2
X,t over the same time interval, and the approximation error disappears

as δ → 0.

Let there be N price duration times during a day, then the general duration

based estimator of integrated variance, IV , is given by

ĨV =
tN∫
0

σ2
X̃,tdt =

N∑
d=1

δ2
td∫

td−1

λ(t− td−1|Id−1)dt

= −δ2
N∑
d=1

ln(1− F (xd|Id−1)). (3.12)

In practice, we do not know the true intensity function. We must therefore either

estimate the functions λ(.|.) or we can replace the summed integrals in (3.12) by their

expectations. As these expectations are always one, the non-parametric, duration

based variance estimator, NPDV , is simply

NPDV = Nδ2. (3.13)

This equals the quadratic variation of the approximating step process over a

single day, which we may hope is a good estimate of the quadratic variation of the

diffusion process over the same time interval. An equation like (3.13), for the special
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case of constant volatility, can be found in the early investigation of duration based

methods by Cho and Frees (1988).

Note that δ is the threshold value for returns. So V̂ ar(X1+X2) and V̂ ar(X1−X2)

should be calculated by adding up synchronized returns (not price changes) from the

processes X1t ± X2t. The selection of δ, as a return measure, for the estimation of

V̂ ar(X1(2)) and V̂ ar(X1 ±X2), is in Section 3.4.1.3.

3.3 Data properties

In the empirical analysis we use 19 of the 30 stocks of the Dow Jones Industrial

Average (DJIA) index; these are the 20 stocks studied in Chapter 2 except stock

T is excluded. 1 The tick-by-tick trades and quotes data spanning 11 years (2769

tading days) from January 2002 to December 2012 are obtained from the New York

Stock Exchange (NYSE) TAQ database and are time-stamped to a second. The

stocks selected have their primary listing at NYSE without interruption during the

sample period.

The raw data is cleaned using the method of Barndorff-Nielsen et al. (2009). Data

entries that meet one or more of the following conditions are deleted: 1) entries out

of the normal 9:30am to 4pm daily trading session; 2) entries with either bid, ask

or transaction price equal to zero; 3) transaction prices that are above the ask price

plus the bid/ask spread or below the bid price minus the bid/ask spread; 4) entries

with negative bid/ask spread; 5) entries with spread larger than 50 times the median

1From the list of 30 DJIA stocks as of December 2012, CSCO, INTC, and MSFT are excluded
as their primary listing is at NASDAQ; BAC, CVX, HPQ, PFE, TRV, UNH, and VZ are excluded
because of incomplete NYSE data samples; T is excluded because of the loss of one trading day
due to corporate merger.
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spread of the day. When multiple transaction, bid or ask prices have the same time

stamp, the median price is used.

For our analysis we merge the individual trades and quotes files using a refined

Lee and Ready algorithm as outlined in Nolte (2008) to identify trades with corre-

sponding bid and ask quotes, which yields associated buy and sell indicators as well

as bid/ask spreads.

The list of stocks and descriptive statistics for the whole sample period are pre-

sented in Table 3.1, which repeats the information in Table 2.1 in Chapter 2. Table

3.1 shows means and medians for bid/ask spreads and inter-trade durations, as well

as means for the price levels and volatilities for all stocks, sorted in the ascending

order of their mean spread level in the first column. The mean values of bid/ask

spreads range from 1.4 to 3.5 cents, and from 3.55 to 7.01 seconds for trade du-

rations. The corresponding medians range from 1 to 2 cents, and 2 to 3 seconds,

respectively, implying right-skewed distributions for both variables. Table 3.1 also

presents means and medians for a simple measure of a jump frequency. A jump is

recorded when the absolute value of a price change exceeds five times the average

bid/ask spread for a given day. Both mean and median values indicate that there

are about 1 to 2 of these jump events on average per day.

We also observe that the average level of volatility across the whole sample period

lies between 15% and 31%, while the average price level ranges from $26 to $108.

We clearly observe that the average bid/ask spread is increasing with the average

price level.

Table 3.2 presents the correlations of returns and trade arrivals for the 19 stocks.
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In the upper triangle are the correlations of returns and the lower triangle contains

the correlations of trade arrivals. Returns are calculated on 30min intervals. Corre-

lation of trade arrivals is calculated as the correlation between the numbers of trade

arrivals within a specified time bin, for example 40 seconds. We count the numbers

of trade arrivals within each of the 585 40sec bins every day for all 19 stocks. We

then calculate the correlations of the counts in each 40sec bin for each pair of stocks.

In the lower triangle of Table 3.2 are the trade arrival correlations averaged over

the 585 bins for the 171 pairs of stocks. In the last column are average 30min return

correlations of one stock with the other 18 stocks, and in the last row are corre-

sponding average 40sec trade arrival correlations. The average correlation between

returns is around 0.5, and the average correlation between trade arrivals is around

0.4.

Figure 3.1 plots the trade arrival correlations averaged over the 171 pairs for

the 585 40sec bins over the daily trading session from 9:30 to 16:00. The three

“jump” points are highlighted. They occur at 10:00, 14:00, and 15:40. The first two

correlation jumps can be explained by regular U.S. economic news announcements

at 10am and 2pm. The third jump at 15:40 is due to NYSE’s requirement that

orders which are not entered to offset a published order imbalance must be entered

by 15:40 EST to be executed at the close of a market.

We can also see an increased average trade arrival correlation over the last one-

third of the daily trading session, which may be due to more active trading as the

market is nearer to closing.
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3.4 Simulation results

We perform two types of simulations in this section. The first simulation is done

on one pair of assets with 2000 replications, and the second simulation done on a

covariance matrix of 19 assets with 100 replications. Each replication is a simulation

for one trading day. The aim of the first simulation is to compare the performance

of the covariance estimates using the three duration based covariance estimation

methods in Section 3.2 with other popular covariance estimators, and to study the

effect of time-synchronization and bid/ask spread on the estimation of V̂ ar(X1±X2).

We study the effect of the last-tick time-synchronization method by varying the

correlation of trade arrivals, ρarr. We consider three levels of trade arrival correlation:

ρarr = 0, ρarr = 1, and ρarr = 0.4, all explained in more detail later. Other parameter

values are set to be consistent with empirical data properties: ρ = 0.5, σX1 = σX2 =

0.25, and initial price P0 = 50. In this setup, σ2
(X1−X2) = σ2

X1 = σ2
X2 = 1

3σ
2
(X1+X2).

The aim of the second simulation is to assess the performance of the duration

based covariance estimator in a matrix setup, consisting of 19 stocks, in order to

study its property of positive semi-definiteness (psd). The starting prices, volatilities,

trade durations, and spread levels of the 19 stocks are set as the average values as

shown in Table 3.1. The correlations of individual stock returns are set as shown in

Table 3.2. Trade arrivals are assumed to be independent in this matrix setup.
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3.4.1 Simulation on one pair of assets

3.4.1.1 Time-synchronization effect

The time-synchronization issue stems from the fact that trades occur at discrete

and different times for different stocks, so we first need to discretize the diffusion

process for each log-price. Let ∆1 and ∆2 be the discretization time intervals, and

Y1,i and Y2,j be the noisy trade (log-)prices, where i(j) = 0, . . . , I(J), I and J

being the number of trades during the daily trading session for asset 1 and 2. Y1,i

and Y2,j consist of discretized efficient (log-)price processes X1,i and X2,j and noise

components.

Discretizing X1t and X2t yields time-discretized diffusion components

X1t −X1,t−∆1 = σX1

√
∆Z1t; (3.14)

X2t −X2,t−∆2 = σX2

√
∆Z2t. (3.15)

Here, Z1t and Z2t are standard normally distributed random variables with cor-

relation ρ = 0.5 and σX1 and σX2 are the daily integrated volatilities, which are

assumed to be constant.

In implementation, we first draw 23,400 (since there are 23,400 seconds per trad-

ing day) equally spaced efficient return points using equations (3.14) and (3.15) with

∆ = 1 second, and then select the points where trades occur with random Bernoulli

trials of probability 1/∆1 or 1/∆2. In this section, we set ∆1 = ∆2 = 6 seconds. We

convert cumulative returns into prices based on an initial price of P0 = 50. Finally,
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we can add bid/ask spreads as described in Section 3.4.1.2.

We synchronize two discretized processes using the last-tick synchronization

method, that is, we retain all trades of the two series, and when only one asset

trades at a transaction time t1,i or t2,j we interpolate by adding in the last trade

price of the no-trade asset.

To investigate the effect of the last-tick time-synchronization method on the NP

estimates of V̂ ar(X1 +X2) and V̂ ar(X1−X2), we consider three levels of correlation

between trade arrivals, ρarr: 1) identical trade arrivals, ρarr = 1, where the trade

times of the two assets are the same; 2) independent trade arrivals, ρarr = 0, where

two trade times are generated independently; 3) correlated trade arrivals, ρarr = 0.4,

and the construction of two correlated Bernoulli processes is in the Appendix. The

third scenario conforms to the real data.

Figure 3.2 plots the NP estimates of V̂ ar(·) when the trade arrival times of

the two time-discretized processes are the same, ρarr = 1, so that we do not need

to synchronize the trades. The return thresholds are calculated using the thresh-

old number of ticks on the x-axis divided by P0. Due to time-discretization, the

ratios of V̂ ar(·) over σ2
(·) do not reach unity but are increasing as the threshold

value increases.2 V̂ ar(X1 − X2), V̂ ar(X1), and V̂ ar(X2) give the same estimates.

V̂ ar(X1 + X2) is converging to the true value slower than the other three, because

σ2
(X1+X2) is three times the value of σ2

(X1−X2) and needs a larger threshold to mitigate

the time-discretization effect.

2The time-discretization noise stems from the fact that trades do not arrive continuously. Here,
time-discretization decreases the number of events observed, due to the absence of price points
that may have defined price events. Increasing the threshold value reduces the bias introduced by
time-discretization.
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In Figure 3.3, we let the two series of trade arrival times be independent, so

ρarr = 0. We observe that, compared to Figure 3.2, V̂ ar(X1−X2) estimates increase

significantly. This is due to what we call the “reverse Epps” effect.

The Epps and reverse Epps effects arise when we estimate V̂ ar(X1 ±X2) using

the last-tick synchronization method. They exist whenever ρ 6= 0 and ρarr 6= 1.

When ρ > 0, the (latent) returns of the two assets over an interval ∆, R1,∆ and R2,∆

are more likely to be of the same sign. Assume only asset 1 has a trade at the end

of this ∆ time interval, when we synchronize the arrival times by plugging in the

last trade price of asset 2, this stagnant price would reduce R2,∆ to zero. |R1 + R2|

is decreased, so does V̂ ar(X1 + X2), rendering the Epps effect; while |R1 − R2| is

increased, so does V̂ ar(X1 −X2), rendering the reverse Epps effect. No such effects

exist when ρ = 0.

So due to the Epps effect, we would expect V̂ ar(X1+X2) estimates to decrease in

Figure 3.3 compared to those in Figure 3.2, but it does not seem so. This is due to the

decreased time-discretization effect, which arises whenever ρarr 6= 1. The last-tick

interpolation method is increasing the number of trades for both series, rendering

the synchronized process finer discretized than both individual series, thus increasing

the NP estimates of both V̂ ar(X1 +X2) and V̂ ar(X1 −X2).

In Figure 3.4, we plot the more realistic scenario, where ρarr = 0.4. We see that

the effects from last-tick time-synchronization are less pronounced than the case

when ρarr = 0, but still quite significant compared to the case with identical trade

arrivals.
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3.4.1.2 Bid/ask spread effect

In this section we briefly discuss the effect of bid/ask spread on the estimation of

V ar(X1±X2), which is similar to the bid/ask spread effect discussed in Nolte et al.

(2016) on the estimation of V ar(X1(2)).

Bid and ask transaction prices are generated by Yi(j) = Xi(j) +0.51i(j)s1(2), where

s1(2) is the bid/ask spread for asset 1(2), which is assumed to be constant. 1i(j) is

an indicator variable which equals 1 when Yi(j) represents an ask price and -1 when

Yi(j) represents a bid price. The transaction price takes either the bid or the ask side

with probability 0.5 and the variables 1i(j) are i.i.d.

In Figure 3.5, we add bid/ask spread, s1 = s2 = 2 ticks, to both series of

transaction prices with correlated trade arrival times. As expected, the bid/ask

spread increases all V̂ ar(·) estimates.

3.4.1.3 Compare the three Ĉov estimation methods

As seen in equations (3.5), (3.6), and (3.7), there are three ways to calculate Ĉov(X1, X2)

using V ar(X1 ± X2), V ar(X1), and V ar(X2). Now that we have seen the effects

of time-discretization, time-synchronization, and bid/ask spread on the individual

components, in this section we will put them together and compare the performance

of the three methods in terms of bias and efficiency over a range of threshold values.

We will also compare the duration based covariance estimators with other popular

covariance estimators, including the realized kernel (RK), two-scaled (TS), 5min,

and 30min realised covariance (RC) estimators.

RK and TS estimators in this section and in the empirical section are constructed
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following the same rules. RK is constructed conforming to Barndorff-Nielsen et al.

(2011). The Parzen kernel is used, with c∗ = 3.51. For the estimation of the optimal

bandwidth H∗, the 10min sub-sampled RV is used to approximate the square-root of

integrated quarticity and the 30sec sub-sampled RV used to approximate the noise

variance. TS is constructed as in Zhang (2011). The fast scale is 10 seconds and the

slow scale is 5 minutes.

In addition to the scenario in the last section (scenario 3 in Table 3.3), we add

two other scenarios. Scenario 1 has ∆1 = 2 seconds, ∆2 = 4 seconds, s1 = 1 ticks,

s2 = 1.5 ticks; and scenario 2 has ∆1 = 4 seconds, ∆2 = 8 seconds, s1 = 1.5 ticks,

s2 = 3 ticks. In Figures 3.6, 3.7 and 3.8 we plot the ratios of the duration based

covariance estimates over the true value against the threshold number of multiples

of the spread on the x-axis for the three scenarios; the standard deviations (STDs)

of the duration based covariance estimates are in Figures 3.9, 3.10 and 3.11, and the

RMSE’s of the estimates are plotted in Figures 3.12, 3.13 and 3.14.

Note that on the x-axis of Figures 3.6 to 3.14 it is no longer the number of ticks

but the number of multiples of the spread for the threshold, since we want to add

a “staggering feature” to V̂ ar(X1(2)) and V̂ ar(X1 ± X2) so that they don’t share

the same threshold value. The threshold number of ticks for the variance estimate

of a single stock is still set as a range of multiples of the spread of this stock, so

s = s1(2) for V̂ ar(X1(2)). But the threshold for the variance estimate of the portfolio

of two stocks is set as a range of multiples of the sum of the spread of the two

stocks, so s = s1 + s2 for V̂ ar(X1 ±X2), because s1 + s2 is the spread for X1 ±X2.

V̂ ar(X1 +X2) and V̂ ar(X1−X2) use the same threshold because we assume in the
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simulation that trades take the bid or the ask side at random. The staggering feature

here allows us to put a larger threshold value on V̂ ar(X1 ±X2), which is desirable,

since V̂ ar(X1 ± X2) are converging slower to the true values than V̂ ar(X1(2)), as

seen in Figure 3.5.

In terms of bias, as seen in Figures 3.6, 3.7, and 3.8, Ĉov1 is the least biased

in all three scenarios but, as shown in Figures 3.9, 3.10, and 3.11, it also has the

largest STD among the three methods. The bias of the estimates decreases while

the standard deviation increases as the threshold increases. The RMSE takes into

account the effects of both bias and STD so that the U-shape curves are evident

for all three estimators, as shown in Figures 3.12, 3.13, and 3.14. Roughly between

thresholds of 2 to 6 times the spread the RMSE’s are relatively stable. Ĉov1 shows

lower RMSE on the lower end of the threshold than Ĉov2 and Ĉov3 in all three

scenarios.

The reason why Ĉov1 is the least biased can be found in Figure 3.5, which shows

a realistic scenario with bid/ask spread as well as correlated trade arrivals. Due to

the “reverse Epps” effect, V̂ ar(X1−X2) is greatly inflated, rendering Ĉov2 and Ĉov3

estimates to be smaller and more biased. The most biased among the three is Ĉov2.

This is because in the calculation of Ĉov2, V̂ ar(X1(2)) uses smaller threshold values

than V̂ ar(X1 −X2), which makes their difference larger. While V̂ ar(X1 −X2) and

V̂ ar(X1 + X2) share the larger threshold value so that they are both less biased,

which makes Ĉov3 more accurate than Ĉov2.

To look more closely, we tabulate in Table 3.3 the Bias, Standard Deviation

(STD) and RMSE statistics for the three methods using price durations over thresh-
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old number of multiples from 1 to 5 times the spread, together with the same statis-

tics for the RK, TS, 5min and 30min realized covariance estimators, for the three

scenarios. Compared to the competing covariance estimators, the duration based

estimates tend to exhibit lower standard deviation but larger bias. The RMSE takes

into account the bias-efficiency tradeoff. Along this dimension, when we choose an

appropriate threshold value, for example 2 to 3.5 times the spread, Ĉov1 performs

better than the TS, 5min, and 30min realised covariance estimators, and comparable

to the RK estimator. We will use Ĉov1 to calculate the duration based covariance

estimates from now on and denote it as COV .

3.4.2 Simulation of the covariance matrix

Now we construct the covariance matrix of 19 stocks using COV , the RK and the TS

covariance estimators. The multivariate standard normally distributed variables, Zit

in equations (3.14) and (3.15), with a correlation matrix as in Table 3.2, are generated

using the Eigenvector decomposition, also known as the Spectral Decomposition,

approach. We set ρarr = 0 in this section, so the trade times are independent. All

covariance matrix estimators are constructed on a pairwise basis so the resulting

covariance matrix is not guaranteed to be positive semi-definite. The “Neg Eig”

column of Table 3.4 presents the average number of negative eigenvalues per day.

In the first row, when δ = 3s, the average number of negative eigenvalues per day

is 4.72, but after we average the estimates at δ = 2.5s and δ = 4s, this number

drops to 3.55. When we further take the average over 16 estimates from δ = 2.5s

to δ = 4s with increment 0.1s, the resulting average number of negative eigenvalues
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drops significantly to 0.22.

Taking the average of the duration based variance-covariance estimates over a

range of threshold values helps improve efficiency, reduce noise and thus decrease the

number of negative eigenvalues per day. Over the range of δ from 2.5s to 4s, when

we decrease the step size to 0.01s, that is to take the average over 151 estimates, the

average number of negative eigenvalues per day drops to 0.01. The same pattern

follows for the threshold range of 2s to 6s. When we move the δ range to the far right

and set the threshold to be very large, there is significant efficiency loss, since the

number of duration observations per day decreases sharply, resulting in significantly

larger number of negative eigenvalues per day compared to the average duration

based estimates with the same step size.

Table 3.4 displays the efficiency and accuracy of different estimators separately

for the diagonal elements, variance, and the off-diagonal elements, covariance. On

the variance part, we see that the duration based estimates are more biased than the

RK and TS estimates, and averaging over a range of threshold values doesn’t seem

to help much in reducing the bias. Only when we increase the threshold values, for

example compare the range of 2.5s to 4s to the range of 7s and 8s, can we reduce

bias, but at the same time the efficiency loss due to decreased number of duration

observations is large. On the other hand, the duration based variance estimates tend

to be less dispersed than the two competing estimators, showing smaller STD, but

when we set the threshold to be extremely large, the STD becomes larger, signalling

a loss of efficiency.

On the covariance part, the duration based estimates show better performance.
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The bias of the duration based covariance estimates is on average larger than that of

RK but smaller than that of TS. The STD of the duration based covariance estimates

is generally smaller, apart from extreme large threshold cases. Comparing to the

bias of the variance estimates, the reduction in the bias of covariance estimates

(given correlation is approximately 0.5, covariance is roughly half of variance) is

larger in magnitude for COV than for RK and TS. This is because the biases of

V̂ ar(X1 +X2), V̂ ar(X1), and V̂ ar(X2) partially cancel out when estimating COV .

Given comparable bias and smaller STD, the duration based covariance estimates

generally perform better than RK and TS along the RMSE dimension.

Seeing that averaging the duration based estimators helps to reduce the number

of negative eigenvalues per day and to improve efficiency, we will use the average

duration based variance and covariance estimates (still denoted as COV ) in the

empirical study.

3.5 Empirical study

3.5.1 Comparison among candidate covariance matrix esti-

mators

In this section, we construct the covariance matrices of 19 stocks for each of the

2769 trading days using the duration based, RK, and TS methods and compare

them with the 5min, 30min, and open-to-close (OtoC) daily realized covariance

matrix estimates. Two duration based variance/covariance estimators are included:

COV1, which is the average of 401 estimates using price durations based on threshold
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values from 2 times the daily average spread to 6 times the spread with increment

0.01 times the spread; and COV2, which is the average of 151 estimates using price

durations based on threshold values from 2.5 times the daily average spread to 4

times the spread with increment 0.01 times the spread.

Table 3.5 presents the benchmark 5min and 30min realised variance/covariance

estimates averaged over all trading days, where in the upper diagonal are the aver-

age 5min realised covariances and in the lower diagonal the average 30min realised

covariances.3 The diagonal elements are average realised variance estimates based

on 5min returns and are in italics. Table 3.10 presents the benchmark average OtoC

realised covariance estimates and the diagonal average realised variance estimates

are in italics.

In Tables 3.6 and 3.7, the average daily estimates from COV1, COV2, RK and

TS are compared with the average daily 5min realised variance/covariance estimates.

COV1 estimates are in the upper diagonal, COV2 in the lower and the main diag-

onal. In Table 3.7, RK estimates are in the upper and main diagonal and the TS

estimates in the lower diagonal. Elements that are significantly4 different from the

5min realised variance/covariance benchmark are in bold. Overall, the duration

based estimates are more close to the 5min estimates than RK but less close than

TS, which is shown explicitly in Table 3.13.

In Tables 3.8 and 3.9, we compare COV1, COV2, RK, and TS estimates with

the 30min realised variance/covariance estimates. The duration based estimators

3For illustration purpose, Tables 3.5 to 3.12 present covariance matrices for the first 15 stocks
only, due to limitation of space. Tables 3.13, 3.14, and 3.15 present statistics based on all 19 stocks.

4All significance tests in this section are Newey-West type HAC tests with 1% significance level,
as in Barndorff-Nielsen et al. (2011).
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produce estimates that are closer to the 30min benchmark than both the RK and

TS estimators, as shown explicitly in Table 3.13.

Finally, in Tables 3.11 and 3.12, the four candidate estimates are compared with

the OtoC realised variance/covariance estimates as a benchmark. Both RK and

TS estimates are less different from the OtoC estimates than the duration based

estimates, as shown explicitly in Table 3.13.

Table 3.13 summarizes the comparison between the candidate group including

COV1, COV2, RK, and TS estimators and the benchmark group including the 5min,

30min, and OtoC realised variance/covariance estimators. Results are presented as

the proportion of the matrix elements that are significantly different at 1% signifi-

cance level (using Newey-West type HAC significance test) for the pair of estimators

in comparison. Comparisons are done respectively on the whole matrix, on the off-

diagonal elements, and on the main diagonal elements. On the variance part, the

duration based estimates are closer to the 30min and OtoC estimates than RK and

TS, but less close to the 5min estimates. On the covariance part, the candidate es-

timators generally show lower levels of difference to the benchmark estimators than

on the variance part. Specifically, duration based covariances are more similar to

the 5min estimates than RK but less so than TS; they are also more close to the

30min estimates but less close to the OtoC covariances than RK and TS estimates.

Table 3.14 presents summary statistics including mean, standard deviation and

the first order autocorrelation for the four candidate variance/covariance estimators

and the three benchmarks. The statistics are again presented for the whole ma-

trix, and also separately for the variance and covariance parts. The overall mean
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estimates of the four candidate estimators are quite close, with RK slightly higher.

The mean variance estimates from the two duration based estimators are lower than

those from the RK and TS estimators, while the mean covariance estimates from

the four candidate estimators are quite close. For the variation of the estimates,

both the variance and covariance estimates from the duration based estimators give

smaller STD than those from the RK and TS estimators. The mean and stan-

dard deviation features of the duration based estimates as compared to the RK and

TS estimates are consistent with the findings from the simulation study in Section

3.4: the duration based covariance estimates exhibit variation smaller than and bias

comparable with the competing estimates. It is also interesting to note that the

duration based variance/covariance estimates have higher first order autocorrelation

than other estimators.

Table 3.15 presents the average correlations between the candidate variance/covariance

estimators and the benchmark estimators. As expected, the four high-frequency

variance/covariance estimators are the most correlated with the 5min realised vari-

ance/covariance estimates, followed by the 30min estimates, and the least correlated

with the daily OtoC realised variance/covariance estimates. The levels of correlations

with the benchmark estimates are very close among the four candidate estimators,

with the duration based estimators showing slightly higher correlations.

3.5.2 A portfolio allocation problem

In this section we compare the global minimum variance (GMV) portfolio allocation

results, evaluated for the one-day ahead 5min portfolio variance. We first calculate
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the GMV portfolio weights based on the covariance matrices estimated from one

of the four candidate estimators: COV , RK, TS, and sub5min, and then use the

weights to calculate the one-day ahead 5min portfolio variances. Note that in this

section the duration based covariance matrix estimator COV is the COV1 from

Section 3.5.1. Also, sub5min is the sub-sampled 5min realised covariance matrix

estimator.

We will also compare the GMV portfolio variances with the risk parity portfolio

variances and the equal-weight portfolio variances, as is done in Lunde et al. (2016).

Compared to the calculation of GMV portfolio weights which involves all elements

of the matrix, the calculation of risk-parity portfolio weights is based entirely on

the diagonal variance elements of the variance-covariance matrix. Let Ωt denote

the variance-covariance matrix, with dimension p, from one of the four candidate

estimators. The p by 1 vector of GMV portfolio weights, wmt , is calculated as:

wmt = (Ω−1
t ι)/(ι′Ω−1

t ι), (3.16)

where ι is a conformable vector of 1’s.

The risk parity portfolio weights, wrt , are inversely proportional to individual

asset variances:

wrt = 1/ diag(Ωt)
ι′(1/ diag(Ωt))

, (3.17)

where diag(·) denotes the diagonal of a matrix and 1/ diag(·) is a vector whose

components are the reciprocals of the diagonal terms. The asset weight in an equal-

weight portfolio is 1/p. wmt and wrt are calculated at day t and applied to the 5min

124



portfolio variance at day t+ 1.

3.5.2.1 Eigenvalue cleaning and shrinkage methods

The calculation of wmt requires Ωt to be positive semi-definite (psd). Among the

four candidate covariance estimators, TS and sub5min are guaranteed to be psd.

As for RK and COV , since they are estimated on a pairwise basis, the resulting

matrices are not guaranteed to be psd. A well-functioning covariance matrix should

also be well-conditioned, where the smallest eigenvalue should not vanish to zero on

any trading day of the sample period. Let η denote the ratio of largest/smallest

eigenvalue of a well-conditioned covariance matrix. It represents the tightness of

the 19 eigenvalues. The more spreadout are the eigenvalues, the more “unstable”

the matrix tend to be when being inverted. Hautsch et al. (2012) suggest a well-

conditioned covariance matrix should have η ≤ 10p. Let ηu denote the upper bound

of η, then in our case p = 19 and ηu = 190. Later we will try different values of ηu

to check the robustness of the results.

In the existing literature, there are different eigenvalue cleaning techniques to

convert non-psd covariance matrices into psd matrices, see for example Hautsch et

al. (2012) and Lunde et al. (2016). The simplest way is to directly convert any

negative eigenvalues to zero or a small positive number. We follow the factor model

based eigenvalue regularization method used in Lunde et al. (2016) by retaining

the 3 largest eigenvalues and let the remaining 16 eigenvalues be equal to their

average. Figures 3.15, 3.16 and 3.17 plot the eigenvalue ratios of the 19 eigenvalues,

in descending order, over their sum across all trading days for COV , RK, and TS
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estimators. We can see that the sum of the 3 largest eigenvalues accounts for a

majority of the sum of all 19 eigenvalues.

The ratio of the largest eigenvalue over the sum is considerably larger for COV ,

around 50%, than for RK, and TS, around 30%. The largest eigenvalue can be

seen as a measure of systematic variation, or systematic risk. The ratio of the first

eigenvalue over the sum of all eigenvalues increases during the crisis period and stays

higher than before the crisis, which shows an increase in systematic risk due to the

financial crisis. Though the three covariance matrix estimators show the same trend

for the eigenvalue ratios during the sample period, the eigenvalue ratios from the

RK and TS estimates are noisier than those from the duration based estimates. Of

the three covariance matrix estimators, COV produces significantly more negative

eigenvalues each day than RK, while TS covariance matrix estimates are guaranteed

to be psd. The average numbers of negative eigenvalues per day produced by COV ,

RK, and TS covariance matrix estimators are respectively 1.082, 0.004, and 0.

A more general approach to fix a non-psd covariance matrix is through the tra-

ditional shrinkage methods. We take from the statistics literature, see for example

Ledoit and Wolf (2004), Fisher and Sun (2011) and Touloumis (2015), the basic

idea of the shrinkage method and adapt it into a simple application to improve the

COV , RK, TS, and sub5min covariance matrix estimators. The idea of shrinkage in

correcting the non-psd or ill-conditioned covariance matrix is to combine the sample

estimate, S, with a target matrix, T , where T has desirable properties including

being psd and well-conditioned:
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S∗ = (1− λ)S + λT, (3.18)

where λ is the weight assigned to the target matrix. The target matrix we use here

is a diagonal matrix, where the diagonal elements are the variance estimates and all

off-diagonal covariance elements are set to zero. Some eigenvalue cleaning techniques

follow the same intuition as the shrinkage approach we use here. In Hautsch et al.

(2012), their eigenvalue cleaning technique is based on the random matrix theory, see

Tola, Lillo, Gallegati and Mantegna (2008), with a null hypothesis of independent

assets to determine the distribution of eigenvalues, so their null hypothesis defines

our target matrix. The statistics literature has derived closed form formulae for λ

under various assumptions and for different target matrices. Ledoit and Wolf (2004)

propose a covariance matrix estimator when the target matrix is an identity matrix;

Fisher and Sun (2011) develop covariance matrix estimators for different target ma-

trices under the multivariate normality assumption; and Touloumis (2015) develop

non-parametric covariance matrix estimators. However, their formulae for λ are not

easily applicable to the high-frequency covariance matrices since their constructions

typically involve either averaging or subsampling of different time scales or sums of

a range of auto-covariances.

Thus, we develop a “coarse” shrinkage method based simply on trial and error

while relying on the idea of shrinkage. Note that when the target matrix is the

diagonal variance matrix with all off-diagonal covariance elements set to zero, the

above shrinkage equation is equivalent to “inflating” the diagonal variance elements.

This is what we do in choosing the λ parameter: we gradually “inflate” the diagonal
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variance elements of the sample covariance matrix estimate S until it is both positive

definite and well-conditioned, η < ηu. The coarse inflation multiplier, ξ, starts from

1 and increases by 0.5 each time. So by “inflate” we mean multiply the diagonal

elements of S by ξ. All elements in the resulting matrix, compared to S∗, will be

ξ times larger, but this doesn’t affect the calculation of the portfolio weights. The

relationship between λ and ξ is : λ = 1− 1/ξ. Equation (3.18) can be rewritten in

terms of ξ as:

S∗ = 1
ξ
S + (1− 1

ξ
)T. (3.19)

The “coarse” shrinkage method selects a single ξ across the whole sample period.

It is using the largest ξ of all trading days in the sample. This may introduce a

cushioning or smoothing effect. Later for comparison, we will try a “fine” shrinkage

method where ξ is selected on a daily basis, starting from 1 and with increment of

0.1 instead of 0.5.

When the covariance matrix estimate becomes positive definite and well-conditioned

(for example ηu = 100, later we will show results under other values of ηu as robust-

ness checks): for COV , ξ = 4, equivalent to λ = 0.75; for RK, TS, and sub5min,

ξ = 2.5, equivalent to λ = 0.6. These are the parameter values we will use for the

coarse shrinkage method.

Note that even though TS and sub5min covariance matrix estimates are inher-

ently psd, they are not guaranteed to be well-conditioned. In the Appendix to this

chapter, we put in Section 3.7.2.1 the plots of eigenvalue ratios and η over time

of the four estimators after applying the coarse shrinkage method with ηu = 100.

We see that the 19 eigenvalues are closer together than before and almost all η are
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below 100, while in Figure 3.30, which shows the first/last eigenvalue ratio for TS on

the raw matrix, η on many days are larger than 200. The coarse shrinkage method

proves to be quite effective in making the covariance matrix well-conditioned.

3.5.2.2 Equal weight, risk parity, and GMV portfolios

In addition to the GMV portfolio variances, we include in Table 3.16 the equal-

weight and risk parity portfolio variances. The equal weight portfolio variance is the

average of all elements in the variance-covariance matrix of the 19 assets, thus it

can help assess the general closeness of different covariance matrix estimates. The

asset weights of a risk parity portfolio are inversely proportional to the individual

asset variances. In the second (under “eigenvalue cleaning”) and third (under“coarse

shrinkage”) parts of the table, we present risk parity and GMV portfolio variances

under both the eigenvalue cleaning and the shrinkage technique (ηu = 100 for now).

We would like to include the risk parity portfolios since it serves as a valuable

comparison to the GMV portfolio variances especially for the shrinkage method,

since the shrinkage target of the sample covariance matrix is the diagonal variance

matrix. This way we can see the improvement on the portfolio variance from the

shrinkage technique.

We see that the four candidate matrix estimators give very close mean values,

while the standard deviation is much lower for the duration based covariance esti-

mator. 5

5The mean of the equal weight portfolio variances based on the “raw” matrix is slightly different
from the“overall mean”of the variance-covariance elements of the COV1 matrix in Table 3.14. This
is because in Table 3.14 we omit the replicating covariance elements in the lower diagonal when
tabulating the statistics. Since the covariance elements are generally smaller than the variance
elements, the equal weight portfolio variance mean in Table 3.16 is lower than the overall mean in
Table 3.14.
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The constructions of the risk parity and GMV portfolios are out-of-the-sample

(OTS) comparisons. For the risk parity portfolios based on raw matrices, the means

and the std’s using different matrix estimators are very close. The risk parity port-

folio weights are based entirely on the relative magnitudes of the 19 variances. So

even though the duration based variance estimates are smaller than other variance

estimates as can be seen in Table 3.14, the relative magnitudes of the 19 variance

estimates from the duration based method are similar to those based on other meth-

ods.

After applying the eigenvalue cleaning and shrinkage techniques to improve the

matrices, we can calculate the GMV portfolio component weights. In the second part

(under“eigenvalue cleaning”) of Table 3.16, we can see that for RK, TS, and sub5min

estimators, the 5min portfolio variances based on previous-day’s GMV weights are

lower than those based on the risk parity portfolio weights. COV does not seem to

benefit from the eigenvalue cleaning technique. COV is more difficult to improve

than other matrices since it has more negative eigenvalues, as can be seen in Figures

3.15, 3.16 and 3.17. In addition, eigenvalue cleaning seems to have worsened the

duration based variance estimates, rendering the risk parity portfolio variances from

COV to have higher mean and std than before.

Switching to the shrinkage method (under “coarse shrinkage”), all four candidate

covariance matrices are indeed improved. The GMV means and std’s are all smaller

than the risk parity ones. In addition, compared to the eigenvalue cleaning technique,

the shrinkage technique generates much smaller GMV std’s. The means also decrease

a bit.
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Notice that the “risk parity” columns under “raw” and under “shrinkage” are the

same. This is because the shrinkage technique with diagonal matrix as “target” does

not change the diagonal elements so that all the variance elements remain the same.

The intuition behind the shrinkage method is to decrease the impact of covariances

without changing the variances so that the correlation structure is kept intact, i.e.,

the overall correlation level among the assets is decreased but the relative correlation

magnitudes of different pairs remain the same.

3.5.2.3 OTS GMV portfolio allocation and the coarse shrinkage method

Now we look closer at the coarse shrinkage method by splitting the whole sample

period into pre-crisis, crisis, and post-crisis sub-periods as presented in Table 3.17.

The pre-crisis period includes 2002 to 2007, crisis 2008 to 2009, post-crisis 2010

to 2012. In addition to the 5min portfolio variance, we include sub5min and TS

portfolio variances as allocation targets. We calculate the mean and median portfolio

variances based on GMV weights from the candidate matrices, as well as the portfolio

weight turnover. As in Lunde et al. (2016), the weight turnover at time t, denoted as

ct, is defined as the average absolute weight change of all components in the portfolio

during this time period:

ct = 1
p

p∑
j=1
|wj,t − wj−1,t|, (3.20)

where wj,t is the weight of asset j at time t and p = 19. It can be seen as a measure

of trading costs.

Overall, the mean and median portfolio variances from the four matrix estimates
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are quite close. COV estimates do better during the pre- and post-crisis periods than

the high volatility crisis time. However, COV does significantly better than com-

peting estimates in terms of portfolio weight turnover. Given similar performance in

minimizing the portfolio variance, COV would incur significantly lower transaction

costs. Figures 3.18 and 3.19 plot the average weights across all trading days for the

19 assets as well as the standard deviation of the weights for both GMV and risk

parity portfolios. The 19 stocks are in the same order as in Table 3.2. Consistent

with Table 3.17, the duration based covariance matrix estimator generates lower

GMV weights variation. Note in Figure 3.19 that the component weights variation

from the risk parity portfolios are much lower than those from the GMV portfolios.

This is expected since the calculation of risk parity portfolio weights involves only

the diagonal variance components. However, the risk parity portfolio variances are

higher than the GMV portfolio variances, as can be seen in Table 3.16.

One might suspect the reason why COV has lower weight turnover is that the

shrinkage parameter λ is equal to 0.75 for COV while for RK, TS, and sub5min

it is only 0.6. To test this hypothesis, we let λ = 0.75 for all four estimators

and present the results in Table 3.18. We see that COV still gives much smaller

portfolio weight turnover rates. This result may be related to the fact that the

autocorrelations of duration based variance and covariance estimates are higher than

the autocorrelations of other estimates, as shown in Table 3.14.

Apart from the shrinkage parameter λ, the other variable that affects the shrink-

age result is ηu, the upper bound of η. ηu decides whether or not a covariance matrix

needs to be changed in the first place. On any given trading day, a covariance matrix
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whose η value exceeds ηu will need the shrinkage technique. Up till now, we have

been setting ηu to be 100. We tabulate in Table 3.19 the mean and median GMV

variances for a wide range of ηu values. We see that the change of ηu does not change

the general conclusion.

3.5.2.4 Combining the coarse and fine shrinkage methods

As mentioned before, the “fine” shrinkage method selects ξ on a daily basis and with

a smaller increment of 0.1. In Figures 3.20 and 3.21 we plot the daily variation of ξ

over the sample period for η ≤ 100 and η ≤ 190. Most of the time ξ is much larger

for COV . Since COV has more negative eigenvalues each day it needs to put more

weight on the target matrix. In addition, ξ tends to increase as the ηu decreases. As

the standard of being well-conditioned toughens, the sample matrix needs to lean

more towards the well-conditioned target matrix.

The fine shrinkage method helps further improve GMV performance of RK, TS,

and sub5min estimators but COV does not benefit from a finer shrinkage: since

COV has more eigenvalues per day it may prefer the “coarse” shrinkage which has

some cushioning effect. We retain the GMV results of RK, TS, and sub5min esti-

mators using the fine shrinkage method and replace the results of COV with those

using the coarse shrinkage method, as presented in Table 3.20. To avoid repetition,

original results for all four estimators using the fine shrinkage method are relegated

to Table 3.21 in the Appendix. We see that with comparable performance in terms

of GMV variances, COV still provides much smaller portfolio weight turnover rates.
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3.6 Conclusion

We propose a price duration based covariance estimator using high frequency trans-

actions data. The effect of the last-tick time-synchronisation methodology, together

with effects of important market microstructure components is analysed through a

comprehensive Monte Carlo study. To decrease the number of negative eigenvalues

produced by the non-psd covariance matrix, we devise an average covariance esti-

mator by taking an average of a wide range of duration based covariance matrix

estimators.

Empirically, candidate covariance estimators are implemented on 19 stocks from

the DJIA and compared with different benchmark estimators. The duration based

covariance estimator is shown to provide comparably accurate estimates with smaller

variation. An out-of-sample GMV portfolio allocation problem is studied. A sim-

ple shrinkage technique is introduced to make the sample matrices psd and well-

conditioned. Compared to competing high-frequency covariance matrix estimators,

the duration based estimator is shown to give more stable portfolio weights over the

sample period while maintaining a comparably low portfolio variance.

The duration based covariance matrix estimate under one selected threshold value

seems quite noisy, thus producing more negative eigenvalues than competing esti-

mators. Taking an average over a wide range of duration based covariance estimates

helps to reduce noise and improve efficiency. Further research can be undertaken to

optimize the combination of different duration based variance and covariance esti-

mates in order to reduce bias, noise and improve efficiency.
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Table 3.1: Descriptive statistics for 19 DJIA stocks

Stock bid/ask spread trade duration number of jumps price volatility

mean median mean median mean median mean mean
GE 0.014 0.01 4.58 2.00 0.98 1.00 27.95 0.24
DIS 0.015 0.01 6.01 3.00 1.63 1.00 29.60 0.24
HD 0.016 0.01 5.48 3.00 1.57 1.00 34.30 0.24
AA 0.016 0.01 6.82 3.00 1.32 1.00 25.59 0.31
KO 0.017 0.01 5.96 3.00 1.84 1.00 51.62 0.16
JPM 0.017 0.01 4.11 2.00 2.02 1.00 38.68 0.28
MRK 0.017 0.01 5.78 3.00 2.11 1.00 40.37 0.20
MCD 0.018 0.01 6.36 3.00 1.91 1.00 52.18 0.19
WMT 0.018 0.01 4.92 2.00 1.88 1.00 52.19 0.17
XOM 0.019 0.01 3.55 2.00 2.34 1.00 68.62 0.19
JNJ 0.018 0.01 5.40 3.00 2.11 1.00 61.36 0.15
DD 0.019 0.01 6.84 3.00 1.82 1.00 42.74 0.22
AXP 0.020 0.01 5.90 3.00 2.10 1.00 44.46 0.25
PG 0.020 0.01 5.41 3.00 2.31 1.00 66.14 0.15
BA 0.026 0.02 6.54 3.00 2.50 2.00 63.88 0.22
UTX 0.026 0.02 6.96 3.00 2.73 2.00 69.98 0.19
CAT 0.028 0.02 6.14 3.00 2.02 1.00 69.99 0.23
MMM 0.029 0.02 7.01 3.00 2.47 2.00 84.10 0.17
IBM 0.035 0.02 5.18 3.00 2.35 2.00 108.00 0.17

Notes: This table presents descriptive statistics for the bid/ask spread (in USD),
the time between consecutive transactions (in seconds), the number of large price
jumps per day, the transaction price, and the annualized volatility. A “large jump”
is recorded when the absolute value of a price change exceeds 5 times the average
bid/ask spread of the day. “Volatility” is calculated using (2.7) and then annualized.
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Table 3.2: Correlations of returns and trade arrivals

ρ, ρarr AA AXP BA CAT DD DIS GE HD IBM JNJ JPM KO MCD MMM MRK PG UTX WMT XOM avg.

AA .50 .47 .57 .58 .46 .52 .46 .48 .37 .49 .38 .37 .52 .37 .39 .51 .40 .53 .49
AXP .41 .47 .54 .53 .50 .58 .52 .52 .41 .63 .40 .40 .52 .39 .41 .51 .46 .47 .51
BA .41 .42 .52 .53 .48 .51 .47 .50 .42 .45 .43 .40 .53 .40 .43 .61 .43 .47 .50
CAT .38 .42 .41 .60 .51 .57 .51 .52 .41 .51 .42 .41 .58 .39 .42 .58 .45 .51 .53
DD .40 .42 .41 .40 .53 .56 .52 .54 .45 .52 .46 .44 .62 .44 .47 .58 .47 .55 .55
DIS .36 .41 .39 .37 .39 .52 .51 .53 .45 .48 .45 .43 .53 .42 .45 .52 .46 .48 .51
GE .47 .44 .42 .35 .39 .39 .53 .55 .46 .57 .46 .43 .58 .43 .46 .55 .48 .51 .54
HD .40 .41 .41 .37 .40 .40 .45 .53 .44 .51 .44 .45 .53 .41 .45 .51 .58 .46 .52
IBM .42 .43 .44 .40 .41 .39 .46 .42 .48 .51 .48 .44 .56 .44 .48 .55 .50 .52 .54
JNJ .43 .45 .43 .42 .43 .41 .47 .44 .45 .40 .49 .39 .48 .51 .50 .47 .44 .46 .47
JPM .45 .56 .44 .47 .44 .43 .49 .44 .44 .50 .39 .40 .50 .37 .40 .49 .45 .46 .50
KO .40 .43 .41 .40 .42 .40 .43 .40 .41 .48 .48 .41 .48 .44 .51 .48 .46 .47 .47
MCD .39 .43 .40 .40 .41 .39 .39 .40 .39 .44 .48 .43 .45 .36 .41 .44 .43 .40 .44
MMM .34 .40 .39 .39 .41 .37 .37 .37 .41 .41 .40 .38 .38 .44 .50 .60 .48 .53 .55
MRK .42 .41 .40 .36 .39 .37 .43 .40 .41 .44 .43 .41 .39 .36 .43 .44 .39 .43 .44
PG .45 .46 .45 .42 .43 .42 .50 .44 .46 .50 .53 .48 .45 .40 .43 .49 .46 .47 .48
UTX .41 .43 .45 .43 .43 .40 .43 .42 .46 .46 .46 .43 .42 .43 .41 .46 .47 .53 .55
WMT .45 .45 .43 .41 .41 .40 .47 .46 .45 .48 .51 .45 .43 .38 .43 .50 .44 .44 .48
XOM .49 .48 .47 .47 .45 .42 .48 .47 .45 .53 .56 .49 .47 .41 .46 .53 .48 .52 .51

avg. .42 .44 .42 .40 .41 .39 .44 .42 .43 .46 .47 .43 .42 .39 .41 .46 .44 .45 .48

Notes: In the upper triangle are the correlations of returns and the lower triangle contains

the correlations of trade arrivals. Returns are calculated on 30min intervals. Correlation of

trade arrivals is calculated as the correlation between the numbers of trade arrivals within

a specified time bin. The bin size we use here is 40 seconds. In the last column are average

30min return correlations of each stock with the other 18 stocks, and in the last row are

corresponding average 40sec trade arrival correlations.
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Table 3.3: Comparison of the three duration-based covariance methods with other
covariance estimators

Scenario 1 Scenario 2 Scenario 3

δ Bias STD RMSE Bias STD RMSE Bias STD RMSE

Ĉov1 1s -0.0092 0.0013 0.0093 -0.0089 0.0025 0.0092 -0.0106 0.0018 0.0107
1.5s -0.0085 0.0019 0.0087 -0.0028 0.0036 0.0046 -0.0075 0.0029 0.0081
2s -0.0069 0.0024 0.0073 -0.0029 0.0047 0.0055 -0.0056 0.0038 0.0068
2.5s -0.0069 0.0028 0.0075 -0.0024 0.0057 0.0062 -0.0041 0.0050 0.0064
3s -0.0044 0.0039 0.0058 -0.0015 0.0068 0.0070 -0.0036 0.0058 0.0068
3.5s -0.0039 0.0045 0.0060 -0.0011 0.0082 0.0082 -0.0028 0.0066 0.0072
4s -0.0032 0.0051 0.0061 -0.0009 0.0092 0.0092 -0.0022 0.0080 0.0083
4.5s -0.0034 0.0055 0.0064 -0.0006 0.0098 0.0098 -0.0019 0.0087 0.0089
5s -0.0028 0.0064 0.0070 -0.0000 0.0112 0.0112 -0.0016 0.0099 0.0100

Ĉov2 1s -0.0325 0.0014 0.0326 -0.0313 0.0026 0.0314 -0.0353 0.0019 0.0354
1.5s -0.0241 0.0017 0.0241 -0.0241 0.0034 0.0244 -0.0240 0.0027 0.0242
2s -0.0192 0.0021 0.0193 -0.0166 0.0042 0.0172 -0.0174 0.0034 0.0177
2.5s -0.0144 0.0026 0.0146 -0.0129 0.0051 0.0139 -0.0134 0.0043 0.0141
3s -0.0118 0.0033 0.0122 -0.0098 0.0056 0.0113 -0.0109 0.0047 0.0119
3.5s -0.0103 0.0034 0.0109 -0.0088 0.0067 0.0111 -0.0096 0.0055 0.0111
4s -0.0090 0.0040 0.0099 -0.0076 0.0073 0.0105 -0.0086 0.0067 0.0109
4.5s -0.0076 0.0044 0.0088 -0.0077 0.0086 0.0116 -0.0080 0.0070 0.0106
5s -0.0071 0.0050 0.0087 -0.0070 0.0091 0.0115 -0.0077 0.0079 0.0110

Ĉov3 1s -0.0208 0.0009 0.0209 -0.0201 0.0018 0.0201 -0.0229 0.0013 0.0230
1.5s -0.0163 0.0012 0.0164 -0.0135 0.0024 0.0137 -0.0158 0.0019 0.0159
2s -0.0131 0.0016 0.0132 -0.0098 0.0031 0.0103 -0.0115 0.0025 0.0118
2.5s -0.0106 0.0018 0.0108 -0.0076 0.0037 0.0085 -0.0087 0.0031 0.0093
3s -0.0081 0.0026 0.0085 -0.0057 0.0044 0.0072 -0.0072 0.0037 0.0081
3.5s -0.0071 0.0028 0.0077 -0.0050 0.0050 0.0071 -0.0062 0.0043 0.0076
4s -0.0061 0.0032 0.0069 -0.0042 0.0058 0.0072 -0.0054 0.0052 0.0075
4.5s -0.0055 0.0035 0.0065 -0.0042 0.0065 0.0077 -0.0050 0.0057 0.0075
5s -0.0050 0.0041 0.0065 -0.0035 0.0072 0.0080 -0.0046 0.0065 0.0079

RK -0.0001 0.0042 0.0042 -0.0002 0.0053 0.0053 -0.0002 0.0049 0.0049
TS -0.0014 0.0065 0.0067 -0.0015 0.0065 0.0067 -0.0015 0.0064 0.0066
5min RC -0.0005 0.0082 0.0082 -0.0009 0.0083 0.0084 -0.0007 0.0080 0.0080
30min RC -0.0015 0.0193 0.0193 -0.0017 0.0193 0.0194 -0.0023 0.0192 0.0193

Notes: Scenario 1: ∆1 = 2 seconds, ∆2 = 4 seconds, s1 = 1 tick, s2 = 1.5 ticks;
Scenario 2: ∆1 = 4 seconds, ∆2 = 8 seconds, s1 = 1.5 ticks, s2 = 3 ticks; Scenario
3: ∆1 = ∆2 = 6 seconds, s1 = s2 = 2 ticks. Ĉov1 uses X1 + X2, X1, X2, Ĉov2
uses X1 − X2, X1, X2, and Ĉov3 uses X1 + X2, X1 − X2. δ’s for the estimation of
V̂ ar(·) are set as a range of multiples of the spread over the initial price. ρ = 0.5.
ρarr = 0.4. σ1 = σ2 = 0.25. So the true value of the covariance is ρσ1σ2 = 0.03125.
P0 = 50.
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Table 3.4: Comparison of different covariance matrix estimates for 19 simulated
stocks

δ: Range (step) Neg Eig Variance Covariance

Bias STD RMSE Bias STD RMSE
3s 4.72 -0.0105 0.0055 0.0120 -0.0015 0.0053 0.0057
2.5s & 4s 3.55 -0.0102 0.0046 0.0113 -0.0014 0.0044 0.0048
2.5s to 4s (0.1s) 0.22 -0.0100 0.0029 0.0104 -0.0014 0.0029 0.0035
2.5s to 4s (0.05s) 0.13 -0.0099 0.0028 0.0104 -0.0014 0.0028 0.0033
2.5s to 4s (0.02s) 0.02 -0.0099 0.0026 0.0103 -0.0014 0.0027 0.0033
2.5s to 4s (0.01s) 0.01 -0.0097 0.0027 0.0101 -0.0013 0.0027 0.0032
2s to 6s (0.1s) 0.20 -0.0088 0.0032 0.0094 -0.0012 0.0033 0.0037
2s to 6s (0.05s) 0.14 -0.0086 0.0032 0.0092 -0.0011 0.0034 0.0037
2s to 6s (0.01s) 0.04 -0.0085 0.0031 0.0091 -0.0011 0.0033 0.0036
5s to 6s (0.05s) 3.03 -0.0054 0.0053 0.0077 -0.0005 0.0057 0.0057
5s to 6s (0.01s) 2.71 -0.0053 0.0051 0.0076 -0.0001 0.0056 0.0057
5s to 6s (0.005s) 2.58 -0.0055 0.0050 0.0076 -0.0003 0.0057 0.0058
7s to 8s (0.005s) 5.00 -0.0029 0.0073 0.0082 0.0013 0.0088 0.0090

RK 0.00 -0.0007 0.0056 0.0057 -0.0004 0.0042 0.0042
TS 0.00 -0.0028 0.0067 0.0073 -0.0015 0.0050 0.0052

Notes: Duration-based variance and covariance estimates from row three onwards
are calculated as the average of the estimates over a range of threshold values shown
in the head column and the step size is in the brackets. “Neg Eig” presents the
average number of negative eigenvalues per day. “Bias” is calculated as the average
bias over all elements of the 19*19 matrix, likewise for STD and RMSE, which are
also average values. Average σ = 0.22, average ρ = 0.48, average P0 = 54.6. ρarr is
set to be 0.
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Table 3.5: 5min & 30min realised covariance matrix

AA AXP BA CAT DD DIS GE HD IBM JNJ JPM KO MCD MMM

AA .131 .049 .037 .049 .047 .037 .044 .039 .031 .019 .052 .021 .025 .033
AXP .046 .106 .034 .042 .038 .036 .044 .040 .030 .019 .063 .021 .025 .030
BA .033 .031 .067 .033 .030 .028 .032 .028 .023 .016 .035 .017 .020 .025
CAT .045 .040 .030 .082 .038 .033 .039 .034 .027 .017 .044 .019 .023 .030
DD .040 .034 .026 .033 .065 .030 .034 .031 .025 .017 .040 .018 .021 .028
DIS .032 .033 .024 .029 .026 .069 .033 .031 .025 .017 .038 .019 .021 .025
GE .040 .043 .028 .036 .031 .029 .080 .034 .027 .019 .047 .020 .022 .029
HD .034 .036 .025 .031 .027 .028 .031 .075 .026 .017 .043 .018 .023 .025
IBM .028 .028 .021 .024 .022 .022 .025 .023 .044 .014 .032 .016 .017 .021
JNJ .017 .018 .014 .016 .015 .015 .017 .016 .013 .031 .020 .013 .012 .014
JPM .049 .058 .032 .041 .036 .035 .045 .039 .030 .019 .128 .022 .026 .031
KO .019 .018 .015 .017 .016 .016 .018 .017 .014 .012 .020 .033 .014 .015
MCD .022 .022 .017 .020 .018 .019 .020 .020 .016 .011 .024 .012 .049 .017
MMM .029 .027 .022 .027 .025 .021 .026 .023 .018 .013 .029 .014 .015 .043

Notes: The upper diagonal presents average realized covariance estimates based on
5min returns and the lower diagonal realised covariance estimates based on 30min
returns. Main diagonal realised variance estimates are based on 5min returns and
are in italics.

Table 3.6: COV1 & COV2 vs. 5min realised covariance estimators

AA AXP BA CAT DD DIS GE HD IBM JNJ JPM KO MCD MMM

AA .111 .048 .040 .049 .045 .037 .043 .040 .041 .025 .051 .026 .031 .038
AXP .047 .088 .035 .040 .036 .035 .040 .038 .035 .023 .056 .023 .028 .032
BA .040 .035 .057 .032 .029 .028 .033 .029 .024 .017 .038 .018 .021 .024
CAT .048 .040 .031 .065 .035 .031 .037 .034 .028 .019 .043 .020 .024 .028
DD .044 .036 .028 .034 .054 .029 .033 .031 .026 .018 .039 .019 .022 .026
DIS .036 .034 .028 .031 .028 .064 .031 .030 .027 .018 .037 .019 .023 .026
GE .042 .039 .032 .036 .032 .031 .071 .033 .030 .021 .043 .022 .025 .029
HD .039 .037 .029 .033 .030 .029 .032 .064 .029 .019 .040 .020 .025 .027
IBM .041 .035 .024 .028 .026 .027 .027 .029 .038 .015 .039 .016 .019 .020
JNJ .025 .022 .017 .018 .017 .018 .021 .019 .015 .025 .025 .012 .014 .014
JPM .050 .054 .037 .043 .038 .036 .042 .039 .039 .025 .104 .025 .030 .035
KO .026 .023 .018 .020 .019 .019 .022 .020 .016 .012 .025 .028 .015 .016
MCD .030 .028 .021 .023 .022 .023 .026 .024 .019 .014 .030 .015 .040 .018
MMM .036 .032 .024 .028 .026 .026 .030 .026 .020 .014 .035 .015 .018 .034

Notes: In the upper diagonal are average daily COV1 covariance estimates and in
the lower diagonal the average daily COV2 covariance estimates. The main diago-
nal elements are variance estimates from COV2. Variance and covariance elements
that are significantly different (at 1% level) from the realised variance/covariance
estimates based on 5min returns are in bold.
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Table 3.7: RK & TS vs. 5min realised covariance estimators

AA AXP BA CAT DD DIS GE HD IBM JNJ JPM KO MCD MMM

AA .139 .048 .037 .049 .047 .037 .043 .039 .031 .019 .052 .021 .026 .034
AXP .048 .116 .035 .043 .039 .037 .045 .040 .031 .020 .065 .022 .026 .031
BA .037 .033 .073 .035 .031 .029 .034 .030 .024 .017 .036 .019 .021 .027
CAT .050 .042 .034 .087 .039 .033 .040 .035 .028 .018 .045 .020 .024 .032
DD .047 .038 .030 .038 .070 .032 .036 .033 .026 .018 .041 .020 .022 .030
DIS .037 .036 .028 .033 .031 .077 .034 .033 .026 .018 .039 .020 .022 .026
GE .044 .045 .033 .040 .035 .034 .087 .035 .029 .020 .048 .021 .023 .032
HD .038 .039 .029 .034 .032 .032 .034 .082 .027 .018 .043 .020 .024 .027
IBM .030 .029 .023 .027 .025 .025 .028 .026 .049 .016 .034 .017 .019 .023
JNJ .019 .019 .016 .017 .017 .017 .019 .017 .014 .034 .021 .014 .013 .015
JPM .051 .062 .035 .044 .039 .038 .047 .042 .031 .020 .138 .023 .027 .033
KO .021 .020 .017 .019 .018 .019 .020 .018 .016 .013 .022 .036 .015 .017
MCD .025 .024 .020 .023 .021 .021 .022 .023 .017 .013 .026 .014 .052 .019
MMM .033 .030 .025 .030 .028 .025 .030 .025 .021 .014 .031 .015 .017 .048

Notes: In the upper diagonal are average daily RK covariance estimates and in
the lower diagonal the average daily TS covariance estimates. The main diagonal
elements are variance estimates from RK. Variance and covariance elements that are
significantly different (at 1% level) from the realised variance/covariance estimates
based on 5min returns are in bold.

Table 3.8: COV1 & COV2 vs. 30min realised covariance estimators

AA AXP BA CAT DD DIS GE HD IBM JNJ JPM KO MCD MMM

AA .111 .048 .040 .049 .045 .037 .043 .040 .041 .025 .051 .026 .031 .038
AXP .047 .088 .035 .040 .036 .035 .040 .038 .035 .023 .056 .023 .028 .032
BA .040 .035 .057 .032 .029 .028 .033 .029 .024 .017 .038 .018 .021 .024
CAT .048 .040 .031 .065 .035 .031 .037 .034 .028 .019 .043 .020 .024 .028
DD .044 .036 .028 .034 .054 .029 .033 .031 .026 .018 .039 .019 .022 .026
DIS .036 .034 .028 .031 .028 .064 .031 .030 .027 .018 .037 .019 .023 .026
GE .042 .039 .032 .036 .032 .031 .071 .033 .030 .021 .043 .022 .025 .029
HD .039 .037 .029 .033 .030 .029 .032 .064 .029 .019 .040 .020 .025 .027
IBM .041 .035 .024 .028 .026 .027 .027 .029 .038 .015 .039 .016 .019 .020
JNJ .025 .022 .017 .018 .017 .018 .021 .019 .015 .025 .025 .012 .014 .014
JPM .050 .054 .037 .043 .038 .036 .042 .039 .039 .025 .104 .025 .030 .035
KO .026 .023 .018 .020 .019 .019 .022 .020 .016 .012 .025 .028 .015 .016
MCD .030 .028 .021 .023 .022 .023 .026 .024 .019 .014 .030 .015 .040 .018
MMM .036 .032 .024 .028 .026 .026 .030 .026 .020 .014 .035 .015 .018 .034

Notes: In the upper diagonal are average daily COV1 covariance estimates and in
the lower diagonal the average daily COV2 covariance estimates. The main diago-
nal elements are variance estimates from COV2. Variance and covariance elements
that are significantly different (at 1% level) from the realised variance/covariance
estimates based on 30min returns are in bold.
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Table 3.9: RK & TS vs. 30min realised covariance estimators

AA AXP BA CAT DD DIS GE HD IBM JNJ JPM KO MCD MMM

AA .139 .048 .037 .049 .047 .037 .043 .039 .031 .019 .052 .021 .026 .034
AXP .048 .116 .035 .043 .039 .037 .045 .040 .031 .020 .065 .022 .026 .031
BA .037 .033 .073 .035 .031 .029 .034 .030 .024 .017 .036 .019 .021 .027
CAT .050 .042 .034 .087 .039 .033 .040 .035 .028 .018 .045 .020 .024 .032
DD .047 .038 .030 .038 .070 .032 .036 .033 .026 .018 .041 .020 .022 .030
DIS .037 .036 .028 .033 .031 .077 .034 .033 .026 .018 .039 .020 .022 .026
GE .044 .045 .033 .040 .035 .034 .087 .035 .029 .020 .048 .021 .023 .032
HD .038 .039 .029 .034 .032 .032 .034 .082 .027 .018 .043 .020 .024 .027
IBM .030 .029 .023 .027 .025 .025 .028 .026 .049 .016 .034 .017 .019 .023
JNJ .019 .019 .016 .017 .017 .017 .019 .017 .014 .034 .021 .014 .013 .015
JPM .051 .062 .035 .044 .039 .038 .047 .042 .031 .020 .138 .023 .027 .033
KO .021 .020 .017 .019 .018 .019 .020 .018 .016 .013 .022 .036 .015 .017
MCD .025 .024 .020 .023 .021 .021 .022 .023 .017 .013 .026 .014 .052 .019
MMM -.033 .030 .025 .030 .028 .025 .030 .025 .021 .014 .031 .015 .017 .048

Notes: In the upper diagonal are average daily RK covariance estimates and in
the lower diagonal the average daily TS covariance estimates. The main diagonal
elements are variance estimates from RK. Variance and covariance elements that are
significantly different (at 1% level) from the realised variance/covariance estimates
based on 30min returns are in bold.

Table 3.10: Open-to-close covariance matrix

AA AXP BA CAT DD DIS GE HD IBM JNJ JPM KO MCD MMM

AA .127 .061 .043 .061 .054 .044 .051 .040 .033 .018 .064 .022 .023 .038
AXP .061 .113 .042 .053 .050 .050 .055 .049 .036 .021 .089 .024 .027 .037
BA .043 .042 .063 .036 .032 .032 .033 .029 .023 .015 .041 .016 .020 .025
CAT .061 .053 .036 .078 .043 .038 .041 .037 .029 .017 .054 .018 .022 .032
DD .054 .050 .032 .043 .060 .037 .038 .035 .026 .017 .053 .018 .021 .030
DIS .044 .050 .032 .038 .037 .065 .038 .036 .028 .018 .050 .019 .021 .028
GE .051 .055 .033 .041 .038 .038 .074 .037 .029 .020 .066 .019 .021 .030
HD .040 .049 .029 .037 .035 .036 .037 .070 .027 .017 .055 .019 .023 .027
IBM .033 .036 .023 .029 .026 .028 .029 .027 .040 .014 .040 .014 .014 .020
JNJ .018 .021 .015 .017 .017 .018 .020 .017 .014 .024 .023 .013 .011 .014
JPM .064 .089 .041 .054 .053 .050 .066 .055 .040 .023 .144 .024 .029 .037
KO .022 .024 .016 .018 .018 .019 .019 .019 .014 .013 .024 .029 .013 .016
MCD .023 .027 .020 .022 .021 .021 .021 .023 .014 .011 .029 .013 .043 .017
MMM .038 .037 .025 .032 .030 .028 .030 .027 .020 .014 .037 .016 .017 .037

Notes: Average daily realised covariance and variance estimates based on open-to-
close returns. Variances in the main diagonal are in italics.
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Table 3.11: COV1 & COV2 vs. OtoC covariance estimators

AA AXP BA CAT DD DIS GE HD IBM JNJ JPM KO MCD MMM

AA .111 .048 .040 .049 .045 .037 .043 .040 .041 .025 .051 .026 .031 .038
AXP .047 .088 .035 .040 .036 .035 .040 .038 .035 .023 .056 .023 .028 .032
BA .040 .035 .057 .032 .029 .028 .033 .029 .024 .017 .038 .018 .021 .024
CAT .048 .040 .031 .065 .035 .031 .037 .034 .028 .019 .043 .020 .024 .028
DD .044 .036 .028 .034 .054 .029 .033 .031 .026 .018 .039 .019 .022 .026
DIS .036 .034 .028 .031 .028 .064 .031 .030 .027 .018 .037 .019 .023 .026
GE .042 .039 .032 .036 .032 .031 .071 .033 .030 .021 .043 .022 .025 .029
HD .039 .037 .029 .033 .030 .029 .032 .064 .029 .019 .040 .020 .025 .027
IBM .041 .035 .024 .028 .026 .027 .027 .029 .038 .015 .039 .016 .019 .020
JNJ .025 .022 .017 .018 .017 .018 .021 .019 .015 .025 .025 .012 .014 .014
JPM .050 .054 .037 .043 .038 .036 .042 .039 .039 .025 .104 .025 .030 .035
KO .026 .023 .018 .020 .019 .019 .022 .020 .016 .012 .025 .028 .015 .016
MCD .030 .028 .021 .023 .022 .023 .026 .024 .019 .014 .030 .015 .040 .018
MMM .036 .032 .024 .028 .026 .026 .030 .026 .020 .014 .035 .015 .018 .034

Notes: In the upper diagonal are average daily COV1 covariance estimates and in
the lower diagonal the COV2 covariance estimates. The main diagonal elements are
variance estimates from COV2. Variance and covariance elements that are signifi-
cantly different (at 1% level) from the realised variance/covariance estimates based
on OtoC returns are in bold.

Table 3.12: RK & TS vs. OtoC covariance estimators

AA AXP BA CAT DD DIS GE HD IBM JNJ JPM KO MCD MMM

AA .139 .048 .037 .049 .047 .037 .043 .039 .031 .019 .052 .021 .026 .034
AXP .048 .116 .035 .043 .039 .037 .045 .040 .031 .020 .065 .022 .026 .031
BA .037 .033 .073 .035 .031 .029 .034 .030 .024 .017 .036 .019 .021 .027
CAT .050 .042 .034 .087 .039 .033 .040 .035 .028 .018 .045 .020 .024 .032
DD .047 .038 .030 .038 .070 .032 .036 .033 .026 .018 .041 .020 .022 .030
DIS .037 .036 .028 .033 .031 .077 .034 .033 .026 .018 .039 .020 .022 .026
GE .044 .045 .033 .040 .035 .034 .087 .035 .029 .020 .048 .021 .023 .032
HD .038 .039 .029 .034 .032 .032 .034 .082 .027 .018 .043 .020 .024 .027
IBM .030 .029 .023 .027 .025 .025 .028 .026 .049 .016 .034 .017 .019 .023
JNJ .019 .019 .016 .017 .017 .017 .019 .017 .014 .034 .021 .014 .013 .015
JPM .051 .062 .035 .044 .039 .038 .047 .042 .031 .020 .138 .023 .027 .033
KO .021 .020 .017 .019 .018 .019 .020 .018 .016 .013 .022 .036 .015 .017
MCD .025 .024 .020 .023 .021 .021 .022 .023 .017 .013 .026 .014 .052 .019
MMM .033 .030 .025 .030 .028 .025 .030 .025 .021 .014 .031 .015 .017 .048

Notes: In the upper diagonal are average daily RK covariance estimates and in
the lower diagonal the average daily TS covariance estimates. The main diagonal
elements are variance estimates from RK. Variance and covariance elements that are
significantly different (at 1% level) from the estimates based on OtoC returns are in
bold.
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Figure 3.1: Average correlation between trade arrivals

Notes: Correlation of trade arrivals is calculated as the correlation between the
numbers of trade arrivals within a specified time bin. The correlation of trade
arrivals on each 40sec bin in the figure is the average across all pairs.

Figure 3.2: Identical trade arrivals, ρarr = 1

Notes: Ratio of the NP variance estimates of V̂ ar(·) over the true values σ2
(·). The

return thresholds are calculated using the threshold number of ticks on the x-axis
over P0. ρ = 0.5. ρarr = 1. σX1 = σX2 = 0.25. ∆1 = ∆2 = 6 seconds. P0 = 50. tick
size=0.01.
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Figure 3.3: Independent trade arrivals, ρarr = 0

Notes: Ratio of the NP variance estimates of V̂ ar(·) over the true values σ2
(·). The

return thresholds are calculated using the threshold number of ticks on the x-axis
over P0. ρ = 0.5. ρarr = 0. σ1 = σ2 = 0.25. ∆1 = ∆2 = 6 seconds. P0 = 50. tick
size=0.01.

Figure 3.4: Correlated trade arrivals, ρarr = 0.4

Notes: Ratio of the NP variance estimates of V̂ ar(·) over the true values σ2
(·). The

return thresholds are calculated using the threshold number of ticks on the x-axis
over P0. ρ = 0.5. ρarr = 0.4. σ1 = σ2 = 0.25. ∆1 = ∆2 = 6 seconds. P0 = 50. tick
size=0.01.
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Figure 3.5: Correlated arrivals with spread

Notes: Ratio of the NP variance estimates of V̂ ar(·) over the true values σ2
(·). The

return thresholds are calculated using the threshold number of ticks on the x-axis
over P0. ρ = 0.5. ρarr = 0.4. σ1 = σ2 = 0.25. ∆1 = ∆2 = 6 seconds. s1 = s2 = 2
ticks. P0 = 50. tick size=0.01.

Table 3.13: Difference comparison summary

Overall Variance Covariance

5min 30min OtoC 5min 30min OtoC 5min 30min OtoC
COV1 .368 .768 .195 .947 .632 .053 .304 .784 .211
COV2 .316 .626 .211 .947 .421 .211 .246 .649 .211
RK .705 .889 .216 .789 1.0 .684 .696 .877 .164
TS .037 .742 .132 .263 1.0 .263 .012 .713 .117

Notes: COV1, COV2, RK, and TS variance and covariance estimators are compared
with the 5min, 30min, and OtoC realised variance/covariance estimators. Each
number represents the proportion of matrix elements that are significantly different
at 1% level for the pair of estimators in comparison.
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Figure 3.6: Bias: scenario 1

Figure 3.7: Bias: scenario 2

Figure 3.8: Bias: scenario 3

Notes: Ratio of the duration based covariance estimates over the true value against
the threshold number of multiples of the spread for the three scenarios.
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Figure 3.9: STD: scenario 1

Figure 3.10: STD: scenario 2

Figure 3.11: STD: scenario 3

Notes: Standard deviation of the duration based covariance estimates over a range
of threshold number of multiples of the spread for the three scenarios.
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Figure 3.12: RMSE: scenario 1

Figure 3.13: RMSE: scenario 2

Figure 3.14: RMSE: scenario 3

Notes: The RMSE of the duration based covariance estimates over a range of thresh-
old number of multiples of the spread for the three scenarios.
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Table 3.14: Summary statistics: all estimators

Overall Variance Covariance

Mean STD ACF1 Mean STD ACF1 Mean STD ACF1
COV1 .0291 .0629 .694 .0563 .1053 .711 .0261 .0582 .693
COV2 .0286 .061 .708 .0544 .1014 .718 .0257 .0565 .707
RK .0309 .075 .604 .0707 .1414 .609 .0265 .0676 .604
TS .0292 .0751 .571 .0639 .1314 .59 .0253 .0689 .569
5min RC .0292 .0713 .651 .065 .1294 .658 .0252 .0649 .65
30min RC .0254 .0703 .571 .0497 .1067 .588 .0227 .0663 .569
OtoC RC .0313 .1272 .175 .0617 .1816 .259 .0279 .1212 .166

Notes: Average mean, standard deviation and the first order autocorrelation statis-
tics for the seven variance/covariance estimators.

Table 3.15: Correlations among estimators

Overall Variance Covariance

5min 30min OtoC 5min 30min OtoC 5min 30min OtoC
COV1 .948 .871 .419 .942 .873 .492 .949 .87 .411
COV2 .943 .864 .417 .938 .868 .488 .944 .864 .409
RK .947 .855 .398 .955 .849 .473 .946 .855 .389
TS .959 .866 .406 .966 .857 .484 .958 .866 .397
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Figure 3.15: Eigenvalue ratios of duration based covariance matrix

Figure 3.16: Eigenvalue ratios of RK covariance matrix

Figure 3.17: Eigenvalue ratios of TS covariance matrix

Notes: Ratios of the 19 eigenvalues (in descending order) over their sum across all
trading days for COV , RK and TS. The average number of negative eigenvalues per
day is 1.082, 0.004, and 0, respectively for COV , RK, and TS covariance estimators.
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Table 3.16: Equal-weight, risk-parity, and GMV portfolio variances under eigenvalue
cleaning and shrinkage techniques

raw eigenvalue cleaning coarse shrinkage

equal weight risk parity risk parity gmv risk parity gmv
mean std mean std mean std mean std mean std mean std

COV 0.0277 0.0581 0.0209 0.0507 0.0265 0.0621 0.0273 0.0642 0.0209 0.0507 0.0168 0.0400
RK 0.0288 0.0675 0.0209 0.0513 0.0210 0.0513 0.0171 0.0426 0.0209 0.0513 0.0167 0.0384
TS 0.0273 0.0679 0.0208 0.0511 0.0208 0.0511 0.0175 0.0431 0.0208 0.0511 0.0170 0.0397
sub5min 0.0280 0.0694 0.0208 0.0511 0.0208 0.0511 0.0169 0.0417 0.0208 0.0511 0.0168 0.0395

Notes: The table presents the mean and standard deviation (std) of the one-day
ahead 5min portfolio variances, which are calculated using previous-day’s GMV and
risk-parity weights from one of the four candidate covariance matrices. “Raw”means
the portfolio variances are calculated based on the raw covariance matrices since the
calculation of equal-weight and risk parity portfolio weights does not require the co-
variance matrix to be invertible. “Eigenvalue cleaning”means all matrices are turned
psd using the eigenvalue cleaning technique where the three largest eigenvalues are
retained while the remaining 16 are equal to their average. “Coarse shrinkage”means
all matrices are improved using the coarse shrinkage technique with ηu = 100 and λ
is 0.75 for COV and 0.6 for RK, TS, and sub5min estimators.

Table 3.17: GMV results with the coarse shrinkage method for different allocation
targets

overall pre-crisis crisis post-crisis

mean median weight turnover mean median mean median mean median
5min as target

COV 0.0168 0.0082 0.0362 0.0136 0.0083 0.0378 0.0146 0.0092 0.0054
RK 0.0167 0.0083 0.0710 0.0141 0.0086 0.0358 0.0140 0.0091 0.0056
TS 0.0170 0.0087 0.0750 0.0143 0.0090 0.0371 0.0140 0.0091 0.0057
sub5min 0.0168 0.0085 0.0731 0.0140 0.0088 0.0369 0.0140 0.0090 0.0058

sub5min as target
COV 0.0173 0.0084 0.0362 0.0138 0.0084 0.0392 0.0143 0.0098 0.0053
RK 0.0172 0.0085 0.0710 0.0143 0.0087 0.0373 0.0141 0.0099 0.0057
TS 0.0175 0.0087 0.0750 0.0145 0.0091 0.0381 0.0141 0.0097 0.0058
sub5min 0.0172 0.0086 0.0731 0.0142 0.0089 0.0380 0.0141 0.0097 0.0058

TS as target
COV 0.0168 0.0081 0.0362 0.0135 0.0082 0.0380 0.0138 0.0095 0.0051
RK 0.0167 0.0081 0.0710 0.0138 0.0084 0.0360 0.0136 0.0096 0.0055
TS 0.0169 0.0084 0.0750 0.0140 0.0088 0.0369 0.0136 0.0094 0.0056
sub5min 0.0167 0.0083 0.0731 0.0137 0.0086 0.0367 0.0135 0.0094 0.0056

Notes: The coarse shrinkage method is used to fix the matrices to make them positive
definite and well-conditioned (ηu = 100). With coarse shrinkage, λ is fixed over the
whole sample period: 0.75 for COV , and 0.6 for RK, TS, and sub5min estimators.
5min, sub5min, and TS portfolio variances are used as portfolio allocation targets.
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Figure 3.18: Average weights for 19 assets

Notes: Average GMV and risk parity portfolio weights for the 19 assets in the
portfolio.

Figure 3.19: STD of weights for 19 assets

Notes: Standard deviation of the GMV and risk parity portfolio weights for the 19
assets in the portfolio.
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Table 3.18: GMV results with coarse shrinkage method when λ = 0.75 for all esti-
mators

overall pre-crisis crisis post-crisis

mean median weight turnover mean median mean median mean median
COV 0.0168 0.0083 0.0349 0.0136 0.0084 0.0379 0.0146 0.0092 0.0054
RK 0.0172 0.0084 0.0706 0.0142 0.0086 0.0377 0.0143 0.0097 0.0057
TS 0.0177 0.0088 0.0737 0.0144 0.0090 0.0400 0.0149 0.0097 0.0059
sub5min 0.0175 0.0086 0.0722 0.0140 0.0088 0.0397 0.0149 0.0097 0.0058

Notes: The coarse shrinkage method is used to fix the matrices to make them positive
definite and well-conditioned (ηu = 100). With coarse shrinkage, λ is fixed over the
whole sample period. In this table, λ = 0.75 for all four estimators. The portfolio
allocation target is the 5min portfolio variance.

Table 3.19: GMV results with coarse shrinkage method under different ηu

ηu 20 40 60 80 100 120 140 160 180 200

mean
COV 0.0179 0.0179 0.0180 0.0181 0.0183 0.0183 0.0185 0.0186 0.0187 0.0189
RK 0.0176 0.0178 0.0179 0.0181 0.0181 0.0182 0.0183 0.0183 0.0183 0.0182
TS 0.0176 0.0178 0.0182 0.0184 0.0185 0.0186 0.0187 0.0188 0.0189 0.0191
sub5min 0.0176 0.0178 0.0180 0.0182 0.0182 0.0183 0.0183 0.0185 0.0186 0.0187

median
COV 0.0085 0.0085 0.0086 0.0087 0.0088 0.0089 0.0091 0.0092 0.0092 0.0093
RK 0.0084 0.0086 0.0088 0.0090 0.0090 0.0090 0.0091 0.0091 0.0091 0.0091
TS 0.0084 0.0087 0.0091 0.0092 0.0094 0.0095 0.0096 0.0096 0.0096 0.0097
sub5min 0.0084 0.0088 0.0090 0.0091 0.0092 0.0092 0.0093 0.0094 0.0094 0.0095

weight turnover
COV 0.0291 0.0300 0.0320 0.0339 0.0362 0.0375 0.0399 0.0418 0.0429 0.0446
RK 0.0323 0.0451 0.0574 0.0657 0.0710 0.0739 0.0754 0.0768 0.0777 0.0782
TS 0.0364 0.0462 0.0601 0.0690 0.0750 0.0798 0.0828 0.0846 0.0865 0.0876
sub5min 0.0355 0.0474 0.0603 0.0675 0.0731 0.0769 0.0791 0.0809 0.0820 0.0832

Notes: The coarse shrinkage method is used to fix the matrices to make them positive
definite and well-conditioned (defined by ηu). With coarse shrinkage, λ is fixed over
the whole sample period: 0.75 for COV , and 0.6 for RK, TS, and sub5min estimators.
The allocation target is the 5min portfolio variance.
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Figure 3.20: ξ over time under the fine shrinkage method, ηu = 100

Figure 3.21: ξ over time under the fine shrinkage method, ηu = 190

Notes: Under the fine shrinkage method, ξ starts from 1 and increases by 0.1 each
time. A well-conditioned matrix is defined by ηu = 100 or ηu = 190.
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Table 3.20: GMV results combining coarse and fine shrinkage methods

overall pre-crisis crisis post-crisis

mean median weight turnover mean median mean median mean median
ηu = 190

COV 0.0173 0.0086 0.0442 0.0143 0.0089 0.0383 0.0149 0.0093 0.0055
RK 0.0167 0.0084 0.0790 0.0143 0.0087 0.0355 0.0140 0.0090 0.0057
TS 0.0172 0.0089 0.0894 0.0144 0.0090 0.0376 0.0150 0.0091 0.0061
sub5min 0.0168 0.0086 0.0840 0.0140 0.0088 0.0370 0.0148 0.0089 0.0059

ηu = 100
COV 0.0168 0.0082 0.0362 0.0136 0.0083 0.0378 0.0146 0.0092 0.0054
RK 0.0163 0.0083 0.0758 0.0141 0.0086 0.0345 0.0137 0.0087 0.0056
TS 0.0166 0.0087 0.0837 0.0143 0.0090 0.0351 0.0144 0.0087 0.0058
sub5min 0.0163 0.0085 0.0796 0.0140 0.0088 0.0348 0.0143 0.0086 0.0057

Notes: GMV results for COV are based on the coarse shrinkage method while the
results for RK, TS, and sub5min are based on the fine shrinkage method. The
portfolio allocation target is the 5min portfolio variance.
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3.7 Appendix

3.7.1 Correlated Bernoulli processes

Suppose we want the two random Bernoulli processes, Z1 and Z2, to be ρarr corre-

lated, and with intensities λZ1 and λZ2 . Since a Bernoulli variable of 1 indicates a

trade, this is equivalent to the average trade intervals being ∆1 = 1
λZ1

seconds, and

∆2 = 1
λZ2

seconds.

Now let λ1 denote the probability/intensity when there is a trade in process Z1

and also a trade in process Z2, and λ2 the probability/intensity when there is no

trade in process Z1 but a trade in process Z2. Then:

λZ1λ1 + (1− λZ1)λ2 = λZ2 , (3.21)

and with

ρarr = Corr(Z1, Z2) = Cov(Z1, Z2)√
V ar(Z1)V ar(Z2)

, (3.22)

where Cov(Z1, Z2) = E(Z1Z2)−E(Z1)E(Z2) = λZ1λ1−λZ1λZ2 , V ar(Z1) = λZ1(1−

λZ1), and V ar(Z2) = λZ2(1− λZ2), we can solve for λ1 and λ2.

3.7.2 Empirical supplements

3.7.2.1 Eigenvalue ratios

3.7.2.2 GMV results under fine shrinkage
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Figure 3.22: Eigenvalue ratios, COV , coarse shrinkage

Figure 3.23: Eigenvalue ratios, RK, coarse shrinkage

Figure 3.24: Eigenvalue ratios, TS, coarse shrinkage
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Figure 3.25: Eigenvalue ratios, sub5min, coarse shrinkage

Notes: Ratios of the 19 eigenvalues (in descending order) over their sum across all
trading days for COV , RK, TS and sub5min estimators after applying the coarse
shrinkage technique to make them psd and well-conditioned (ηu = 100). Under
coarse shrinkage, λ is fixed over the entire sample period, and is 0.75 for COV and
0.6 for RK, TS, and sub5min estimators.

Figure 3.26: η, COV , coarse shrinkage
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Figure 3.27: η, RK, coarse shrinkage

Figure 3.28: η, TS, coarse shrinkage

Figure 3.29: η, sub5min, coarse shrinkage

Notes: The ratio of largest/smallest eigenvalues (η) after applying the coarse
shrinkage technique to make the resulting matrices psd and well conditioned:
ηu = 100. Under coarse shrinkage, λ is fixed over the entire sample period, and is
0.75 for COV and 0.6 for RK, TS, and sub5min estimators.
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Figure 3.30: η, TS, raw

Notes: Ratios of largest/smallest eigenvalues (η) of the raw TS covariance matrix
across all trading days.

Table 3.21: GMV results under the fine shrinkage method

overall pre-crisis crisis post-crisis

mean median weight turnover mean median mean median mean median
ηu = 190

COV 0.0254 0.0148 0.1267 0.0237 0.0161 0.0491 0.0237 0.0131 0.0097
RK 0.0167 0.0084 0.0790 0.0143 0.0087 0.0355 0.0140 0.0090 0.0057
TS 0.0172 0.0089 0.0894 0.0144 0.0090 0.0376 0.0150 0.0091 0.0061
sub5min 0.0168 0.0086 0.0840 0.0140 0.0088 0.0370 0.0148 0.0089 0.0059

ηu = 100
COV 0.0210 0.0122 0.1046 0.0193 0.0131 0.0419 0.0196 0.0107 0.0080
RK 0.0163 0.0083 0.0758 0.0141 0.0086 0.0345 0.0137 0.0087 0.0056
TS 0.0166 0.0087 0.0837 0.0143 0.0090 0.0351 0.0144 0.0087 0.0058
sub5min 0.0163 0.0085 0.0796 0.0140 0.0088 0.0348 0.0143 0.0086 0.0057

Notes: The fine shrinkage method is used to fix the matrices to make them positive
definite and well-conditioned (defined by ηu). Under fine shrinkage, λ is selected on
a daily basis. It starts from 1 and increases by 0.1 each time. The allocation target
is the 5min portfolio variance.
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Concluding remarks

This thesis is consisted of a literature review and two papers, investigating respec-

tively high-frequency variance and covariance estimation using price durations. The

price duration approach to study high-frequency data has received very little atten-

tion in the literature so far. The two papers aim to fill this gap.

The duration approach counts the number of price durations, defined as the time

taken for the absolute cumulative price change to exceed a selected threshold value.

Under this approach, grids are imposed along the price dimension instead of the time

dimension. The tuning parameter under the duration based approach is the optimal

threshold value, which is the point where the impact of MMS noise and price jumps

is mostly mitigated and the RMSE is the smallest. Through simulation evidence

and empirical analysis, we recommend an appropriate choice of threshold value to

be three times the average bid/ask spread. In an volatility forecasting application,

both the parametric and nonparametric price duration volatility estimators are found

to outperform competing RV class and option-implied class of estimators.

We construct the duration based variance-covariance matrix on a pairwise basis.

To decrease the number of negative eigenvalues, we devise an averaging estimator

by taking an average over a wide range of duration-based covariance estimators. We
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find through simulation evidence that this averaging estimator not only decreases

the number of negative eigenvalues but also improves efficiency. As an empirical ap-

plication, an out-of-sample GMV portfolio allocation problem is studied. The price

duration matrix estimator is found to generate comparably low portfolio variance

with much lower portfolio turnover rates.

In terms of bias and efficiency, comparing to other estimators, the duration based

variance estimates show smaller deviation but larger bias, while the covariance es-

timates using price durations exhibit smaller variation without producing a larger

bias.

For future research, we could think of a way to eliminate the bias of the duration

based variance estimates. The duration based variance and covariance estimators

can also be applied on other asset classes, for example the foreign exchange mar-

kets. We can also devise jump detection methods using price durations, through

the instantaneous volatility estimator produced by the parametric duration based

variance estimator. Research on data with even richer information can include limit

order book dynamics, made possible by the recently available limit order book data.
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