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Abstract

A wireless sensor network comprises of tiny sensor nodes which communicate

with each other through radio frequency communication links. In many

applications of wireless sensor networks, the sensor nodes collect data or

detect an event and report it to a central node for further processing.

Location information of the node is sent with the data else it may not

be useful. Therefore, a sensor node should know its geographic position

coordinates. Localization solutions, such as GPS are not feasible due to

their energy cost and size. Hence, sensor nodes estimate their positions using

an algorithm. This thesis focuses on the localization of sensor nodes and

related key issues, such as performance evaluation of localization algorithms,

development of analytical model and analysis of localization error. Firstly,

this thesis proposes three new novel metrics which can be used for the

performance evaluation of three different aspects of localization algorithms.

Alongside, we also present a comprehensive review of metrics which are

used in literature for the measurement and characterization of localization

errors. Secondly, we present an intelligent algorithm which we call ripple

localization algorithm. The algorithm is distributed, energy efficient and

does not require additional hardware for range estimation. The algorithm

also provides control over localization granularity which makes it suitable

for wide range of wireless sensor network and localization applications.

Simulation results show that the algorithm gives good performance and

localization accuracy even under irregular radio conditions. Thirdly, we give

a new technique for solving multilateration equations and show that the

overdetermined system of equations resulting from multilateration can be

reduced to a pair of simultaneous equations which can then be solved using

conventional techniques, such as Cramer’s rule. Fourthly, we develop and

present an analytical model of localization error resulting from trilateration.
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The multilateration solution technique and analytical model are verified using

simulation. Finally, we analyze trilateration errors in short range wireless

networks, such as wireless sensor networks and internet of things where the

distance estimation errors are sometimes comparable to the actual distances.

We investigate the minimum and maximum values of localization errors in

these networks. We also derive a number of other useful results. For example,

we show that the localization error due to positive range estimation errors

equal to the actual distances is 3 times the localization error resulting from

the same magnitude of negative range estimation errors. All the results are

tested and verified using a comprehensive set of simulation experiments.

ii



Declaration

This thesis is a result of original research work undertaken by myself. Wherever

work of others has been referred to, it has been appropriately referenced. The

material in this thesis has not been submitted in part or full for the award of

a higher degree elsewhere.

Muhammad Farooq-i-Azam

November 2017

iii



Publications

1. M. Farooq-I-Azam, Q. Ni, E. A. Ansari, and H. Pervaiz,“Energy-efficient

location estimation using variable range beacons in wireless sensor

networks,” 2015 IEEE International Conference on Computer and

Information Technology; Ubiquitous Computing and Communications;

Dependable, Autonomic and Secure Computing; Pervasive Intelligence

and Computing, pp. 1074 – 1079, 2015.

2. M. Farooq-I-Azam, Q. Ni, and E. A. Ansari, “Intelligent energy efficient

localization using variable range beacons in industrial wireless sensor

networks,” IEEE Transactions on Industrial Informatics, vol. 12, no. 6,

pp. 2206 – 2216, Dec 2016.

3. M. Farooq-I-Azam, and Q. Ni, “An analytical model of localization

error due to trilateration,” IEEE Transactions on Industrial Informatics,

Submitted

iv



Acknowledgements

Foremost, my deepest thanks and gratitude to Allah, the Most Beneficent and

the Most Merciful for His abundant blessings.

I would like to express my most sincere thanks to my supervisor Prof. Qiang Ni.

I consider myself to be really lucky for getting a chance to work under his expert

supervision and guidance. I have learned a lot from him. Throughout my PhD,

whenever I reached him for advice about personal or research problems, I found

him always there with a good piece of advice. He kept providing his unfailing

support to me during my PhD pursuit.

There are many people in the InfoLab21 which helped me one way or the other

in the course of my PhD endeavour. I thank all of them. In particular, I thank

Dr. Philip Benachour, Dr. Ioannis Chatzigeorgiou, Dr Keivan Navaie, Prof.

Zhiguo Ding and Dr. Leila Musavian for help in different matters and fruitful

suggestions. I am also thankful to my friends and colleagues Haris, Arooj and

Wenjuan in the Green Wireless Networking Laboratory. I must also thank

our present and former research support and administrative staff Claire Anne,

Heather, Debbie, Charlotte and Vicky for their help and support in various

matters.

I owe a lot of thanks to my entire family. In particular, I would like to mention

the selfless role of my parents, Muhammad Siddique and Karim Bibi (may she

rest in peace) first during my early education and then during my career and

postgraduate studies. Words are not enough to express my gratitude towards

them for everything they have done for me. I am also thankful to my brothers,

Akbar-i-Azam and Sohail Azam for their help and support. I would also like

to thank my wife, Samara and children Omar, Ali and Amna for bearing with

me during my PhD research work.

v



Dedication

Mother O’ Mine

If I were hanged on the highest hill,

Mother o’ mine, O mother o’ mine!

I know whose love would follow me still,

Mother o’ mine, O mother o’ mine!

If I were drowned in the deepest sea,

Mother o’ mine, O mother o’ mine!

I know whose tears would come down to me,

Mother o’ mine, O mother o’ mine!

If I were damned of body and soul,

I know whose prayers would make me whole,

Mother o’ mine, O mother o’ mine!

Rudyard Kipling (1865 – 1936)

vi



‘We are not lost. We are locationally challenged.’

John M. Ford

vii



Contents

Abstract i

Declaration iii

Publications iv

Acknowledgements v

Dedication vi

Contents viii

List of Tables xvi

List of Figures xviii

List of Abbreviations xxii

List of Symbols xxvi

viii



CONTENTS

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Performance Evaluation of Localisation Algorithms 10

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 System Development Life Cycle . . . . . . . . . . . . . . . . . . 16

2.3.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Design and implementation . . . . . . . . . . . . . . . . 19

2.3.3 Performance evaluation . . . . . . . . . . . . . . . . . . . 19

2.3.3.1 Analytical modelling . . . . . . . . . . . . . . . 20

2.3.3.2 Simulation . . . . . . . . . . . . . . . . . . . . 21

2.3.3.3 Emulation . . . . . . . . . . . . . . . . . . . . . 22

2.3.3.4 Testbeds . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3.5 Real deployment . . . . . . . . . . . . . . . . . 24

2.3.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Criteria for Performance Evaluation . . . . . . . . . . . . . . . . 26

2.4.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.2 Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

ix



CONTENTS

2.4.3 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.4 Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.5 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.1 Number of beacon nodes . . . . . . . . . . . . . . . . . . 31

2.5.2 Number of sensor nodes . . . . . . . . . . . . . . . . . . 31

2.5.3 Size of sensor field . . . . . . . . . . . . . . . . . . . . . 31

2.5.4 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.5 Mobile nodes . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.6 Obstacles . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.7 Signal type . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.8 Algorithm specific parameters . . . . . . . . . . . . . . . 33

2.6 Performance Evaluation Metrics . . . . . . . . . . . . . . . . . . 34

2.6.1 Absolute localisation error . . . . . . . . . . . . . . . . . 34

2.6.2 Mean absolute localisation error . . . . . . . . . . . . . . 35

2.6.3 Normalised localisation error . . . . . . . . . . . . . . . . 35

2.6.4 Mean normalised localisation error . . . . . . . . . . . . 36

2.6.5 Statistics of localisation error . . . . . . . . . . . . . . . 36

2.6.5.1 Maximum localisation error . . . . . . . . . . . 37

2.6.5.2 Minimum localisation error . . . . . . . . . . . 37

x



CONTENTS

2.6.5.3 Median of localisation error . . . . . . . . . . . 37

2.6.5.4 Mode of localisation error . . . . . . . . . . . . 37

2.6.5.5 Standard deviation of localisation error . . . . . 38

2.6.5.6 Geometric mean . . . . . . . . . . . . . . . . . 38

2.6.6 Root mean square error . . . . . . . . . . . . . . . . . . 40

2.6.7 Cumulative distribution function . . . . . . . . . . . . . 41

2.6.8 Global energy ratio . . . . . . . . . . . . . . . . . . . . . 41

2.6.9 Average relative deviation . . . . . . . . . . . . . . . . . 42

2.6.10 Global distance error . . . . . . . . . . . . . . . . . . . . 43

2.6.11 Area based metric . . . . . . . . . . . . . . . . . . . . . . 43

2.6.12 Sum of distance inconsistencies . . . . . . . . . . . . . . 45

2.6.13 Quality of fit . . . . . . . . . . . . . . . . . . . . . . . . 45

2.6.14 Frobenius error . . . . . . . . . . . . . . . . . . . . . . . 46

2.6.15 Performance cost metric . . . . . . . . . . . . . . . . . . 47

2.6.16 Manhattan distance . . . . . . . . . . . . . . . . . . . . . 47

2.6.17 Cosine distance . . . . . . . . . . . . . . . . . . . . . . . 48

2.6.18 Tanimoto coefficient distance . . . . . . . . . . . . . . . 50

2.6.19 Relative Euclidean Distance . . . . . . . . . . . . . . . . 51

2.6.20 Cumulative vectorial distance . . . . . . . . . . . . . . . 52

2.6.21 Spring distance . . . . . . . . . . . . . . . . . . . . . . . 53

xi



CONTENTS

2.7 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3 Ripple Localisation Algorithm 59

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 Ripple Localisation Algorithm . . . . . . . . . . . . . . . . . . . 65

3.3.1 Sensor Field . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.2 RLA Part 1 for Beacon Nodes . . . . . . . . . . . . . . . 66

3.3.3 RLA Part 2 for Unknown Nodes . . . . . . . . . . . . . . 68

3.3.4 Proof of Concept . . . . . . . . . . . . . . . . . . . . . . 73

3.3.5 Algorithm Complexity . . . . . . . . . . . . . . . . . . . 75

3.4 Energy Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5 Proposed Performance Metrics . . . . . . . . . . . . . . . . . . . 81

3.5.1 Localisation error . . . . . . . . . . . . . . . . . . . . . . 82

3.5.2 Localisation time . . . . . . . . . . . . . . . . . . . . . . 82

3.5.3 Error momentum . . . . . . . . . . . . . . . . . . . . . . 82

3.5.4 Localisation Efficiency . . . . . . . . . . . . . . . . . . . 84

3.5.5 Degree of Location Intelligence . . . . . . . . . . . . . . 85

3.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . 86

3.6.1 Localisation Error . . . . . . . . . . . . . . . . . . . . . . 87

xii



CONTENTS

3.6.1.1 Localisation granularity and number of beacon

signals in a ripple . . . . . . . . . . . . . . . . . 87

3.6.1.2 Number of beacon nodes . . . . . . . . . . . . . 88

3.6.1.3 Cumulative error distribution . . . . . . . . . . 90

3.6.2 Localisation Time . . . . . . . . . . . . . . . . . . . . . . 91

3.6.2.1 Number of beacon signals in a ripple . . . . . . 91

3.6.2.2 Number of beacon nodes . . . . . . . . . . . . . 92

3.6.2.3 Cumulative time distribution . . . . . . . . . . 94

3.6.3 Error Momentum . . . . . . . . . . . . . . . . . . . . . . 95

3.6.4 Localisation Efficiency . . . . . . . . . . . . . . . . . . . 96

3.6.5 Degree of Location Intelligence . . . . . . . . . . . . . . 97

3.6.6 Node Density . . . . . . . . . . . . . . . . . . . . . . . . 98

3.6.7 Variation in Beacon Signal Step . . . . . . . . . . . . . . 99

3.6.8 Performance Comparison with Improved CAB . . . . . . 101

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4 Analytical Model of Localisation Error 108

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.3 Multilateration Solution . . . . . . . . . . . . . . . . . . . . . . 119

4.4 Analytical Model . . . . . . . . . . . . . . . . . . . . . . . . . . 125

xiii



CONTENTS

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5 Trilateration Error Analysis 135

5.1 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.1.1 Case I: Individual error terms . . . . . . . . . . . . . . . 136

5.1.2 Case II: E1 and E2 . . . . . . . . . . . . . . . . . . . . . 138

5.1.3 Case III: Ex and Ey . . . . . . . . . . . . . . . . . . . . 145

5.1.3.1 Extrema for Ex . . . . . . . . . . . . . . . . . . 148

5.1.3.2 Extrema for Ey . . . . . . . . . . . . . . . . . . 153

5.1.4 Case IV: Localisation error (el) . . . . . . . . . . . . . . 162

5.1.5 Further analysis . . . . . . . . . . . . . . . . . . . . . . . 164

5.1.5.1 Equal error . . . . . . . . . . . . . . . . . . . . 164

5.1.5.2 Unequal error . . . . . . . . . . . . . . . . . . . 167

5.1.5.3 Geometry of positioning of nodes . . . . . . . . 173

5.1.6 Summary of results . . . . . . . . . . . . . . . . . . . . . 174

5.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.2.1 Extreme values of error . . . . . . . . . . . . . . . . . . . 181

5.2.1.1 Error term ζi . . . . . . . . . . . . . . . . . . . 183

5.2.1.2 E1 and E2 . . . . . . . . . . . . . . . . . . . . . 186

5.2.1.3 Ex and Ey . . . . . . . . . . . . . . . . . . . . . 189

5.2.1.4 Localisation error (el) . . . . . . . . . . . . . . 193

xiv



5.2.2 Localisation error due to equal distance estimation errors 194

5.2.3 Localisation error due to unequal distance estimation

errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

5.2.4 Geometry of nodes and distance estimation errors . . . . 198

5.2.5 Two equidistant beacon nodes . . . . . . . . . . . . . . . 203

5.2.6 Two equidistant collinear beacon nodes parallel to an axis204

5.2.7 All equidistant beacon nodes . . . . . . . . . . . . . . . . 206

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

6 Conclusion 209

6.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 209

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

References 215

Index 233

xv



List of Tables

2.1 Four types of spring distance . . . . . . . . . . . . . . . . . . . . 56

3.1 Error momentum . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1 Possible extreme values of E1. . . . . . . . . . . . . . . . . . . . 143

5.2 Possible extreme values of E2. . . . . . . . . . . . . . . . . . . . 144

5.3 Dx1, Dx2 and Dx3 for different values of k1 and k2. . . . . . . . . 152

5.4 Dy1, Dy2 and Dy3 for different values of k3 and k4. . . . . . . . . 156

5.5 Possible extreme values of Ex. . . . . . . . . . . . . . . . . . . . 157

5.6 Possible extreme values of Ey. . . . . . . . . . . . . . . . . . . . 157

5.7 Beacon nodes and their distances. . . . . . . . . . . . . . . . . . 180

5.8 Extreme values of errors. . . . . . . . . . . . . . . . . . . . . . 180

5.9 Localisation Error Due to Equal Distance Estimation Errors. . . 194

5.10 Localisation Error Due to Unequal Distance Estimation Errors. 196

5.11 Positions and Distances of Beacon Nodes in a Fixed Geometry. . 200

xvi



5.12 Positions of Beacon Nodes are Fixed but Distance Estimation

Errors are Variable. . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.13 Fixed Distances of Beacon Nodes in a Variable Geometry. . . . . 200

5.14 Positions of Beacon Nodes are Variable but Distance Estimation

Errors are Fixed. . . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.15 Localisation with Two Equidistant Beacon Nodes. . . . . . . . . 204

5.16 Beacon nodes when localising with two equidistant and collinear

beacon nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

5.17 Results when two equidistant beacon nodes are collinear and

parallel to an axis. . . . . . . . . . . . . . . . . . . . . . . . . . 206

5.18 Localisation With All Equidistant Beacon Nodes (E1 = E2 = 0,

Ex = Ey = 0, el = 0). . . . . . . . . . . . . . . . . . . . . . . . . 207

xvii



List of Figures

2.1 Different localisation algorithms may result in different

estimated topologies. . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 A typical research cycle. . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Role of methodology in research. . . . . . . . . . . . . . . . . . 25

2.4 Role of simulation in the development and performance

evaluation of a localisation algorithm. . . . . . . . . . . . . . . . 25

2.5 Performance evaluation of a localisation algorithm. . . . . . . . 27

3.1 Irregular radio pattern and degree of irregularity. . . . . . . . . 66

3.2 A ripple of beacon signals. . . . . . . . . . . . . . . . . . . . . . 68

3.3 A typical beacon message. . . . . . . . . . . . . . . . . . . . . . 68

3.4 Experimental verification of radio connectivity. . . . . . . . . . . 74

3.5 Energy saving with increase in beacon signals in a ripple. . . . . 80

3.6 Effect of number of beacon signals in a ripple on localisation error. 88

3.7 Localisation error of Centroid, CAB and RLA. . . . . . . . . . . 89

xviii



LIST OF FIGURES

3.8 Comparison of cumulative error distribution. . . . . . . . . . . . 90

3.9 Effect of number of beacon signals in a ripple on localisation time. 91

3.10 Comparison of localisation times. . . . . . . . . . . . . . . . . . 92

3.11 Change in localisation time with DOI and number of beacon

nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.12 Localisation times of Centroid and RLA. . . . . . . . . . . . . . 94

3.13 Comparison of cumulative time distribution. . . . . . . . . . . . 94

3.14 Performance comparison using error momentum. . . . . . . . . . 95

3.15 Change in error momentum with DOI and number of beacon

nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.16 Localisation efficiency. . . . . . . . . . . . . . . . . . . . . . . . 97

3.17 Performance Comparison using DOLI. . . . . . . . . . . . . . . 98

3.18 Localisation error using varying sizes of sensor field. . . . . . . 99

3.19 Localisation error using 200 m× 200 m sensor field. . . . . . . . 100

3.20 Localisation efficiency using 200 m× 200 m sensor field. . . . . 100

3.21 Effect of variations in beacon signal step on localisation error. . 101

3.22 Localisation time of modified forms of CAB. . . . . . . . . . . . 103

3.23 Localisation error of modified forms of CAB. . . . . . . . . . . . 104

3.24 Localisation efficiency of modified forms of CAB. . . . . . . . . 105

5.1 Relative change in localisation error with distance estimation

error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

xix



LIST OF FIGURES

5.2 Multilateration analysis for extreme values of distance

estimation errors. (a)-(h) Node positions for 8 repetitions of

the experiment. (f) Legend. . . . . . . . . . . . . . . . . . . . . 182

5.3 Localisation error term ζi as a function of distance estimation

error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.4 Error (E1) as a function of distance estimation error for two

non-equidistant beacon nodes. . . . . . . . . . . . . . . . . . . . 187

5.5 Error (E2) as a function of distance estimation error for two

non-equidistant beacon nodes. . . . . . . . . . . . . . . . . . . . 188

5.6 Error E1 and E2. . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.7 Error (E1) as a function of distance estimation error for two

equidistant beacon nodes. . . . . . . . . . . . . . . . . . . . . . 189

5.8 Components k1E1 and k2E2 of Ex from two angles (a) front

azimuth and (b) back azimuth. . . . . . . . . . . . . . . . . . . 190

5.9 Components k3E1 and k4E2 of Ey from two angles (a) front

azimuth and (b) back azimuth. . . . . . . . . . . . . . . . . . . 191

5.10 Error Ex as a function of e1 and e2 for three different constant

values of e3 i.e. e3 = −ra3, e3 = 0 and e3 = +ra3. . . . . . . . . . 192

5.11 Error Ey as a function of e1 and e2 for three different constant

values of e3 i.e. e3 = −ra3, e3 = 0 and e3 = +ra3. . . . . . . . . . 192

5.12 Ex and Ey as a function of e1 and e2 for different constant values

of e3 (a) e3 = −ra3 (b) e3 = 0 (c) e3 = +ra3. . . . . . . . . . . . 193

xx



5.13 Localisation error el as a function of e1 and e2 for different

constant values of e3 (a) e3 = −ra3 (b) e3 = 0 (c) e3 = +ra3 (d)

combined plot of (a), (b) and (c). . . . . . . . . . . . . . . . . . 194

5.14 Trilateration error due to equal values of distance estimation

errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5.15 Trilateration error due to unequal values of distance estimation

errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

5.16 Multilateration analysis when geometry of nodes is unchanged

but distance estimation errors are variable (a)-(e) Node

positions for iteration 1 to 5. (f) Legend. . . . . . . . . . . . . . 201

5.17 Multilateration analysis when geometry of nodes changes but

distances and distance estimation errors remain the same (a)-(e)

Node positions for iteration 1 to 5. (f) Legend. . . . . . . . . . . 202

5.18 Multilateration analysis with two equidistant beacon nodes

(a)-(e) Node positions for iteration 1 to 5. (f) Legend. . . . . . . 203

5.19 Multilateration analysis with two equidistant beacon nodes

collinear to an axis (a)-(c) two equidistant collinear nodes

parallel to x-axis (d)-(f) two equidistant collinear nodes parallel

to y-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

5.20 Multilateration analysis with all equidistant beacon nodes

(a)-(e) Node positions for iteration 1 to 5. (f) Legend. . . . . . . 207

xxi



List of Abbreviations

5G Fifth Generation

AHoLS Ad hoc Localization System

APS Ad hoc Positioning System

ARD Average Relative Deviation

CAB Concentric Anchor Beacon Localization

CDF Cumulative Distribution Function

CPE Convex Position Estimation

CPU Central Processing Unit

CVD Cumulative Vectorial Distance

dBm Decibel milliwatts

DF Direction Finding

xxii



List of Abbreviations

DOI Degree of Irregularity

DOLI Degree of Location Intelligence

DOP Dilution of Precision

DV Distance Vector

GDE Global Distance Error

GDOP Geometric Dilution of Precision

GER Global Energy Ratio

GHz Giga Hertz

GLONASS Globalnaya Navigazionnaya Sputnikovaya

Sistema

GNSS Global Navigation Satellite System

GPS Global Positioning System

HDOP Horizontal Dilution of Precision

IEEE Institute of Electrical and Electronics

Engineers

xxiii



List of Abbreviations

IoT Internet of Things

LMAT Localization with Mobile Anchor using

Trilateration

LORAN Long Range Navigation

LP Linear Program

ns-2 Network Simulator version 2

PDOP Position Dilution of Precision

RAM Radio Access Memory

RED Relative Euclidean Distance

RF Radio Frequency

RLA Ripple Localization Algorithm

RMS Root Mean Square

ROCRSSI Ring Overlapping based on Comparison of

Received Signal Strength Indicator

RSS Received Signal Strength

RSSI Received Signal Strength Indicator

xxiv



SDLC System Development Life Cycle

TDOA Time Difference of Arrival

TDOP Time Dilution of Precision

TOSSIM TinyOS Simulator

VDOP Vertical Dilution of Precision

WAM Wide Area Multilateration

WiFi Wireless Fidelity

WPAN Wireless Personal Area Networks

WSN Wireless Sensor Network

xxv



List of Symbols

F Framework of ideas

A Area of concern

M Methodology

t Localisation time

ti Time taken by a sensor node i for localisation

tm Mean localisation time

N Number of sensor nodes

(xa, ya) Actual position coordinates of a sensor node

(xia, yia) Actual position coordinates of a sensor node i

(x, y) Estimated position coordinates of a sensor

node

xxvi



List of Symbols

(xi, yi) Estimated position coordinates of a sensor

node i

Pi Point representing the actual position of a

sensor node i

P̂i Point representing the estimated position of a

sensor node i

dij The distance between the actual positions Pi

and Pj of sensor nodes i and j

d̂ij The distance between the estimated positions

P̂i and P̂j of sensor nodes i and j

Vij The vector between the actual positions of

sensor nodes i and j from Pi to Pj

V̂ij The vector between the estimated positions of

sensor nodes i and j from P̂i to P̂j

el Localisation error which is the distance

between the actual and estimated positions of

a sensor node

µl Mean absolute localisation error of N sensor

nodes

eln Normalised localisation error

xxvii



List of Symbols

Rs Radio range of a sensor node

eli Absolute localisation error of sensor node i

elni Normalised localisation error of sensor node i

elrms Root mean square value of absolute

localisation errors

elnrms Root mean square value of normalised

localisation error

µln Mean normalised localisation error ofN sensor

nodes

elmax Maximum localisation error

elmin Minimum localisation error

eld Median of localisation error

elo Mode of localisation error

σa Standard deviation of absolute localisation

error

eg Geometric mean of localisation error

xxviii



List of Symbols

EG Global energy ratio

EA Average relative deviation

ED Global distance error

Ar Area of actual topology of sensor nodes

Av Area of estimated topology of sensor nodes

AR Area ratio between estimated and actual

topologies

ES Sum of distance inconsistencies

EQ Quality of fit

Rij Actual distance between sensor nodes i and j

EF Frobenius error

EC Performance cost metric

γ Weighing factor in the evaluation of

performance cost metric

C Performance cost as the average energy per

node required for localisation

xxix



List of Symbols

dM Manhattan distance between the actual and

estimated positions of a sensor node

dMi Manhattan distance between the actual and

estimated positions of sensor node i

µM Manhattan distance between the actual and

estimated topologies of a wireless sensor

network

dC Cosine distance between the actual and

estimated topologies of a pair of nodes

dCij Cosine distance between the actual and

estimated topologies formed by a pair of nodes

i and j

µC Cosine distance between the actual and

estimated topologies of a network

TC Tanimoto coefficient

dT Tanimoto distance between the actual and

estimated topologies of a pair of nodes

dT ij Tanimoto distance between the actual and

estimated topologies formed by a pair of nodes

i and j

xxx



List of Symbols

µT Tanimoto distance between the actual and

estimated topologies of a network

dR Relative Euclidean distance between a pair of

nodes

dRij Relative Euclidean distance between a pair of

nodes i and j

µR Relative Euclidean distance between the

actual and estimated topologies of a network

µV Cumulative vectorial distance between the

actual and estimated topologies of a network

ks Elastic modulus of a tension spring

l Length of a spring

xs Displacement in a spring

kt Rotational sensitivity constant of a torsion

spring

θt Angle due to rotation

kd Spring constant for type 1 spring

xxxi



List of Symbols

UT1 Average potential energy stored in type 1

spring

UT2 Average potential energy stored in type 2

spring

UT3 Average potential energy stored in type 3

spring

θtij Angle due to rotation between actual and

estimated topologies of a pair of sensor nodes

i and j

µs Spring distance between the actual and

estimated topologies of network

em Error momentum

Ns Number of settled nodes

ηl Localisation efficiency

δ Degree of location intelligence

r Communication radius of a beacon node

ri Estimated range of an unknown node from ith

beacon node

xxxii



List of Symbols

rai Actual range of an unknown node from ith

beacon node

ei Range estimation error of an unknown node

from ith beacon node

Bi Beacon node i

k Number of beacon nodes

dr Beacon signal step which is the distance

between two successive beacon signals in a

ripple

to Time stamp of a beacon message

(Xb, Yb) Position of a beacon node

Pti Transmission power used for the transmission

of an ith beacon signal

Ri Radio range of ith beacon signal

Pmin Minimum transmission power

Pmax Maximum transmission power

Rmin Minimum transmission radius

xxxiii



List of Symbols

Rmax Maximum transmission radius

Ui Unknown node i

Pt Transmitted power

Pr Received power

Gt Gain of transmitter antenna

Gr Gain of receiver antenna

d Distance between transmitter and receiver

antennas

λ Wavelength of radio waves

α Path loss exponent

n Number of beacon signals in a ripple

PT Total power transmitted by a beacon node

PS Power saved by a beacon node

ηP Energy efficiency of a beacon node

ηPmax Maximum energy efficiency of a beacon node

xxxiv



List of Symbols

β Bound on random error in the beacon signal

radio range

r12 Difference in the distance of receiver from the

first pair of master and secondary stations

Ex x component of localisation error

Ey y component of localisation error

k1 One of the two localisation constants in the x

coordinate of position and localisation error

k2 One of the two localisation constants in the x

coordinate of position and localisation error

k3 One of the two localisation constants in the y

coordinate of position and localisation error

k4 One of the two localisation constants in the y

coordinate of position and localisation error

C1 One of the two position constants

C2 One of the two position constants

E1 One of the two error factors in the

determination of Ex and Ey

xxxv



List of Symbols

E2 One of the two error factors in the

determination of Ex and Ey

θl Direction of localisation error

ζi Error term given by 2raiei + e2i

ζimin Minimum value of error term ζi

ζimax Maximum value of error term ζi

H Hessian matrix

E1sad E1 at saddle point

E2sad E2 at saddle point

E1min Minimum value of E1

E1max Maximum value of E1

E2min Minimum value of E2

E2max Maximum value of E2

E1+ E1 due to positive distance estimation errors

E1− E1 due to negative distance estimation errors

xxxvi



List of Symbols

E2+ E2 due to positive distance estimation errors

E2− E2 due to negative distance estimation errors

Exsad Ex at saddle point

Eysad Ey at saddle point

Exmin Minimum value of Ex

Exmax Maximum value of Ex

Eymin Minimum value of Ey

Eymax Maximum value of Ey

Ex+ Ex due to maximum positive distance

estimation errors

Ex− Ex due to maximum negative distance

estimation errors

Ey+ Ey due to maximum positive distance

estimation errors

Ey− Ey due to maximum negative distance

estimation errors

xxxvii



List of Symbols

Exd+ Ex due to positive and equal distance

estimation errors

Exd− Ex due to negative and equal distance

estimation errors

Eyd+ Ey due to positive and equal distance

estimation errors

Eyd− Ey due to negative and equal distance

estimation errors

p Proportion of distance estimation error

p Absolute value of error proportion

Exp+ Ex due to positive and unequal but

proportionate distance estimation errors

Exp− Ex due to negative and unequal but

proportionate distance estimation errors

Eyp+ Ey due to positive and unequal but

proportionate distance estimation errors

Eyp− Ey due to negative and unequal but

proportionate distance estimation errors

xxxviii



elp+ Localisation error when unequal but

proportionate distance estimation errors

are additive

elp− Localisation error when unequal but

proportionate distance estimation errors

are subtractive

ξ Error coefficient

xxxix



Chapter 1

Introduction

A wireless sensor network comprises of tiny sensor nodes which communicate

using radio frequency links. A diverse range of applications for wireless sensor

networks has been envisaged and many more applications are being proposed

and developed [1–10]. Location information of sensor nodes is an important

aspect in majority of these applications. For example, data collected by a

sensor node may not be useful if the position from where it were gathered is

not known. Therefore, the sensor node should send its location information

along with the data. This is possible only when a sensor node knows its own

position. Existing solutions, such as GPS, are not suitable for this purpose due

to various factors including size and energy cost. Therefore, new localisation

algorithms are being developed which sensor nodes can deploy to estimate

their positions [11–15]. The localisation algorithm should be designed and its

performance should be evaluated considering the characteristics, limitations

and constraints of sensor nodes and the network they are part of. For example,

due to volume, size, mass and energy constraints, it is not feasible to use
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1.1. Motivation

specialised localisation hardware device in a sensor node. Therefore, it is

desirable that the sensor node is able to estimate its location using radio

connectivity and with the help of a set of beacon nodes and other sensor

nodes. When the sensor nodes in a network have estimated their positions,

they can use this information to either solve various network related issues,

such as geographic position based routing, or help in the development of

many applications of wireless sensor networks, such as area monitoring [16–21].

As energy is a scarce resource in a wireless sensor network, the localisation

algorithm must be energy efficient.

1.1 Motivation

In many applications of industrial wireless sensor networks, sensor nodes

need to determine their own geographic positions. Examples of such

industrial applications include gas leakage detection, industrial IoT, industrial

fire detection, underground pipeline inspection, target tracking, habitat

monitoring and area surveillance [22–24]. In such cases, unknown sensor

nodes need to employ an intelligent localisation algorithm to estimate their

geographic position coordinates usually with the assistance of a few beacon

nodes. The beacon nodes know their positions a priori either because these

are placed at pre-determined locations or are equipped with location finding

device, such as, global positioning system (GPS). Due to energy and size

limitations, all unknown sensor nodes cannot be equipped with such extra

piece of hardware.

Location information of industrial sensor nodes is important because of
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two major reasons. First, the sensor nodes must send their geographic

position coordinates with the sensed data because data alone without location

information may not be useful. For example, in the case of an industrial fire

detection application, the sensor node should send the geographic coordinates

along with the event information so that location of fire is known. Second, there

are many services and protocols that use location information to work. For

example, certain routing protocols, such as [25, 26], sensing coverage [27, 28],

topology management [29] and clustering strategies [30] depend upon location

information of sensor nodes.

Depending upon whether an algorithm uses range (distance) for location

estimation, it may be classified as range based or range free. Range based

algorithms, such as [31] determine distances or angle information to estimate

their positions. In particular, range is determined using absolute point-to-point

estimates. Range free algorithms, such as [32–35] estimate position without

using range or angle information. Localisation algorithms may also be classified

as anchor based or anchor free. In anchor free localisation algorithms, unknown

nodes estimate their relative position coordinates without using any beacon

nodes, such as in [36]. In anchor based localisation algorithms [31–33],

unknown nodes estimate their absolute position coordinates using anchor or

beacon nodes. Majority of localisation algorithms are anchor based. Another

classification of localisation algorithms is single hop versus multi hop. Single

hop algorithms [35] use only immediate neighbours at single hop distance

for position estimation, whereas multi hop algorithms [37] use hop by hop

communication with nodes at multi hop distance for this purpose. Localisation

algorithm may be designed for outdoor unconstrained [32–38] or indoor

constrained environment [39]. Similarly, localisation algorithm may use central
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[40] or distributed processing [32–35]. When using central processing, network

information is communicated to a central processor where node positions

are calculated and then communicated back to sensor nodes. Localisation

algorithm that employ central processing or multi hop communication usually

involve communication overhead at the expense of energy.

1.2 Contributions

This thesis makes multiple contributions. Some of the core and

major contributions include metrics for the performance evaluation of

localisation algorithms, ripple localisation algorithm, new solution technique

for multilateration, development of analytical model and analysis of the

localisation error. An overview of each of these contributions is given in this

section.

1. Performance Evaluation and Metrics : Performance evaluation is an

important and significant step in the system development life cycle (SDLC)

of localisation algorithms. This thesis details all the steps involved in

the life cycle and also describes the criteria and parameters that can be

used in the performance evaluation. Accuracy of estimated position is

generally considered the most important and significant criteria. However,

this thesis highlights that accuracy should be evaluated in conjunction with

other criteria such as localisation cost, coverage, scalability and robustness.

Only then are we able to get a complete picture of the overall performance

of a localisation algorithm. Furthermore, the thesis reviews a number

of important metrics that are used for the performance evaluation. This
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chapter intends to serve as a guideline and reference for the performance

evaluation of localisation algorithms. No comprehensive review on metrics

and performance evaluation of localisation algorithms is available in the

previously published literature. In addition, it proposes three novel metrics

that evaluate three different aspects of a localisation algorithm. The newly

proposed metrics measure localisation time and localisation error trade off,

accuracy and coverage. To the best of our knowledge, no metrics are

available in the existing literature which measure time and error trade off

and coverage ability of localisation algorithms.

2. Ripple Localisation Algorithm : The thesis proposes a novel and

intelligent localisation algorithm for wireless sensor networks deployed in

the outdoor unconstrained environment. The proposed algorithm is called

ripple localisation algorithm (RLA) as the beacon signals are transmitted

in the fashion of a ripple by varying the transmission power. The

proposed algorithm exploits the radio signal strength and information in

the transmitted beacon messages for the estimation of distances. After

estimating the distances, it then uses multilateration for estimation of

position. The algorithm works in a distributed manner so that each

individual node estimates only its own position. It then has a choice

to transmit this information only to selective and trusted nodes thereby

preserving its location privacy. As the algorithm uses radio frequency

information for distance estimation, additional hardware is not required for

ranging. This conserves energy. In addition, the communication overhead

is also avoided due to the distributed nature of the algorithm. As a result,

the algorithm is energy efficient. The algorithm is implemented using
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MATLAB1. Performance of the proposed algorithm is verified and tested

using a diverse set of metrics. Performance of the algorithm is also compared

with two other algorithms. Results of the simulation experiments show

that the proposed ripple localisation algorithm provides good localisation

accuracy under varying radio conditions. We also analyse the energy

utilisation and derive an analytical expression for the energy efficiency which

has not been done previously. Furthermore, the ripple localisation algorithm

provides control over localisation granularity thereby making it suitable for

a wide range of applications requiring low to high degree of accuracy. This

is a new feature and is not available in the previously developed localisation

algorithms.

3. Analytical Model of Localisation Error : Multilateration and

trilateration are important core techniques which can be used in an

algorithm for estimation of position in different types of networks. A number

of solution techniques are available for the multilateration equations. We

show that the overdetermined system of equations which result from

multilateration can be reduced to merely two equations in the variables x

and y constituting the unknown coordinates (x, y). This set of two equations

can then be solved simultaneously, for example using Cramers rule, for the

estimation of unknown position (x, y). Compared to the previously used

solution technique, our proposed solution does not require computation of

an inverse, and hence greatly simplifies the solution to the multilateration

equations. Using this approach of solution to multilateration equations,

we develop an analytical model of trilateration localisation error. The

1The complete code of the implementation is open source and is available on the Internet
and also from the authors.
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analytical model is useful for the investigation and analysis of various

aspects of localisation errors. This can eventually help in the better

estimation of position. To the best of our knowledge, this thesis is the first

attempt to present an accurate analytical model of trilateration localisation

error.

4. Trilateration Error Analysis : The analytical model developed earlier

in this thesis is used for the analysis of trilateration localisation error.

The analytical model gives localisation error as a function of distance

estimation errors. Therefore, we analyse the localisation error by varying

and using different combinations of distance estimation errors as input to

the analytical model. We derive a number of important results using this

analysis. A summary of these results is provided in the relevant chapter.

In particular, we determine the conditions under which the localisation

error can be reduced to zero. We also determine the minimum and

maximum values of trilateration localisation errors as a function of distance

estimation errors. All these results derived using the analytical model are

tested and verified using a comprehensive set of simulation experiments.

To the best of our knowledge, this is the first attempt to derive precise

analytical expressions for the minimum and maximum values of trilateration

localisation error. The additional derived results are also unique and novel

and are not available in the previously published literature.
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1.3 Thesis Outline

This thesis is organised into six chapters whose details are as follows. In

Chapter 1, we give an overview and background of the work presented in this

thesis. A detail of the contributions made by this thesis is also provided.

Chapter 2 is about the performance evaluation of localisation algorithms

which is an important step in the system development life cycle of localisation

algorithms for wireless sensor networks. An overview of the system

development life cycle of localisation algorithms is provided at the start of

the chapter. The criteria and parameters used for the performance evaluation

of localisation algorithms are then discussed and described. At the core of

the chapter, a number of metrics used for the evaluation of different aspects

of a localisation algorithm are described in detail. When evaluating the

performance of a localisation algorithm, these metrics can serve as a reference

and a subset can be chosen for use during the testing and performance

evaluation of the algorithm.

A novel and intelligent localisation algorithm, that we call ripple localisation

algorithm (RLA) is proposed and evaluated in Chapter 3. The algorithm

uses only radio frequency information for localisation and does not use any

additional hardware for this purpose. In addition, the algorithm works

in a distributed fashion. In this way it preserves localisation privacy of

individual nodes and avoids unnecessary communication overhead to a central

localisation node. An analysis of the energy utilisation of the ripple localisation

algorithm is also provided and it is shown that the algorithm is energy

efficient. Performance of the algorithm is evaluated and compared with

two other algorithms using simulation experiments. A comprehensive set of
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metrics including three of our own novel metrics are used for the testing and

performance evaluation. The results of the simulation experiments are then

analysed and discussed before concluding the chapter.

In Chapter 4, multilateration and trilateration are discussed and analysed

which are important techniques used for estimation of position. In addition, we

also analyse localisation errors resulting from position estimation using these

techniques. We show that the overdetermined system of equations resulting

from multilateration can be reduced to two linear equations which can be solved

simultaneously using Cramers rule for the estimation of position. This solution

technique is then exploited to develop an analytical model of the localisation

error which results from trilateration.

In Chapter 5, the analytical model of the localisation error developed in the

previous chapter is used for the investigation and analysis of the relationship

between the errors in the distance estimates and error in the estimated position.

The extreme values of localisation error as a function of distance estimation

errors are derived. In particular, the localisation error is broken down into

components. Each component is analysed for the minimum and maximum

values. In addition, a number of useful results are derived which can be helpful

in the design and development of localisation algorithms. Finally, all the

analytical results are verified using a number of simulation experiments. The

numerical results of the simulation experiments are analysed and compared

with the results derived using the analytical model.

This thesis concludes with Chapter 6. We reflect upon the work presented in

the thesis in this final chapter. The areas of future work which can be based

upon the work in the thesis are also identified.
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Chapter 2

Performance Evaluation of

Localisation Algorithms

Performance evaluation is an important step in the development life cycle

of a localisation algorithm. In this chapter, we discuss its various aspects

in the context of wireless sensor networks. In particular, we describe the

performance metrics that are used for the testing, evaluation, comparison

and analysis of localisation algorithms. These metrics are employed for the

identification, characterisation and measurement of estimation errors due to

localisation. Some of these metrics are particularly designed to measure and

evaluate specific aspects of localisation errors. In addition to the performance

metrics, we also give an overview of the system development life cycle, criteria

and parameters for the performance evaluation of localisation algorithms for

wireless sensor networks.
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2.1 Introduction

The positions estimated by sensor nodes using a localisation algorithm usually

have estimation errors. The characteristics of localisation errors depend

upon the algorithm being used for position estimation. Therefore, when a

sensor network application is being developed, various candidate algorithms

for localisation may be evaluated and compared with respect to their error

characteristics. Similarly, when a new localisation algorithm is developed, its

performance may be tested, evaluated and analysed using simulation or any

other techniques. The performance of the newly proposed method is also

compared against other localisation algorithms.

Performance evaluation and testing of localisation algorithms is carried out

using a set of metrics and parameters. Results of the performance evaluation

may vary for different sets of metrics and parameters. For example, the

performance of a localisation algorithm may look good when measured using

a certain accuracy metric. However, it may not give desirable results when its

performance is judged using coverage metrics. Therefore, choice of parameters

and metrics plays an important role in the performance evaluation of a

localisation algorithm. Some metrics may show greater sensitivity to certain

types of errors. Hence, such metrics might be better suited to detect and

analyse the errors to which they are sensitive.

The most widely used measure of localisation error is the distance between

the estimated and actual positions. While this is a simple and easy to use

metric, it has a drawback. It considers the node in isolation from the rest of

the network for the measurement of error. It does not consider the effect of the

estimated position on the topology i.e. the geometry formed by the positions
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of the node and its neighbour nodes. This is illustrated with the help of an

example similar to the one given in [41].

Consider three unknown sensor nodes whose actual positions are represented by

P1, P2 and P3 as shown in Fig. 2.1. When the nodes estimate their positions as

P1A, P2A and P3A using an algorithm A, they have localisation errors el1, el2 and

el3 calculated as the distance between the estimated and actual positions. The

same nodes then estimate their positions as P1B, P2B and P3B using another

localisation algorithm B. The localisation errors for the three nodes are still

the same as in algorithm A i.e. el1, el2 and el3. However, the resultant topology

formed by the estimated positions in both the cases is very different. While

the Euclidean distance localisation errors between the estimated and actual

positions are the same for both the algorithms, the topology formed by the

positions estimated by Algorithm B is much closer to the actual topology than

the one formed by the estimated positions using the Algorithm A. Therefore,
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Figure 2.1: Different localisation algorithms may result in different estimated
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it is important that performance metrics that consider the topology formed by

the geometry of positions of nodes are developed and used for the performance

evaluation of localisation algorithms. These metrics measure the closeness or

distance between the estimated topology and actual topology of the sensor

nodes. It is to be noted that the term topology in this thesis implies physical

topology. We further define physical topology as the physical layout or map

formed by the sensor nodes in the sensor network. Alternatively, it is the

geometry formed by the positions of sensor nodes in the network.

In this chapter, we focus on some important aspects of performance evaluation

of localisation algorithms for wireless sensor networks. First, we describe the

system development life cycle of localisation algorithms for the purpose of

giving the context. Second, we describe the criteria used for the performance

evaluation of localisation algorithms. Though, localisation accuracy is a

predominantly important criterion, there are other factors that should also

be given consideration. Therefore, we describe the factors in the criteria that

are relevant to the performance evaluation of localisation algorithms. Third,

we also discuss the parameters that are used for performance evaluation of an

algorithm against the described criteria. Fourth, we present a detailed study

of the metrics used for the testing, evaluation and comparison of localisation

algorithms.

Rest of this chapter is organised as follows. We give a summary of the related

work in the next section. System development life cycle and criteria for the

performance evaluation of localisation algorithms are described in Section 2.3

and Section 2.4 respectively. In Section 2.5, we discuss the parameters against

which performance is evaluated. Performance evaluation metrics are described
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in detail in Section 2.6. We conclude with Section 2.8.

2.2 Related Work

Localisation is important in many areas of science and engineering. Therefore,

localisation algorithms and their performance evaluation have been subjects

of interest in different fields including wireless sensor networks. In [42],

algorithms for workpiece localisation are investigated. In particular, reliability

of localisation is analysed with respect to translational and rotational errors. A

distributed anchor free localisation algorithm which uses mass spring relaxation

and optimisation is presented in [43]. A new metric called global energy

ratio (GER) is also proposed and used for the performance evaluation of the

algorithm. The GER metric considers the entire topology for the computation

of error. Key aspects and types of localisation algorithms are described in [44].

The authors also study and analyse the basic and important factors that need

to be considered while evaluating the performance of a localisation algorithm.

Performance evaluation of localisation algorithms is discussed from different

angles in [45]. Criteria, metrics, network topologies, and models for simulation,

power consumption, radio propagation and communication, and development

cycle are described. The authors argue that the performance evaluation

criteria other than localisation accuracy are also important. In particular,

the criteria should be based upon the requirements of the application of

the sensor network being deployed. Even the requirements of localisation

accuracy will vary from application to application. For example, scalability

might be an important factor for some applications of sensor networks. For
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such applications, localisation algorithms using centralised processing approach

may not be suitable even if they provide good localisation accuracy. A

centralised localisation algorithm performs major processing at a central node

and, therefore, may not scale well. Hence, despite their simplicity and easiness

of implementation, centralised localisation algorithms may not suite large

deployments of sensor networks.

Multiscale dead reckoning algorithm proposed in [46] uses force directed graph

layout technique for localisation of sensor nodes. In addition, two new metrics

are proposed and used for the performance evaluation of the algorithm. New

metrics to measure the similarity of original and estimated topologies of sensor

network are investigated in [41]. The topologies are shifted, rotated and

randomly distorted, and different metrics are used to measure the change in

topology. It is observed that a metric may be sensitive to one type of change

in topology and insensitive to other types of changes. For example, cosine

similarity metric is observed to be sensitive to rotation but insensitive to shift

in topology. However, Euclidean and cumulative vectorial distance metrics are

sensitive to shift but insensitive to rotation. Therefore, appropriate metrics

can be selected for the performance evaluation of localisation algorithms

depending upon the application of the wireless sensor network. Mass spring

relaxation localisation technique with various optimisation steps is used in [47]

for the evaluation of different performance metrics which consider the complete

topology of a sensor network. Furthermore, a new area based metric is also

proposed and evaluated.
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2.3 System Development Life Cycle

We describe the system development life cycle (SDLC) of localisation

algorithms in this section to give the context of performance evaluation.

Investigation of localisation algorithms for wireless sensor networks is a

research process which can be represented as a research cycle as shown in

Fig. 2.2. SDLC is a subset of this process, and performance evaluation

is, in turn, an important step in the SDLC of localisation algorithms.

For an overview, some of the important steps in the development life

cycle of a localisation algorithm are identification of objectives, design and

implementation, performance evaluation and research methodology. We give

a brief description of these steps below.

Figure 2.2: A typical research cycle.
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2.3.1 Objectives

The objectives, challenges, constraints and characteristics that a localisation

algorithm is expected to satisfy must first be identified. Some of the common

objectives and characteristics are highlighted below.

i. As wireless sensor nodes communicate using radio frequency links, it

is desirable that localisation algorithms exploit this aspect to estimate

positions. In this way, the algorithm can be energy efficient as the size

due to additional hardware and energy cost can be avoided.

ii. Wireless sensor networks are ad hoc networks. Therefore, a good

localisation algorithm either exploits this ad hoc nature or keeps it into

consideration while estimating position of a sensor node.

iii. A localisation algorithm should have a low response time so that the sensor

node is able to estimate its position quickly in a small time. In this way,

the sensor nodes can start functioning as soon as these are deployed.

iv. Different localisation algorithms may have different granularities of

estimated positions. Therefore, a localisation algorithm should have

localisation granularity matching the requirements of the application for

which it is being selected or designed.

v. A good localisation algorithm is robust and maintains its level of accuracy

against variations in the input parameters.

vi. Some applications of wireless sensor networks are dynamic in nature.

Sensor nodes may be removed or added with the passage of time. Similarly,

a sensor network may comprise of only a few nodes or at other times
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thousands of nodes. The localisation algorithm should scale well for

all these variations in the network without compromising accuracy of

estimated position.

vii. Design of any aspect of a wireless sensor network should consider to utilise

energy efficiently as the sensor network is generally autonomous and the

batteries may not be replaced during the entire life time of the deployment.

Therefore, a localisation algorithm should be designed in such a manner

that it is energy efficient. An energy efficient algorithm may also be energy

aware in that it modifies its behaviour according to the remaining energy

resource of the sensor node.

viii. Majority localisation algorithms use reference nodes, also known as beacon

or anchor nodes, for position estimation. Performance of an algorithm may

be affected with a change in the number of beacon nodes in the sensor field.

A good localisation algorithm is adaptive to the change in the number of

beacon nodes. It is able to estimate position with change in the number

of beacon nodes without much effect on the accuracy of the estimated

positions.

ix. A localisation algorithm is efficient if it is able to localise a large number

of sensor nodes with the help of a minimum number of beacon nodes.

x. A good localisation algorithm is generic and universal in that it is able

to estimate node positions under varying conditions. Particularly, the

algorithm should be able to localise nodes in both indoor constrained and

outdoor unconstrained environments.

Merely an ideal algorithm will be able to satisfy all these requirements. A
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practical localisation algorithm may not be able to meet all the aforementioned

characteristics and may satisfy only a subset of these requirements.

2.3.2 Design and implementation

Design of a localisation algorithm depends upon the research technique being

used. For example, the algorithm proposed in [1] considers both known and

unknown transmission powers of sensor nodes. Furthermore, it uses both

range estimates and angle measurements for position estimation. The design

process may or may not yield an analytical model of the algorithm. Choice of

a programming language and other implementation details depend upon the

platform selected for the implementation of the algorithm.

2.3.3 Performance evaluation

A number of methods can be used for the testing and performance evaluation

of an algorithm developed for any layer of the protocol stack of wireless

sensor networks. These methods can generally be classified into the following

categories:

1. Analytical modelling

2. Simulation

3. Emulation

4. Testbeds

5. Real deployment
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A performance evaluation strategy may use any one or combination of methods

from the above list for the testing of an algorithm.

2.3.3.1 Analytical modelling

The performance of an algorithm may be evaluated using an analytical model.

It is the preferred method when quantitative analysis is desired. However,

an analytical model may sometimes not yield accurate results for complex

wireless sensor networks. A wireless sensor network is complex in nature due

to a number of factors. For example, the number of nodes may range from a

few nodes to thousands of nodes. Some of these nodes may be stationary and

others may be mobile. Some of the nodes may leave the network and some

new nodes may become part of the network with the passage of time. This

can result in a dynamic topology of a sensor network. In a similar manner,

the wireless channel characteristics depend upon the environment in which the

network is deployed.

All the aforementioned factors contribute to the complexity of a wireless

sensor network. When an analytical model of such a complex network

is developed, certain assumptions and simplifications are usually made.

Therefore, performance evaluation of an algorithm using the analytical model

may lead to errors in results. This is in particular the case when the

assumptions and simplifications are about the factors which are important

in the performance of an algorithm being evaluated. It is for this reason that

evaluation using an analytical model is usually followed up by another testing

methodology, such as simulation.
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2.3.3.2 Simulation

The performance of an algorithm can be evaluated by using simulation

software. The algorithm is implemented using software code. Similarly,

the necessary components of wireless sensor network, such as, layers of

protocol stack, topology and radio channel are modelled in the simulation

program. Performance of the algorithm is then evaluated by running

simulation experiments. Simulation is the most widely used methodology for

performance evaluation due to its flexibility. For example, the number of sensor

nodes in the network can be easily scaled from a few nodes to thousands of

nodes. Furthermore, a number of simulation experiments can be executed in

a matter of minutes. Such options are time consuming and expensive in a

real deployment of a sensor network. In particular, a localisation algorithm is

usually evaluated for an ad hoc distributed wireless sensor network for various

densities of sensor nodes. Simulation provides a flexible and feasible mechanism

as the network can be easily scaled up or down.

One of the advantages provided by simulation is that various parameters can

be easily modified. Hence, performance of an algorithm can be evaluated

under a diverse set of parameters. For example, ratio of beacon and unknown

nodes can be easily varied and the corresponding accuracy of a localisation

algorithm can be measured. Similarly, many other parameters can be easily

varied and response of the algorithm being evaluated can be recorded. Another

advantage afforded by simulation is the modelling of future technology which

is yet not available for real deployment. Therefore, an algorithm can be tested

for deployment in such a technology which is yet to be developed. Obviously,

the cost of simulation is also much lower when compared with real deployment.
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A number of software tools for the simulation of wireless sensor networks are

available. Many comparative studies and surveys of these simulation tools

have been performed and are available in literature, such as [48–53]. Some of

these simulation tools popular among the research community are MATLAB,

network simulator ns-2 and OMNeT++. Apart from personal preferences,

choice of simulation tool also depends upon the layer of the protocol stack

for which the algorithm is being developed. Network simulator ns-2 is an

open source simulator which is suitable for modelling lower level details of

lower layers but is reported to have scalability issues when the number of

sensor nodes is increased to a large value [52]. OMNeT++ is a discrete event

simulator which is also open source. It has no scalability issues and can perform

simulations involving a large number of sensor nodes [50, 52]. MATLAB has

also been used extensively for the simulation of localisation algorithms. It

provides a programming environment as well as many functions making it

suitable for the simulation of many types of algorithms for wireless sensor

networks [48,54].

2.3.3.3 Emulation

Emulators are designed to run an algorithm in the environment of a particular

hardware platform. Hence, the software code of the algorithm can be directly

ported to the actual hardware after testing has been done in the emulator.

Results of the performance testing are closer to a real deployment but are

constrained to the hardware platform for which the emulation experiments

have been conducted. However, once emulated, an algorithm can be easily

and quickly deployed in a real environment. An example of wireless sensor
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network emulator is TOSSIM, which runs in TinyOS operating system and is

designed primarily for Berkeley Mica Motes.

2.3.3.4 Testbeds

Another option for the testing and performance evaluation of algorithms

for wireless sensor networks is the use of testbeds. A testbed is an actual

deployment of a wireless sensor network. Hardware and software instruments

are provided in the sensor network for the collection of data of interest. An

interface to the testbed is usually made available for the research community

to perform various tasks. Using the interface, a remote user can, for example,

run programs and experiments and also collect the resulting data.

Various testbeds available to the research community are reviewed in [50,

51, 55, 56]. Using a testbed, the performance of an algorithm can be

evaluated for the particular hardware platform used in the testbed. However,

there are drawbacks involved as well. The testbeds are deployed indoors.

Therefore, testing and performance evaluation of algorithms meant for outdoor

environment cannot be carried out using a testbed, as the radio channel

characteristics are vastly different for both the environments. Another

important issue with the testbeds is scalability. The wireless sensor network

in a testbed usually comprises of less than 100 sensor nodes. Therefore,

testbeds are not suitable for the performance evaluation of algorithms which

are designed for outdoor environment and where the number of nodes is

scaled from a few nodes to hundreds of nodes in a number of experiments.

When compared with simulation, the testbeds can only be used for the partial

assessment and evaluation and to study only some aspects of an algorithm.
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2.3.3.5 Real deployment

Performance evaluation of an algorithm using the real deployment of a wireless

sensor network is not feasible as a first option as discussed in [49,50]. It is not

possible to change certain parameters and settings in an actual deployment

of a sensor network. If possible at all, the process is difficult and time

consuming. The number of sensor nodes in an actual deployment for the

purpose of performance testing is usually limited because change of settings and

parameters in a large number of nodes would be costly and time consuming.

Therefore, the algorithm cannot be subjected to rigorous testing by scaling the

number of nodes in the sensor field. Experimental results of the performance

evaluation through actual deployment are restricted only to the hardware

platform and topology deployed in the sensor network. Sometimes, it may

not even be possible to implement an algorithm using the existing hardware

and software platforms due to their limitations. This may especially be the

case when an algorithm is being designed and tested for a future technology.

2.3.4 Methodology

Let a framework of ideas be represented by F, methodology by M and area

of concern by A. Then, according to Checkland and Holwell, these three are

related to each other as shown in Fig. 2.3 [57]. The methodology may be used

either in a simple or complex engineering system [58].

As is evident from Fig. 2.3, the use of a methodology results in the creation

of new knowledge about framework of ideas F, area of concern A, and the

methodology M itself. The usefulness of the methodology can be assessed in
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the light of the new knowledge. As a result, the methodology can be modified

or even replaced by a new methodology in the light of new results.

Let us now consider this in the context of localisation algorithms. Let

localisation and its application be the area of concern A, an algorithm that

Figure 2.3: Role of methodology in research.

Figure 2.4: Role of simulation in the development and performance evaluation
of a localisation algorithm.
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our research may produce be the framework of ideas F, and the testing of

this algorithm, say using simulation, be the methodology M. Like Fig. 2.3

this can be represented using Fig. 2.4. Hence, the performance evaluation

methodology, say simulation, will create new knowledge about the algorithm,

the area of concern which is localisation and the methodology of simulation

process itself. Through an iterative process, improvements in all three entities

can be achieved. Flow of the performance evaluation methodology and the

iterative process are shown in Fig. 2.5.

The correctness, accuracy and application of new knowledge about the

framework of ideas F, area of concern A and the methodology M may be

decided at different levels. Before being accepted as valid, the new knowledge

passes through various stages of approval. For example, if the findings and

results are published after feedback and reviews by peers, the work has passed

a checkpoint of approval and is considered as a valid work.

2.4 Criteria for Performance Evaluation

The criteria for the evaluation of a localisation algorithm generally depends

upon the application for which it will be used. However, the categories of

metrics given below are usually common for majority of applications.

1. Accuracy

2. Cost

3. Robustness

4. Coverage
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5. Scalability

Among these, accuracy and cost are generally considered the most important

and widely used criteria for the performance evaluation of localisation

algorithms [41–45]. It is also to be noted that the particular set of metrics best

Figure 2.5: Performance evaluation of a localisation algorithm.
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suited for the performance evaluation of a localisation algorithm depends upon

the scope and application of the algorithm. For example, some applications of

wireless sensor networks may require only coarse grained position estimation

and strict accuracy may not be important. Similarly, some sensor networks

may be deployed in a limited area and scalability may not be an important

factor.

2.4.1 Accuracy

Accuracy metrics quantitatively measure the closeness of estimated and actual

positions. This closeness is usually measured in terms of distance between the

estimated and actual positions. Some accuracy metrics consider only individual

nodes for determination of accuracy. However, some other metrics consider

pairs of nodes or complete topology of a sensor network for the measurement

of accuracy.

2.4.2 Cost

Cost metrics measure the amount of resources consumed for localisation. The

cost may be calculated per node or for the entire network. Important cost

factors include the following:

i. Energy

ii. Time

iii. Memory
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iv. Hardware

v. Beacon nodes

The above categories of cost may be further subdivided. For example, the

total energy cost comprises of the energy required for communication and the

energy consumed by processing and computation. Hence, the total energy

is sum of communication energy and processing energy. Similarly, the time

cost comprises of processing time and communication time for the exchange

of information. Processing time depends upon the computation complexity of

localisation algorithm. Time cost and energy cost are related. Higher time cost

implies higher energy cost. Memory is another factor. Localisation algorithms

which require smaller amount of memory for processing and storage are usually

preferable. Number of anchor nodes required to achieve a certain level of

accuracy should also be taken into account while estimating the cost of a

localisation algorithm. Some algorithms may need additional hardware to

achieve localisation. Furthermore, the localisation cost may vary as the sensor

network is scaled. Therefore, the aforementioned cost factors may be calculated

as the number of sensor nodes and size of the sensor field is varied. If ti is the

time taken by a sensor node i for localisation, then the mean localisation time

tm for N sensor nodes is given by

tm =
1

N

N∑
i=1

ti (2.1)
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2.4.3 Robustness

A localisation algorithm estimates position based on the input of certain

parameters. For example, range based algorithms use range information

between nodes for position estimation. For good performance, a localisation

algorithm should be robust to changes in its input. Small errors in the input

should not result in large errors in the estimated position.

2.4.4 Coverage

Ideally, a localisation algorithm should be able to help localise all the nodes in

the sensor field. Therefore, an important aspect in the performance evaluation

of a localisation algorithm is the coverage i.e. the number of sensor nodes it

is able to localise. The coverage may be evaluated by varying other network

parameters e.g. number of sensor nodes, beacon nodes, and size of the sensor

field.

2.4.5 Scalability

A sensor network may scale in terms of number of nodes or area or both. The

localisation algorithm being used for position estimation should be robust and

retain its desired level of accuracy, time complexity and other traits as the

sensor network is scaled up or down. Scalability of a localisation algorithm

can be evaluated by measuring and comparing its performance as the size of

the network is varied.
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2.5 Parameters

The performance metrics are evaluated against certain variables or parameters

of the sensor network. The metrics constitute only one axis of the plot. The

other axis is the parameter against which the metric is being evaluated.

2.5.1 Number of beacon nodes

Majority of localisation algorithms depend upon anchor or beacon nodes for

position estimation. Number and placement of beacon nodes may affect the

performance of a localisation algorithm. Therefore, the metrics should be

calculated and analysed as the number of beacon nodes in the sensor field is

changed. A plot of the metrics against number of beacon nodes will then reflect

performance of localisation algorithm as the number of beacon nodes is varied.

2.5.2 Number of sensor nodes

As the number of sensor nodes is varied, the distance between neighbour nodes

varies. Similarly, the number of neighbours of a sensor nodes also varies. Both

these factors may affect the localisation performance of an algorithm in terms

of time and energy cost and localisation accuracy.

2.5.3 Size of sensor field

Performance of a localisation algorithm may be influenced by the size of the

sensor field in which the network is deployed. Distance and connectivity among
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beacon and sensor nodes may be affected for different sizes of the sensor

field. As a result, the performance of a localisation algorithm may also be

affected. Therefore, performance of localisation algorithms should be evaluated

for different sizes of sensor field.

2.5.4 Topology

Some localisation algorithms use single hop communication for estimation

of position. Their performance does not vary with the change of topology.

However, performance of localisation algorithms which use multi hop

communication is affected by change in topology. For example, a localisation

algorithm may not correctly estimate range using multi hop communication

in a C shaped concave topology. Therefore, performance metrics of multi hop

localisation algorithms should be evaluated for different topologies. Some of

the irregular topologies used for performance evaluation are C, F, H, L and S

shaped.

2.5.5 Mobile nodes

Depending upon the application of sensor network, part or all of the nodes

may be mobile. Therefore, node mobility should be taken into account

while evaluating the performance of localisation algorithms. In fact, some

localisation algorithms take advantage of mobility of nodes to overcome certain

problems like concave areas, coverage and obstacles.
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2.5.6 Obstacles

Obstacles may be present in the localisation environment e.g. in the indoor

environment. Presence of obstacles between nodes in the sensor field creates

many challenges for a localisation algorithm. For example, a sensor node

may not hear from a nearby beacon node due to an obstruction. Similarly,

obstruction and obstacles may cause reflection which results in an inaccurate

range estimate. Therefore, performance metrics for localisation algorithms

may be evaluated with and without obstacles in the sensor field.

2.5.7 Signal type

Radio, acoustic, ultrasound or light signal can be used for range and position

estimation by a localisation algorithm. Each of these signals has different

propagation characteristics in different types of environments and channels.

Therefore, appropriate metrics may be selected for the performance evaluation

of a localisation algorithm depending upon the signal used.

2.5.8 Algorithm specific parameters

Some parameters may be specific to the localisation algorithm being evaluated.

For example, some localisation algorithms model a sensor network using a

graph with the sensor nodes considered as vertices and communication links

between nodes as the edges of the graph. In this case, certain performance

metrics may be evaluated against the degree of a vertex i.e. number of

neighbours of a sensor node.
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2.6 Performance Evaluation Metrics

In the following discussion, (xa, ya) is the actual position and (x, y) is the

estimated position of an arbitrary sensor node. (xia, yia) and (xja, yja) are

the actual positions of sensor nodes i and j and are represented by Pi and

Pj respectively. (xi, yi) and (xj, yj) are their estimated positions which are

represented by P̂i and P̂j respectively. The distance between the actual

positions of sensor nodes i and j is denoted by dij, and the distance between

their estimated positions is denoted by d̂ij. In other words, dij is the actual

distance and d̂ij is the estimated distance between sensor nodes i and j. Vij

is the vector between the actual positions of sensor nodes i and j from Pi to

Pj. V̂ij is the vector between the estimated positions from P̂i to P̂j.

2.6.1 Absolute localisation error

Absolute localisation error for an individual sensor node is defined as the

distance between its actual and estimated positions. If (xa, ya) is the actual

position and (x, y) is the estimated position of a sensor node, then the absolute

localisation error el is given by

el =
√

(x− xa)2 + (y − ya)2. (2.2)
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2.6.2 Mean absolute localisation error

If there are N sensor nodes in a sensor field, then the mean absolute localisation

error of the N sensor nodes is given by

µl =
1

N

N∑
i=1

el, (2.3)

µl =
1

N

N∑
i=1

√
(xi − xia)2 + (yi − yia)2, (2.4)

where (xia, yia) is the actual position and (xi, yi) is the estimated position of

an ith sensor node with el absolute localisation error.

2.6.3 Normalised localisation error

Normalised localisation error eln is obtained by dividing the absolute

localisation error with the radio range Rs of a sensor node.

eln =
el
Rs

, (2.5)

eln =
1

Rs

√
(x− xa)2 + (y − ya)2. (2.6)

This gives localisation error in units of radio range Rs of a sensor node. If a

sensor node has an absolute localisation error el greater than Rs or normalised

localisation error eln > 1, then the sensor node has estimated its position

beyond its radio range. This implies that the sensor node is using an estimated

position which is beyond its area of coverage.
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2.6.4 Mean normalised localisation error

Some sensor nodes may have small while other nodes may have large

localisation errors. Mean error of N sensor nodes in the sensor field gives

a better estimate of performance of a localisation algorithm. Mean normalised

localisation error µln of N sensor nodes in a sensor field is given by

µln =
1

N

N∑
i=1

elni, (2.7)

µln =
1

NRs

N∑
i=1

eli, (2.8)

µln =
1

NRs

N∑
i=1

√
(xi − xia)2 + (yi − yia)2, (2.9)

where eli is the absolute localisation error and elni is the normalised localisation

error of an ith sensor node. Mean normalised localisation error only gives

central tendency of error. It should be used along with other statistics e.g.

median, mode, range and standard deviation to get a better view of the

performance of a localisation algorithm. For example, lower value of standard

deviation of error implies that majority of sensor nodes have localisation error

near the mean value and that the error is predictable. On the other hand, a

large value of standard deviation would mean that there is a large variation in

estimation error and that the error is not predictable.

2.6.5 Statistics of localisation error

A single statistical measure such as mean error may not completely describe

the performance of a localisation algorithm. Therefore, other statistical metrics
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given below along with the mean value of error may also be used to assess the

performance of an algorithm.

2.6.5.1 Maximum localisation error

The maximum value of localisation error gives an indication of the worst

performance of localisation algorithm.

elmax = max
i=1...N

eli,

elmax = max
i=1...N

√
(xi − xia)2 + (yi − yia)2.

(2.10)

2.6.5.2 Minimum localisation error

The minimum value of localisation error gives an indication of the best

performance of localisation algorithm.

elmin = min
i=1...N

eli,

elmin = min
i=1...N

√
(xi − xia)2 + (yi − yia)2.

(2.11)

2.6.5.3 Median of localisation error

The middle value of localisation errors which are arranged in ascending order

is the median of localisation error eld.

2.6.5.4 Mode of localisation error

The most frequently occurring value of the localisation error is the mode of

the localisation error elo.
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2.6.5.5 Standard deviation of localisation error

Standard deviation σa of localisation error is given by

σa =

√√√√ 1

N

N∑
i=1

(eli − µl)2, (2.12)

where µl is the mean absolute localisation error of N unknown sensor nodes.

2.6.5.6 Geometric mean

If the standard deviation of the localisation error is large, it may sometimes

be suitable to use the geometric mean.

eg =
( N∏
i=1

eli

) 1
N

, (2.13)

where eli is the localisation error of ith sensor node.

The mean, median and mode are measures of central tendency. Apart from

other details, a comparison of these three statistics of localisation error also

gives an insight into the type of distribution followed by the localisation error.

For example, in a perfectly symmetric distribution, all the three statistics are

equal.

µl = eld = elo. (2.14)

If frequency distribution of localisation error is positively skewed, then

µl > eld > elo. (2.15)

However, if the frequency distribution of localisation error is negatively skewed,
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then

µl < eld < elo. (2.16)

Furthermore, in a moderately skewed distribution, the distance between the

mean and mode is approximately three times the distance between mean and

median values i.e.

µl − elo = 3(µl − eld), (2.17)

elo = µl − 3(µl − eld),

elo = 3eld − 2µl.

(2.18)

This gives mode of localisation error given the mean and median values. Again,

from (2.17), the median value can be calculated given the mean and mode of

localisation error.

µl − eld =
1

3
µl −

1

3
elo,

eld = µl −
1

3
µl +

1

3
elo,

eld =
2

3
µl +

1

3
elo,

eld =
1

3
(2µl + elo).

(2.19)

Similarly, the mean value of localisation error can be calculated given the

median and mode provided the frequency distribution is only moderately

skewed. From (2.17)

3(µl − eld) = µl − elo,

2µl = 3eld − elo,

µl =
1

2
(3eld − elo).

(2.20)

Hence, knowing any two of the mean, median and mode, we can determine the
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third if the distribution is moderately skewed.

2.6.6 Root mean square error

Root mean square (RMS) error can be calculated for absolute or normalised

localisation errors. For example, RMS value of the absolute localisation error

is given by

elrms =

√√√√ 1

N

N∑
i=1

e2li, (2.21)

elrms =

√√√√ 1

N

N∑
i=1

[√
(xi − xia)2 + (yi − yia)2

]2
, (2.22)

elrms =

√√√√ 1

N

N∑
i=1

[
(xi − xia)2 + (yi − yia)2

]
. (2.23)

RMS value of the normalised localisation error is given by

elnrms =

√√√√ 1

N

N∑
i=1

e2lni, (2.24)

elnrms =

√√√√ 1

NRs

N∑
i=1

[
(xi − xia)2 + (yi − yia)2

]
. (2.25)

Dividing (2.25) by (2.23), we get elnrms in terms of elrms.

elnrms =
elrms√
Rs

. (2.26)

RMS error amplifies large errors. In calculation of RMS value of error, the

error term is squared. Therefore, it gives more weight to larger values of error.
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Therefore, high localisation errors of only a few sensor nodes can result in a

high RMS value of error.

The relationship between the mean and the RMS values of localisation errors

is given as below.

e2lrms = µ2
l + σ2

a. (2.27)

From the above relationship, it is evident that the RMS value of localisation

error is always greater than or equal to the mean localisation error.

2.6.7 Cumulative distribution function

The plot of cumulative distribution function (CDF) gives cumulative

distribution of sensor nodes having localisation error in a particular range.

Therefore, it gives important information about the number of sensor nodes

between a certain range of localisation error.

2.6.8 Global energy ratio

Global energy ratio (GER) is a metric proposed and used in [43]. It attempts

to quantify the extent to which the layout of the sensor field constructed by

the estimated positions matches the original layout. If (xia, yia) and (xja, yja)

are the actual positions of sensor nodes i and j in the sensor field, then the

actual distance dij between them is given by

dij =
√

(xia − xja)2 + (yia − yja)2. (2.28)
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Similarly, if (xi, yi) and (xj, yj) are the estimated positions of unknown sensor

nodes i and j, then the distance d̂ij between their estimated positions in the

sensor field reconstructed by the localisation algorithm is given by

d̂ij =
√

(xi − xj)2 + (yi − yj)2. (2.29)

The global energy ratio is then given by

EG =
2

N(N − 1)

√√√√√ N∑
i=1

N∑
j=i+1

(
d̂ij − dij
dij

)2

. (2.30)

As distance is a quantity measured between two nodes, the total number

of distance elements between N sensor nodes is calculated by considering

combination of N things taken 2 at a time. Therefore, the total number

of distances is N !
(N−2)!2! = N(N−1)

2
. Square root of the sum of squares of the

difference in distances is divided by this number in (2.30) to compute the

error. The GER is a global quality metric which attempts to measure the

ability of localisation algorithm to reconstruct the layout of the entire sensor

field.

2.6.9 Average relative deviation

The authors of [59] devise a new metric to reflect the error in the reconstruction

of the layout of the sensor field. The average relative deviation (ARD) is given

by

EA =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

∣∣∣d̂ij − dij∣∣∣
min(d̂ij, dij)

. (2.31)
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The ARD calculates the average of the difference in estimated and actual

distances normalised to the shorter of the two distances. In the ARD metric,

the difference in the distance term d̂ij − dij is not squared. Therefore, it gives

equal weight to all the errors including the outliers. If the errors are uniformly

distributed, it gives a plot similar to that of RMS error [47].

2.6.10 Global distance error

In [60], the authors note that GER does not reflect a true RMS value.

Therefore, they modify GER and propose a new metric called global distance

error (GDE).

ED =
1

Rs

√√√√√ 2

N(N − 1)

N∑
i=1

N∑
j=i+1

(
d̂ij − dij
dij

)2

. (2.32)

The GDE calculates the RMS error over the entire network. The result is then

normalised to the radio range Rs of a sensor node. Investigation by the authors

of [47] also reveal that GER does not perform consistently when the number of

nodes in the sensor field is varied. GER decreases as the number of sensor nodes

is increased which is not according to the expected results. Therefore, GER

is not independent of the number of sensor nodes in the network. The GDE

metric, however, provides expected and consistent results according to [47].

2.6.11 Area based metric

A metric based upon the areas of estimated and actual topologies is proposed

in [47]. For many localisation algorithms, the number and extent of localisation
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errors for sensor nodes at the corners and boundaries of the sensor network are

higher than nodes at and around the centre. This is due to the reason that

the degree of connectivity of the nodes at and around the centre of the sensor

network is higher and is uniform all around a sensor node. However, the sensor

nodes located at the boundary and corners usually have low connectivity from

the side facing the boundary. Therefore, the estimated position may be flipped

resulting in a flip ambiguity [47, 61]. In such a scenario, the area ratio better

depicts the performance of localisation algorithm. If Ar is the area of the

actual topology and Av is the area of the estimated topology, then the area

ratio AR is given by

AR =
Av
Ar
. (2.33)

If AR 6= 1, the areas of the estimated and actual topologies are not equal.

This implies that the boundary of the estimated topology is not constructed

accurately. However, it is to be noted that the areas of the estimated and

actual topologies can be equal even if the boundary is not accurately estimated.

Therefore, if Av = Ar so that AR = 1, this does not necessarily mean that the

boundary is accurately realised. Hence, AR gives only a vague impression of the

performance of the localisation algorithm being evaluated. When Av = Ar, it

merely implies that the areas of the estimated and actual topologies are equal

regardless of the accuracy of estimated positions of individual sensor nodes.

Therefore, area ratio should be used in conjunction with other metrics for the

localisation performance evaluation and analysis.
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2.6.12 Sum of distance inconsistencies

The authors in [62] use the sum of the differences between the actual and

estimated distances between pairs of sensor nodes as a metric to judge the

performance of localisation algorithm. The sum of distance inconsistencies is

given by

ES =
N∑
i=1

i−1∑
j=1

∣∣∣dij − d̂ij∣∣∣, (2.34)

where dij is the measured distance between the actual positions and d̂ij is the

distance between the estimated positions of nodes i and j. If the estimated

positions of nodes i and j are (xi, yi) and (xj, yj) respectively, then

d̂ij =
√

(xj − xi)2 + (yj − yi)2, (2.35)

so that from (2.34)

ES =
N∑
i=1

i−1∑
j=1

∣∣∣∣dij −√(xj − xi)2 + (yj − yi)2
∣∣∣∣. (2.36)

The sum of distance inconsistencies varies with the number of sensor nodes even

if the average localisation error remains unchanged. Therefore, this metric may

not be suitable for performance comparison of different sizes of sensor networks.

2.6.13 Quality of fit

An accuracy metric for three dimensional sensor networks is defined in [63].

The quality of fit metric measures the average difference between the measured
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and estimated ranges between pairs of nodes, and is given by

EQ =
2

N(N − 1)

N∑
i=1

N∑
j=i+1(

Rij −
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2
)
,

(2.37)

where Rij is the actual distance and the term under the square root gives the

distance between the estimated positions of nodes i and j. As the absolute

value of the difference between the estimated and actual distances is not used,

some of the differences will be positive and some will be negative. As a result,

some of the difference values will cancel out. Therefore, the end result may

not correctly depict the average of the difference between the distances.

2.6.14 Frobenius error

Like GER, the Frobenius error proposed and used in [46], captures the error

in the construction of the geometry of the sensor field using the estimated

positions. The metric uses the node to node distances to compute the error.

The Frobenius error for a sensor field with N sensor nodes, is given by

EF =

√√√√√ 1

N2

N∑
i=1

N∑
j=1

(d̂ij − dij)2. (2.38)

It should be noted that unlike GER and ARD, computation of Frobenius error

in (2.38) does not require that i < j. As a result, each distance between two

nodes is used twice in the summation. Hence the total number of distance

elements being summed isN(N−1), which is twice the number of total distance

elements between all the nodes. However, the summation is divided by N2.
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Hence, the term inside the square root does not represent a mean value.

2.6.15 Performance cost metric

This is a hybrid metric proposed in [60]. The performance cost metric is

evaluated by assigning weight γ to global distance error ED and weight (1− γ)

to performance cost C, which is the average energy per node required for

localisation.

EC = γ(ED) + (1− γ)C. (2.39)

The weighing factor γ can be assigned any arbitrary value depending upon the

relative importance of ED and C in the sensor network being evaluated.

2.6.16 Manhattan distance

Another metric that has been used in wireless networks is the Manhattan

distance [41, 64, 65]. Manhattan distance between two points is the sum of

horizontal and vertical distances to get from one point to the other. In other

words, it is the sum of distances between two points in a coordinate plane

if you move only parallel to the x-axis and y-axis. Therefore, it is not the

shortest path between the two points. Manhattan distance dM between actual

position (xa, ya) and estimated position (x, y) is given by

dM = |x− xa|+ |y − ya|. (2.40)

In [41], it is proposed that the Manhattan distance can be used for the

evaluation of the similarity of original and estimated topologies by calculating
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its average for the estimated positions of all the nodes.

µM =
1

N

N∑
i=1

dMi, (2.41)

µM =
1

N

N∑
i=1

(|xi − xia|+ |yi − yia|), (2.42)

where (xia, yia) is the actual position, (xi, yi) is the estimated position of an ith

node while dMi is the Manhattan distance between the actual and estimated

positions. Investigation results in [41] show that the metric based upon

Manhattan distance is sensitive to rotation, shift and distortion in network

topology and shows a linear response against each of these changes. If a sensor

node has estimated its position without any error such that (x, y) = (xa, ya),

then from (2.40) dM = 0. If all the sensor nodes in the network estimate their

positions accurately, then from (2.41) and (2.42), µM = 0.

2.6.17 Cosine distance

Cosine similarity is used in the information retrieval domain. Authors of [41]

propose to adapt this metric for measuring the similarity of original and

estimated topologies of sensor network. To further explain, consider a pair of

sensor nodes i and j with actual positions Pi and Pj and estimated positions

P̂i and P̂j. Let Vij be the vector joining the actual positions from Pi to Pj and

V̂ij be the vector joining the estimated positions from P̂i to P̂j. The cosine

similarity is the cosine of the angle θ between the vectors Vij and V̂ij.

cos θ =
Vij · V̂ij

|Vij||V̂ij|
. (2.43)
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Using the cosine similarity, the cosine distance dC between a pair of nodes is

defined as

dC =
1− cos θ

2
. (2.44)

A metric µC based upon the cosine similarity to measure the difference in

original and estimated topologies comprising of N sensor nodes is given by

averaging the cosine distances among the nodes.

µC =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

dCij, (2.45)

where dCij is the cosine distance between node i and node j. Cosine similarity

measures the similarity in the directions of original and estimated positions of

a pair of nodes. As −1 ≤ cos θ ≤ +1, the cosine similarity has a range from

−1 to +1. For example, if the estimated positions are such that the direction

of vector between them is exactly the same as the direction between actual

positions, then θ = 0 and cos θ = 1. The corresponding cosine distance is zero.

It has been shown in [41], that the cosine distance is insensitive to shift in

topology. However, it is sensitive to rotation and shows a logarithmic response

to distortion in topology. It is to be noted that if a pair of nodes estimates the

positions such that there is only a shift in the positions in the same direction so

that the magnitude and direction of V̂ij remains unaffected, then V̂ij = Vij,

θ = 0, cos θ = 1, so that from (2.44), dC = 0. Therefore, the cosine distance

can be zero even when the sensor nodes have errors in their estimated positions.

If all the sensor nodes in the network have the same amount of shift in position

in the same direction, then from (2.45), µC = 0.
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2.6.18 Tanimoto coefficient distance

Tanimoto coefficient is an important similarity metric and is used in a number

of applications including text and image matching problems. It is proposed

in [41] to use it for measuring the difference in original and estimated topologies

of a sensor network. Using the vector Vij between the actual positions and

V̂ij between the estimated positions of a pair of sensor nodes, the Tanimoto

coefficient is defined as:

TC =
Vij · V̂ij

|Vij|2 + |V̂ij|2 −Vij · V̂ij

. (2.46)

The Tanimoto distance dT between the original and estimated topologies of

two nodes i and j is defined as:

dT =
1− TC

2
. (2.47)

The difference in original and estimated topologies of the sensor network

comprising of N sensor nodes is measured by the average Tanimoto distance

among the sensor nodes which is given by:

µT =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

dT ij, (2.48)

where dT ij is the Tanimoto distance between the original and estimated

positions of two sensor nodes i and j. The behaviour of Tanimoto coefficient

distance against change in topology is similar to that of cosine distance. It

is insensitive to shift but is sensitive to rotation in topology. Its response to

distortion in topology is logarithmic. Similar to cosine distance, Tanimoto

distance does not report shift in the topology. When there is a shift in the
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estimated positions of a pair of sensor nodes i and j such that the estimated

topology is the same as the original topology so that (xi, yi) 6= (xia, yia) and

(xj, yj) 6= (xja, yja) but V̂ij = Vij and θ = 0, then from (2.46), TC = 1 and

from (2.47) dT = 0. Hence, the Tanimoto distance is zero despite error in the

estimated position. If all the sensor nodes have the same amount of localisation

error with a shift in the same direction, then from (2.48), µT = 0.

2.6.19 Relative Euclidean Distance

This metric is proposed and investigated in [41]. Relative Euclidean distance

(RED) is based upon the observation that the Euclidean distance alone

between the actual and estimated positions of a sensor node does not reflect

the change in the relative topology or geometry of sensor nodes with respect to

each other. Therefore, the RED metric considers sensor nodes in pairs so as to

capture the relative geometry of positions of nodes. To further elaborate the

RED metric, consider a topology comprising of a pair of nodes i and j. Let the

actual positions of nodes be Pi and Pj and the estimated positions be P̂i and

P̂j. Let Vij be the vector from Pi to Pj and V̂ij be the vector from P̂ij to P̂ij.

Hence, Vij represents the actual topology of sensor nodes and V̂ij represents

the estimated topology of the nodes. The relative Euclidean distance (RED)

between the actual and estimated topologies of the pair of sensor nodes is then

equal to the magnitude of the vector connecting the end points of Vij and V̂ij,

and is given by

dR =
(
|Vij|2 + |V̂ij|2 − 2Vij · V̂ij

) 1
2

. (2.49)

To measure the change in topology of the entire sensor field comprising of N

sensor nodes, the average value of RED for all the possible combinations of
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pairs of sensor nodes is calculated as below:

µR =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

dRij, (2.50)

where dRij is the RED between pair of nodes i and j computed using (2.49).

It is to be noted that V̂ij = Vij and θ = 0 when the estimated positions are

the same as the actual positions i.e. P̂ij = Pij. Using this condition in (2.49),

dR =
(
|Vij|2 + |Vij|2 − 2|Vij||Vij|

) 1
2

= 0. (2.51)

Hence, µR = 0 when positions of all the sensor nodes are estimated without

error and estimated topology of the sensor field is the same as the actual

topology. Like cosine distance and Tanimoto distance, the RED metric remains

unaffected by shift if the relative topology among the sensor nodes is not

changed. As is obvious from (2.49), dR = 0 if V̂ij = Vij and θ = 0.

2.6.20 Cumulative vectorial distance

This is another metric proposed in [41]. For each sensor node, the difference

in the x-coordinates of the estimated and actual positions are calculated.

Similar difference is calculated for the y-coordinates. The differences in the

x-coordinate values of all the sensor nodes are summed together to result

in a vector along x-axis starting at the origin. Similarly, the differences in

the y-coordinate values are summed together to result in a vector along the

y-axis. The cumulative vectorial distance (CVD) is then defined as the distance

between the terminal points of the perpendicular vectors averaged over the

number of sensor nodes.
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µV =
1

N

([ N∑
i=1

(xi − xia)
]2

+
[ N∑
i=1

(yi − yia)
]2) 1

2

. (2.52)

The distance between the terminal points of the vectors is the same as the

magnitude of the resultant vector of the sum of these vectors. It is to be noted

that xi − xia ≥ 0 or xi − xia ≤ 0 and yi − yia ≥ 0 or yi − yia ≤ 0 for individual

sensor nodes depending upon the estimated coordinate values. Therefore, some

of the differences in the summation terms in (2.52) may be positive and some

may be negative. This may result in smaller values of the component vectors

along x-axis and y-axis. As a result, the CVD metric may not sometimes

depict a true picture of the performance of a localisation algorithm. This

is also evident from the performance results of CVD in [41] against random

distortion in the sensor field.

2.6.21 Spring distance

To evaluate spring distance between the estimated and actual topologies, the

sensor network is modelled as an elastic object as proposed in [41]. Actual

topology of the sensor network is considered as the original elastic object and

the estimated topology is considered as the deformed version. The spring

distance is the difference between the potential energies of the original elastic

object and the deformed object.

To model the sensor network as an elastic object, three types of springs are

assumed. Type 1 springs are tension springs connecting each node to the

rest of the nodes in the network. Hence, if there are N sensor nodes in the

network, each sensor node is connected through N − 1 type 1 springs to the
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rest of the N − 1 nodes. Hence, there are a total of N(N−1)
2

type 1 springs.

These springs store potential energy as a result of change in the Euclidean

distance. In addition, each node is connected to the ground through a type

2 tension spring. For N sensor nodes, there are N type 2 springs. A type

2 spring stores potential energy due to change of position of an individual

node. In addition to a type 1 spring, a pair of sensor nodes is connected to

each other through a type 3 torsion spring. A torsion spring stores potential

energy due to rotation and is not responsive to expansion or compression. Each

sensor node is connected to N − 1 type 3 springs and there are N(N−1)
2

type

3 springs in total. When the sensor nodes are at their actual positions, the

springs are relaxed under equilibrium and store no potential energy. However,

in the model corresponding to the estimated topology, the springs are displaced

and hence store potential energy. This potential energy is a measure of the

difference between the estimated and actual topologies of the network. The

potential energy stored in a tension spring of length l is ksx2s
2l

where xs is the

displacement in the spring and ks is the elastic modulus of the tension spring.

Similarly, the potential energy stored in torsion spring is
ktθ2t
2

where θt is the

angle due to rotation between a pair of sensor nodes and kt is a constant for

torsion spring.

For a pair of sensor nodes i and j, the equilibrium length of the type 1 tension

spring is l = Vij. Its deformed length is V̂ij. Therefore, displacement of the

spring is ds =
∣∣∣|Vij| − |V̂ij|

∣∣∣. Hence, the average potential energy stored in a

type 1 spring is given by

UT1 =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

kd
∣∣∣|Vij| − |V̂ij|

∣∣∣2
2|Vij|

, (2.53)
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where kd is the spring constant for type 1 spring. For the type 2 spring,

the displacement is the localisation error el which is the distance between the

estimated and actual positions. If ks is the spring constant for a type 2 spring,

then the average potential energy stored in a type 2 spring is given by

UT2 =
1

N

N∑
i=1

kse
2
li

2
, (2.54)

where eli is the localisation error for the sensor node i. Similarly, the average

potential energy stored in a type 3 torsion spring is given by

UT3 =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

1

2
ktθ

2
tij, (2.55)

where θtij is the angle between the actual and estimated topologies of a pair of

sensor nodes i and j. This is measured by the angle between the vectors Vij

and V̂ij, and is given by

θtij = cos−1
(

Vij · V̂ij

|Vij||V̂ij|

)
. (2.56)

The spring distance between the estimated and actual topologies is given by

µs = UT1 + UT2 + UT3. (2.57)

The spring constant kd for type 1 spring defines the displacement sensitivity of

the spring distance. Similarly, spring constant ks for type 2 spring controls

the shift sensitivity and spring constant kt for type 3 spring controls the

rotational sensitivity of the spring distance. By assigning different values

to shift sensitivity and rotational sensitivity, four different types of spring

distances are defined in [41]. These are named as Spring A, Spring B, Spring
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Table 2.1: Four types of spring distance

Spring distance
Shift Sensitivity

ks

Rotational sensitivity
kt

Spring A 0.5 0.5

Spring B 1 0

Spring C 0 1

Spring D 0 0

C and Spring D. Values assigned to shift sensitivity ks and rotational sensitivity

kt for the four types of the spring distance are given in Table 2.1. The

displacement sensitivity is kept constant at kd = 1 for all the four types of

spring distance.

2.7 Review

Performance of a localisation algorithm can be evaluated either in general or for

its use in a specific application. In the case of a general performance evaluation,

the performance evaluation will usually aim at testing the algorithm for a

representative and simple strategy. On the other hand, performance evaluation

for a specific application may be planned in such a manner so that it focuses

more on testing a particular aspect, such as coverage ability of the algorithm.

In either case, it may not be possible to evaluate its performance using

the entire set of criteria, parameters and metrics that we have discussed in

the previous sections. Therefore, a balanced and optimum set of criteria,

parameters and metrics should be selected for this purpose. In the case of a

general performance evaluation, it is sufficient that a basic and primary set

of metrics and parameters are considered so that the general characteristics

of the algorithm can be identified and evaluated. However, performance
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evaluation of an algorithm for deployment in a specific application may consider

a more detailed set of parameters and metrics suited to the requirements of

the application. For example, it is sufficient that a basic accuracy metric

such as absolute localization error or normalized localization error is used for

the general performance evaluation as is done in the case of Centroid [66]

and CAB [34] localisation algorithms. However, one or more of the topology

metrics may be used if the performance of the algorithm is being evaluated

for an application where accurate reconstruction of sensor field topology is

important as is done in [43]. In particular, the topology metrics are used for

the performance evaluation of anchor free localization algorithms where the

reconstructed topology may be shifted or rotated [43,46,59,60].

For our proposed anchor based localization algorithm in Chapter 3, we use a

basic and general set of metrics for the performance testing and evaluation.

Furthermore, we propose three new metrics to test aspects of algorithms which

cannot be done using the metrics available in the published literature.

2.8 Summary

In this work we have reviewed the system development life cycle, criteria,

parameters and metrics for the performance evaluation of localisation

algorithms for wireless sensor networks. Position estimation by sensor nodes

in a wireless sensor network using a localisation algorithm results in estimation

errors. Therefore, the error characteristics of a localisation algorithm are an

important deciding factor in its selection for a sensor network application.

The error characteristics are studied during the performance evaluation of
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a localisation algorithm. In this chapter, we first presented the system

development life cycle of a localisation algorithm to highlight the context

of performance evaluation. Then the criteria and parameters used for the

performance evaluation of localisation algorithms for wireless sensor networks

are described. Finally, we describe and discuss in detail various types of metrics

used in the literature for the measurement of various aspects of localisation

algorithms.
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Ripple Localisation Algorithm

In many applications of industrial wireless sensor networks, sensor nodes need

to determine their own geographic position coordinates so that the collected

data can be ascribed to the location from where it were gathered. We propose

a novel intelligent localisation algorithm which uses variable range beacon

signals generated by varying the transmission power of beacon nodes. The

algorithm does not use any additional hardware resources for ranging and

estimates position using only radio connectivity by passively listening to the

beacon signals. The algorithm is distributed, so each sensor node determines

its own position and communication overhead is avoided. As the beacon nodes

do not always transmit at maximum power and no transmission power is used

by unknown sensor nodes for localisation, the proposed algorithm is energy

efficient. It also provides control over localisation granularity. Simulation

results show that the algorithm provides good accuracy under varying radio

conditions.
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3.1 Introduction

In this chapter, we present a localisation algorithm which is distributed so

that each unknown node can localise itself passively by just listening to beacon

nodes. The algorithm employs multiple power levels [32–34] and annular rings

around beacon nodes and uses multilateration in sensor nodes to achieve a

novel but simple localisation technique. The algorithm is intelligent in two

aspects. First, the proposed algorithm enables a node to estimate position

in an intelligent manner by using passive information from beacon nodes.

Second, it provides sensing intelligence to the sensor network. For example,

after estimating positions, the nodes can make many intelligent decisions, such

as routing based on location information. The algorithm does not require any

extra piece of hardware to estimate range and position. Based on the fact that

the algorithm sends out a ripple of beacon signals, we call it ripple localisation

algorithm (RLA) for convenience of reference. We also show quantitatively

that the algorithm is energy efficient compared to localisation techniques which

transmit beacon signals at fixed radio range. Approximately 92% of the upper

limit of energy efficiency can be attained by using 10 magnetisation levels of

transmission power.

This chapter makes four major contributions. First, we present a novel,

intelligent, distributed and energy efficient localisation algorithm which gives

good localisation accuracy. Second, we give a quantitative analysis of energy

efficiency of the proposed algorithm. Third, we implement and simulate our

intelligent localisation algorithm with practical irregular radio conditions. Our

localisation algorithm is also compared with two related algorithms – Centroid

[66] and CAB [34]. Fourth, we propose and use three new metrics, error

60



3.2. Related Work

momentum, degree of location intelligence (DOLI) and localisation efficiency,

for the evaluation of localisation algorithms. Simulation results demonstrate

that our proposed localisation algorithm achieves localisation error which is

much lower than both Centroid and CAB. Time complexity of our ripple

localisation algorithm is much lower than that of CAB and only marginally

higher than that of Centroid.

The rest of this chapter is organised as follows. We summarise previous related

work in Section 3.2. In Section 3.3, we describe the ripple localisation algorithm

and analyse its energy efficiency in Section 3.4. Performance metrics are

discussed in Section 3.5. We evaluate performance of RLA, compare it with

two closely related algorithms and describe and simulation results in Section

3.6. We conclude with Section 3.7.

3.2 Related Work

A number of techniques have been used to solve the problem of localisation

in wireless sensor networks. Their details are available in various literature

surveys. In this section, we describe a few prominent localisation algorithms

related to our work.

A distributed, range free, anchor based localisation technique which uses

ring overlapping based on comparison of received signal strength indicator

(ROCRSSI) is proposed in [33]. In this algorithm, beacon signals transmitted

by a beacon node are received and sampled by neighbour beacon nodes. The

neighbour beacon nodes calculate the RSSI of the beacon signal and then

broadcast it to the network. In this way, RSSI is propagated in the sensor
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network. Using RSSI and location information of various beacon nodes, an

unknown node constructs a set of annular rings around these beacon nodes.

It then determines the area of intersection using a grid scan. The sensor node

then localises itself at the centroid of this area. Propagation of RSSI increases

communication overhead of the algorithm.

In another distributed algorithm, localisation with mobile anchor using

trilateration (LMAT) proposed in [67], a moving beacon node is used to

help unknown nodes estimate their positions. A single beacon node moves

in a zig zag fashion along a trajectory following the shape of interconnected

equilateral triangles in the sensor field. If communication radius of the

beacon node is r, authors show that the coverage area is maximum if side

of each equilateral triangle is
√

3r. While following the path of interconnected

equilateral triangles, the beacon node broadcasts its location when it is at each

vertex of a triangle. After an unknown node has received three beacon packets,

it can estimate its distances from three reference points and then estimate its

own position.

In the simple algorithm proposed in [38] for outdoor unconstrained

environment, an unknown node starts by initialising its estimated position

to be the entire sensor field. When it receives a beacon message, it assumes an

annular ring around the beacon node based upon the RSSI. It then updates

its position estimate by performing an intersection between existing position

estimate and the annular ring around the node, from which, it received the

beacon message. This process is iteratively repeated for all neighbour beacon

nodes. When an unknown node has estimated its position, it can help other

unknown nodes to localise by acting as a beacon node and sending beacon
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messages.

In another algorithm proposed in [66], and commonly known as Centroid

algorithm, an unknown sensor node determines its connectivity with neighbour

beacon nodes and estimates its position at their centroid. If coordinates of

neighbour beacon nodes B1, B2, B3, ..., Bk are (x1, y1), (x2, y2), (x3, y3), ...

(xk, yk), then estimated position (x, y) of the sensor node is given by:

(x, y) = (
x1 + x2 + ...+ xk

k
,
y1 + y2 + ...+ yk

k
) (3.1)

In concentric anchor beacon (CAB) localisation scheme proposed in [34],

beacon nodes use two transmission levels. An unknown node chooses three

most distant beacon nodes by calculating the areas of triangles of all possible

combinations. Next, it calculates points of intersection of annular rings around

these beacons by selecting two beacon nodes at a time. It then isolates valid

points of intersection which are points that fall within all the annular rings.

The unknown node localises itself at the centroid of the region bounded by the

points of intersection.

In [37], a distance vector (DV) based positioning system, called ad-hoc

positioning system (APS) is proposed. The algorithm uses multi hop

communication for localisation. It is assumed that beacon nodes have the

same radio range as the unknown nodes. Authors propose three techniques to

obtain distance estimates to beacon nodes using multi hop communication. In

DV-hop approach, an unknown node estimates its distance to a beacon node

by calculating the number of hops to the beacon node and multiplying with

average hop length. In DV-distance propagation, hop-to-hop distances between

all nodes connecting the unknown node and beacon node are estimated and
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propagated to the unknown node. It can then estimate its distance from the

beacon node. In Euclidean propagation method, an unknown node estimates

its direct distance to a beacon node with the help of distance estimates to its

immediate neighbour nodes and their corresponding estimates to the beacon

node. When an unknown node has obtained distance estimates to three or

more beacon nodes by using any of the three methods, it then estimates its

position.

Ad hoc localisation system (AHLoS) proposed in [68] uses settled nodes as

beacon nodes. Unknown nodes which are immediate neighbours of beacon

nodes can estimate their distances to three or more beacon nodes and estimate

their geographic positions. These settled nodes then act as beacon nodes

and start broadcasting their positions using their own beacon messages. The

remaining unknown nodes can use the new beacon nodes alongside the old

ones to estimate their positions. The process continues in an iterative manner

until all nodes have settled. Major problem associated with this technique is

accumulation of error after each iteration.

Using a centralised processing approach, convex position optimisation

(CPE) algorithm proposed in [40] formulates sensor node localisation as an

optimisation problem. Linear programming is then used to solve the problem

and estimate node positions. Connectivity information of beacon and unknown

nodes serves as a constraint. For example, if node A has a communication

radius of 10 m and another node B can receive communication from A,

then it implies that nodes A and B are within 10 m distance. Similarly,

if another node C does not hear from node A, it then lies beyond 10 m

distance from node A. Each sensor node stores its connectivity information
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by maintaining a list of nodes from which it receives communication. This

connectivity information serves as a constraint for the node localisation linear

program (LP) problem. Given the positions of beacon nodes, linear program

finds positions of unknown nodes subject to the connectivity constraints of

beacon and unknown nodes. As central processing is used, positions of beacon

nodes and connectivity information of all unknown nodes is sent to the central

processor. After processing the information, central processor sends estimates

back to the unknown nodes.

We have discussed selected localisation algorithms for outdoor unconstrained

environment and related to our work in this section. Centroid and CAB

algorithms, which are also discussed above, are used for comparison with

proposed ripple localisation algorithm in Section 3.6.

3.3 Ripple Localisation Algorithm

In this section, we start with assumptions of the sensor field and then describe

the ripple localisation algorithm. The algorithm consists of two parts – one

part is executed by beacon nodes and the other by the unknown nodes.

3.3.1 Sensor Field

We consider an outdoor wireless sensor network in a two dimensional

unconstrained sensor field with finite geographic boundaries in which the sensor

and beacon nodes are deployed. The sensor nodes are not equipped with

any extra piece of hardware to determine range from other nodes. Radio
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range of unknown nodes is longer compared to their sensing range so that

sensing granularity of nodes is higher and sensed data can be transmitted

to longer distances. Communication range of beacon nodes is longer than

that of unknown sensor nodes. As a result, the beacon signal reaches a large

number of unknown sensor nodes at greater distances and a fewer number

of beacon nodes are required to localise a large number of unknown sensor

nodes. We assume that all nodes are equipped with omnidirectional antennas,

designed for sensor networks such as the one described in [69], so that nodes

communicate equally in all directions. We also assume that orthogonality of

beacon signals is handled by a medium access control protocol. To discuss and

explain the algorithm, we assume a perfectly circular radio range. However, for

performance evaluation and simulation, we use a more practical irregular radio

model [35] as shown in Fig. 3.1. Degree of irregularity (DOI) is used to denote

the extent of irregularity in radio pattern and is defined as the maximum radio

range variation per unit degree change in the direction of propagation.

3.3.2 RLA Part 1 for Beacon Nodes

In many wireless networks, beacon nodes transmit multiple beacon signals at

regular intervals using the same transmission power. As a result, all of these

(a) DOI = 0 (b) DOI = 0.1 (c) DOI = 0.2

Figure 3.1: Irregular radio pattern and degree of irregularity.
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beacon signals have the same fixed transmission radius. An example of such

a network is the one considered by the Centroid localisation algorithm [66].

In the Centroid algorithm, an unknown node receives multiple beacon signals

from each of the reference nodes before it can determine the connectivity metric

and estimate its position. In the ripple localisation algorithm, a beacon node

transmits beacon signals at different power levels corresponding to different

transmission radii so that these radii fall into certain pre-determined quantized

intervals1. The beacon nodes are tested and calibrated so that transmission

radii corresponding to different power levels are recorded for embedding in

beacon messages. Hence, unknown nodes receive more information each time

they receive a beacon message. The unknown nodes use this information to

achieve better accuracy in location estimation.

Transmission of successive beacon signals with incremental values of

transmission power and hence different transmission radii is shown in Fig. 3.2.

This is analogous to a ripple in water. It emanates from the centre and

travels outwards. In the same manner, each beacon node generates a ripple

of beacon signals. A beacon node sends its first beacon signal with some set

minimum transmission power. For each successive beacon signal it increments

the transmission power in such manner that the transmission radius of the

beacon signal is longer by a step dr from the previous beacon signal. Beacon

node increments transmission power with each successive beacon signal until

maximum transmission power is reached, at which point, the beacon node

resets and starts this process all over again. A typical beacon message is

shown in Fig. 3.3. In this beacon message, t0 is the time stamp. (Xb, Yb)

1Many sensor node platforms allow the transmission power to be set dynamically. For
example, when using CC2420, an IEEE-802.15.4 compliant RF transceiver, transmission
power for each packet can be set using CC2420PacketC.setPower() command under TinyOS.
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Figure 3.2: A ripple of beacon signals.

Figure 3.3: A typical beacon message.

are the position coordinates of the beacon node. Pti is the transmission power

used. Ri is the corresponding radio range. dr is the beacon signal step. Rmin is

the minimum transmission radius corresponding to the minimum transmission

power Pmin. Rmax is the maximum transmission radius corresponding to the

maximum transmission power Pmax.

3.3.3 RLA Part 2 for Unknown Nodes

Multiple unknown nodes lying within the communication range of a beacon

node receive its beacon signals as shown in Fig. 3.2. By extracting information

from all the beacon messages that an unknown node receives from a particular
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Algorithm 1 Algorithm for beacon nodes

1: while (true) do
2: transmit power = minimum transmit power
3: while (transmit power ≤ maximum transmit power) do
4: prepare beacon message
5: transmit beacon message
6: increment transmit power
7: end while
8: end while

beacon node, it can determine the radii of the inner and outer circles of the

annular ring around the beacon node in which it lies. For example, the

first beacon signal that unknown node U1 receives is beacon signal number

4. Therefore, it can ascertain that outer radius of the annular ring in which

it lies is the same as that of beacon signal 4. Note that, of all the beacon

messages that unknown node U1 receives from that particular beacon node,

first beacon signal has the smallest radius. Knowing the beacon signal step dr

from the beacon message, and by subtracting it from the radius of the outer

circle, it can also determine the radius of the inner circle. Next, it estimates its

distance from the beacon node by calculating average of the radii of the inner

and outer circles around the beacon node. The unknown node then constructs

and solves a set of multilateration equations to estimate its own position.

To further explain position estimation, consider an unknown sensor node

having k neighbour beacon nodes with position coordinates (x1, y1), (x2, y2),

..., (xk, yk). The unknown node gets current transmission radius Ri and

beacon signal step dr of a neighbour beacon node from the beacon message

and estimates its range ri from the beacon node as under:

ri =
Ri +Ri−1

2
(3.2)
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where Ri−1 is calculated as below:

Ri−1 = Ri − dr (3.3)

Ri and Ri−1 are radii of the outer and inner circles of the annular ring around

the beacon node in which the unknown node lies. Using position coordinates

of beacon nodes as centres and range estimates as calculated above as radii, a

set of following equations of circles around beacon nodes can be obtained:



(x− x1)2 + (y − y1)2

(x− x2)2 + (y − y2)2
...

(x− xk)2 + (y − yk)2


=



r21

r22
...

r2k


(3.4)

Expanding square terms on the left side and rearranging, we get:



x2 + y2 − 2x1x− 2y1y

x2 + y2 − 2x2x− 2y2y

...

x2 + y2 − 2xkx− 2yky


=



r21 − x21 − y21

r22 − x22 − y22
...

r2k − x2k − y2k


(3.5)
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Subtracting last row from each of the rows above it:



2(xk − x1)x+ 2(yk − y1)y

2(xk − x2)x+ 2(yk − y2)y
...

2(xk − xk−1)x+ 2(yk − yk−1)y




r21 − r2k + x2k − x21 + y2k − y21

r22 − r2k + x2k − x22 + y2k − y22
...

r2k−1 − r2k + x2k − x2k−1 + y2k − y2k−1



(3.6)

Separating the unknowns (x, y), this can be rewritten in matrix form as below:



(xk − x1) (yk − y1)

(xk − x2) (yk − y2)
...

...

(xk − xk−1) (yk − yk−1)



x
y



=
1

2



r21 − r2k + x2k − x21 + y2k − y21

r22 − r2k + x2k − x22 + y2k − y22
...

r2k−1 − r2k + x2k − x2k−1 + y2k − y2k−1


(3.7)

Using matrix notation, this can be written as:

Az = R (3.8)
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where z =
[
x y

]T
and

A =



(xk − x1) (yk − y1)

(xk − x2) (yk − y2)
...

...

(xk − xk−1) (yk − yk−1)


(3.9)

R =
1

2



r21 − r2k + x2k − x21 + y2k − y21

r22 − r2k + x2k − x22 + y2k − y22
...

r2k−1 − r2k + x2k − x2k−1 + y2k − y2k−1


(3.10)

Using least squares approximation, we get the following closed-form and unique

solution to (3.8).

z = A+R (3.11)

where

A+ = (ATA)−1AT (3.12)

and is pseudoinverse of matrix A.

Algorithm 2 Algorithm for unknown nodes

1: /* Step 1 */
2: construct a list of neighbour beacon nodes
3: /* Step 2 */
4: for all neighbour beacon nodes do
5: sort beacon signal radii of received signals
6: signal with smallest radius is the outer circle
7: radius of inner circle = radius of outer circle – signal step
8: estimated range = average of radii of inner and outer circles
9: end for
10: /* Step 3 */
11: estimated position = multilaterate using all neighbour beacon nodes
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Number of beacon nodes in a sensor field is only a small percentage of the total

number of unknown sensor nodes N . Beacon nodes are an expensive resource

in terms of both size and energy as these are usually equipped with some

location finding device such as a GPS receiver. Furthermore, the beacon nodes

are distributed across the entire sensor field. Hence, an unknown sensor node

listens only to a fraction of the limited number of beacon nodes which are in its

neighbourhood. Therefore, we do not limit the number of neighbour beacon

nodes k in the ripple localisation algorithm for unknown sensor nodes. In fact,

some unknown sensor nodes may not be able to localise due to insufficient

number of neighbour beacon nodes. This depends upon the coverage ability

of a localisation algorithm and is measured by our proposed localisation

efficiency metric. For practical deployments, a limit on the maximum number

of neighbour beacon nodes used by an unknown node for location estimation

may be implemented depending upon the memory resources of the node.

3.3.4 Proof of Concept

To give a proof of the basic concept used in ripple localisation algorithm,

we perform a simple experiment which can be easily replicated. We use

D-Link DIR-605 IEEE 802.11 wireless router operating at 2.4 GHz and a

Huawei Ascend Y300 Android smartphone for our experiment. The wireless

router allows its transmission power to be set at different levels through its

administrative interface and is equipped with omnidirectional antennas. The

WiFi Analyzer application is downloaded and installed on the smartphone

from the Google Play Store. We place the wireless router in the centre of a

large and unobstructed open field. The power is supplied by an uninterrupted
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Figure 3.4: Experimental verification of radio connectivity.

power source. Using the administrative interface, we set the transmission

power of the wireless router to 15% which is the minimum level it allows. The

smartphone is moved away from the wireless router until the WiFi Analyzer

on the smartphone reads -95 dBm. This is the threshold power for which the

smartphone provides connectivity. Further decrease in RSS results in loss of

connectivity. The distance between the router and the smartphone is recorded.

We repeat the same experiment every 30o making a total of 12 recordings

circling 360o around the wireless router. We then set the transmission power

of the wireless router to 35% which is the next level that it allows. We repeat

the experiment described above and take another set of 12 readings each 30o

apart. We plot both sets of data in Fig. 3.4. The first set of data gives the

inner circle corresponding to 15% transmission power whilst the second set of

data constitutes the outer circle corresponding to 35% transmission power. It

can be seen that the radio coverage is nearly circular. It is also evident that

practical irregularity in radio is comparable to DOI used in our simulation

experiments.
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In the second part of our experiment, we download and install the WiFi Alarm

application on the smartphone and set an alarm to sound when the WiFi

network provided by the wireless router is detected. We place the smartphone

in the area bounded by the transmission circles corresponding to 15% and 35%

power levels. We first set the transmission power to 15%. As the smartphone

is not within range, the alarm does not sound. Next, we set the transmission

power to 35%. The smartphone receives and detects the wireless signal and

sounds the alarm. This is repeated by placing the smartphone at 10 different

positions in the annular region bounded by the two transmission circles. The

alarm did not sound only once when the smartphone was placed at the outer

periphery of the annular region. Experiment verifies the basic concept used in

the ripple localisation algorithm.

3.3.5 Algorithm Complexity

The proposed localisation algorithm is not computationally expensive. Part 1

of the algorithm executed by the beacon nodes has a linear time complexity

O(k). Similarly, the second part executed by the unknown nodes also has linear

time complexity O(k) with respect to both the number of beacon nodes and

the number of beacon signals in a ripple. As a result, the processing energy

required by the algorithm is also small.

Like any practical algorithm, ripple localisation algorithm has certain

limitations. The proposed algorithm might not work as good in the indoor

environment as in an outdoor environment. In an outdoor environment, signal

propagation is fairly circular as is concluded in [38] and [66] and also verified by

our experiment. In an indoor environment, shadowing, reflection, absorption
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and noise would severely affect the circular radio pattern and result in low

localisation accuracy.

3.4 Energy Efficiency

We give a quantitative analysis of the energy efficiency of the proposed ripple

localisation algorithm in this section. We show that a beacon node achieves

92% of the upper limit of energy efficiency with 10 quantization levels of

transmission power. The unknown sensor node expends zero transmission

energy for localisation.

We assume that the relationship between transmitted power Pt and received

power Pr between two nodes in the outdoor unconstrained sensor field is

governed by the following path loss model:

Pt
Pr

= Kdα (3.13)

where

K =
1

GtGr

(
4π

λ
)2 (3.14)

Gt and Gr are gains of transmitter and receiver antennas respectively, λ is the

wavelength of radio waves, d is the distance between transmitter and receiver

antennas, and α is the path loss exponent.

Let us now successively increment the transmitted power from its minimum

value Pmin to maximum value Pmax corresponding to beacon signal minimum

radio range Rmin and beacon signal maximum radio range Rmax respectively

so as to generate a ripple of beacon signals as shown in Fig. 3.2. The power
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is increased in such a manner that with each increment of power, increase in

beacon signal radio range remains the same i.e. the difference between radii of

two consecutive beacon signals remains constant. We call this beacon signal

step and denote it by dr. Furthermore, let us also assume that beacon signal

minimum radio range Rmin is equal to beacon signal step dr for simplicity.

Let the transmitted power of an ith beacon signal be denoted by Pti and

the corresponding radio range of the beacon signal be Ri. As the difference

between the radii of two consecutive beacon signals dr is constant, therefore

Ri = i× dr (3.15)

If the total number of beacon signals in the ripple generated by the beacon

node is n, then

Rmax = n× dr (3.16)

According to (3.13), transmitted power Pti for ith beacon signal is given as:

Pti
Pr

= KRα
i (3.17)

Similarly, maximum transmitted power Pmax is given by

Pmax
Pr

= KRα
max (3.18)

Received power Pr is the same in (3.17) and (3.18). Substituting (3.15) in

(3.17) and (3.16) in (3.18), we get:

Pti
Pr

= K(idr)
α (3.19)
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Pmax
Pr

= K(ndr)
α (3.20)

Dividing (3.19) by (3.20), we get:

Pti = (
i

n
)αPmax (3.21)

The above relation gives us the transmission power required to transmit ith

beacon signal with radius Ri in a ripple. To get the upper bound on the energy

saved, we use α = 2. Therefore, total power PT transmitted by a beacon node

for sending a ripple of n beacon signals is given by:

PT =
Pmax
n2

n∑
i=1

i2 (3.22)

Summation term on the right is the sum of squares of first n natural numbers,

which is given by:
n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
(3.23)

Substituting this in (3.22), we get

PT =
(n+ 1)(2n+ 1)

6n
Pmax (3.24)

If a beacon node transmits 5 beacon messages, all at maximum power, transmit

power used is 5Pmax. However, if a ripple of 5 beacon messages is transmitted

by varying the transmit power, so that n = 5, the total transmitted power, as

calculated using (3.24) is 2.2Pmax , which is less than half of the power required

to transmit usual beacon messages at maximum power. Power2 saved is 5Pmax

– 2.2Pmax = 2.8Pmax and energy efficiency of 100×2.8/5 = 56% is achieved. In

2Time required to transmit beacon signals in both cases is the same. Therefore, power
implies energy and vice versa.
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general, transmit power saved PS in transmitting a ripple of n beacon signals

is given by:

PS = nPmax −
(n+ 1)(2n+ 1)

6n
Pmax (3.25)

This can be simplified to arrive at the following result:

PS =
(4n+ 1)(n− 1)

6n
Pmax (3.26)

This gives us the energy saved when a ripple of beacon messages is sent instead

of sending beacon signals at fixed radio range. If n beacon messages are

transmitted at fixed power, the transmitted power used is nPmax. Percentage

of power saved or energy efficiency ηP achieved is given by:

ηP =
PS

nPmax
× 100 =

(4n+ 1)(n− 1)

6n2
× 100 (3.27)

Note that for n = 1, i.e. beacon messages with only one power level, (3.26)

and (3.27) result in zero implying that no energy is saved. For n = 5, ηP is

56% which is the same as calculated earlier using (3.24). A plot of (3.27) for

the interval 0 ≤ n ≤ 10 is shown in Fig. 3.5. As can be seen, greater the

number of beacon signals n, greater is the energy saved. In the limit, when a

beacon node transmits an infinite number of beacon signals, maximum energy

efficiency ηPmax is achieved and is given by:

ηPmax = lim
n→∞

(4 + 1
n
)(1− 1

n
)

6
× 100 = 66.67% (3.28)

This shows that the upper bound on the energy saved by a beacon node is

66.67% when the number of beacon signals in a ripple approaches ∞.
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Figure 3.5: Energy saving with increase in beacon signals in a ripple.

Using (3.27), we calculate that for 60% and 65% energy saving, the number of

beacon signals in a ripple is approximately 8 and 30 respectively. For n = 10

in a ripple, we get 61.50% energy saving i.e. we attain approximately 92% of

the upper limit of energy efficiency.

The above calculations show the energy that is being saved by beacon

nodes only. The proposed algorithm does not require an unknown node to

transmit anything. It estimates the position passively by merely receiving and

processing information from beacon nodes. Therefore, unknown nodes utilise

zero transmission energy for the purpose of localisation. We assert that the

only energy an unknown node expends for localisation is the processing energy.

However, note that a complete assessment of total energy consumption of a

sensor node can only be made after analysis of all the related information.

This includes energy spent on receiving and how duty cycling is done for the

particular application for which the sensor network has been deployed. It is

further added that we are concerned only with energy used by the localisation

algorithm and not the overall energy used by a sensor node for various other

tasks.
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3.5 Proposed Performance Metrics

To evaluate performance of the proposed algorithm, it is simulated using

MATLAB. In this section, we describe metrics used for performance evaluation

and comparison of ripple localisation algorithm. We also propose our own three

novel metrics – error momentum, localisation efficiency and degree of location

intelligence. We later use them for the performance evaluation of localisation

algorithms. The error momentum is a hybrid metric which measures the

effectiveness with which a localisation algorithm trades localisation error with

localisation time. Localisation efficiency is a metric that measures the coverage

ability of a localisation algorithm. Degree of location intelligence (DOLI)

assigns a number between 0 and 1 to a sensor node depending upon the level of

accuracy of its estimated position. To the best of our knowledge, no previous

metrics in the published literature are available to measure these aspects of a

localisation algorithm.

We evaluate performance of the ripple localisation algorithm for all the criteria

discussed in Chapter 2 – accuracy, cost, coverage, scalability and robustness.

As the algorithm is anchor based and it is a general performance evaluation

which is not aimed at any specific application, we employ a basic set of

accuracy metrics for this purpose. Cost is evaluated in terms of localisation

time. Coverage is tested using the localisation efficiency metric. We evaluate

performance against scalability by varying the size of the sensor field and hence

density of the sensor nodes. Robustness of the algorithm is tested by varying

DOI, the beacon signal step and number of beacon signals.
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3.5.1 Localisation error

Localisation error is the distance between actual and estimated positions. If a

sensor node having actual position coordinates (xs, ys) estimates its position

to be at (x, y), then localisation error is given by:

el =
√

(x− xs)2 + (y − ys)2 (3.29)

Localisation error is normalised to sensor node radio range Rs for the purpose

of uniform comparison of results.

3.5.2 Localisation time

Localisation time is the time taken by a localisation algorithm for position

estimation of a sensor node. Localisation time depends upon computational

complexity of the localisation algorithm and is also an indicator of the amount

of energy used by the algorithm.

3.5.3 Error momentum

Error momentum is a hybrid metric. Higher localisation time implies higher

amount of processing and hence higher expenditure of energy. To quantify

the combined effect of localisation time and localisation error, we introduce a

new metric which we call time momentum of localisation error or simply error

momentum. We define error momentum as the product of localisation error

and localisation time. If t is the time taken by a node for localisation and el

is the resulting localisation error, then the error momentum em is given by

82



3.5. Proposed Performance Metrics

em = el × t. (3.30)

If localisation time of 1 second results in a localisation error of 1 meter, we

have unit error momentum of 1 meter-second. As localisation times are usually

in the range of milliseconds, meter-second is a large unit for our purpose and

we, therefore, use milli meter-second instead.

We further explain error momentum with the help of its two components i.e.

localisation error and localisation time. Localisation error is a measure of

accuracy of a localisation algorithm. Lower error implies higher accuracy and

vice versa. Similarly, localisation time is a measure of the cost of localisation.

We buy localisation accuracy with localisation time. Therefore, higher amount

of spent time should result in higher accuracy i.e. lower error. Higher the

localisation time, higher is the amount of processing and higher is the amount

of energy used. Multiplying cost i.e. localisation time with the output of

algorithm i.e. localisation error for a given position we get a combined view of

the performance of the algorithm in terms of cost and accuracy. Higher value

of error momentum implies that either localisation time or localisation error or

both have high values. On the other hand, a lower value means value of either

or both of these parameters is small. Error momentum is further explained

with the help of Table 3.1.

Table 3.1: Error momentum
Localisation error Localisation time Error momentum

LOW LOW LOW

LOW HIGH Unknown

HIGH LOW Unknown

HIGH HIGH HIGH
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At one extreme both localisation error and localisation time have low values

resulting in a low error momentum. This is desirable result under most

circumstances. At the other extreme, localisation error and localisation time

have high values resulting in high error momentum. This is usually not

desirable as localisation error is high despite using higher cost in terms of

localisation time. Between these two extremes, values of localisation error and

time might be low or high and the resulting error momentum may lie anywhere

between the extreme values. If localisation error or time is appropriately traded

off, value of error momentum will be more closer to the low value. A localisation

algorithm may buy better location accuracy i.e. reduction in localisation error

by spending more localisation time. For example, a localisation algorithm

may combine a number of techniques using more time to achieve better

location accuracy. However, more time means more expenditure of energy.

Therefore, location accuracy may be traded off with time to conserve energy.

As localisation error is a measure of location accuracy, error momentum can be

used to compare localisation algorithms for effective use of time and accuracy

trade off.

3.5.4 Localisation Efficiency

This metric measures the coverage ability of a localisation algorithm. A

localisation algorithm may some times be not able to help all the unknown

nodes localise and settle down. For example, if an unknown nodes does not

have more than two neighbour beacon nodes, it may not be able to estimate

its location. These nodes are called unsettled nodes. The nodes which are able

to localise are called settled or location intelligent nodes. If number of settled
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nodes is represented by Ns and number of total unknown nodes by N , we can

define localisation efficiency ηl as following:

ηl =
Ns

N
× 100. (3.31)

Localisation efficiency quantifies the ability of a localisation algorithm to help

unsettled nodes in estimating their positions.

3.5.5 Degree of Location Intelligence

This metric assigns a value between 0 and 1 to a sensor node based upon the

degree of accuracy of its estimated position. A sensor node which does not

know its position is a dumb node or unknown node. When it has estimated

its position with the help of a localisation algorithm, it has acquired location

intelligence. Degree of location intelligence (DOLI) of a sensor node depends

upon the extent of accuracy with which it has estimated its position. An

unknown or dumb node which does not know its position has a DOLI of 0. A

node which knows its exact position with zero estimation error has a DOLI of

1. We represent DOLI using Greek symbol δ and formally define it as:

δ =


0, if el

Rs
≥ Rs

Rs−
el
Rs

Rs
, otherwise,

(3.32)

where Rs is the radio range and el is the localisation error of the unknown

sensor node. If an unknown node has normalised localisation error greater

than or equal to its radio range, δ = 0 for such cases and for all other cases

0 ≤ δ ≤ 1.
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A drawback of the proposed metrics is that each of these metrics evaluates

performance of a localisation algorithm for a single parameter only. The

error momentum evaluates ability of an algorithm to trade off accuracy with

localisation time, localisation efficiency evaluates coverage and DOLI evaluates

localisation accuracy. A localisation algorithm should be evaluated using

different sets of metrics to get a complete picture of its performance.

3.6 Performance Evaluation

We begin this section with a description of simulation settings. We then

present, describe and analyse results of experiments carried out for the

performance evaluation of the ripple localisation algorithm (RLA) and its

comparison with two other algorithms – Centroid [66] and CAB [34]. Both

Centroid and CAB are designed for unconstrained environment and are closely

related to our work. In particular, CAB also uses multiple power levels.

Moreover, both the compared algorithms are described in detail in literature,

and therefore, they can be easily implemented and simulated.

A square sensor field of size 100 m× 100 m with 100 randomly deployed sensor

nodes is used for the simulation experiments. Transmission power of beacon

nodes is changed such that they have a minimum 10 m and maximum 100

m transmission radius with a beacon signal step of 10 m. As a result, the

beacon nodes use 1 to 10 transmission power levels. A practical irregular radio

model as depicted in Fig. 3.1 is used for performance evaluation. Degree of

irregularity (DOI) is used to denote the extent of irregularity and noise in

radio pattern and is defined as the maximum radio range variation per unit
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degree change in the direction of propagation. To simulate irregular radio

range of a beacon node, we use a Gaussian random variable with mean (µ)

equal to the current transmission radius (Ri) of the beacon node and standard

deviation (σ) equal to the product of DOI and mean. In other words, µ = Ri

and σ = µ×DOI. For performance evaluation and comparison, number of

beacon signals in a ripple, number of beacon nodes in the sensor field and DOI

of beacon signals are varied in a number of simulation experiments and results

are recorded and plotted. We use a computer with Intel Core i3-3110M CPU

@2.40 GHz processor and 4 GB RAM to run the simulations. We use the same

platform to simulate all the compared algorithms.

3.6.1 Localisation Error

Localisation error is a measure of accuracy of localisation. The lower the

localisation error, the better is the estimated position with a higher localisation

accuracy. We record localisation error in simulation experiments with the

results described below.

3.6.1.1 Localisation granularity and number of beacon signals in a

ripple

We vary the number of waves in the ripple i.e. the number of beacon signals

from 1 to 10 and record the localisation error. The number of the beacon

nodes used is 20%. Results are plotted in Fig. 3.6. As more and more beacon

signals are added in the ripple, the width of annular ring becomes smaller. As

a result, the estimate of the range between an unknown node and a beacon
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node, calculated as the average of radii of inner and outer circles of annular

ring, becomes better thereby resulting in a smaller localisation error. This

gives ripple localisation algorithm ability to control granularity of position

estimation. Smaller number of beacon signals in the ripple implies coarse

granularity and higher number of beacon signals in the ripple implies finer

granularity. For example, in simulation result shown in Fig. 3.6, under adverse

radio conditions with DOI = 0.2, mean error is below 0.75Rs when n = 5, and

approximately 0.5Rs when n = 10. Therefore, depending upon application of

deployed sensor network, localisation granularity can be controlled by varying

the number of the beacon signals in a ripple. The higher the number of beacon

signals n, the finer the location granularity.

3.6.1.2 Number of beacon nodes

Under adverse radio conditions, with DOI = 0.2, localisation error is recorded

while number of beacon nodes in the sensor field is varied from 3% to 30%.

Results, plotted in Fig. 3.7, show that RLA performs better than both Centroid
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Figure 3.6: Effect of number of beacon signals in a ripple on localisation error.
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and CAB over the entire range of the number of beacon nodes. At 10% beacon

nodes, RLA has a localisation error of approximately 0.75Rs, whereas it is

approximately 3.75Rs for Centroid and 1.45Rs for CAB. Addition of beacon

nodes beyond 15% does not result in significant improvement in localisation

accuracy of any of the three localisation algorithms. Better performance

of RLA can be attributed to three other reasons in addition to its usage

of multiple power levels. First, the only source of error in RLA is due to

least squares approximation, which in turn is due to error in estimation of

distances. In the case of CAB, there are two sources of error – estimation of

distances in terms of concentric rings and estimation of node position at the

centroid of intersected region which is only a guess. Second, RLA constructs

a mathematical model and solves a set of equations for position estimation.

Third, instead of making a selection, it uses all neighbour beacon nodes for

localisation of sensor node resulting in a better position estimate.
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Figure 3.7: Localisation error of Centroid, CAB and RLA.
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Figure 3.8: Comparison of cumulative error distribution.

3.6.1.3 Cumulative error distribution

CDF of the localisation error of the three compared algorithms is plotted in

Fig. 3.8 for DOI = 0.1 using 10% beacon nodes in the sensor field. There

are four observations that we can make from these plots. First, there is a

large difference in the error distribution of the three algorithms. Second,

the error distribution of Centroid is spread over large values. When using

Centroid, almost 50% nodes have localisation error between 2Rs and 4.5Rs,

and remaining 50% have error between 4.5Rs and 7Rs which are quite large

values. Third, CDF plot for RLA algorithm is relatively vertical compared

to the other two algorithms. It means that there is comparatively smaller

spread in localisation error and accuracy of localisation can be predicted with

more certainty in the case of RLA algorithm. 100% nodes are able to localise

with error below Rs and approximately 90% nodes have error below 0.75Rs

using RLA algorithm. Fourth, in the case of CAB algorithm, approximately

40% nodes have localisation error below Rs. All other nodes using CAB have

localisation error greater than Rs. Localisation errors above Rs imply that the
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3.6. Performance Evaluation

node has localised itself beyond its area of radio coverage and the estimated

position may lie in the area of coverage of another sensor node.

3.6.2 Localisation Time

Time taken by a node to localise itself is a measure of the computational

complexity of the localisation algorithm. It is also a measure of energy used

for localisation as higher localisation time implies more processing time and

hence higher consumption of energy.

3.6.2.1 Number of beacon signals in a ripple

Change in localisation time with increase in number of beacon signals for RLA

algorithm is reflected in Fig. 3.9. There is a linear increase in localisation time

implying time complexity of O(k) with respect to the number of beacon signals

in a ripple. This linear increase is independent of degree of radio irregularity,

as there is only marginal difference in localisation time for different values of
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Figure 3.9: Effect of number of beacon signals in a ripple on localisation time.
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DOI. This implies that localisation time of RLA is robust to changes in radio

pattern and can be more accurately predicted for a given number of beacon

nodes.

3.6.2.2 Number of beacon nodes

In Fig. 3.10, we compare average localisation times of Centroid, CAB and RLA

algorithms when DOI = 0. The plot in Fig. 3.11 adds a third axis and shows
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Figure 3.10: Comparison of localisation times.

 0%

10%

20%

30%

0.00

0.05

0.10

0.15

0.20
0

50

100

150

200

250

 

Number of beacon nodes

Degree of irregularity
 

L
o
ca

li
za

ti
o

n
 t

im
e 

(m
s)

Centroid

CAB

RLA

Figure 3.11: Change in localisation time with DOI and number of beacon
nodes.
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change in localisation time with change in DOI and number of beacon nodes.

Localisation time of CAB algorithm causes large values along vertical axis and

the marginal difference in localisation times of Centroid and RLA is not visible

in Fig. 3.10. Plot for Centroid is not visible and overlapped by RLA curve in

Fig. 3.11 due to the same reason. Therefore, localisation times of only Centroid

and RLA are plotted in Fig. 3.12. It is evident that the localisation times of

Centroid and RLA vary linearly with change in the number of beacon nodes

and have linear computational complexity O(k) with respect to neighbour

beacon nodes. The average localisation times of both these algorithms are

almost identical and much shorter than the average localisation time required

by the CAB algorithm. The time required by CAB algorithm increases rapidly

in a nonlinear fashion with an increase in the number of the beacon nodes.

As is shown in Fig. 3.7, localisation error reduces for all three algorithms

as the number of beacon nodes is increased. However, in the case of CAB,

this reduction is at the cost of higher localisation time and processing energy.

CAB requires repetitive and extensive computation for the selection of three

most distant neighbour beacon nodes and calculation and isolation of valid

points of intersection. This results in longer localisation time and processing

energy. On the other hand, RLA gives better location accuracy without any

significant increase in time, as it does not need repetitive computation for

position estimation. It is to be noted that, while CAB requires significantly

higher amount of processing energy, it needs the same amount of transmission

energy as used by RLA when transmitting beacon signals using the same

number of power levels.
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3.6.2.3 Cumulative time distribution

In. Fig. 3.13, we plot cumulative time distributions of Centroid, CAB and

RLA for DOI = 0 with n = 10 using 20% beacon nodes. CDF curves for

Centroid and RLA algorithm are almost identical and vertical. This means

that there is only a small variance in localisation times of sensor nodes and

almost all nodes take the same amount of time for localisation using these

algorithms. However, in the case of CAB, localisation time required by sensor
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Figure 3.12: Localisation times of Centroid and RLA.
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Figure 3.13: Comparison of cumulative time distribution.
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nodes varies from 32 to 55 milliseconds – 6 to 10 times larger than the time

required by either Centroid or RLA. Lower localisation time implies that the

sensor node uses smaller amount of energy for localisation and the localisation

algorithm is energy efficient. Smaller variation in localisation time implies

that the sensor network reaches settled state in shorter time and energy is

also conserved. Furthermore, due to small deviation, it is easier to predict the

probable localisation time at the deployment of sensor nodes which can help

in scheduling other tasks for the sensor node.

3.6.3 Error Momentum

In Fig. 3.10 three algorithms are compared with respect to localisation time,

and in Fig. 3.7, the same algorithms are compared with respect to localisation

error. In terms of localisation error, CAB algorithm performs better than the

Centroid. However, with respect to localisation time, performance of Centroid

algorithm is better than CAB. We can use error momentum to determine which

of the two algorithms makes better use of localisation time and error trade off.
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Figure 3.14: Performance comparison using error momentum.
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In Fig. 3.14, we plot error momentum of the three algorithms as the number

of beacon nodes in the sensor field is increased. Fig. 3.15 depicts change in

error momentum with DOI on the third axis. CAB performs better when the

number of beacon nodes is between 5% to 23%. However, Centroid algorithm

makes better use of time and error trade off when the number of beacon nodes

is below 5% or is greater than 23%. RLA performs better than both Centroid

and CAB. It has lower error momentum than the other two algorithms. In

addition, the error momentum remains almost constant for the entire range of

beacon nodes. This implies that RLA scales better when the number of beacon

nodes in the sensor field is decreased or increased.

3.6.4 Localisation Efficiency

In Fig. 3.16, we plot localisation efficiency of the three compared algorithms for

DOI = 0.2. Centroid and RLA algorithms achieve 100% localisation efficiency

when the number of beacon nodes is increased beyond 5%. CAB algorithm also
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Figure 3.15: Change in error momentum with DOI and number of beacon
nodes.
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achieves almost 100% efficiency beyond this point with occasional exceptions.

In the case of CAB algorithm, a node has to first calculate points of intersection

of transmission circles of neighbour beacon nodes and then isolate valid points

of intersection. Due to irregular radio pattern, isolation of valid points

of intersection may not be possible sometimes thereby resulting in lower

localisation efficiency.

3.6.5 Degree of Location Intelligence

DOLI for the three algorithms is plotted in Fig. 3.17 for DOI = 0.2. Sensor

nodes have better DOLI when using RLA compared to either Centroid or CAB

for the entire range of beacon nodes. Beyond 10% beacon nodes, DOLI of RLA

remains above 0.95.
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Figure 3.16: Localisation efficiency.
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Figure 3.17: Performance Comparison using DOLI.

3.6.6 Node Density

The performance of a localisation algorithm is affected as the size of the sensor

field is varied thereby varying density of both sensor and beacon nodes. We

perform simulation experiments by deploying 100 sensor nodes in sensor fields

of different sizes. The results are described below.

In Fig. 3.18, we plot localisation error as side of the square sensor field is

increased from 50 m to 200 m while using 100 sensor nodes, 20% beacon nodes

and DOI = 0.2. As the size of the sensor field increases, the beacon node

density decreases. Consequently, a sensor node has fewer and distant neighbour

beacon nodes, and as a result, higher distance estimation and localisation error

while using any of the three compared algorithm.

In Fig. 3.19 and Fig. 3.20, we plot localisation error and localisation efficiency

respectively using 100 sensor nodes and DOI = 0.2 as the number of beacon

nodes in a large sensor field of size 200 m× 200 m is varied. If the radio range

of a sensor node is 10 m and its sensing range is 5 m, then the radio and
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Figure 3.18: Localisation error using varying sizes of sensor field.

sensing areas covered by 100 nodes are 10000π m2 and 2500π m2 respectively.

If the coverage areas of individual nodes do not overlap, the maximum radio

coverage of the 40000 m2 sensor field is 79% while its maximum sensing

coverage is only 20%. Hence it is a sparse sensor field. When the number

of beacon nodes is below 7%, localisation error using RLA is higher than

both the Centroid and CAB. When the number of beacon nodes is further

increased, there is only marginal improvement in localisation accuracy for

Centroid and CAB. However, the improvement using RLA is significant and is

much better than either of the two compared algorithms as explained in Section

3.6.1.2. Furthermore, as shown in Fig. 3.20, Centroid and RLA achieve better

localisation efficiency compared to CAB as the number of beacon nodes in the

sparse sensor field is increased for reasons explained in Section 3.6.8.

3.6.7 Variation in Beacon Signal Step

In a practical situation, it is possible that beacon signal step (dr) does not

remain constant as the transmission power is increased successively. We add
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Figure 3.19: Localisation error using 200 m× 200 m sensor field.

 0%  5% 10% 15% 20% 25% 30%
  0%

 20%

 40%

 60%

 80%

100%

Number of beacon nodes

L
o

ca
li

za
ti

o
n
 e

ff
ic

ie
n
cy

 

 

Centroid

CAB

RLA

Figure 3.20: Localisation efficiency using 200 m× 200 m sensor field.

an error to the beacon signal step dr in each wave in a ripple in a 100× 100

sensor field with 100 sensor nodes and 20% beacon nodes using n = 10. The

error is random over the interval [−βdr +βdr], where β specifies bound on the

random error. For example, if dr = 10 and β = 50%, then the error added to

dr in a wave in a ripple is random over the interval [−0.5× dr + 0.5× dr] i.e.

bound on the random error is ±5. We vary error bound β from 0% to 100%,

and record localisation error. The results are plotted in Fig. 3.21. Localisation

error increases as the error in beacon signal step increases. The addition of the
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Figure 3.21: Effect of variations in beacon signal step on localisation error.

random error in dr may cause a sensor node to incorrectly estimate itself lying

in a wrong annular ring around a neighbour beacon node, thereby yielding

a faulty distance estimate, and hence, higher localisation error. As error in

the beacon signal step increases, a sensor node may estimate itself lying in

wrong annular rings around more and more neighbour beacon nodes. As a

result, the sensor node has incorrect distance estimates to a higher number of

neighbour beacon nodes, thereby resulting in an increase in the localisation

error. Transmission power of sensor node can be calibrated to minimise error

in the beacon signal step.

3.6.8 Performance Comparison with Improved CAB

It may be considered to modify CAB to use a higher number of transmission

levels to give improved performance. We describe the possible modified forms

of CAB and then present their performance comparison with ripple localisation

algorithm.
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CAB can be modified in two ways. First, it can either use only three farthest

beacon nodes or select all neighbour beacon nodes for position estimation.

When using all neighbour beacon nodes, an unknown node does not test for

the farthest three nodes. it simply selects all neighbour beacon nodes and then

estimates position as in original CAB. Second, the number of transmission

power levels can be kept as in CAB or increased to such levels as proposed

in RLA. This gives us following four possibilities of CAB. One of these is the

original CAB algorithm and the other three are the modified forms of CAB,

which we call CAB-A, CAB-B and CAB-C.

1. CAB: Use the same transmission power level as in CAB and select three

farthest beacon nodes for position estimation. This is original CAB

algorithm.

2. CAB-A: Use a higher number of transmission levels but only three

farthest beacon nodes.

3. CAB-B: While keeping the number of power levels same as in CAB, use

all neighbour beacon nodes for position estimation instead of the farthest

three.

4. CAB-C: With a higher number of power levels, use all neighbour beacon

nodes for localisation.

We investigate all these forms for performance comparison. We plot

localisation times in Fig. 3.22 and localisation error in Fig. 3.23 against the

number of beacon nodes for RLA and the original and the modified form of

CAB using n = 10 for DOI = 0.2 with 100 sensor nodes deployed in 100× 100

sensor field. Accuracy of modified versions of CAB is better as localisation
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Figure 3.22: Localisation time of modified forms of CAB.

error is lower. Accuracy of CAB-A is as good as that of RLA. CAB-B and

CAB-C have lower localisation error than RLA. The two factors i.e. inclusion

of all neighbour beacon nodes for position estimation and the usage of higher

number of transmission levels result in smaller area bounded by points of

intersection, and hence, lower localisation error. However, both these factors

also result in increased localisation times which are plotted in Fig. 3.22, and

lower localisation efficiency which is plotted in Fig. 3.24. From Fig. 3.12 and

Fig. 3.22, it is evident that localisation times of CAB-B and CAB-C are very
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Figure 3.23: Localisation error of modified forms of CAB.

high and of the order of 1000 ms compared to that of RLA which is of the

order of 1 ms. When all the neighbour beacon nodes are used for position

estimation in the modified version of CAB, points of intersection among the

annular rings of all these nodes are calculated. Then each point of intersection

is tested to satisfy the criteria of falling within the annular rings of all other

neighbour nodes. This results in increased time complexity. Similarly, using

higher number of transmission levels results in a higher number of annular

rings, more points of intersection and increased time complexity. Localisation

times are plotted in Fig. 3.22 using both linear and semilog scales due to large

variance in localisation times of compared algorithms.

Complexity of CAB-B and CAB-C increases as the number of beacon nodes

increases because a sensor node has to calculate a higher number of points of

intersection and then determine valid points among them. To calculate number

of points of intersection, let there be k beacon nodes. It takes 2 beacon nodes

for circles around them to intersect. Combination of k beacon nodes taken 2

at a time is k!
(k−2)!2! = k(k−1)

2
. Each combination of 2 beacon nodes contributes
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2 annular rings and hence 4 circles and 8 points of intersections. Therefore,

maximum number of points of intersection contributed by k beacon nodes

is 8k(k−1)
2

= 4k(k − 1) resulting in time complexity of the order of O(k2).

Each of these points of intersection is tested against k annular rings around k

beacon nodes. Hence, total number of tests performed by an unknown node

to determine valid points is 4k2(k − 1) giving a time complexity of O(k3).

All modified versions of CAB are unable to localise a large number of unknown

nodes, as shown in Fig. 3.24. This can be attributed to incorrect estimation

of annular ring around a beacon node by an unknown node. Due to irregular

radio, a sensor node may incorrectly determine itself lying in a different annular

ring than the one it actually lies in around a beacon node. This annular ring

is included in the calculation of points of intersection and also in the test

to isolate valid points. As required by CAB, a point of intersection must fall

within the annular rings of all participating neighbour beacon nodes for it to be

a valid point of intersection. Due to a single incorrect annular ring, no point

of intersection can satisfy this condition resulting in failure to isolate valid
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Figure 3.24: Localisation efficiency of modified forms of CAB.
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points. Therefore, node is unable to localise and remains unsettled. There are

two factors which can contribute to this. Firstly, when all the neighbour beacon

nodes are included in position estimation, probability for an unknown node to

include an incorrect annular ring is higher. This probability further increases

as the number of beacon nodes is increased. Secondly, the higher the number

of transmission levels, the smaller the width of annular ring and the higher

the chance for an unknown node to estimate itself lying in a wrong annular

ring. It is for this reason that CAB-C, which includes both these factors i.e.

all neighbour beacon nodes along with a high number of transmission levels,

has very low localisation efficiency. However, CAB-A and CAB-B, which use

only either one of these factors, have better localisation efficiency. Ripple

localisation algorithm, however, has the advantage that it absorbs an incorrect

annular ring during position estimation. When using Centroid or RLA, an

incorrect annular ring results in a wrong range estimate, and hence it merely

contributes to localisation error. However, it does not block a node from

localisation.

In this section, performance of proposed ripple localisation algorithm has been

evaluated and compared with Centroid and CAB. The results show that overall

performance of the ripple localisation algorithm is better than the compared

algorithms.

3.7 Summary

We have presented an intelligent, energy efficient and distributed localisation

algorithm for industrial wireless sensor networks. The algorithm is able to
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estimate position without using any additional piece of hardware thereby

saving cost, size and energy. The algorithm saves 66.67% energy in

transmission of beacon signals compared to those algorithms that transmit

beacons at fixed maximum power level. Approximately 92% of this energy

efficiency can be achieved using 10 discrete power levels. The algorithm

does not require unknown nodes to expend any transmission energy and they

can localise passively in an intelligent manner using only processing energy

by merely listening to the beacon messages. It achieves 100% localisation

efficiency with a high degree of location intelligence within a short localisation

time by using only 5% beacon nodes. It also provides control over localisation

granularity. Performance of the algorithm is evaluated using simulation and the

results show that the algorithm provides good localisation accuracy. We have

also proposed and used three new novel metrics for the performance testing

and evaluation of localisation algorithms.
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Chapter 4

Analytical Model of Localisation

Error

Trilateration and multilateration are important localisation techniques used

in a diverse range of networks and applications. In this chapter, we use

optimisation with calculus and least squares approximation to show that the

overdetermined system of equations yielded by multilateration can be reduced

to a set of two equations which can be solved simultaneously using conventional

methods, such as Cramer’s rule. Based upon this result, we also develop and

present a novel and unique analytical model for the localisation error resulting

from trilateration due to inaccurate range estimates. Using the analytical

model, we analyse trilateration errors for localisation applications in short

range wireless networks, such as wireless sensor networks and internet of things

where the distance estimation errors are comparable to the actual distances.

We also determine the minimum and maximum values of localisation error

in these networks. In addition, we derive a number of important and useful
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results which can be used for the development and analysis of localisation

algorithms and applications. For example, we show that the localisation error

due to the positive distance estimation errors equal to the actual distances is

3 times the localisation error resulting from the same magnitude of negative

distance estimation errors. The analytical model and results are verified using

simulation.

4.1 Introduction

Location information is important in many applications of science and

engineering. For example, in wireless sensor networks, data are ascribed to

the location from where it is gathered. For this to be possible, a randomly

deployed sensor node should be able to estimate its position [70–72] using a

localisation algorithm. These sensor nodes may be deployed in the outdoor

[71], indoor [73–76] or underwater [77] environment. Spectrum sensing is

an important technique and enabling factor for dynamic spectrum sharing

in future 5G communications. Location estimation of the primary user results

in reliable spectrum sensing and cognitive enhancement [78]. In context aware

and pervasive computing, context or location information of a user is used for

the adaption and provision of computing services without explicit intervention

of the user [79,80]. Many large shopping malls track the position information

of their visitors to analyse buying patterns, to determine frequency of visits

of customers in different areas of the store and other analytics. WiFi signals

broadcast by a cell phone carried by a customer are received by the access

points and routers and then processed to estimate the real time location of

its user [81, 82]. In space and moon exploration missions, an unmanned rover
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should be able to estimate its position so that it can continue towards its

desired destination [83].

Multilateration is an important technique to estimate position of an object

given its distances to known positions. It is widely used in location finding

applications. For estimation of position in two dimensions, distances to three

or more known locations are required. In the case of three dimensional position

estimation, distance estimates to four or more locations with known position

coordinates are required. When the distance estimates to only three known

positions in two dimensions or four known positions in three dimensions are

used, then it is termed as trilateration. Global navigation satellite systems

(GNSS), such as GPS, GLONASS, Galileo and BeiDou use distance estimates

to four or more satellites to estimate position in three dimensions using

multilateration [84]. In cellular networks, a cell phone can estimate its position

using multilateration if it has distance estimates to three or more base stations

[85]. Similarly, multiple base stations can collaborate and use multilateration

to estimate the position of a cell phone [86]. In robotics, a moving robot

should know its current position for it to be able to decide its next move.

In many robotics applications, multilateration is used for this purpose [87].

In navigation applications, an object determines its position using distance

estimates from three known locations so that it is able to keep itself on track

towards its destination [88, 89]. For example, three or more synchronised

transmitters can be used to transmit beacon signals. The object can then

estimate its distances from the transmitters using time difference of arrival

(TDOA) information of these beacon signals. Position is then determined using

multilateration [84,90]. In surveillance and tracking applications, the position

information of an unknown object under observation is determined [91]. If the
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object is moving, real time position information is estimated to track the object

[92]. Three or more transceivers estimate their distances from the unknown

object to estimate its position. For example, three or more synchronised

receivers can be used to receive the signals transmitted or reflected by an

unknown object. Using the TDOA, the receivers can then estimate their

distances and position of the unknown object [93]. Multilateration is also

used in aircraft surface surveillance and detection equipment [94, 95]. Traffic

controllers use this system to track movement of aircrafts and vehicles on

the airport surface. This allows them to detect any incursions and potential

conflicts on and around runways and taxiways. This is specially helpful in

low visibility operations. In a technique, known as wide area multilateration

(WAM), a sensor network is deployed around the airport, mountain ranges

or other areas where location of an aircraft is to be identified [96]. The

sensors query the aircraft transponders and estimate their distances from the

aircraft by analysing the response. Multilateration is then used to estimate

position of the aircraft. WAM is useful in particular in areas where there is no

radar coverage. Furthermore, WAM is much cheaper than systems comprising

of radars which are much more expensive. Another use of multilateration

is to localise artillery fire using sound ranging [97]. Multilateration is also

used to estimate the epicentre of an earthquake [98]. Seismostations located

around the world record any seismic activity on seismograms. Energy released

during an earthquake travels in the form of different types of waves. The

seismograms record the time difference of arrival of longitudinal primary waves

(P-waves) and transverse secondary waves (S-waves). P-waves travel 1.7 times

faster than the S-waves. Knowing their speeds and the time difference of

arrival of both types of waves, distance to the epicentre of an earthquake
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can be estimated. With the help of seismograms from three or more seismic

stations, the distances of these seismic stations from the epicentre can be

estimated. Next multilateration is used to estimate position of the epicentre of

an earthquake. Multilateration has also been proposed for the early prediction

of time and location of earthquakes, precision surveying, plate tectonics and

orbital applications [99, 100]. The system uses pulsed laser and airborne

retroreflectors to determine range among ground stations with a precision of

1 cm at regular intervals. An analysis of change in the range along with

multilateration is used for the prediction of time and location of earthquakes.

There are many historical navigation systems that use multilateration. These

include Gee, deployed by the British royal air force, LORAN (long range

navigation) by US navy, Decca navigation system by the British royal navy,

Omega built and operated by US in partnership with six other nations,

CHAYKA and Alpha by the former Soviet Union [101]. All these navigation

systems deploy chains of ground stations comprising of master and secondary

stations which transmit signals at regular intervals. Any object in air, sea

or land carrying a receiving station can estimate its position using hyperbolic

navigation. In these historical radio navigation systems, the multilateration

problem is solved and the position is fixed using hyperbolic curves. Hence, in

radio navigation, the terms multilateration and hyperbolic navigation are used

synonymously. To further explain, let there be a master station at (x1, y1)

with two secondary stations at (x2, y2) and (x3, y3). Let the distances of

these stations from a receiving station at (x, y) be represented by r1, r2, and

r3 respectively. We can now write equations of circles around these ground
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stations as under:

(x− x1)2 + (y − y1)2 = r21

(x− x2)2 + (y − y2)2 = r22

(x− x3)2 + (y − y3)2 = r23

(4.1)

The distances of these stations from the receiver are given by

r1 =
√

(x− x1)2 + (y − y1)2

r2 =
√

(x− x2)2 + (y − y2)2

r3 =
√

(x− x3)2 + (y − y3)2

(4.2)

The receiving station listens to the signals transmitted by the master and

secondary stations and records the time difference in the receiving of signals

from each pair of master and secondary station. From the time difference,

the difference in distance of these stations from the receiver can be calculated

using d = v × t. From (4.2), the difference in the distance of the receiver from

the first pair of master and secondary stations is given by

r12 = r1 − r2

r12 =
√

(x− x1)2 + (y − y1)2 −
√

(x− x2)2 + (y − y2)2
(4.3)

Similarly, the difference in distance of the receiver from the second pair of

master and secondary stations is given by

r13 = r1 − r3

r13 =
√

(x− x1)2 + (y − y1)2 −
√

(x− x3)2 + (y − y3)2
(4.4)

In (4.3) and (4.4), the distances r12 and r13 are known and positions of ground

113



4.1. Introduction

stations (x1, y1), (x2, y2) and (x3, y3) are also known. Hence, (4.3) and (4.4) can

be solved for the position (x, y) of the receiver. At the time of development

of these navigation systems, the digital processing and computing resources

were not easily available. Therefore, curves from (4.3) and (4.4) for different

possible values of time differences or distance differences for chains of master

and secondary stations were plotted in the form of charts. Using the TDOA

of signals received from different pairs of master and secondary stations, the

position of the receiver was fixed at the intersection of hyperbolic curves

corresponding to the time delays using the charts. The shape of the curves is

in the form of hyperbola and hence this is termed as hyperbolic navigation.

After the development of global navigation satellite systems (GNSS), these

historical navigation systems are being phased out.

As is evident from the previous discussion, trilateration and multilateration are

used in a wide variety of systems ranging from GNSS where distance estimates

are in thousands of kilometres to wireless sensor networks where the distances

are in the range of a few meters. Different applications employ different

techniques for estimation of distance between the unknown object and the

known position [102]. For example, in many navigation systems, synchronised

clocks and time difference of arrival (TDOA) are used to estimate distances.

Examples of such systems include GNSS, such as GPS, GLONASS, Galileo and

BeiDou. In such systems, the distances between the unknown object, such as

GPS receiver, and the known positions i.e. the GPS satellites are in thousands

of kilometres. However, due to tightly synchronised atomic clocks, the range

estimation errors are very small and are only a minor fraction of the actual

distances. In short range wireless networks, such as wireless sensor networks

(WSN), internet of things (IoT) and wireless personal area networks (WPAN),
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the distances are in the range of a few meters. Due to energy, size and cost

limitations, additional synchronisation hardware may not be used for range

estimation in these networks. Even if used, only inexpensive clocks may be

used which do not give accurate range estimates. Therefore, alternate means

such as received signal strength (RSS) are used to estimate range in short range

wireless networks [103]. While the range estimates from the RSS can be used

for localisation, these are not precise. The range estimation errors resulting

from distance estimation using RSS are comparable to the actual distances

between the sensor nodes [103, 104]. Consequently, range estimation errors in

such systems have pronounced effect on the estimated position and may result

in large localisation errors. Therefore, exploration of localisation error as a

function of range estimation errors in wireless sensor networks constitutes an

interesting research investigation.

This and next chapter of the thesis make several contributions. First, we show

that the overdetermined system of equations resulting from multilateration can

be reduced to a set of two equations which can be solved simultaneously using

conventional techniques, such as Cramer’s rule. Second, using the result, we

give an accurate analytical model of localisation error as a function of distance

estimation errors, when position is estimated using trilateration. Given the

actual distances from the beacon nodes and the distance estimation errors, our

model is able to accurately calculate the localisation error, without needing

to first estimate position of the unknown node. The model establishes the

relationship between localisation error, the distance estimation errors and

the geometry formed by the positions of beacon nodes. Third, using the

analytical model, we analyse localisation error and determine its extreme values

for systems where the range estimation errors are comparable to the actual
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distances. Fourth, we derive more than thirty important and useful results

which can be used in the design, development and analysis of localisation

solutions. Summary of these results is given in Section 5.1.6. Fifth, we verify

the results using simulation. To the best of our knowledge, this is the first

attempt to develop an accurate analytical model for the localisation error.

This is also the first attempt to determine the minimum and maximum values

of localisation error and its various components.

The solution to multilateration using Cramer’s rule developed in Section 4.3

and the analytical model of the localisation error developed in Section 4.4

are applicable to all applications wherever trilateration and multilateration

are used irrespective of the size of the distance estimation errors. Error

analysis carried out in Section 5.1 and numerical results in Section 5.2 are

in the context of wireless sensor networks. However, the error analysis and

the results are applicable to trilateration systems in any network where the

distance estimation errors are comparable to the actual distances. Examples

of such networks are short range wireless networks, such as wireless sensor

networks (WSN), internet of things (IoT) and wireless personal area networks

(WPAN).

4.2 Related Work

Major work to investigate errors due to trilateration and multilateration has

either been done in the context of historical hyperbolic navigation systems

or GNSS. The problem of localisation error in wireless sensor networks has

also been investigated. However, it is not in the context of trilateration and
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multilateration. In the following, we give a summary of the related work in

both these areas.

Different types of errors in a hyperbolic multilateration system are described

in [105]. The errors are classified as systematic, correlated and random.

Systematic errors are attributed to delays caused by deviation of wave

propagation from the ideal propagation and imperfect antenna position

measurement. Correlated errors are errors due to the multipath signal

propagation and the actual troposphere conditions along the path of signal

propagation. The random error results from the additive noise at receiver

and quantization of TDOA measurements. The effect of noisy distances on

the estimated position using two different localisation techniques is presented

in [106]. The author in [107] shows that if the error in estimated distances

from the direction finding (DF) ground stations in a hyperbolic navigation

system follows a normal error distribution, then the localisation error in the

estimated position follows a normal elliptical error distribution. The author

also proposes that the reciprocal of rms localisation error should be used as

a measure for the reliability of estimated position. In [108], the lengths and

direction cosines of the multilateration error ellipsoids semiaxes are calculated

in terms of rms error and direction cosines of estimated distances. The lengths

and directions of ellipsoid axes give a measure of the GDOP of the estimated

position. Characteristics of GPS positioning errors are investigated in [109]

and an analytical formula for the covariance of the positioning error is derived.

It is observed in [84] that relative geometry of positions of the unknown object

and the satellites plays an important role in the accuracy of estimated position.

The unknown object and the GNSS satellites may be positioned such that the
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area of the intersected region from multilateration is relatively small or their

relative positions may be such that the area of the intersected region is quite

large. Given the same error in the estimated distances, the localisation error

will be higher in the latter case. In navigation, the effect of geometry due to

relative positions of beacon nodes and the unknown object is quantified using

dilution of precision (DOP). DOP is further categorised as horizontal dilution

of precision (HDOP), vertical dilution of precision (VDOP), position dilution of

precision (PDOP) and time dilution of precision (TDOP). The lesser the DOP,

the better it is. DOP values less than 5 are considered good. In general, when

the beacon nodes are close together, the resulting geometry is not optimum for

position estimation and the DOP is high. On the other hand, when the beacon

nodes are distributed all around the unknown node and are at a distance from

each other, the geometry is good and the DOP is low.

In the case of wireless sensor networks, a Cramer-Rao lower bound of

the expected localisation error for a single sensor node is derived in [110]

assuming that the sensor nodes measure RSS or TOA. The fundamental

limits of localisation in indoor environment using signal strength of IEEE

802.11 wireless local area networks is explained in [111]. The authors show

that a median localisation error of 10 feet can be expected over a range of

localisation algorithms. Authors also suggest that simple and computationally

inexpensive localisation algorithms are preferable as complexity and additional

computation do not result in significantly improved performance. In [112], a

number of simulation experiments are performed and based upon the results,

an empirical formula for localisation error for a centralised wireless sensor

network is presented. The formula is a function of average distance between

beacon nodes, the number of distance estimations performed by the beacon
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nodes and certain network parameters. A lower bound on the localisation error

for a network of sensor nodes deployed randomly according to Poisson point

process is derived in [113]. The authors show that the lower bound is a function

of the distance measurements between sensor and beacon nodes and density

of beacon nodes. Using a log-normal shadow-fading radio model for wireless

sensor networks, the authors of [114] derive an expression for the distribution of

lower bound on localisation error for any range free localisation algorithm. The

authors of [115,116] investigate the possibility of upper bounds of localisation

error for range based algorithms. Assuming that positive distance estimation

errors are always present, a highly probable upper bound on localisation error

is proposed. The upper bounds are formulated as nonconvex optimisation

problem and then a relaxation technique is used to obtain convex problems

which are easier to solve.

4.3 Multilateration Solution

In this section, we use optimisation with calculus and least squares

approximation to arrive at a simplified solution of multilateration. We also

provide an algebraic method to arrive at the same result.

To explain position estimation using multilateration, consider an unknown

node with actual position coordinates (xa, ya) having k neighbour beacon nodes

with position coordinates (x1, y1), (x2, y2), ..., (xk, yk). If estimated position of

the unknown node is (x, y), then a set of following equations of circles around

beacon nodes can be obtained by using the position coordinates of beacon

119



4.3. Multilateration Solution

nodes as centres and range estimates r1, r2, ..., rk as radii:



(x− x1)2 + (y − y1)2

(x− x2)2 + (y − y2)2
...

(x− xk)2 + (y − yk)2


=



r21

r22
...

r2k


(4.5)

Expanding square terms on the left side and rearranging:



x2 + y2 − 2x1x− 2y1y

x2 + y2 − 2x2x− 2y2y

...

x2 + y2 − 2xkx− 2yky


=



r21 − x21 − y21

r22 − x22 − y22
...

r2k − x2k − y2k


(4.6)

Subtracting last row from each of the rows above it:



2(xk − x1)x+ 2(yk − y1)y

2(xk − x2)x+ 2(yk − y2)y
...

2(xk − xk−1)x+ 2(yk − yk−1)y


=



r21 − r2k + x2k − x21 + y2k − y21

r22 − r2k + x2k − x22 + y2k − y22
...

r2k−1 − r2k + x2k − x2k−1 + y2k − y2k−1



(4.7)

Separating the unknowns (x, y), this can be rewritten in matrix form as below:
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4.3. Multilateration Solution



(xk − x1) (yk − y1)

(xk − x2) (yk − y2)
...

...

(xk − xk−1) (yk − yk−1)



x
y



=
1

2



r21 − r2k + x2k − x21 + y2k − y21

r22 − r2k + x2k − x22 + y2k − y22
...

r2k−1 − r2k + x2k − x2k−1 + y2k − y2k−1


(4.8)

Using matrix notation, this can be written as:

Az = R (4.9)

where z =
[
x y

]T
and

A =



(xk − x1) (yk − y1)

(xk − x2) (yk − y2)
...

...

(xk − xk−1) (yk − yk−1)


(4.10)

R =
1

2



r21 − r2k + x2k − x21 + y2k − y21

r22 − r2k + x2k − x22 + y2k − y22
...

r2k−1 − r2k + x2k − x2k−1 + y2k − y2k−1


(4.11)

To further investigate a solution, let us consider (4.5) which can be formulated
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4.3. Multilateration Solution

as least squares approximation problem as under:

ẑ = argmin
z

k∑
i=1

ei(z)2 (4.12)

where k is number of neighbour beacon nodes, z =
[
x y

]T
and is a vector of

estimated and best-fit values of position coordinates, and ei(z) is a residual

function given by

ei(z) = r2i − {(x− xi)2 + (y − yi)2} where i = 1, 2, ..., k (4.13)

The problem in (4.12) relates to nonlinear least squares and is categorised as

unconstrained nonlinear optimisation problem. We reduce the problem from

nonlinear least squares in (4.5) to linear least squares in (4.8) by subtracting

the last row from the rows above. Based upon (4.8), the residual function

becomes

ei(z) = bi − {ai1x+ ai2y} where i = 1, 2, ..., k − 1 (4.14)

where

ai1 = xk − xi (4.15)

ai2 = yk − yi (4.16)

bi =
1

2
[r2i − r2k + x2k − x2i + y2k − y2i ] where i = 1, 2, ..., k − 1 (4.17)

Sum of squares of the residuals S(x, y) is given by

S =
k−1∑
i=1

e2i =
k−1∑
i=1

[bi − (ai1x+ ai2y)]2 (4.18)

Our objective is to minimise this function. To determine the values of x and
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4.3. Multilateration Solution

y for which S is minimum, we evaluate

∂S

∂x
= 0 (4.19)

∂S

∂y
= 0 (4.20)

Differentiating (4.18) with respect to x and setting the result equal to 0, we

get

∂S

∂x
= 2

k−1∑
i=1

[bi − (ai1x+ ai2y)](−ai1) = 0 (4.21)

k−1∑
i=1

(ai1x+ ai2y)ai1 =
k−1∑
i=1

ai1bi (4.22)

Differentiating (4.18) with respect to y and setting the result equal to 0, we

get

∂S

∂y
= 2

k−1∑
i=1

[bi − (ai1x+ ai2y)](−ai2) = 0 (4.23)

k−1∑
i=1

(ai1x+ ai2y)(ai2) =
k−1∑
i=1

ai2bi (4.24)

Equations (4.22) and (4.24) can be combined in matrix form to arrive at the

normal equation as under

ATAz = ATR (4.25)

We can arrive at the same result using algebraic method as well. Having

subtracted last row from the rows above it, the order of matrix A in (4.8)-(4.10)

is (k− 1)× 2 if an unknown node has k neighbour beacon nodes. As matrix

A is not necessarily square, we cannot use

z = A−1R (4.26)
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4.3. Multilateration Solution

to determine z. Therefore, multiplying both sides of (4.9) by AT, we get

ATAz = ATR (4.27)

which is the same result as found earlier in (4.25) using calculus.

It is to be noted that the matrix A has an order of (k− 1)× 2 if the unknown

node has k neighbour beacon nodes. It has k − 1 rows as the last row is

subtracted from the rows above it. It has 2 columns due to position coordinates

x and y. Consequently, the order of matrix AT is 2 × (k − 1) i.e. it always

has 2 rows. Hence, we can combine (4.22) and (4.24) in matrix form in (4.25).

Moreover, order of the matrix ATA is 2× 2. Hence matrices ATA and z are

conformable for multiplication. Similarly, the matrix ATR has an order of

2× 1. Therefore, (4.25) can also be rewritten as below

Hz = T (4.28)

where H = ATA is a 2× 2 matrix, z is a 2× 1 column matrix and T = ATR

is also a 2× 1 column matrix. Hence (4.28) can be solved using Cramer’s rule.

It is to be noted that (4.25) or (4.27) can also be rewritten as below to give

another closed-form and unique solution to (4.9):

z = (ATA)−1ATR (4.29)

z = A+R (4.30)

where

A+ = (ATA)−1AT (4.31)
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is Moore-Penrose pseudoinverse of A. Solution to (4.5) using Cramer’s rule

on its transformed form in (4.28) or using pseudoinverse in (4.30) or any other

least squares approximation such as Newton’s method yields the same values

of z =
[
x y

]T
. We choose to localise an unknown node only when it has three

or more neighbour beacon nodes. Therefore, k − 1 ≥ 2 i.e. number of rows

in matrix A is always equal to or greater than the number of columns. The

number of columns in the matrix is always 2 and is less than or equal to the

number of rows. As the matrix elements are derived from the independent

and random positions of beacon nodes, the rows and columns are linearly

independent and the matrix A is full rank. As a result, the matrix A is

nonsingular and invertible and the achieved solution in (4.28) or (4.30) is

unique. This gives us an exact solution if it exists and an approximate solution

otherwise. The only exception to this is the case when all the neighbour beacon

nodes of an unknown node are collinear. In this case, the matrix A is singular

and the solution does not exist. However, the possibility of all neighbour

beacon nodes being collinear is remote if these are deployed randomly.

4.4 Analytical Model

Let an unknown node have k neighbour beacon nodes. Let the estimated

distances between the unknown node and the neighbour beacon nodes be

r1, r2, ..., rk and the actual distances be ra1, ra2, ..., rak. If the errors in the
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4.4. Analytical Model

estimated distances are e1, e2, ..., ek, then



r1

r2
...

rk


=



ra1 + e1

ra2 + e2
...

rak + ek


(4.32)

Hence, (4.8) can be rewritten as



(xk − x1) (yk − y1)

(xk − x2) (yk − y2)
...

...

(xk − xk−1) (yk − yk−1)



x
y



=
1

2



(ra1 + e1)
2 − (rak + ek)

2 +x2k − x21

+y2k − y21

(ra2 + e2)
2 − (rak + ek)

2 +x2k − x22

+y2k − y22
...

(rak−1 + eak−1)
2 − (rak + ek)

2 +x2k − x2k−1

+y2k − y2k−1



(4.33)

Let us now consider a simple case where an unknown node has three neighbour
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beacon nodes so that k = 3 and for this specific case (4.33) becomes:

(x3 − x1) (y3 − y1)

(x3 − x2) (y3 − y2)


x
y



=
1

2

(ra1 + e1)
2 − (ra3 + e3)

2 + x23 − x21 + y23 − y21

(ra2 + e2)
2 − (ra3 + e3)

2 + x23 − x22 + y23 − y22

 (4.34)

As explained in the section 4.3, this can be solved using Cramer’s rule. Let

∆ =

∣∣∣∣∣∣∣∣
(x3 − x1) (y3 − y1)

(x3 − x2) (y3 − y2)

∣∣∣∣∣∣∣∣
= (x3 − x1)(y3 − y2)− (x3 − x2)(y3 − y1)

= x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)

= y1(x3 − x2) + y2(x1 − x3) + y3(x2 − x1)

(4.35)
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∆1 =
1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ra1 + e1)
2 − (ra3 + e3)

2

+x23 − x21 + y23 − y21 (y3 − y1)

(ra2 + e2)
2 − (ra3 + e3)

2

+x23 − x22 + y23 − y22 (y3 − y2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1

2
(y3 − y2)[r2a1 + 2ra1e1 + e21︸ ︷︷ ︸−r2a3−2ra3e3 − e23︸ ︷︷ ︸

+ x23 − x21 + y23 − y21]

− 1

2
(y3 − y1)[r2a2 + 2ra2e2 + e22︸ ︷︷ ︸−r2a3−2ra3e3 − e23︸ ︷︷ ︸

+ x23 − x22 + y23 − y22]

=
1

2
(y3 − y2)[r2a1 − r2a3 + x23 − x21 + y23 − y21]

− 1

2
(y3 − y1)[r2a2 − r2a3 + x23 − x22 + y23 − y22]

+
1

2
(y3 − y2)[2ra1e1 + e21 − 2ra3e3 − e23]

− 1

2
(y3 − y1)[2ra2e2 + e22 − 2ra3e3 − e23]

(4.36)
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Similarly

∆2 =
1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x3 − x1 (ra1 + e1)
2 − (ra3 + e3)

2

+x23 − x21 + y23 − y21

x3 − x2 (ra2 + e2)
2 − (ra3 + e3)

2

+x23 − x22 + y23 − y22

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1

2
(x3 − x1)[r2a2 + 2ra2e2 + e22︸ ︷︷ ︸−r2a3−2ra3e3 − e23︸ ︷︷ ︸

+ x23 − x22 + y23 − y22]

− 1

2
(x3 − x2)[r2a1 + 2ra1e1 + e21︸ ︷︷ ︸−r2a3−2ra3e3 − e23︸ ︷︷ ︸

+ x23 − x21 + y23 − y21]

=
1

2
(x3 − x1)[r2a2 − r2a3 + x23 − x22 + y23 − y22]

− 1

2
(x3 − x2)[r2a1 − r2a3 + x23 − x21 + y23 − y21]

+
1

2
(x3 − x1)[2ra2e2 + e22 − 2ra3e3 − e23]

− 1

2
(x3 − x2)[2ra1e1 + e21 − 2ra3e3 − e23]

(4.37)

From (4.35) and (4.36), the estimated value of x coordinate is given by

x =
∆1

∆
(4.38)

x =
1

2∆
(y3 − y2)[r2a1 − r2a3 + x23 − x21 + y23 − y21]

− 1

2∆
(y3 − y1)[r2a2 − r2a3 + x23 − x22 + y23 − y22]

+
1

2∆
(y3 − y2)[2ra1e1 + e21 − 2ra3e3 − e23]

− 1

2∆
(y3 − y1)[2ra2e2 + e22 − 2ra3e3 − e23]

x = xa + Ex

(4.39)
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so that

Ex = x− xa (4.40)

where xa is the x-coordinate of the actual position of the unknown node and

is given by

xa =
1

2∆
(y3 − y2)[r2a1 − r2a3 + x23 − x21 + y23 − y21]

− 1

2∆
(y3 − y1)[r2a2 − r2a3 + x23 − x22 + y23 − y22]

(4.41)

xa = k1C1 + k2C2 (4.42)

and Ex is the x component of the localisation error and is given by

Ex =
1

2∆
(y3 − y2)[2ra1e1 + e21 − 2ra3e3 − e23]

− 1

2∆
(y3 − y1)[2ra2e2 + e22 − 2ra3e3 − e23]

(4.43)

Ex = k1E1 + k2E2 (4.44)

where

k1 =
1

2∆
(y3 − y2) (4.45)

k2 = − 1

2∆
(y3 − y1) (4.46)

C1 = r2a1 − r2a3 + x23 − x21 + y23 − y21 (4.47)

C2 = r2a2 − r2a3 + x23 − x22 + y23 − y22 (4.48)

E1 = 2ra1e1 + e21 − 2ra3e3 − e23 (4.49)

E2 = 2ra2e2 + e22 − 2ra3e3 − e23 (4.50)
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Similarly, estimated value of the y coordinate is given by

y =
∆2

∆
(4.51)

y =
1

2∆
(x3 − x1)[r2a2 − r2a3 + x23 − x22 + y23 − y22]

− 1

2∆
(x3 − x2)[r2a1 − r2a3 + x23 − x21 + y23 − y21]

+
1

2∆
(x3 − x1)[2ra2e2 + e22 − 2ra3e3 − e23]

− 1

2∆
(x3 − x2)[2ra1e1 + e21 − 2ra3e3 − e23]

y = ya + Ey

(4.52)

so that

Ey = y − ya (4.53)

where ya is the y-coordinate of the actual position of the unknown node and

is given by

ya =
1

2∆
(x3 − x1)[r2a2 − r2a3 + x23 − x22 + y23 − y22]

− 1

2∆
(x3 − x2)[r2a1 − r2a3 + x23 − x21 + y23 − y21]

(4.54)

ya = k3C1 + k4C2 (4.55)

and Ey is the y component of the localisation error and is given by

Ey = − 1

2∆
(x3 − x2)[2ra1e1 + e21 − 2ra3e3 − e23]

+
1

2∆
(x3 − x1)[2ra2e2 + e22 − 2ra3e3 − e23]

(4.56)

Ey = k3E1 + k4E2 (4.57)
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where

k3 = − 1

2∆
(x3 − x2) (4.58)

k4 =
1

2∆
(x3 − x1) (4.59)

In summary, Ex and Ey can be written as

Ex = k1[2ra1e1 + e21 − 2ra3e3 − e23]

+ k2[2ra2e2 + e22 − 2ra3e3 − e23]
(4.60)

Ey = k3[2ra1e1 + e21 − 2ra3e3 − e23]

+ k4[2ra2e2 + e22 − 2ra3e3 − e23]
(4.61)

where k1, k2, k3 and k4 are constants whose values depend upon the known

fixed position coordinates of beacon nodes. E1 and E2 are functions of distance

estimation errors e1, e2 and e3. From (4.44) and (4.57), we can infer that x and

y components of localisation error differ only due to the constants k1, k2, k3

and k4. As these constants depend upon the relative positions of beacon nodes,

the difference in Ex and Ey components of localisation error depends upon the

geometry of placement of the beacon nodes. The distance estimation error,

reflected in E1 and E2, does not contribute to this difference. From (4.44) and

(4.57), we also observe that Ex = Ey if k1 = k3 and k2 = k4. However, under

these conditions y3 − y2 = x2 − x3 and y1 − y3 = x3 − x1 so that the beacon

nodes are collinear and position estimation using either (4.25), (4.28) or (4.30)

may not be possible as the resultant matrix A is singular.

It is to be noted that in the estimated position coordinates x and y, the

errors e1, e2 and e3 appear only in the numerators ∆1 and ∆2. There are

no error terms in the denominator ∆. Further, if the error terms Ex and
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Ey are eliminated, then the localisation error will be reduced to zero and the

position estimate will be accurate. Alternatively, the smaller are the error

terms, the higher is the localisation accuracy.

It is further to be noted that the distance estimation error ei can be either

positive or negative. As ri = rai + ei, ei is positive when ri ≥ rai i.e. the

estimated distance is greater than the actual distance. Similarly, ei is negative

when ri ≤ rai i.e. the estimated distance is smaller than the actual distance.

However, the localisation error el is only an absolute value. It has a magnitude

but no sign. It is defined as the distance between the actual (xa, ya) and

estimated (x, y) positions and is given by

el =
√

(x− xa)2 + (y − ya)2 (4.62)

Substituting (4.40) and (4.53) in (4.62)

el =
√
E2
x + E2

y (4.63)

In localisation experiments, we can determine the localisation error using (4.62)

knowing the actual and estimated positions. With (4.63), we can calculate the

localisation error using analytical results in (4.60) and (4.61) knowing actual

distances and distance estimation errors and without knowing the actual and

estimated positions.

As is evident from (4.40) and (4.53), Ex and Ey can be either positive or

negative. The sign gives direction of the x and y components of localisation

error. The direction of the whole localisation error el, which does not have a
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sign, is determined as following:

θl = tan−1
Ey
Ex

(4.64)

Hence, the analytical model completely specifies the error vector in terms of

both magnitude and direction. The magnitude is given by el and the direction

is given by θl.

The analytical model of multilateration localisation error developed in this

section can be applied for localisation error analysis in all applications wherever

multilateration is used for position estimation. This includes GNSS such as

GPS and miscellaneous applications discussed in Section 4.1. However, in

the next chapter, we restrict ourselves to localisation error analysis due to

multilateration in wireless networks such as wireless sensor networks (WSN)

and internet of things (IoT). In these networks, the distance estimation error

is comparable to the actual distance itself.

The proposed analytical model has certain limitations. The model is limited

only to two dimensions. Moreover, we consider multilateration using only three

beacon nodes for the development of our analytical model.

4.5 Summary

We have shown that the overdetermined system of equations resulting from

multilateration can be reduced to a pair of linear equations which can be

solved using conventional techniques, such as Cramer’s rule. We have also

presented an accurate analytical model for multilateration error.
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Chapter 5

Trilateration Error Analysis

We investigate localisation error and each of its two coordinate components,

Ex and Ey, in four different ways. First we investigate individual error terms

within E1 and E2 to investigate their impact on the estimated value of the

coordinate. Second, we look at each of E1 and E2. Third we investigate

the coordinate error term, Ex or Ey and evaluate its impact on the estimated

value of the coordinate. Fourth, we analyse the localisation error el as a whole.

Further, each of these four analyses and investigations comprise of two parts.

In the first part, we determine conditions for which the error can be eliminated

i.e. reduced to zero. In the second part, we investigate and analyse the value

of the distance estimation error ei for which a minimum or maximum in the

error, Ex or Ey occurs.
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5.1 Error Analysis

5.1.1 Case I: Individual error terms

From (4.49) and (4.50), we observe that there are three error terms responsible

for localisation error in the estimated position: 2ra1e1 + e21, 2ra2e2 + e22 and

−2ra3e3 − e23. These error terms are of the form 2raiei + e2i ∀i ∈ {1, 2, 3}. If

these error terms are zero, there will be no error in the estimated position.

Therefore, if

2raiei + e2i = 0 ⇒ ei(2rai + ei) = 0 (5.1)

then either ei = 0, or

2rai + ei = 0 ⇒ ei = −2rai (5.2)

If ei = 0, then there is no error in the estimated distance ri i.e. ri = rai

∀i ∈ {1, 2, 3}. However, if ei = −2rai, then the estimated distance is given

by

ri = rai + ei = rai − 2rai = −rai (5.3)

which is not possible as the estimated distance cannot be negative. This

implies that a localisation error term 2raiei + e2i can be eliminated only if the

corresponding distance estimation error ei is eliminated.

Now, to determine the value of ei at which the error term is minimum, let

ζi = 2raiei + e2i ∀i ∈ {1, 2, 3} (5.4)

136



5.1. Error Analysis

At the minima, dζi
dei

= 0, therefore

dζi
dei

= 2rai + 2ei = 0 (5.5)

ei = −rai (5.6)

ri = rai + ei = 0 (5.7)

Hence, the individual error term has a minimum when the estimated distance

from the beacon node is taken as zero. Now, substituting ei = −rai from (5.6)

in (5.4), the minimum possible value of the error term is given by

ζimin = 2rai(−rai) + (−rai)2 (5.8)

ζimin = −r2ai (5.9)

As rai ≥ 0, ζimin = −r2ai ≤ 0 i.e. the minimum has a negative value. The error

term cannot have a signed value lesser than this minimum. It is also to be

noted that, the valid domain of the function ζi is ei ≥ −rai. To further explain

this consider the relation between estimated distance ri and actual distance rai

and distance estimation error ei i.e. ri = rai + ei. If ei < −rai, then ri < 0 i.e.

the estimated distance becomes negative which is not possible. Therefore, valid

domain of ζi is ei ≥ −rai. This also implies that the distance estimation error

has no theoretical upper bound. However, in practical situations, the positive

distance estimation error beyond a certain limit renders the localisation system

useless. If we assume −rai ≤ ei ≤ rai, then substituting the other extreme

ei = rai in (5.4), the maximum value of the error term ζi is given by

ζimax = 2rai(rai) + r2ai (5.10)
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ζimax = 3r2ai (5.11)

Comparing (5.9) and (5.11), it is observed that

|ζimax| = 3|ζimin| (5.12)

In other words, considering the domain −rai ≤ ei ≤ rai, the maximum value of

the error term occurs at ei = rai and is three times the minimum value which

occurs at ei = −rai.

5.1.2 Case II: E1 and E2

Now let us consider E1 and E2, each of which is a combination of two error

terms. If E1 or E2 is to be eliminated, then from (4.49) and (4.50)

E1 = 2ra1e1 + e21 − 2ra3e3 − e23 = 0 (5.13)

E2 = 2ra2e2 + e22 − 2ra3e3 − e23 = 0 (5.14)

If ra1 = ra3 and e1 = e3, then E1 = 0 so that from (4.44) Ex = k2E2 and from

(4.57) Ey = k4E2. Similarly, if ra2 = ra3 and e2 = e3, then E2 = 0 so that

Ex = k1E1 and Ey = k3E1. However, if ra1 = ra2 and e1 = e2, then E1 = E2.

In other words, if an unknown node has the same error in distance estimates

from two equidistant neighbour beacon nodes, then either E1 = 0 or E2 = 0

or E1 = E2 and the localisation error is solely determined by either E1 or

E2 or E1 = E2. Additionally, if the beacon nodes are positioned such that

|x3 − x2| = |y3 − y2| so that from (4.45) and (4.58) |k1| = |k3| or such that

|x3 − x1| = |y3 − y1| so that from (4.46) and (4.59) |k2| = |k4|, then |Ex| = |Ey|.
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As a result, from (4.63)

el =
√

2Ex =
√

2Ey (5.15)

Now let us determine the values of errors e1, e2 and e3 for which the functions

E1 and E2 are minimum or maximum. From (4.49), we determine the critical

points for E1 as below:

∂E1

∂e1
= 2ra1 + 2e1 = 0 ⇒ e1 = −ra1 (5.16)

∂E1

∂e3
= −2ra3 − 2e3 = 0 ⇒ e3 = −ra3 (5.17)

Hence, the critical point is given by

(e1, e3) = (−ra1,−ra3) (5.18)

which implies that

r1 = ra1 + e1 = 0

r3 = ra3 + e3 = 0

(5.19)

As ra1 ≥ 0 and ra3 ≥ 0, therefore, e1 = −ra1 ≤ 0 and e3 = −ra3 ≤ 0. Hence,

the critical point has negative coordinate values. Now the Hessian matrix of

E1 is given by

HE1 =

 ∂2E1

∂e21

∂2E1

∂e1∂e3

∂2E1

∂e3∂e1
∂2E1

∂e23

 (5.20)

We calculate elements of the Hessian from (4.49) as below:

∂E1

∂e1
= 2ra1 + 2e1 (5.21)
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∂E1

∂e3
= −2ra3 − 2e3 (5.22)

∂2E1

∂e21
= 2 (5.23)

∂2E1

∂e3∂e1
= 0 (5.24)

∂2E1

∂e1∂e3
= 0 (5.25)

∂2E1

∂e23
= −2 (5.26)

Substituting (5.23)-(5.26) in (5.20), we get

HE1 =

2 0

0 −2

 (5.27)

Now

D1 =
∂2E1

∂e21
(5.28)

Therefore, from (5.23), at the critical point

D1(−ra1,−ra3) = 2 (5.29)

Furthermore, D2 = det HE1. Therefore

D2 =

∣∣∣∣∣∣∣∣
2 0

0 −2

∣∣∣∣∣∣∣∣ (5.30)

At the critical point

D2(−ra1,−ra3) = −4 (5.31)

As D2 < 0, E1 has a saddle point at (−ra1,−ra3). We substitute the critical
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point from (5.18) in (4.49) to determine the E1 at the saddle point:

E1sad = r2a3 − r2a1 (5.32)

It is to be noted that E1sad = 0 if ra1 = ra3.

The critical and saddle points for E2 can be calculated similarly. We give

the complete derivation here for the sake of completeness. From (4.50), we

calculate the critical point for E2 as below:

∂E2

∂e2
= 2ra2 + 2e2 = 0 ⇒ e2 = −ra2 (5.33)

∂E2

∂e3
= −2ra3 − 2e3 = 0 ⇒ e3 = −ra3 (5.34)

Hence, the critical point is given by

(e2, e3) = (−ra2,−ra3) (5.35)

which implies that

r2 = ra2 + e2 = 0

r3 = ra3 + e3 = 0

(5.36)

The Hessian matrix of E2 is given by

HE2 =

 ∂2E2

∂e22

∂2E2

∂e2∂e3

∂2E2

∂e3∂e2
∂2E2

∂e23

 (5.37)
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We calculate elements of the Hessian from (4.50) as below:

∂E2

∂e2
= 2ra2 + 2e2 (5.38)

∂E2

∂e3
= −2ra3 − 2e3 (5.39)

∂2E2

∂e22
= 2 (5.40)

∂2E2

∂e3∂e2
= 0 (5.41)

∂2E2

∂e2∂e3
= 0 (5.42)

∂2E2

∂e23
= −2 (5.43)

Substituting (5.40)-(5.43) in (5.37), we get

HE2 =

2 0

0 −2

 (5.44)

To test for minima and maxima, we have

D1 =
∂2E2

∂e22
(5.45)

Using (5.40) in (5.45), we get D1 at the critical point

D1(−ra2,−ra3) = 2 (5.46)

As D2 = det HE2,

D2 =

∣∣∣∣∣∣∣∣
2 0

0 −2

∣∣∣∣∣∣∣∣ (5.47)
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At the critical point for E2, we have

D2(−ra2,−ra3) = −4 (5.48)

It can be seen that D2 < 0. Therefore, E2 has a saddle point at (−ra2,−ra3).

Substituting the critical point from (5.35) in (4.50), we determine E2 at the

saddle point:

E2sad = r2a3 − r2a2 (5.49)

Again, it is to be noted that E2sad = 0 if ra2 = ra3.

Results in (5.32) and (5.49) give the values of E1 and E2 at the critical points

which are one of the possible combinations of extreme values of distance

estimation errors. For each of E1 and E2, there are four such possible

combinations over the domain −rai ≤ ei ≤ rai. We calculate E1 and E2 using

(4.49) and (4.50) for all the possible combinations of extreme values of distance

estimation errors and give the results in Table 5.1 and Table 5.2. As noted

earlier, rai ≥ 0. Therefore, from Table 5.1, we observe that E1 has a minimum

value at (e1, e3) = (−ra1, ra3) and is given by

E1min = −3r2a3 − r2a1 (5.50)

Table 5.1: Possible extreme values of E1.
Estimation

errors
Estimated
distances

Error
component

e1 e3 r1 r3 E1

−ra1 −ra3 0 0 r2a3 − r2a1
−ra1 ra3 0 2ra3 −3r2a3 − r2a1
ra1 −ra3 2ra1 0 r2a3 + 3r2a1
ra1 ra3 2ra1 2ra3 −3(r2a3 − r2a1)
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The maximum value of E1 occurs at (e1, e3) = (ra1,−ra3) and is given by

E1max = r2a3 + 3r2a1 (5.51)

Similarly, from Table 5.2, we note that the minimum and maximum values of

E2 occur at (e2, e3) = (−ra2, ra3) and (e2, e3) = (ra2,−ra3) respectively and are

given by

E2min = −3r2a3 − r2a2 (5.52)

E2max = r2a3 + 3r2a2 (5.53)

From Table 5.1 and Table 5.2, it is also noted that the extreme values of E1 and

E2 occur when the distance estimation errors have opposite signs. For example,

the minimum value of E1 occurs when e1 is negative and e3 is positive, and the

maximum value of E1 occurs when e1 is positive and e3 is negative. The value

of E1 or E2 lies between extreme values when the distance estimation errors

have the same sign. Therefore, we can infer that for a given set of magnitudes of

distance estimation errors, the corresponding localisation error is not extreme

and lies between the extreme values if all the distance estimation errors have

the same sign. From Table 5.1, E1 due to negative distance estimation errors

Table 5.2: Possible extreme values of E2.
Estimation

errors
Estimated
distances

Error
component

e2 e3 r2 r3 E2

−ra2 −ra3 0 0 r2a3 − r2a2
−ra2 ra3 0 2ra3 −3r2a3 − r2a2
ra2 −ra3 2ra2 0 r2a3 + 3r2a2
ra2 ra3 2ra2 2ra3 −3(r2a3 − r2a2)
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(−ra1,−ra3) is given by

E1− = r2a3 − r2a1 (5.54)

E1 due to the positive distance estimation errors (ra1, ra3) is given by

E1+ = −3(r2a3 − r2a1) (5.55)

Dividing (5.55) by (5.54)

E1+ = −3E1− (5.56)

Similarly, from Table 5.2

E2− = r2a3 − r2a2 (5.57)

E2+ = −3(r2a3 − r2a2) (5.58)

E2+ = −3E2− (5.59)

It can be noted from Table 5.1 that E1 = 0 at both negative (−ra1,−ra3) and

positive (ra1, ra3) points of distance estimation errors if ra1 = ra3 i.e. if two of

the neighbour beacon nodes are equidistant. Similarly, from Table 5.2, we can

infer that E2 = 0 at (−ra2,−ra3) and (ra2, ra3) if ra2 = ra3.

5.1.3 Case III: Ex and Ey

We now consider the coordinate errors, Ex and Ey, which is error in the x and

y coordinates. If Ex = 0 or Ey = 0, then from (4.60) and (4.61)

Ex = k1[2ra1e1 + e21 − 2ra3e3 − e23]

+ k2[2ra2e2 + e22 − 2ra3e3 − e23] = 0

(5.60)
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Ey = k3[2ra1e1 + e21 − 2ra3e3 − e23]

+ k4[2ra2e2 + e22 − 2ra3e3 − e23] = 0

(5.61)

From (5.60) and (5.61), it is evident that both Ex = 0 and Ey = 0 if

e1 = e2 = e3 and ra1 = ra2 = ra3 (5.62)

which implies that r1 = r2 = r3. In other words, if the estimated distances have

the same amount of error (e1 = e2 = e3), then the net localisation error in the

estimated position will be zero if the unknown node is at the same distance

(ra1 = ra2 = ra3) from all the neighbour beacon nodes. This also means that

if an unknown node can determine that it is equidistant from three neighbour

beacon nodes, then it can determine its exact position by merely using the

position information of beacon nodes and without estimating distances from

them. For example, the unknown node can use any arbitrary constant value ra

as distance estimate for all the equidistant beacon nodes (ra1 = ra2 = ra3 = ra)

to estimate position. From these results we infer that

(i) a correct position estimation with zero localisation error does not

necessarily imply that the estimated distances used in the position

estimation are accurate,

(ii) accurate position can be obtained even if the estimated distances are not

accurate, and that

(iii) it is possible for an unknown node to determine its exact position without

knowing its distances from the neighbour beacon nodes.
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Let us again consider (4.60) and let

k1 = −k2 (5.63)

so that from (4.45) and (4.46)

1

2∆
(y3 − y2) =

1

2∆
(y3 − y1) (5.64)

y1 = y2 (5.65)

Now substituting (5.63) in (5.60)

+ k1[2ra1e1 + e21 − 2ra3e3 − e23]

− k1[2ra2e2 + e22 − 2ra3e3 − e23] = 0

(5.66)

2ra1e1 + e21 = 2ra2e2 + e22 (5.67)

Therefore, Ex = 0, if

e1 = e2 and ra1 = ra2 (5.68)

so that r1 = r2. We infer that if two of the neighbour beacon nodes are

collinear parallel to the x-axis and are at the same distance from the unknown

node and distance estimates for them have the same amount of error, then

x component of the localisation error is zero irrespective of the position and

distance estimation error of the third beacon node.

To derive a similar result for the y component of the localisation error, let us

consider (4.61) and let

k3 = −k4 (5.69)
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so that from (4.58) and (4.59)

1

2∆
(x3 − x2) =

1

2∆
(x3 − x1) (5.70)

x1 = x2 (5.71)

Substituting (5.69) in (5.61)

+ k3[2ra1e1 + e21 − 2ra3e3 − e23]

− k3[2ra2e2 + e22 − 2ra3e3 − e23] = 0

(5.72)

2ra1e1 + e21 = 2ra2e2 + e22 (5.73)

Therefore, Ey = 0, if

e1 = e2 and ra1 = ra2 (5.74)

so that r1 = r2. These are the same results that we derived earlier for Ex in

(5.67) and (5.68). Hence, we can generalise that if two of the neighbour beacon

nodes are collinear parallel to an axis and are at the same distance from the

unknown node and distance estimates for them have the same amount of error,

then the component of localisation error for that axis is zero irrespective of the

position and distance estimation error of the third beacon node.

5.1.3.1 Extrema for Ex

Let us now determine the minima and maxima for Ex and Ey. At the extrema

for Ex
∂Ex
∂e1

= 0,
∂Ex
∂e2

= 0 and
∂Ex
∂e3

= 0 (5.75)
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From (4.60)

∂Ex
∂e1

= k1[2ra1 + 2e1] = 0⇒ e1 = −ra1 (5.76)

∂Ex
∂e2

= k2[2ra2 + 2e2] = 0⇒ e2 = −ra2 (5.77)

∂Ex
∂e3

= k1[−2ra3 − 2e3] + k2[−2ra3 − 2e3] = 0

ra3 + e3 = −k2
k1

(ra3 + e3)

e3 +
k2
k1
e3 = −ra3 −

k2
k1
ra3

e3(1 +
k2
k1

) = −ra3(1 +
k2
k1

)

(5.78)

e3 = −ra3 (5.79)

Hence, Ex has a critical point at

(e1, e2, e3) = (−ra1,−ra2,−ra3) (5.80)

so that

ri = rai + ei = 0 ∀i ∈ {1, 2, 3} (5.81)

Note that the error given in (5.80) and (5.81) is the maximum possible negative

value of error in the estimated distances. If the negative value of distance

estimation error becomes greater than this, then the estimated distances

become negative i.e. if ei < −rai, then ri = rai + ei < 0, which is not possible.

Now the Hessian matrix of Ex is given by

HEx =


∂2Ex

∂e21

∂2Ex

∂e1∂e2
∂2Ex

∂e1∂e3

∂2Ex

∂e2∂e1
∂2Ex

∂e22

∂2Ex

∂e2∂e3

∂2Ex

∂e3∂e1
∂2Ex

∂e3∂e2
∂2Ex

∂e23

 (5.82)

149



5.1. Error Analysis

We calculate elements of the Hessian from (4.60) as below.

∂Ex
∂e1

= k1[2ra1 + 2e1] (5.83)

∂Ex
∂e2

= k2[2ra2 + 2e2] (5.84)

∂Ex
∂e3

= k1[−2ra3 − 2e3] + k2[−2ra3 − 2e3] (5.85)

∂2Ex
∂e21

= 2k1 (5.86)

∂2Ex
∂e2∂e1

= 0 (5.87)

∂2Ex
∂e3∂e1

= 0 (5.88)

∂2Ex
∂e1∂e2

= 0 (5.89)

∂2Ex
∂e22

= 2k2 (5.90)

∂2Ex
∂e3∂e2

= 0 (5.91)

∂2Ex
∂e1∂e3

= 0 (5.92)

∂2Ex
∂e2∂e3

= 0 (5.93)

∂2Ex
∂e23

= −2k1 − 2k2 = −2(k1 + k2) (5.94)

Substituting (5.86)-(5.94) in (5.82), we get

HEx =


2k1 0 0

0 2k2 0

0 0 −2(k1 + k2)

 (5.95)
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Now

Dx1 =
∂2Ex
∂e21

(5.96)

Therefore, from (5.86) at the critical point

Dx1(−ra1,−ra2,−ra3) = 2k1 (5.97)

Similarly

Dx2 =

∣∣∣∣∣∣∣∣
∂2Ex

∂e21

∂2Ex

∂e1∂e2

∂2Ex

∂e2∂e1
∂2Ex

∂e22

∣∣∣∣∣∣∣∣ (5.98)

Substituting (5.86), (5.87), (5.89) and (5.90) in (5.98)

Dx2 =

∣∣∣∣∣∣∣∣
2k1 0

0 2k2

∣∣∣∣∣∣∣∣ (5.99)

Therefore, at the critical point

Dx2(−ra1,−ra2,−ra3) = 4k1k2 (5.100)

Now Dx3 = det HEx, therefore

Dx3 =

∣∣∣∣∣∣∣∣∣∣∣∣

2k1 0 0

0 2k2 0

0 0 −2(k1 + k2)

∣∣∣∣∣∣∣∣∣∣∣∣
(5.101)

At the critical point

Dx3(−ra1,−ra2,−ra3) = −8k1k2(k1 + k2) (5.102)
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The values ofDx1, Dx2 andDx3 are determined by k1 and k2 as can be seen from

(5.97), (5.100) and (5.102). For example, from (5.97) it is obvious that Dx1 > 0

if k1 > 0. From (5.100) we can see that Dx2 > 0 if k2 > 0 also. However

Dx3 < 0 if k1 > 0 and k2 > 0 as is evident from (5.102). Table 5.3 lists the

outcomes for Dx1, Dx2 and Dx3 for all the different possible combinations of

values of k1 and k2. From all the possible output combinations of Dx1, Dx2

and Dx3, it can be concluded that (5.80) is a saddle point. Substituting (5.80)

in (4.60), we get the value of Ex at the saddle point.

Exsad =k1[2ra1(−ra1) + (−ra1)2 − 2ra3(−ra3)− (−ra3)2]

+k2[2ra2(−ra2) + (−ra2)2 − 2ra3(−ra3)− (−ra3)2]
(5.103)

so that

Exsad = k1[r
2
a3 − r2a1] + k2[r

2
a3 − r2a2] (5.104)

Note that Exsad = 0, if ra1 = ra2 = ra3.

Table 5.3: Dx1, Dx2 and Dx3 for different values of k1 and k2.
k1 k2 Dx1 Dx2 Dx3

k1 < 0 k2 < 0 Dx1 < 0 Dx2 > 0 Dx3 > 0

k1 < 0 k2 > 0 Dx1 < 0 Dx2 < 0
Dx3 > 0 if |k2| > |k1|
Dx3 < 0 if |k2| < |k1|

k1 > 0 k2 < 0 Dx1 > 0 Dx2 < 0
Dx3 > 0 if |k1| > |k2|
Dx3 < 0 if |k1| < |k2|

k1 > 0 k2 > 0 Dx1 > 0 Dx2 > 0 Dx3 < 0
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5.1.3.2 Extrema for Ey

Let us now consider the extrema for Ey. The derivations are similar to those

for Ex, but we give them here for the sake of completeness. At the extrema

∂Ey
∂e1

= 0,
∂Ey
∂e2

= 0 and
∂Ey
∂e3

= 0 (5.105)

From (4.61)

∂Ey
∂e1

= k3[2ra1 + 2e1] = 0⇒ e1 = −ra1 (5.106)

∂Ey
∂e2

= k4[2ra2 + 2e2] = 0⇒ e2 = −ra2 (5.107)

∂Ey
∂e3

= k3[−2ra3 − 2e3] + k4[−2ra3 − 2e3] = 0

ra3 + e3 = −k4
k3

(ra3 + e3)

e3 +
k4
k3
e3 = −ra3 −

k4
k3
ra3

e3(1 +
k4
k3

) = −ra3(1 +
k4
k3

)

(5.108)

e3 = −ra3 (5.109)

Hence, Ey has a critical point at

(e1, e2, e3) = (−ra1,−ra2,−ra3) (5.110)

implying that

ri = rai + ei ∀i ∈ {1, 2, 3} (5.111)

This is the same result as obtained in (5.80) and (5.81) for Ex. Therefore,

the possible extrema for both the components of localisation error, Ex and Ey,
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occurs simultaneously. Now the Hessian matrix of Ey is given by

HEy =


∂2Ey

∂e21

∂2Ey

∂e1∂e2

∂2Ey

∂e1∂e3

∂2Ey

∂e2∂e1

∂2Ey

∂e22

∂2Ey

∂e2∂e3

∂2Ey

∂e3∂e1

∂2Ey

∂e3∂e2

∂2Ey

∂e23

 (5.112)

We calculate elements of the Hessian from (4.61) as below.

∂Ey
∂e1

= k3[2ra1 + 2e1] (5.113)

∂Ey
∂e2

= k4[2ra2 + 2e2] (5.114)

∂Ey
∂e3

= k3[−2ra3 − 2e3] + k4[−2ra3 − 2e3] (5.115)

∂2Ey
∂e21

= 2k3 (5.116)

∂2Ey
∂e2∂e1

= 0 (5.117)

∂2Ey
∂e3∂e1

= 0 (5.118)

∂2Ey
∂e1∂e2

= 0 (5.119)

∂2Ey
∂e22

= 2k4 (5.120)

∂2Ey
∂e3∂e2

= 0 (5.121)

∂2Ey
∂e1∂e3

= 0 (5.122)

∂2Ey
∂e2∂e3

= 0 (5.123)
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∂2Ey
∂e23

= −2k3 − 2k4 = −2(k3 + k4) (5.124)

Substituting (5.116)-(5.124) in (5.112), we get

HEy =


2k3 0 0

0 2k4 0

0 0 −2(k3 + k4)

 (5.125)

Now

Dy1 =
∂2Ey
∂e21

= 2k3 (5.126)

Therefore, from (5.116) at the critical point

Dy1(−ra1,−ra2,−ra3) = 2k3 (5.127)

Furthermore

Dy2 =

∣∣∣∣∣∣∣∣
∂2Ey

∂e21

∂2Ey

∂e1∂e2

∂2Ey

∂e2∂e1

∂2Ey

∂e22

∣∣∣∣∣∣∣∣ (5.128)

Substituting (5.116), (5.117), (5.119) and (5.120) in (5.128)

Dy2 =

∣∣∣∣∣∣∣∣
2k3 0

0 2k4

∣∣∣∣∣∣∣∣ (5.129)

Therefore, at the critical point

Dy2(−ra1,−ra2,−ra3) = 4k3k4 (5.130)
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Now Dy3 = det HEy, therefore

Dy3 =

∣∣∣∣∣∣∣∣∣∣∣∣

2k3 0 0

0 2k4 0

0 0 −2(k3 + k4)

∣∣∣∣∣∣∣∣∣∣∣∣
(5.131)

At the critical point

Dy3(−ra1,−ra2,−ra3) = −8k3k4(k3 + k4) (5.132)

The values of Dy1, Dy2 and Dy3 are determined by k3 and k4 as is evident from

(5.127), (5.130) and (5.132). Outcomes for Dy1, Dy2 and Dy3 for different

possible combinations of values of k3 and k4 are listed in Table 5.4. From these

results it can be concluded that (5.110) is a saddle point. Substituting (5.110)

in (4.61) we get the value of Ey at the saddle point.

Eysad =k3[2ra1(−ra1) + (−ra1)2 − 2ra3(−ra3)− (−ra3)2]

+k4[2ra2(−ra2) + (−ra2)2 − 2ra3(−ra3)− (−ra3)2]
(5.133)

so that

Eysad = k3[r
2
a3 − r2a1] + k4[r

2
a3 − r2a2] (5.134)

Table 5.4: Dy1, Dy2 and Dy3 for different values of k3 and k4.

k3 k4 Dy1 Dy2 Dy3

k3 < 0 k4 < 0 Dy1 < 0 Dy2 > 0 Dy3 > 0

k3 < 0 k4 > 0 Dy1 < 0 Dy2 < 0
Dy3 > 0 if |k4| > |k3|
Dy3 < 0 if |k4| < |k3|

k3 > 0 k4 < 0 Dy1 > 0 Dy2 < 0
Dy3 > 0 if |k3| > |k4|
Dy3 < 0 if |k3| < |k4|

k3 > 0 k4 > 0 Dy1 > 0 Dy2 > 0 Dy3 < 0
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Again note that Eysad = 0, if ra1 = ra2 = ra3.

The results in (5.104) and (5.134) give Ex and Ey at the critical point which

is one of the possible combinations of extreme values of distance estimation

errors. For each of Ex and Ey, there are eight such possible combinations over

the domain −rai ≤ ei ≤ rai. We calculate Ex and Ey using (4.60) and (4.61) for

all the possible combinations of extreme values and list the results in Table 5.5

and Table 5.6. The entries in column Ex in Table 5.5 and column Ey in Table

Table 5.5: Possible extreme values of Ex.
Estimation

errors
Estimated
distances

Localisation error
x-coordinate

e1 e2 e3 r1 r2 r3 Ex

−ra1 −ra2 −ra3 0 0 0 k1[r
2
a3 − r2a1] + k2[r

2
a3 − r2a2]

−ra1 −ra2 ra3 0 0 2ra3 −k1[3r2a3 + r2a1]− k2[3r2a3 + r2a2]

−ra1 ra2 −ra3 0 2ra2 0 k1[r
2
a3 − r2a1] + k2[r

2
a3 + 3r2a2]

−ra1 ra2 ra3 0 2ra2 2ra3 −k1[3r2a3 + r2a1]− 3k2[r
2
a3 − r2a2]

ra1 −ra2 −ra3 2ra1 0 0 k1[r
2
a3 + 3r2a1] + k2[r

2
a3 − r2a2]

ra1 −ra2 ra3 2ra1 0 2ra3 −3k1[r
2
a3 − r2a1]− k2[3r2a3 + r2a2]

ra1 ra2 −ra3 2ra1 2ra2 0 k1[r
2
a3 + 3r2a1] + k2[r

2
a3 + 3r2a2]

ra1 ra2 ra3 2ra1 2ra2 2ra3 −3k1[r
2
a3 − r2a1]− 3k2[r

2
a3 − r2a2]

Table 5.6: Possible extreme values of Ey.

Estimation
errors

Estimated
distances

Localisation error
y-coordinate

e1 e2 e3 r1 r2 r3 Ey

−ra1 −ra2 −ra3 0 0 0 k3[r
2
a3 − r2a1] + k4[r

2
a3 − r2a2]

−ra1 −ra2 ra3 0 0 2ra3 −k3[3r2a3 + r2a1]− k4[3r2a3 + r2a2]

−ra1 ra2 −ra3 0 2ra2 0 k3[r
2
a3 − r2a1] + k4[r

2
a3 + 3r2a2]

−ra1 ra2 ra3 0 2ra2 2ra3 −k3[3r2a3 + r2a1]− 3k4[r
2
a3 − r2a2]

ra1 −ra2 −ra3 2ra1 0 0 k3[r
2
a3 + 3r2a1] + k4[r

2
a3 − r2a2]

ra1 −ra2 ra3 2ra1 0 2ra3 −3k3[r
2
a3 − r2a1]− k4[3r2a3 + r2a2]

ra1 ra2 −ra3 2ra1 2ra2 0 k3[r
2
a3 + 3r2a1] + k4[r

2
a3 + 3r2a2]

ra1 ra2 ra3 2ra1 2ra2 2ra3 −3k3[r
2
a3 − r2a1]− 3k4[r

2
a3 − r2a2]
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5.6 differ only due to the localisation constants k1, k2, k3 and k4. Furthermore,

the signs of Ex and Ey, and which of the eight entries is an extremum also

depends upon the localisation constants. For example, if k1 > 0 and k2 > 0,

then the minimum for Ex is located at (e1, e2, e3) = (−ra1,−ra2, ra3) and is

given by

Exmin = −k1[3r2a3 + r2a1]− k2[3r2a3 + r2a2] (5.135)

while the maximum located at (ra1, ra2,−ra3) is given by

Exmax = k1[r
2
a3 + 3r2a1] + k2[r

2
a3 + 3r2a2] (5.136)

Similarly, if k3 > 0 and k4 > 0, the minimum for Ey is located at

(e1, e2, e3) = (−ra1,−ra2, ra3) and is given by

Eymin = −k3[3r2a3 + r2a1]− k4[3r2a3 + r2a2] (5.137)

while the maximum located at (ra1, ra2,−ra3) is given by

Eymax = k3[r
2
a3 + 3r2a1] + k4[r

2
a3 + 3r2a2] (5.138)

We observe that the extrema for Ex and Ey occur simultaneously at the

same values of distance estimation errors if all the localisation constants

have the same sign and the minimum point (−ra1,−ra2, ra3) is exactly

opposite to the maximum point (ra1, ra2,−ra3). Moreover, the minimum

point (−ra1,−ra2, ra3) for Ex and Ey corresponds to points (−ra1, ra3) and

(−ra2, ra3) at which E1 and E2 are minimum. Similarly, the maximum point

(ra1, ra2,−ra3) for Ex and Ey corresponds to points (ra1,−ra3) and (ra2,−ra3)

at which E1 and E2 are maximum. Further note that if k1 < 0, k2 < 0, k3 < 0
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and k4 < 0 then the minimum values of Ex and Ey are located at (ra1, ra2,−ra3)

while their maximum values occur at (−ra1,−ra2, ra3). The minimum value of

Ex is as in (5.136) so that

Exmin = k1[r
2
a3 + 3r2a1] + k2[r

2
a3 + 3r2a2] (5.139)

while the maximum value of Ex is as in (5.135)

Exmax = −k1[3r2a3 + r2a1]− k2[3r2a3 + r2a2]. (5.140)

Similarly, the minimum value of Ey is given by (5.138) so that

Eymin = k3[r
2
a3 + 3r2a1] + k4[r

2
a3 + 3r2a2] (5.141)

while the maximum value is as in (5.137) and is given by

Eymax = −k3[3r2a3 + r2a1]− k4[3r2a3 + r2a2]. (5.142)

If the localisation constants do not have the same sign, the maximum and

minimum values of Ex and Ey are given by appropriate entries in column Ex in

Table 5.5 and column Ey in Table 5.6 depending upon the relative magnitudes

of rai ∀i ∈ {1, 2, 3} and the relative signs and magnitudes of localisation

constants. It is then not necessary that the minimum and maximum values

of E1, E2, Ex, Ey and el lie at the same point as is the case when all the

localisation constants have the same sign. To determine the condition under

which all the localisation constants have the same sign, let us consider (4.45),
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(4.46), (4.58) and (4.59). If k1 > 0, k2 > 0, k3 > 0, and k4 > 0, then

1

2∆
(y3 − y2) > 0 (5.143)

− 1

2∆
(y3 − y1) > 0 (5.144)

− 1

2∆
(x3 − x2) > 0 (5.145)

1

2∆
(x3 − x1) > 0 (5.146)

Now, if ∆ > 0, then

y3 > y2 (5.147)

y1 > y3 (5.148)

x2 > x3 (5.149)

x3 > x1 (5.150)

which imply that

x2 > x3 > x1 (5.151)

y1 > y3 > y2 (5.152)

However, if ∆ < 0, then subject to ki > 0, (5.143)-(5.146) give

y3 < y2 (5.153)

y1 < y3 (5.154)

x2 < x3 (5.155)

x3 < x1 (5.156)
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which imply that

x2 < x3 < x1 (5.157)

y1 < y3 < y2 (5.158)

Similarly, if k1 < 0, k2 < 0, k3 < 0 and k4 < 0, then

1

2∆
(y3 − y2) < 0 (5.159)

− 1

2∆
(y3 − y1) < 0 (5.160)

− 1

2∆
(x3 − x2) < 0 (5.161)

1

2∆
(x3 − x1) < 0 (5.162)

If ∆ > 0, then we obtain the same result as in (5.153)-(5.158). On the

other hand, if ∆ < 0, then we obtain the same result as in (5.147)-(5.152)

subject to ki < 0. We infer that all the localisation constants, k1, k2, k3

and k4 have the same sign if the beacon nodes are positioned such that

their coordinates satisfy either (5.151) and (5.152) or (5.157) and (5.158).

Furthermore, from Table 5.5 and Table 5.6, we observe that the error Ex or

Ey at (e1, e2, e3) = (ra1, ra2, ra3) due to the positive distance estimation errors

is −3 times the error resulting from the same magnitudes of negative distance

estimation errors at (e1, e2, e3) = (−ra1,−ra2,−ra3). From Table 5.5, Ex due

to negative distance estimation errors (e1, e2, e3) = (−ra1,−ra2,−ra3) is given

by

Ex− = k1(r
2
a3 − r2a1) + k2(r

2
a3 − r2a2) (5.163)

Ex due to positive distance estimation errors (e1, e2, e3) = (ra1, ra2, ra3) is given
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by

Ex+ = −3[k1(r
2
a3 − r2a1) + k2(r

2
a3 − r2a2)] (5.164)

Dividing (5.164) by (5.163)

Ex+ = −3Ex− (5.165)

Similarly, from Table 5.6

Ey− = k3(r
2
a3 − r2a1) + k4(r

2
a3 − r2a2) (5.166)

Ey+ = −3[k3(r
2
a3 − r2a1) + k4(r

2
a3 − r2a2)] (5.167)

Dividing (5.167) by (5.166)

Ey+ = −3Ey− (5.168)

It can also be noted from Table 5.5 and Table 5.6 that Ex = 0 and Ey = 0 at

both negative (−ra1,−ra2,−ra3) and positive (ra1, ra2, ra3) points of distance

estimation errors if ra1 = ra2 = ra3 i.e. if all the three beacon nodes are

equidistant and have the same amount of range error.

5.1.4 Case IV: Localisation error (el)

As localisation error el is the distance between the actual and estimated

position coordinates, it cannot have a negative value. Therefore, the most

minimum possible value of el is

elmin = 0 (5.169)
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according to (4.63) when both Ex = 0 and Ey = 0. As concluded in Section

5.1.3, this is possible when ra1 = ra2 = ra3 and e1 = e2 = e3. The maximum

value of el depends upon the localisation constants k1, k2, k3 and k4, and hence

the geometry of positions of beacon nodes. As determined in Section 5.1.3, all

localisation constants have the same sign when (5.151) and (5.152) or (5.157)

and (5.158) are satisfied. Under these conditions, either the simultaneous

minimum or the simultaneous maximum values of Ex and Ey result in the

maximum value of el. When k1 > 0, k2 > 0, k3 > 0 and k4 > 0, comparing

(5.135) with (5.136) and (5.137) with (5.138), we observe that if

3r2a3 + r2a1 > r2a3 + 3r2a1 (5.170)

ra3 > ra1 (5.171)

and

3r2a3 + r2a2 > r2a3 + 3r2a2 (5.172)

ra3 > ra2 (5.173)

then

elmax =
√
E2
xmin + E2

ymin (5.174)

and elmax is located at (e1, e2, e3) = (−ra1,−ra2, ra3). However, if

r2a3 + 3r2a1 > 3r2a3 + r2a1 (5.175)

ra1 > ra3 (5.176)

and

r2a3 + 3r2a2 > 3r2a3 + r2a2 (5.177)
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ra2 > ra3 (5.178)

then

elmax =
√
E2
xmax + E2

ymax (5.179)

and elmax is located at (e1, e2, e3) = (ra1, ra2,−ra3). When k1 < 0, k2 < 0,

k3 < 0 and k4 < 0, and (5.171) and (5.173) are satisfied, then elmax is located

at (−ra1,−ra2, ra3) and is given by (5.179), and if (5.176) and (5.178) are

satisfied, then it is located at (ra1, ra2,−ra3) and is given by (5.174). The

conditions specified for elmax in (5.171) and (5.173) or (5.176) and (5.178) are

sufficient but not necessary. When these conditions are not met, elmax is still

given by either (5.174) or (5.179) provided all localisation constants have the

same sign.

5.1.5 Further analysis

5.1.5.1 Equal error

In the preceding discussions in Section 5.1.2 and Section 5.1.3, we have

analysed the localisation error for cases where the beacon nodes are equidistant

from the unknown node and the distance estimation errors are also equal.

Let us now consider the situation where the beacon nodes are not necessarily

equidistant (ra1 6= ra2 6= ra3). However, the distance estimation errors are the

same (e1 = e2 = e3 = ed). The distance estimation error, say ed, can be either

positive (ed > 0) in which case

ri = rai + ed ≥ rai ∀i ∈ {1, 2, 3} (5.180)
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or negative (ed < 0) in which case

ri = rai + ed ≤ rai ∀i ∈ {1, 2, 3} (5.181)

Let us first consider the case where the distance estimation error is positive so

that

e1 = e2 = e3 = +ed (5.182)

Substituting this in (4.60)

Exd+ = k1[2ra1ed + e2d − 2ra3ed − e2d]

+ k2[2ra2ed + e2d − 2ra3ed − e2d]
(5.183)

Exd+ = 2k1ed(ra1 − ra3) + 2k2ed(ra2 − ra3) (5.184)

Substituting (5.182) in (4.61)

Eyd+ = k3[2ra1ed + e2d − 2ra3ed − e2d]

+ k4[2ra2ed + e2d − 2ra3ed − e2d]
(5.185)

Eyd+ = 2k3ed(ra1 − ra3) + 2k4ed(ra2 − ra3) (5.186)

From the above results in (5.184) and (5.186), we can see that the squared

error terms (e2d) have been eliminated.

Let us now consider the case where the distance estimation errors are equal

and negative.

e1 = e2 = e3 = −ed (5.187)
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Substituting (5.187) in (4.60)

Exd− = k1[−2ra1ed + e2d + 2ra3ed − e2d]

+ k2[−2ra2ed + e2d + 2ra3ed − e2d]
(5.188)

Exd− = −[2k1ed(ra1 − ra3) + 2k2ed(ra2 − ra3)] (5.189)

We obtain the same expression as in (5.184) but with opposite sign. The

error term in (5.184) is additive while that in (5.189) is subtractive. Now

substituting (5.187) in (4.61)

Eyd− = k3[−2ra1ed + e2d + 2ra3ed − e2d]

+ k4[−2ra2ed + e2d + 2ra3ed − e2d]
(5.190)

Eyd− = −[2k3ed(ra1 − ra3) + 2k4ed(ra2 − ra3)] (5.191)

Comparing (5.184) with (5.189) and (5.186) with (5.191), we conclude that

Exd+ = −Exd− (5.192)

Eyd+ = −Eyd− (5.193)

The estimated coordinate values, and hence the estimated position is different

in both the cases. However, the resultant localisation error el is the same.

el =
√
E2
xd+ + E2

yd+ =
√
E2
xd− + E2

yd− (5.194)
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5.1.5.2 Unequal error

Let us now assume that the distances of the beacon nodes from the unknown

node are unequal i.e.

ra1 6= ra2 6= ra3 (5.195)

Furthermore, the distance estimation errors are also unequal so that

e1 6= e2 6= e3 (5.196)

However, the distance estimation error is proportional to the actual distance

of the beacon node from the unknown node. This proportion p is the same for

all the beacon nodes. In other words

e1 = pra1

e2 = pra2

e3 = pra3

(5.197)

so that

ri = rai + ei = rai + prai = (p + 1)rai (5.198)

p can be either positive or negative such that −1 ≤ p ≤ 1 so that

−rai ≤ ei ≤ rai and 0 ≤ ri ≤ 2rai. However, p 6< −1 because this will result

in ei < −rai and ri < 0 which is not possible. Further, p 6> 1 because equal

and opposite negative error for comparison will result in p < −1 which is not

possible.

We now calculate and compare the localisation error for two scenarios. In the

first instance, we consider p to be positive, and for the second case we consider
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p to be negative but having the same magnitude as in the first instance. For

the first case, let p = +p so that

e1 = pra1

e2 = pra2

e3 = pra3

(5.199)

For the second case, we let p = −p so that

e1 = −pra1

e2 = −pra2

e3 = −pra3

(5.200)

We calculate Ex and Ey for both the cases. Let us first substitute (5.199)

in (4.60) to calculate localisation error Ex due to positive distance estimation

error.

Exp+ = k1[2pr
2
a1 + p2r2a1 − 2pr2a3 − p2r2a3]

+ k2[2pr
2
a2 + p2r2a2 − 2pr2a3 − p2r2a3]

(5.201)

Exp+ = k1[pr
2
a1(p+ 2)− pr2a3(p+ 2)]

+ k2[pr
2
a2(p+ 2)− pr2a3(p+ 2)]

(5.202)

Exp+ = p(p+ 2)[k1(r
2
a1 − r2a3) + k2(r

2
a2 − r2a3)] (5.203)

Let us now substitute (5.200) in (4.60) to calculate localisation error Ex due
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to negative distance estimation error.

Exp− = k1[−2pr2a1 + p2r2a1 + 2pr2a3 − p2r2a3]

+ k2[−2pr2a2 + p2r2a2 + 2pr2a3 − p2r2a3]
(5.204)

Exp− = k1[pr
2
a1(p− 2)− pr2a3(p− 2)]

+ k2[pr
2
a2(p− 2)− pr2a3(p− 2)]

(5.205)

Exp− = p(p− 2)[k1(r
2
a1 − r2a3) + k2(r

2
a2 − r2a3)] (5.206)

Comparing (5.203) and (5.206) we observe that Exp+ 6= Exp− . Therefore, the

localisation error is not the same when unequal but proportionate distance

estimation errors are additive compared to the case when the distance

estimation errors are subtractive. Dividing (5.203) by (5.206), we obtain

Exp+

Exp−
=
p+ 2

p− 2
0 ≤ p ≤ 1 (5.207)

As p = |p| and p ≥ 0, we can see from (5.207) that |Exp+ | ≥ |Exp−|. If an error

+prai is present in the estimated distances, then the localisation error is higher

compared to the case when the distance estimation error is −prai. In other

words, the error Ex is higher if the distance estimation errors proportionate to

the actual distances of the beacon nodes are additive to the estimated distances

and the resultant estimated distances are longer than the actual distances.

The localisation error Ex is smaller if the same amount of distance errors are

subtractive and the resultant estimated distances are shorter than the actual

distances.

Let us now derive similar results for Ey. First, let us substitute (5.199) in
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(4.61)

Eyp+ = k3[2pr
2
a1 + p2r2a1 − 2pr2a3 − p2r2a3]

+ k4[2pr
2
a2 + p2r2a2 − 2pr2a3 − p2r2a3]

(5.208)

Eyp+ = k3[pr
2
a1(p+ 2)− pr2a3(p+ 2)]

+ k4[pr
2
a2(p+ 2)− pr2a3(p+ 2)]

(5.209)

Eyp+ = p(p+ 2)[k3(r
2
a1 − r2a3) + k4(r

2
a2 − r2a3)] (5.210)

Now we substitute (5.200) in (4.61) to calculate localisation error Ey due to

negative distance estimation error.

Eyp− = k3[−2pr2a1 + p2r2a1 + 2pr2a3 − p2r2a3]

+ k4[−2pr2a2 + p2r2a2 + 2pr2a3 − p2r2a3]
(5.211)

Eyp− = k3[pr
2
a1(p− 2)− pr2a3(p− 2)]

+ k4[pr
2
a2(p− 2)− pr2a3(p− 2)]

(5.212)

Eyp− = p(p− 2)[k3(r
2
a1 − r2a3) + k4(r

2
a2 − r2a3)] (5.213)

Dividing (5.210) by (5.213), we get

Eyp+

Eyp−
=
p+ 2

p− 2
0 ≤ p ≤ 1 (5.214)

which is the same result as obtained in (5.207) for the x component of the

localisation error Ex.

The resultant localisation error, elp+ when the distance errors are additive in
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the estimated distances

elp+ =
√
E2
xp+ + E2

yp+ (5.215)

From (5.207) and (5.214)

Exp+ =
p+ 2

p− 2
Exp− (5.216)

Eyp+ =
p+ 2

p− 2
Eyp− (5.217)

Substituting (5.216) and (5.217) in (5.215)

elp+ =

∣∣∣∣∣p+ 2

p− 2

∣∣∣∣∣√E2
xp− + E2

yp− (5.218)

However, the localisation error, elp− when the distance errors are subtractive

in the estimated distances is given by

elp− =
√
E2
xp− + E2

yp− (5.219)

Substituting (5.219) in (5.218)

elp+ =

∣∣∣∣∣p+ 2

p− 2

∣∣∣∣∣elp− 0 ≤ p ≤ 1 (5.220)

elp+ = ξelp− (5.221)

where ξ is error coefficient and is given by

ξ =

∣∣∣∣∣p+ 2

p− 2

∣∣∣∣∣ 0 ≤ p ≤ 1 (5.222)

As p ≥ 0, |elp+| ≥ |elp−|. In other words, the localisation error is higher if the
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Figure 5.1: Relative change in localisation error with distance estimation error.

distance estimation error is positive and the estimated distances are longer than

the actual distances compared to the case where distance estimation errors are

negative so that the estimated distances are shorter than the actual distances.

As an example, consider p = 1 i.e. we compare localisation error elp+ when

ei = rai and ri = 2rai to the localisation error elp− when ei = −rai and ri = 0.

Substituting p = 1 in (5.220), we get

elp+ = 3elp− (5.223)

i.e. if the errors equal to the actual distances are added to the estimated

distances then the localisation error is three times as high as when the same

errors are subtracted from the estimated distances. In Fig. 5.1 we plot the

error coefficient ξ. It can be observed that the error coefficient increases as the

error proportion in the estimated distances increases. This again confirms our

result derived earlier. We also observe that the higher the distance estimation

error, the higher is the relative increase in elp+ compared to elp− .

It is also interesting to compare Exd+ and Eyd+ with Exp+ and Eyp+ and
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similarly Exd− and Eyd− with Exp− and Eyp− . From (5.184), (5.186), (5.189),

(5.191), (5.203), (5.206), (5.210) and (5.213), we observe that Exd+ , Eyd+ ,

Exd− and Eyd− involve linear terms whereas Exp+ , Eyp+ , Exp− and Eyp− involve

squared error terms. This leads to the conclusion that the localisation error is

lower if the distance estimation error is equal for all neighbour beacon nodes

than if it is unequal.

5.1.5.3 Geometry of positioning of nodes

If x component of localisation error is eliminated i.e. Ex = 0, then from (4.44)

k1E1 + k2E2 = 0

E1

E2

= −k2
k1

(5.224)

Substituting from (4.45), (4.46), (4.49) and (4.50)

2ra1e1 + e21 − 2ra3e3 − e23
2ra2e2 + e22 − 2ra3e3 − e23

=
y3 − y1
y3 − y2

(5.225)

(y3 − y2)(2ra1e1 + e21) + y2(2ra3e3 + e23)

=(y3 − y1)(2ra2e2 + e22) + y1(2ra3e3 + e23)

(5.226)

(y3 − y2)(2ra1e1 + e21) + (y2 − y1)(2ra3e3 + e23)

=(y3 − y1)(2ra2e2 + e22)

(5.227)

Similarly, if Ey = 0, then from (4.57)

k3E1 + k4E2 = 0

E1

E2

= −k4
k3

(5.228)
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Substituting from (4.49), (4.50), (4.58) and (4.59)

2ra1e1 + e21 − 2ra3e3 − e23
2ra2e2 + e22 − 2ra3e3 − e23

=
x3 − x1
x3 − x2

(5.229)

(x3 − x2)(2ra1e1 + e21) + x2(2ra3e3 + e23)

=(x3 − x1)(2ra2e2 + e22) + x1(2ra3e3 + e23)

(5.230)

(x3 − x2)(2ra1e1 + e21) + (x2 − x1)(2ra3e3 + e23)

=(x3 − x1)(2ra2e2 + e22)

(5.231)

If relative positions of neighbour beacon nodes and errors in distance estimates

are such that (5.225), (5.226) or (5.227) is satisfied, then Ex = 0. Similarly, if

(5.229), (5.230) or (5.231) is satisfied, then Ey = 0. Hence, it is possible that

for a certain relative geometry of positions of nodes, there is no error in the

estimated position even though there are errors in the estimated distances.

In the above analysis, the error term ζi characterises error due to a single

beacon node. E1 and E2 characterise error due to a pair of beacon nodes. Ex,

Ey and el characterise error due to the three beacon nodes.

5.1.6 Summary of results

Below is a summary of results that we have derived from our analysis:

(1) Localisation error el comprises of x and y components Ex and Ey given

by:

Ex = k1E1 + k2E2

Ey = k3E1 + k4E2
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(2) The distance estimation error contributes equally to the x and y

components of the localisation error. The difference in Ex and Ey

components of localisation error depends only upon the geometry of

placement of the beacon nodes.

(3) Error terms of the form ζi = 2raiei + e2i are responsible for localisation

error in the estimated position.

(4) A localisation error term 2raiei + e2i can be eliminated only if the

corresponding distance estimation error ei is eliminated.

(5) The individual error term ζi = 2raiei + e2i has a minimum at ei = −rai and

the minimum possible value of the error term is ζimin = −r2ai. The error

term cannot have a signed value lesser than this minimum.

(6) The individual error term ζi = 2raiei + e2i has a maximum at ei = rai for

the domain −rai ≤ ei ≤ rai and the maximum value of the error term is

3r2ai. The maximum value is 3 times the minimum value.

(7) If an unknown node has the same amount of error in the distance estimates

from two equidistant neighbour beacon nodes, then either E1 = 0 or E2 = 0

or E1 = E2, and hence the localisation error is solely determined by either

E1 or E2.

(8) Each of the x and y components of the localisation error is a function of

two types of error components. E1 has a critical point at (−ra1,−ra3) and

E2 has a critical point at (−ra2,−ra3). E1 and E2 at the critical points

are E1sad = r2a3 − r2a1 and E2sad = r2a3 − r2a2.

(9) The minimum value of E1 is −3r2a3 − r2a1 which occurs at

(e1, e3) = (−ra1, ra3). The maximum value of E1 is r2a3 + 3r2a1 over

175



5.1. Error Analysis

the domain −rai ≤ ei ≤ rai which occurs at (e1, e3) = (ra1,−ra3).

(10) The minimum value of E2 is −3r2a3 − r2a2 which occurs at

(e2, e3) = (−ra2, ra3). The maximum value of E2 is r2a3 + 3r2a2 over

the domain −rai ≤ ei ≤ rai which occurs at (e2, e3) = (ra2,−ra3).

(11) The extreme values of E1 and E2 occur when the distance estimation errors

of the involved pair of beacon nodes have opposite signs. E1 and E2 lie

between the extreme values when the distance estimation errors have the

same sign.

(12) The error component E1 or E2 due to the positive distance estimation

errors is three times the error component resulting from the same

magnitudes of negative distance estimation errors.

(13) If the estimated distances have the same amount of error (e1 = e2 = e3),

then the net localisation error in the estimated position will be zero if

the unknown node is at the same distance (ra1 = ra2 = ra3) from all the

neighbour beacon nodes.

(14) If an unknown node can determine that it is equidistant from three

neighbour beacon nodes, then it can determine its exact position by merely

using the position information of beacon nodes and without estimating

distances from them.

(15) A correct position estimation with zero localisation error does not

necessarily imply that the estimated distances used in the position

estimation are accurate.

(16) Accurate position can be obtained even if the estimated distances are not

accurate.
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(17) It is possible for an unknown node to determine its exact position without

knowing its distances from the neighbour beacon nodes.

(18) If two of the neighbour beacon nodes are collinear parallel to an axis

and are at the same distance from the unknown node and distance

estimates for them have the same amount of error, then the component

of localisation error for that axis is zero irrespective of the position and

distance estimation error of the third beacon node.

(19) Each of the x and y components of localisation error, Ex and Ey, has a

critical point at (−ra1,−ra2,−ra3). At the critical point:

Exsad = k1[r
2
a3 − r2a1] + k2[r

2
a3 − r2a2] Eysad = k3[r

2
a3 − r2a1] + k4[r

2
a3 − r2a2]

(20) The minima and maxima of Ex and Ey depend upon the localisation

constants k1, k2, k3 and k4, and hence on the geometry formed by the

positions of beacon nodes.

(21) If the localisation constants are positive, the minima of Ex and Ey are

located at (e1, e2, e3) = (−ra1,−ra2, ra3) and are given by

Exmin = −k1[3r2a3 + r2a1]− k2[3r2a3 + r2a2]

Eymin = −k3[3r2a3 + r2a1]− k4[3r2a3 + r2a2]

(22) If the localisation constants are positive, the maxima of Ex and Ey are

located at (e1, e2, e3) = (ra1, ra2,−ra3) and are given by

Exmax = k1[r
2
a3 + 3r2a1] + k2[r

2
a3 + 3r2a2]

Eymax = k3[r
2
a3 + 3r2a1] + k4[r

2
a3 + 3r2a2]

(23) The point (−ra1,−ra2, ra3) at which the minima occur is exactly opposite

to the point (ra1, ra2,−ra3) at which the maxima occur.
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(24) The error Ex or Ey at (e1, e2, e3) = (ra1, ra2, ra3) due to the positive

distance estimation errors is −3 times the error resulting from

the same magnitudes of negative distance estimation errors at

(e1, e2, e3) = (−ra1,−ra2,−ra3).

(25) If the distance estimation error is constant and equal for all the neighbour

beacon nodes, then the localisation error is the same whether the distance

estimation error is positive or negative. However, the estimated coordinate

values, and hence the estimated position will be different in both the cases.

(26) When the distance estimation error is different for different beacon nodes

but proportionate to the actual distances, then the localisation error is not

the same when the distance estimation error is additive compared to the

case when the distance estimation error is subtractive.

(27) The localisation error is higher if the distance estimation errors

proportionate to the actual distances of the beacon nodes are additive to

the estimated distances and the resultant estimated distances are longer

than the actual distances. The localisation error is smaller if the same

amount of distance errors are subtractive and the resultant estimated

distances are shorter than the actual distances.

(28) If the distance estimation error is a constant proportion of actual distances

for all neighbour beacon nodes, then the localisation error is
∣∣∣p+2
p−2

∣∣∣ times

higher when the distance estimation error is positive compared to when it

is negative.

(29) If the errors equal to the actual distances are added to the estimated

distances then the localisation error is three times as high as when the

same errors are subtracted from the estimated distances.
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(30) The distance estimation error in the region −rai ≤ ei ≤ 0 gives lower

position error. Hence, it is the preferred region of operation for location

estimation.

(31) The signed value of the ζi component of the localisation error has a lower

bound at ei = −rai where ri = 0 and ζi = −r2ai. If we consider signed value,

this is also the minimum for ζi. There is no upper bound or maximum for

ζi. However, if we consider the upper bound ei ≤ rai, then the maximum

of ζi is 3r2ai.

(32) It is possible that for a certain relative geometry of positions of nodes,

there is no error in the estimated position even though there are errors in

the estimated distances.

(33) The most minimum possible value of el is elmin = 0.

(34) When all the localisation constants have the same sign, the simultaneous

minimum or simultaneous maximum values of Ex and Ey result in the

maximum value of el.

(35) When k1 > 0, k2 > 0, k3 > 0 and k4 > 0, then elmax due to simultaneous

minimum values of Ex and Ey is located at (e1, e2, e3) = (−ra1,−ra2, ra3)

given by elmax =
√
E2
xmin + E2

ymin. If elmax is due to simultaneous

maximum values of Ex and Ey, it is located at (e1, e2, e3) = (ra1, ra2,−ra3)

given by elmax =
√
E2
xmax + E2

ymax.

(36) If k1 < 0, k2 < 0, k3 < 0 and k4 < 0, then elmax due to simultaneous

minimum values of Ex and Ey is located at (e1, e2, e3) = (ra1, ra2,−ra3)

and is given by elmax =
√
E2
xmin + E2

ymin. If elmax is due to simultaneous
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maximum values of Ex and Ey, then in this case it is located at

(e1, e2, e3) = (−ra1,−ra2, ra3) and is given by elmax =
√
E2
xmax + E2

ymax.

5.2 Numerical Results

We conduct a number of simulation experiments to verify the analytical results

derived in Sections 4.3, 4.4 and 5.1. In the simulation experiments an unknown

node estimates its position using three neighbour beacon nodes analogous to

the results derived analytically. We use a two dimensional square sensor field of

size 50× 50 for our simulation experiments. We assume that the unknown node

can estimate its distance ri from a beacon node Bi with distance estimation

error ei. The actual position (xa, ya) of the unknown node is (30, 20) using a

Cartesian coordinate system for the square sensor field.

Table 5.7: Beacon nodes and their distances.
Beacon
Node

Position
Actual Distance

(rai)

B1 (34, 17) ra1 = 5
B2 (18, 29) ra2 = 15
B3 (20, 20) ra3 = 10

Table 5.8: Extreme values of errors.

E
x
p
er
im

en
t

Distance
Estimation

Error

Estimated
Distances

Experimental Results Analytical Results

e1 e2 e3 r1 r2 r3 (x, y) Ex Ey el E1 E2 Ex Ey el
1 −5 −15 −10 0 0 0 (28.75, 26.67) −1.25 6.67 6.78 75 −125 −1.25 6.67 6.78
2 −5 −15 10 0 0 20 (48.75, 53.33) 18.75 33.33 38.24 −325 −525 18.75 33.33 38.24
3 −5 15 −10 0 30 0 (17.50,−25.83) −12.50 −45.83 47.51 75 775 −12.50 −45.83 47.51
4 −5 15 10 0 30 20 (37.50, 0.83) 7.50 −19.17 20.58 −325 375 7.50 −19.17 20.58
5 5 −15 −10 10 0 0 (25.00, 25.83) −5.00 5.83 7.68 175 −125 −5.00 5.83 7.68
6 5 −15 10 10 0 20 (45.00, 52.50) 15.00 32.50 35.79 −225 −525 15.00 32.50 35.79
7 5 15 −10 10 30 0 (13.75,−26.67) −16.25 −46.67 49.41 175 775 −16.25 −46.67 49.41
8 5 15 10 10 30 20 (33.75, 0.00) 3.75 −20.00 20.35 −225 375 3.75 −20.00 20.35
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5.2.1 Extreme values of error

To verify the minimum and maximum values of different components of

localisation error i.e. ζi, E1, E2, Ex, Ey and el, we perform a simulation

experiment using an unknown node U1 positioned at (30, 20) with three beacon

nodes B1, B2 and B3 deployed in a square sensor field of size 50× 50. The

position coordinates of the beacon nodes and their actual distances from the

unknown node U1 are given in Table 5.7. For simplicity of comparison, the

positions of beacon nodes satisfy x2 < x3 < x1 and y1 < y3 < y2. As a result,

all the localisation constants have the same sign and k1 < 0, k2 < 0, k3 < 0 and

k4 < 0. The experiment is repeated for all the possible combinations of extreme

values of distance estimation errors. While the positions of beacon nodes and

their distances from the unknown node remain fixed as shown in Fig. 5.2,

the distance estimation errors change with each repetition of the experiment.

As positions of beacon nodes do not change, the geometry does not change.

Hence, the localisation constants remain unchanged for all repetitions of the

experiment. Using (4.45), (4.46), (4.58) and (4.59), these are calculated as

k1 = −0.0375, k2 = −0.0125, k3 = −0.0083 and k4 = −0.0583. We measure the

estimated position using multilateration. We also measure the experimental

values of Ex, Ey and el for each version of the experiment using (4.40), (4.53)

and (4.62). At the same time, we also calculate these values using our analytical

model from (4.60), (4.61) and (4.63) for the purpose of comparison. Both the

sets of results are given in Table 5.8. We observe that for a given set of distance

estimation errors, the localisation error calculated using the analytical results is

the same as measured using the simulation experiment. Therefore, we conclude

that our given analytical model and its various components are validated. We
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Figure 5.2: Multilateration analysis for extreme values of distance estimation
errors. (a)-(h) Node positions for 8 repetitions of the experiment. (f) Legend.
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further analyse the results and comment on different errors in the following

paragraphs.

5.2.1.1 Error term ζi

As analysed in Section 5.1.1, three types of error terms are responsible

for localisation error in the estimated position. These error terms are

ζi = 2raiei + e2i ∀i ∈ {1, 2, 3}. In Fig. 5.3, we plot the error term

ζ1 = 2ra1e1 + e21 as a function of distance estimation error e1 over the interval

−ra1 ≤ e1 ≤ ra1 where ra1 = 5 as used in our simulation experiment. As we

can see, the plot is a parabola. The plot for any error term ζi is similar. We

can rewrite the equation for an error term ζi as below

ζi = (ei − (−rai))2 − r2ai (5.232)

Let us compare it with the vertex form of the equation of a parabola

y = a(x− h)2 + k (5.233)
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Figure 5.3: Localisation error term ζi as a function of distance estimation error.
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Hence, the vertex (h, k) of the parabola lies at (−rai,−r2ai). Now general

equation of a parabola with focus (a, b) and directrix y = k is given by

y =
(x− a)2

2(b− k)
+
b+ k

2
(5.234)

Comparing it with (5.232), we get

a = −rai (5.235)

1

2(b− k)
= 1 (5.236)

b+ k

2
= −r2ai (5.237)

Solving (5.236) and (5.237), we get

b =
1

4
− r2ai (5.238)

k = −1

4
− r2ai (5.239)

Hence, the parabola has axis of symmetry at ei = −rai, focus at (−rai, 14 − r
2
ai)

and directrix at ζi = −1
4
− r2ai. Further, the plot can be divided into three

regions:

1. e1 < −5 i.e. e1 < −ra1

2. −5 ≤ e1 < 0 i.e. −ra1 ≤ e1 < 0

3. e1 ≥ 0

In the first region, ei < −rai. This implies that ri = rai + ei < 0 i.e. the

estimated distance is negative. As this is not possible, the part of the graph
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in this region is not significant. In the second region (−rai ≤ ei < 0), the

resulting error term ζi is negative i.e. the error contributed to the estimated

position coordinate is negative. Rate of change of error in this region is

smaller compared to the other two regions. In other words, error ei in distance

estimation does not cause as much error in position estimation in this region

as in the other two regions. The localisation error in this region is bounded on

both sides. It has a lower bound at ei = −rai where ζi = 2raiei + e2i = −r2ai.

The localisation error in this region has upper bound at ei = 0 where ζi = 0.

In the third region (0 ≤ ei ≤ rai), the distance estimation error as well as

the resulting error term ζi is positive. The localisation error in this region

is bounded only on one side. It has lower bound at ei = 0 where ζi = 0.

It has no upper bound. As the first region is not significant, we consider

and compare only later two regions. We observe that for an equal change in

distance estimation error, the resultant change in the localisation error is higher

in the third region compared to the second region. As the distance estimation

error varies from e1 = 0 to e1 = −ra1 = −5 in the second region, the error ζ1

changes from 0 to its minimum value ζ1min = −25. However, the same amount

of change in distance estimation error from e1 = 0 to e1 = +ra1 = 5 in the third

region results in change in the error ζ1 from 0 to its maximum value ζ1max = 75

for the interval −5 ≤ e1 ≤ 5. Hence, this change in the localisation error is

three times as high as when the distance estimation error varies from 0 to −ra1.

This is in conformance with our earlier result derived in (5.12). The localisation

error is higher when the distance estimation error is positive compared to when

the distance estimation error is negative. In other words, localisation accuracy

is higher if the estimated distances are shorter than the actual distances than if

the estimated distances are longer. As distance estimation error in the region
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−rai ≤ ei ≤ 0 gives lower position error, it is the preferred region of operation

for location estimation.

5.2.1.2 E1 and E2

From the results in Table 5.8, we observe that E1min = −325 occurs when

(e1, e3) = (−5, 10) and E1max = 175 is located at (e1, e3) = (5,−10). Similarly,

E2min = −525 occurs whenever (e2, e3) = (−15, 10) and E2max = 775 is located

at (e2, e3) = (15,−10) in accordance with (5.50)-(5.53). We further observe

that E1− = 75 at (−5,−10) and E1+ = −225 at (5, 10) satisfy (5.56). Similarly,

E2− = −125 at (−15,−10) and E2+ = 375 at (15, 10) in accordance with (5.59).

These values of E1 and E2, when the range estimation errors of the two

beacon nodes have the same sign, lie between the extreme values which occur

when the distance estimation errors of the two involved beacon nodes have

opposite signs. Note that E1 is a function of e1 and e3, and E2 is a function

of e2 and e3. There are only four possible combinations of extreme values of

(e1, e3) = (±ra1,±ra3) as listed in Table 5.1 and (e2, e3) = (±ra2,±ra3) as listed

in Table 5.2. Each of these combinations appears twice in Table 5.8 as part

of (e1, e2, e3) = (±ra1,±ra2,±ra3). Hence, each value of E1 and E2, including

the minimum and the maximum values, appears twice in Table 5.8.

We plot error E1 given by (4.49) in Fig. 5.4 and error E2 given by (4.50) in

Fig. 5.5. To give an idea of their relative dimensions, we draw a combined

plot of E1 and E2 in Fig. 5.6. For the two dimensional plot in Fig. 5.4b,

we keep either e1 = ±ra1 or e3 = ±ra3 and plot E1 using (4.49) as a function

of the remaining variable. The graph in Fig. 5.5b is plotted in a similar

manner. The plots in both Fig. 5.4 and Fig. 5.5 also verify the results
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Figure 5.4: Error (E1) as a function of distance estimation error for two
non-equidistant beacon nodes.

derived in Section 5.1.2. The minimum value of E1 is −325 and is located

at (e1, e3) = (−5, 10) conforming to (5.50) and the results in Table 5.8. The

maximum value of E1 is 175 and is located at (e1, e3) = (5,−10) conforming to

(5.51) and the results in Table 5.8. E1− at (e1, e3) = (−5,−10) is 75 and E1+

at (e1, e3) = (5, 10) is −225 conforming to (5.56). The plots of E2 in Fig. 5.5

also conform to the data in Table 5.8. Furthermore, from the plots in Fig. 5.4

and Fig. 5.5 for non-equidistant beacon nodes, it can further be observed that

E1 = 0 at a set of values of (e1, e3) and E2 = 0 at a set of values of (e2, e3). For
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Figure 5.5: Error (E2) as a function of distance estimation error for two
non-equidistant beacon nodes.

example, substituting e1 = ±5, ra1 = 5, ra3 = 10 in (4.49), we calculate that

E1 = 0 at (e1, e3) = (5, 3.23) and (e1, e3) = (−5,−1.34). Further, substituting

ra2 = 15, ra3 = 10, e3 = 3.23,−1.34 in (4.50), we determine that E2 = 0 at

(e2, e3) = (2.32, 3.23) and (e2, e3) = (−0.86,−1.34). Hence, even if the beacon

nodes B1, B2 and B3 have range estimation errors (e1, e2, e3) = (5, 2.32, 3.23)

or (e1, e2, e3) = (−5,−0.86,−1.34), the estimated position is still accurate

without any localisation error i.e. el = 0. This is in accordance with results in

Section 5.1.5.3. If the beacon nodes were equidistant so that ra1 = ra3 = 5, the
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Figure 5.6: Error E1 and E2.
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Figure 5.7: Error (E1) as a function of distance estimation error for two
equidistant beacon nodes.

plot for E1 would look as in Fig. 5.7. It can be observed that E1+ = E1− = 0

for this case as noted in Section 5.1.2.

5.2.1.3 Ex and Ey

As noted in Section 5.2.1.2, the minimum and maximum values of E1 and

E2 are repeated twice in Table 5.8. However, the minimum and maximum

of E1 and E2 occur simultaneously only once. The simultaneous minima of
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Figure 5.8: Components k1E1 and k2E2 of Ex from two angles (a) front azimuth
and (b) back azimuth.

E1 and E2 occur at (−5,−15, 10). As k1 < 0, k2 < 0, k3 < 0 and k4 < 0,

Ex and Ey have maximum values Exmax = 18.75 and Eymax = 33.33 at this

point as given by (5.140) and (5.142) respectively. The simultaneous maxima

of E1 and E2 occur at (5, 15,−10), and Ex and Ey have minimum values

Exmin = −16.25 and Eymin = −46.67 at this point as given by (5.139) and

(5.141). Similarly, we observe from the results in Table 5.8 that Ex− = −1.25,

Ex+ = 3.75, Ey− = 6.67 and Ey+ = −20.00 in accordance with (5.165) and

(5.168) in Section 5.1.3 and (5.207) and (5.214) with p = 1 in Section 5.1.5.2.
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Figure 5.9: Components k3E1 and k4E2 of Ey from two angles (a) front azimuth
and (b) back azimuth.

We plot the two components k1E1 and k2E2 of Ex in Fig. 5.8 using two

different angles. Similarly, the components k3E1 and k4E2 of Ey are plotted

in Fig. 5.9. We plot Ex using (4.60) in Fig. 5.10 as a function of e1 and

e2 for three different constant values of e3 i.e. e3 = −ra3 = −10, e3 = 0 and

e3 = ra3 = 10. Similarly, Ey is plotted using (4.61) in Fig. 5.11. To give a

relative comparison, we give combined plots of Ex and Ey as a function of e1

and e2 for e3 = −ra3, 0,+ra3 in Fig. 5.12. The plots in Fig. 5.10, Fig. 5.11

and Fig. 5.12 again verify the points of occurrence and magnitudes of extreme
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Figure 5.10: Error Ex as a function of e1 and e2 for three different constant
values of e3 i.e. e3 = −ra3, e3 = 0 and e3 = +ra3.
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Figure 5.11: Error Ey as a function of e1 and e2 for three different constant
values of e3 i.e. e3 = −ra3, e3 = 0 and e3 = +ra3.

values of Ex and Ey. It can also be observed that the distance between graphs

of Ex at e3 = +ra3 and e3 = 0 is three times the distance between graphs of

Ex at e3 = 0 and e3 = −ra3. A similar observation can be made about the

plots of Ey. This again shows that the localisation error due to positive range

estimation error equal to the actual distance is three times higher compared

to error due to the same magnitude of negative range estimation error.
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5.2.1.4 Localisation error (el)

From the results in Table 5.8, we observe that elmax = 49.41 which occurs

at (5, 15,−10) in accordance with (5.174) and observations in Section 5.1.4.

At the corresponding points (5,−10) and (15,−10), E1 and E2 have their

simultaneous maximum values E1max = 175 and E2max = 775 respectively.

Ex and Ey have their simultaneous minimum values Exmin = −16.25 and

Eymin = −46.67 at (5, 15,−10). Furthermore, elp− = 6.78 and elp+ = 20.35

for p = 1 and ξ = 3 in accordance with results in (5.220)-(5.223) derived in

Section 5.1.5.2. We plot localisation error el as a function of e1 and e2 for

three different values of e3 in Fig. 5.13. In accordance with the results in

Table 5.8, the maximum value of el occurs at (5, 15,−10). It is also evident

that the localisation error is lower at points where the range estimation errors

are similar for the three beacon nodes.
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Figure 5.12: Ex and Ey as a function of e1 and e2 for different constant values
of e3 (a) e3 = −ra3 (b) e3 = 0 (c) e3 = +ra3.
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5.2. Numerical Results

5.2.2 Localisation error due to equal distance

estimation errors

The unknown node at (30, 20) estimates its position using three beacon nodes

whose positions are given in Table 5.7 when an equal amount of error is present

in all the estimated distances i.e. e1 = e2 = e3. Resulting node positions are

shown in Fig. 5.14 and the numerical results are given in Table 5.9. As the

positions of the beacon nodes remain unchanged, the localisation constants

also remain the same for all repetitions of the experiment at k1 = −0.0375,

k2 = −0.0125, k3 = −0.0083 and k4 = −0.0583. We perform three pairs of

experiments. In the first version of each pair of experiment, we add an equal
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Figure 5.13: Localisation error el as a function of e1 and e2 for different constant
values of e3 (a) e3 = −ra3 (b) e3 = 0 (c) e3 = +ra3 (d) combined plot of (a),
(b) and (c).

Table 5.9: Localisation Error Due to Equal Distance Estimation Errors.

E
x
p

er
im

en
t

Distance
estimation

error

Estimated
distances

Experimental
results

Analytical
results

Common results

ei r1 r2 r3 (x, y) E1 E2 Ex Ey el

1
3 8 18 13 (30.75, 18.50) −30 30 0.75 −1.50 1.68
−3 2 12 7 (29.25, 21.50) 30 −30 −0.75 1.50 1.68

2
4 9 19 14 (31.00, 18.00) −40 40 1.00 −2.00 2.24
−4 1 11 6 (29.00, 22.00) 40 −40 −1.00 2.00 2.24

3
5 10 20 15 (31.25, 17.50) −50 50 1.25 −2.50 2.80
−5 0 10 5 (28.75, 22.50) 50 −50 −1.25 2.50 2.80
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Figure 5.14: Trilateration error due to equal values of distance estimation
errors.

195



5.2. Numerical Results

amount of positive distance estimation error to all the distances. In the second

version of the experiment, an equal but negative distance estimation error with

the same magnitude as in the first version is added to all the distances. From

the results in Table 5.9, it is evident that the estimated position in both the

cases is different but the magnitude of the localisation error remains the same.

Furthermore, magnitudes of E1, E2, Ex and Ey also remain the same. However,

their signs are opposite in the two versions of an experiment. As a result, the

estimated positions of the unknown node are 180◦ opposite but at an equal

distance from the actual position. The results are in accordance with our

derivations in Section 5.1.5.1.

5.2.3 Localisation error due to unequal distance

estimation errors

Using unequal distance estimation errors proportionate to the actual distances,

we run three pairs of experiments with unknown node at (30, 20) and

beacon nodes having positions and distances from the unknown node given

in Table 5.7. In the first part of a pair of experiments, the distance estimation

errors are negative according to (5.200). Positive distance estimation errors

Table 5.10: Localisation Error Due to Unequal Distance Estimation Errors.

E
x
p
er
im

en
t

Error
proportion

Distance
estimation

errors

Estimated
distances

Experimental
results

Analytical results Common results

p ξ e1 e2 e3 r1 r2 r3 (x, y) E1 E2 Ex Ey el

1
−0.1

-1.11
−0.50 −1.50 −1.00 4.50 13.50 9.00 (29.76, 21.27) 14.25 −23.75 −0.24 1.27 1.29

0.1 0.50 1.50 1.00 5.50 16.50 11.00 (30.26, 18.60) −15.75 26.25 0.26 −1.40 1.42

2
−0.5

-1.67
−2.50 −7.50 −5.00 2.50 7.50 5.00 (29.06, 25.00) 56.25 −93.75 −0.94 5.00 5.09

0.5 2.50 7.50 5.00 7.50 22.50 15.00 (31.56, 11.67) −93.75 156.25 1.56 −8.33 8.48

3
−1.0

-3.00
−5.00 −15.00 −10.00 0.00 0.00 0.00 (28.75, 26.67) 75.00 −125.00 −1.25 6.67 6.78

1.0 5.00 15.00 10.00 10.00 30.00 20.00 (33.75,−0.00) −225.00 −375.00 3.75 −20.00 20.35

196



5.2. Numerical Results

0 10 20 30 40 50
0

10

20

30

40

50

x

y

(a)

0 10 20 30 40 50
0

10

20

30

40

50

x

y

(b)

0 10 20 30 40 50
0

10

20

30

40

50

x

y

(c)

0 10 20 30 40 50
0

10

20

30

40

50

x

y

(d)

0 10 20 30 40 50
0

10

20

30

40

50

x

y

(e)

0 10 20 30 40 50
0

10

20

30

40

50

x

y

(f)

Figure 5.15: Trilateration error due to unequal values of distance estimation
errors.
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having the same magnitude as in the first part are used in the second part

of the experiment. The node positions are shown in Fig. 5.15 and the results

are given in Table 5.10. Both the estimated positions and the localisation

error are different in either version of a pair of experiments. If Ex, Ey and

el are designated as Exp− , Eyp− and elp− respectively for the first experiment

with negative distance estimation errors and as Exp+ , Eyp+ and elp+ in the

second version of a pair of experiments with positive distance estimation

errors in Table 5.10, then |Exp+ | = ξ|Exp−|, |Eyp+| = ξ|Eyp− | and elp+ = ξelp−

in accordance with our derivations in Section 5.1.5.2.

5.2.4 Geometry of nodes and distance estimation errors

To determine the effect of geometry of positions of beacon nodes on localisation

error, we run a simulation experiment using an unknown node U1 positioned at

(30, 20) with three beacon nodes B1, B2 and B3. The experiment comprises of

two parts with five repetitions in each part. In the first part of the experiment,

the positions of the three beacon nodes and hence their actual distances from

the unknown node remain fixed and are recorded in Table 5.11. In this way,

the geometry formed by the positions of the nodes remains unchanged with

each repetition of the experiment as is shown in Fig. 5.16. However, we

introduce a variable range estimation error so that the estimated distances

are different for each repetition. The unknown node estimates position (x, y)

using multilateration and we measure experimental values of Ex, Ey and el

using (4.40), (4.53) and (4.62). We also calculate k1, k2, k3, k4, E1, E2, Ex, Ey

and el using analytically derived results in (4.44)-(4.46), (4.49), (4.50), (4.57),

(4.58), (4.59) and (4.63). The resulting data are recorded in Table 5.12. Ex,
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5.2. Numerical Results

Ey and el are the same and are common in both experimental and analytical

results as was also confirmed in Section 5.2.1. Therefore, these are recorded

only once in Table 5.12. In the second part of the experiment, we change the

positions of nodes and hence the resulting geometry but use the same set of

distance estimation errors and estimated distances for each repetition of the

experiment. For this purpose, we vary the positions of the beacon nodes such

that their distances from the unknown node remain unchanged. In each next

repetition of the second part of the experiment, we pick new position of a

beacon node along the circumference of the circle with unknown node as the

centre and its fixed distance from the beacon node as radius. In this way,

the geometry formed by positions of nodes changes with each repetition of the

experiment as shown in Fig. 5.17. However, the distance estimation errors

and the estimated distances remain unchanged and are given in Table 5.13.

Both experimental and analytical results are recorded in Table 5.14. In both

Table 5.12 and Table 5.14, the localisation error and its x and y components Ex

and Ey calculated using the analytical results are the same as the localisation

error measured using the simulation experiment. This validates our analysis

and the derived results. In Table 5.12, we observe that k1, k2, k3 and k4 remain

unchanged as the geometry of the nodes does not change during first part of

the experiment. However, E1 and E2 change with each next iteration of the

experiment. This change in E1, E2 and localisation error el is due only to the

change in the distance estimation errors. In Table 5.14. k1, k2, k3 and k4 have

different values for different iterations as the geometry of the nodes also changes

with each iteration of the experiment. However, E1 and E2 remain unchanged

as the distance estimation errors and estimated distances do not change in the

second part of the experiment. The change in localisation error, in this case,
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from one iteration to the next is due only to the change in geometry formed

by node positions. We also observe from Table 5.12 that the localisation error

is comparatively larger when all the range estimation errors do not have the

same sign.

Table 5.11: Positions and Distances of Beacon Nodes in a Fixed Geometry.
Beacon
Node

Position
Actual Distance

from Unknown Node

B1 (30, 34) 14.00
B2 (40, 15) 11.18
B3 (16, 8) 18.44

Table 5.12: Positions of Beacon Nodes are Fixed but Distance Estimation
Errors are Variable.

E
x
p
er
im

en
t

Distance

Estimation
Error

Estimated

Distances

Experimental

Results
Analytical Results Common Results

e1 e2 e3 r1 r2 r3 (x, y) k1 k2 k3 k4 E1 E2 Ex Ey el
1 0.13 −0.40 −1.50 14.13 10.79 16.94 (29.28, 19.30) 0.0067 −0.0247 −0.0228 0.0133 56.56 44.25 −0.72 −0.70 1.00

2 −4.05 −0.66 2.09 9.95 10.52 20.53 (31.18, 22.80) 0.0067 −0.0247 −0.0228 0.0133 −178.53 −95.93 1.18 2.80 3.04

3 −3.84 −4.22 −1.31 10.16 6.96 17.13 (30.43, 20.66) 0.0067 −0.0247 −0.0228 0.0133 −46.27 −30.03 0.43 0.66 0.79

4 −4.66 −3.08 −0.29 9.34 8.10 18.15 (30.55, 21.59) 0.0067 −0.0247 −0.0228 0.0133 −98.35 −48.88 0.55 1.59 1.69

5 −3.55 2.18 1.62 10.45 13.36 20.06 (29.23, 23.28) 0.0067 −0.0247 −0.0228 0.0133 −149.07 −8.80 −0.77 3.28 3.37

Table 5.13: Fixed Distances of Beacon Nodes in a Variable Geometry.
Beacon
Node

Actual Distance
from Unknown Node

Distance
Estimation Error

Estimated
Distance

B1 14.00 0.13 14.13
B2 11.18 −0.40 10.79
B3 18.44 −1.50 16.94

Table 5.14: Positions of Beacon Nodes are Variable but Distance Estimation
Errors are Fixed.

E
x
p
er
im

en
t

Beacon Node

Position

Experimental

Results
Analytical Results Common Results

B1 B2 B3 (x, y) k1 k2 k3 k4 E1 E2 Ex Ey el
1 (30.00, 34.00) (40.00, 15.00) (16.00, 8.00) (29.28, 19.30) 0.0067 −0.0247 −0.0228 0.0133 56.56 44.25 −0.72 −0.70 1.00

2 (43.82, 22.26) (39.83, 14.67) (24.39, 2.44) (28.65, 19.90) 0.0895 −0.1450 −0.1129 0.1421 56.56 44.25 −1.35 −0.10 1.36

3 (16.41, 16.63) (21.78, 27.58) (47.49, 25.83) (30.87, 20.14) 0.0030 0.0158 0.0442 −0.0534 56.56 44.25 0.87 0.14 0.88

4 (43.27, 24.46) (36.11, 10.63) (14.98, 30.69) (29.01, 20.07) −0.0230 0.0071 −0.0242 0.0325 56.56 44.25 −0.99 0.07 0.99

5 (17.14, 14.48) (26.38, 30.58) (30.23, 1.56) (31.62, 19.45) 0.0439 −0.0196 0.0058 −0.0198 56.56 44.25 1.62 −0.55 1.71
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Figure 5.16: Multilateration analysis when geometry of nodes is unchanged
but distance estimation errors are variable (a)-(e) Node positions for iteration
1 to 5. (f) Legend.
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Figure 5.17: Multilateration analysis when geometry of nodes changes but
distances and distance estimation errors remain the same (a)-(e) Node
positions for iteration 1 to 5. (f) Legend.
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Figure 5.18: Multilateration analysis with two equidistant beacon nodes (a)-(e)
Node positions for iteration 1 to 5. (f) Legend.

5.2.5 Two equidistant beacon nodes

To investigate localisation error when two of the three neighbour beacon nodes

are equidistant from the unknown node, we deploy three beacon nodes along

with an unknown node in a simulation experiment as shown in Fig. 5.18. The

results are given in Table 5.15. The positions of beacon nodes are chosen such

that ra1 = ra3 for odd numbered experiments 1 and 3, and ra2 = ra3 for even

numbered experiments 2 and 4. For the last experiment 5, ra1 = ra2. It can be

observed from the results that E1 = 0 when ra1 = ra3 and e1 = e3. Similarly,

E2 = 0 when ra2 = ra3 and e2 = e3. For experiment 5, E1 = E2 as ra1 = ra2

and e1 = e2. The first version of the experiment with results in the first row

of Table 5.15 is a special case. The beacon nodes with ra1 = ra3 and e1 = e3
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Table 5.15: Localisation with Two Equidistant Beacon Nodes.
E
x
p
er
im

en
t

Beacon Node
Position

Actual
Distances

Estimated
Distances

Localisation Errors

B1 B2 B3 ra1 ra2 ra3 r1 r2 r3 E1 E2 Ex Ey el
1 (20.00, 20.00) (40.00, 15.00) (30.00, 30.00) 10.00 11.18 10.00 14.03 12.34 14.03 0.00 −69.52 1.39 −1.39 1.97

2 (30.00, 30.00) (41.47, 23.23) (26.52, 8.61) 10.00 11.92 11.92 11.16 10.15 10.15 63.58 0.00 1.73 −1.77 2.47

3 (28.51, 8.58) (30.00, 30.00) (30.56, 31.50) 11.51 10.00 11.51 9.56 8.23 9.56 0.00 9.01 10.55 −0.94 10.59

4 (30.00, 30.00) (41.82, 16.60) (39.32, 11.97) 10.00 12.30 12.30 8.23 7.45 7.45 63.69 0.00 1.67 −0.90 1.90

5 (30.23, 7.13) (37.18, 30.69) (30.00, 30.00) 12.87 12.87 10.00 10.35 10.35 5.14 14.88 14.88 −1.07 0.31 1.11

are positioned such that |x3 − x1| = |y3 − y1| so that |k2| = |k4|. As a result,

E1 = 0 and |Ex| = |Ey|. The experiment verifies results derived in Section

5.1.2.

5.2.6 Two equidistant collinear beacon nodes parallel to

an axis

We deploy three beacon nodes with an unknown node such that the two of

the beacon nodes are collinear and are equidistant to the unknown node. In

addition, the two nodes are parallel to either x-axis or y-axis. The deployed

Table 5.16: Beacon nodes when localising with two equidistant and collinear
beacon nodes.

E
x
p

er
im

en
t

Beacon Node
Position

Actual
Distances

Distance
Estimation

Error

Estimated
Distance

B1 B2 B3 ra1 ra2 ra3 e1 e2 e3 r1 r2 r3
1 (20, 30) (40, 30) (30, 10) 14.14 14.14 10.00 4 4 1 18.14 18.14 11.00
2 (10, 25) (36, 8) (24, 8) 20.62 13.42 13.42 −1 −2 −2 19.62 11.42 11.42
3 (37, 11) (38, 41) (23, 11) 11.40 22.47 11.40 5 0 5 16.40 22.47 16.40
4 (20, 10) (20, 30) (6, 27) 14.14 14.14 25.00 −3 −3 1 11.14 11.14 26.00
5 (9, 21) (39, 11) (39, 29) 21.02 12.73 12.73 −4 3 3 17.02 15.73 15.73
6 (38, 12) (23, 9) (38, 28) 11.31 13.04 11.31 −1 −2 −1 10.31 11.04 10.31
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Figure 5.19: Multilateration analysis with two equidistant beacon nodes
collinear to an axis (a)-(c) two equidistant collinear nodes parallel to x-axis
(d)-(f) two equidistant collinear nodes parallel to y-axis.
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nodes are shown in Fig. 5.19. The details of the beacon nodes are given in

Table 5.16. Experimental and analytical results are given in Table 5.17 and

are in conformance with each other. We obtain the common results in terms of

Ex, Ey and el from both the experimental and analytical results. Furthermore,

Ex = 0 or Ey = 0 when two collinear and equidistant beacon nodes are parallel

to the x- or y-axis respectively in accordance with our analysis in Section 5.1.3.

5.2.7 All equidistant beacon nodes

To test localisation when all the neighbour beacon nodes are equidistant, we

deploy an unknown node with three beacon nodes in a simulation experiment.

In each iteration, the beacon nodes are equidistant from the unknown node

such that ra1 = ra2 = ra3 as is shown in Fig. 5.20. The distance estimation

errors are also equal so that e1 = e2 = e3. From the results in Table 5.18, it can

be seen that the unknown node is able to determine its position accurately with

zero localisation error from mere information of position coordinates of beacon

nodes irrespective of the estimated distances. For example, the unknown sensor

node is able to localise itself even if the distances are assumed to be zero. As

Table 5.17: Results when two equidistant beacon nodes are collinear and
parallel to an axis.

E
x
p
er
im

en
t

Experimental Results
(Estimated Position)

Analytical Results Common Results

(x, y) k1 k2 k3 k4 E1 E2 Ex Ey el
1 (30, 17.30) 0.0250 −0.0250 −0.0125 −0.0125 108.14 108.14 0 −2.70 2.70
2 (30, 19.72) 0 −0.0417 −0.0294 −0.0343 9.43 0 0 −0.28 0.28
3 (30, 22.32) −0.0357 0 0.0179 −0.0167 0 −139.02 0 2.32 2.32
4 (34.53, 20) −0.0054 −0.0304 0.0250 −0.0250 −126.85 −126.85 4.53 0 4.53
5 (26.04, 20) 0.0167 −0.0074 0 0.0278 −237.56 0 −3.96 0 3.96
6 (29.12, 20) −0.0396 0.0333 0.0313 0 0 −26.53 −0.88 0 0.88
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Figure 5.20: Multilateration analysis with all equidistant beacon nodes (a)-(e)
Node positions for iteration 1 to 5. (f) Legend.

Table 5.18: Localisation With All Equidistant Beacon Nodes (E1 = E2 = 0,
Ex = Ey = 0, el = 0).

E
x
p
e
ri
m
e
n
t

Beacon Node

Position

Actual

Distance

ra1 = ra2 = ra3

Distance

Estimation Error

e1 = e2 = e3

Estimated

Distance

r1 = r2 = r3

Estimated

Position
Localisation Constants

B1 B2 B3 rai ei ri = rai + ei (x, y) k1 k2 k3 k4

1 (20.00, 20.00) (40.00, 20.00) (30.00, 30.00) 10.00 −10.00 0.00 (30, 20) 0.0250 −0.0250 0.0250 0.0250

2 (38.91, 15.17) (26.92, 10.35) (33.72, 29.42) 10.13 7.35 17.48 (30, 20) −0.0487 0.0364 0.0174 0.0132

3 (20.67, 28.60) (42.04, 24.01) (27.22, 32.39) 12.69 −3.98 8.71 (30, 20) 0.0377 −0.0170 0.0668 0.0295

4 (35.60, 11.41) (21.64, 25.95) (22.51, 27.01) 10.26 4.69 14.95 (30, 20) −0.0193 0.2829 0.0158 0.2373

5 (25.85, 32.13) (30.16, 7.18) (17.33, 21.99) 12.82 −6.63 6.19 (30, 20) −0.0289 −0.0198 −0.0250 0.0166
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5.3. Summary

distances as well as the estimation errors are equal, the positive and negative

terms in (4.49) and (4.50) are equal and cancel out resulting in E1 = E2 = 0

and hence Ex = Ey = 0. As a result, the localisation error el = 0 and the node

is able to determine its accurate position.

The preceding analysis gives a good insight into the composition of localisation

errors and their relationship with the range estimation errors. However, the

analysis has limitations. It is limited only to errors resulting from three

neighbour beacon nodes and a planar sensor field. Furthermore, the analysis

can be used in improving the localisation accuracy only if the errors in the

distances can be approximated.

5.3 Summary

Using the analytical model developed in the preceding chapter, we have

analysed localisation error in applications where the distance estimation errors

are comparable to the actual distances. In particular, we have analysed

localisation error and its various components under the condition of extreme

distance estimation errors and determined the minimum and maximum values

of localisation error. We have shown that positive distance estimation errors

have more severe effect on localisation error compared to negative distance

estimation errors. We have derived a number of additional novel and unique

results which will help in the design and analysis of better and robust

localisation algorithms. The analytical model and the derived results have

been verified using simulation.
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Chapter 6

Conclusion

This thesis has presented a number of contributions in the preceding chapters.

In this concluding chapter, we review and reflect upon the work presented in

the thesis. We also discuss possible research directions which can be based

upon the work in this thesis.

6.1 Thesis Summary

In the beginning of this thesis, we have presented the system development

life cycle of localisation algorithms for wireless sensor networks and critically

analysed the performance evaluation techniques. When the positions of sensor

nodes are estimated using a localisation algorithm, these may not be accurate.

In other words, the estimated positions may have errors. Therefore, the error

characteristics of a localisation algorithm play an important role in the decision

of its deployment for a particular application. Hence performance evaluation of

a localisation algorithm, which investigates and analyses error characteristics
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of a localisation algorithm is an important step in the system development

life cycle of a localisation algorithm. In this thesis, we have presented the

context and criteria for the performance evaluation of a localisation algorithm.

We have also described and discussed a diverse range of performance metrics

which are used in the literature for the measurement and testing of different

types of errors and other aspects of localisation algorithms. The comprehensive

review of performance evaluation and metrics intends to serve as a reference

and guideline for testing of localisation algorithms. No review of such

comprehensive nature is available in the previously published literature. We

have also presented our own novel metrics which can be used for the evaluation

of performance of localisation algorithms. These metrics are used for the

performance evaluation of our proposed ripple localisation algorithm. The

proposed new metrics evaluate aspects of localisation algorithms which are

not covered by the previously available metrics.

We have also presented an new, novel, intelligent and energy efficient

localisation algorithm which we have named ripple localisation algorithm. The

algorithm is distributed so that each sensor node privately estimates its own

position. The algorithm achieves very good levels of localisation accuracy,

scalability, coverage and robustness while maintaining efficient utilisation of

energy. This is a challenge which has not been addressed by the majority

of previously available localisation algorithms. The sensor nodes do not

transmit anything and only listen passively to beacon nodes for the purpose

of localisation. Hence communication overhead is also avoided and the ripple

localisation algorithm is energy efficient. Another factor, which contributes

to the energy efficiency of the algorithm is the transmission of beacon signals

with successive increment in the transmission power in the form of a ripple. An
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analysis of the energy utilisation of the algorithm shows that it saves 66.67%

energy in the transmission of beacon signals compared to those algorithms that

transmit beacons at fixed maximum power level. Simulation results show that

the algorithm has a high localisation efficiency. It is able to localise all the

sensor nodes with the help of only a few beacon nodes. Response time of the

algorithm is also short and it is able to quickly localise a sensor node. The

algorithm has a high degree of accuracy and yields better results than the two

compared and previously published algorithms. It also provides control over

localisation granularity and is therefore suitable for a wide range of applications

requiring either coarse-grained or fine-grained estimation of sensor position. It

is a completely new feature which is not present in the previously available

localisation algorithms.

In this thesis, we have developed a new technique for solving multilateration

equations. The new technique greatly simplifies the solution to multilateration

problem. For example, one of the widely used previous techniques involves

computation of an inverse. However, this is not required in our technique.

We have shown that the overdetermined system of equations resulting from

multilateration in two dimensions can be reduced to a set of two equations.

These equations can then be solved simultaneously to estimate the two position

coordinates (x, y) in a plane using conventional techniques, such as Cramer’s

rule. Based upon this new solution technique, we have developed and presented

an accurate analytical model of trilateration error. There is no analytical

model of localisation error available in the previously published literature.

The model is a function of range estimation errors. Given the actual and

estimated distances, it accurately predicts error in the estimated position.

The analytical model specifies the complete localisation error vector in terms
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of magnitude and direction. The analytical model can be employed for the

analysis of localisation error in any application where multilateration is used

for position estimation. This includes short range wireless networks, such

as wireless sensor networks (WSN), internet of things (IoT), wireless personal

area networks (WPAN) and global networks, such as global navigation satellite

system (GNSS) including global positioning system (GPS). However, in this

thesis, we have restricted ourselves to localisation error analysis in short range

wireless networks only where the range estimation errors are comparable to

the actual distances between the nodes.

As another major contribution in this thesis, we have performed a

comprehensive analysis of trilateration localisation error in wireless sensor

networks using the analytical model that we have developed. Our investigation

has focused on determining the conditions under which the localisation error

is zero, minimum and maximum. For the purpose of this analysis, we have

investigated the individual components of localisation error in addition to

the whole localisation error. Consequently, we have derived a number of

novel and useful results. We have determined the minimum and maximum

values of localisation error and its various components for a given bound on

range estimation errors. We have also determined conditions under which the

localisation error can be zero. We have shown that the difference in the x

and y components of localisation error depends only upon the geometry of

placement or topology of beacon nodes. We have shown that, it is possible to

determine accurate position even if the estimated distances are not accurate.

We have further shown that an unknown node can determine its exact position

by merely using the position coordinates of three neighbour beacon nodes

and without determining distances from them if it can ascertain that it is
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equidistant from the beacon nodes. We have also shown that positive range

estimation errors have more severe effect on the localisation error compared

to negative range estimation errors. In particular, we have shown that the

localisation error is three times higher when the range estimation errors equal

to the actual distances are additive compared to when these are subtractive.

All the presented results are novel and unique and no previous investigation in

the existing literature has arrived at similar results. Therefore, these results

are significant and provide a new insight into localisation. The analytical

model and the results of error analysis are verified using a comprehensive set

of simulation experiments.

6.2 Future Work

In this section, we give future research directions for each of the contributions

made in this thesis.

The performance evaluation metrics proposed in this thesis have already been

used and tested in the simulation experiments conducted for the performance

evaluation of ripple localisation algorithm. As a future work, performance of

various localisation algorithms can be tested and compared using the metrics

presented in this thesis.

The design and analysis of a distributed, intelligent and energy efficient

localisation algorithm has been presented in this thesis. The performance

of the algorithm has been evaluated using simulation experiments. The

work on the ripple localisation algorithm can be extended in many ways.

First, the ripple of beacon signals can be used in combination with other
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techniques to develop hybrid localisation algorithms. Second, the algorithm

considers a simple channel model of unobstructed and unconstrained sensor

field. The work can be extended to investigate position estimation in more

complex and hindered environments. This may include development of channel

models of the complex hindered environments which are being investigated for

deployment and position estimation of sensor nodes. Third, the concept of

ripple can be explored for localisation in cellular networks and cognitive radio

networks.

The analytical model of localisation error developed and presented in this

thesis considers only three neighbour beacon nodes. It can be generalised for

an arbitrary k ≥ 3 number of neighbour beacon nodes. Furthermore, the model

can be extended to three dimensional wireless sensor networks. The generalised

and extended model can then be used for analysis of multilateration localisation

error in three dimensional networks deploying three or more neighbour beacon

nodes.

The analytical model and error analysis can also be applied to GNSS. In

the GNSS, the magnitudes of distance estimation errors are much smaller

compared to the distances between the satellites and the device being localised.

Considering this fact, the error analysis can be applied to the GNSS and the

error in the estimated position as a function of distance estimation errors can

be investigated.
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