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Summary: This paper considers the dependence between weather events, e.g., rainfall or

snow-melt, and the number of water-related property insurance claims. Weather events which

cause severe damages are of general interest, decision makers want to take efficient actions against

them while the insurance companies want to set adequate premiums. The modelling is challenging

since the underlying dynamics vary across geographical regions due to differences in topology,

construction designs and climate. We develop new methodology to improve the existing models

which fail to model high numbers of claims. The statistical framework is based on both mixture

and extremal mixture modelling, with the latter being based on a discretized generalized Pareto

distribution. Furthermore, we propose a temporal clustering algorithm and derive new covariates

which lead to a better understanding of the association between claims and weather events. The

modelling of the claims, conditional on the locally observed weather events, both fits the marginal

distributions well and captures the spatial dependence between locations. Our methodology is

applied to three cities across Norway to demonstrate its benefits.

Keywords: Covariates; Extremal dependence; Extremal mixture; Insurance claims; Mixture

modelling; Poisson hurdle model; Spatio-temporal modelling

1 Introduction

Since large parts of society and the economy are weather-sensitive, insurances against undesirable

weather events have become an important economical factor. Mills (2005) state that the payout

by insurance companies for weather related disasters in developing countries is three times higher

than the international aid. In order to set premiums correctly, the insurance companies require

accurate models. Thus, it is necessary to understand which characteristics of weather events are

responsible for damages. While natural disasters such as Hurricane Katrina, which caused damages
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of over $100 billion in 2005 (Knabb et al., 2005), lead to large monetary losses, the majority of

insured losses are related to small scale weather events (Mills, 2005; Botzen and Van Den Bergh,

2008). Damages caused by precipitation are, for instance, studied by Schuster et al. (2006) and

Kubilay et al. (2013). In this paper, interest lies in the impact of small-scale weather events, e.g.,

heavy rain or snow-melt.

Traditionally, in the actuarial literature, the distribution of the total money claimed for a

weather event is derived from a model for the joint distribution of the number of claims N and

the average claim size S per property affected in the event. Klugman et al. (2012) model this joint

distribution, conditional on weather covariates X, as

[(N,S) | X] = [S | N ]× [N | X] .

Hence, the average claim size S is considered to be conditionally independent of the weather effects

X, given the number of the claims N . The justification for this assumption is that the severity of

the insurance claims depends on various factors, including the wealth of the population, the type

of construction, building and repair standards, the age of structures and general economic factors

(Department for Environment, Food and Rural Affairs, 2004). A Gamma model is often assumed

for the claim size with covariate N (Frees and Valdez, 2008; Haug et al., 2011), although mixed

Gamma models have also been suggested (Yip and Yau, 2005).

The most critical part when modelling the distribution of [(N,S) | X] is the distribution of

N | X due to the complex and strong effect of the covariates (Scheel et al., 2013). So we focus our

study on capturing the relationship between weather covariates and the number of claims. We have

a particular focus on the high numbers of claims, as these are the most critical for the insurance

industry as this influences re-insurance strategies. We also derive the marginal distribution of N

from this model by integrating out the effect of the covariates over their distribution π (X), that

is,

P (N = n) =

∫
P (N = n | X = x)× π (x) dx, for n ≥ 0. (1)

This component of our model is fundamental to any assessment of the impact of climate change

for the insurance industry as π (·) varies with climate change so the associated marginal for N can

be derived for any future period (Sanders and Phillipson, 2003; Jenkins et al., 2008; Botzen and

van den Bergh, 2012).

We consider the insurance and weather data used by Haug et al. (2011) and Scheel et al.

(2013). The insurance data provide the daily number of claims caused by either precipitation,

surface water, snow melt, undermined drainage, sewage back-flow or blocked pipes for all Norwe-

gian municipalities between 1997 and 2006. Let Nk,t denote the number of claims on day t for

municipality k. Table 1 details the set of meteorological and hydrological covariates Xk,t which

are either empirical or model generated with a single value for each covariate for day t and munic-
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Table 1: Weather covariates Xk,t provided by the Norwegian Meteorological Institute and the Norwegian
Water Resources and Energy Directorate.

Variable Description Unit

Rk,t Total amount of precipitation in day t mm
(Between 6am on day t to 6am on day t+ 1)

Ck,t Mean temperature in day t ◦C

Dk,t Drainage run-off in day t mm

Sk,t Snow-water equivalent in day t mm
(Amount of water in form of snow)

ipality k. The weather data are derived by spatial interpolation, weighted proportionally to the

population density within the municipality. Norway’s climate varies spatially due to the country’s

large geographical extent and the input of the Gulf Stream. For instance, western coastal areas

observe relatively mild temperatures and large amounts of rainfall while central (inland) areas,

such as Oslo, are drier and have more of a continental climate. These differences are likely to

lead to a spatial variation of the claim dynamics and have to be accounted for in the modelling

framework.

Scheel et al. (2013) propose a Bayesian Poisson hurdle (BPH) model for Nk,t | Xk,t to account

for the frequency of zero claims, Nk,t = 0, being larger than a standard Poisson model would

suggest, and the covariate mechanisms leading to any claim being potentially different from the

covariate effects for the number of claims given damage occurred. They also derive additional

simple covariates from the covariates in Table 1. Formally, their probability model is then given

by

P (Nk,t = n | Xk,t) =


αk,t if n = 0

(1− αk,t)
λnk,t

n! [exp(λk,t)− 1]
if n > 0,

(2)

where both λk,t > 0 and αk,t ∈ [0, 1] depend on the covariates Xk,t. According to distribution (2),

αk,t corresponds to the frequency of zero claims while λk,t is the rate of a zero-truncated Poisson

distribution for the number of claims, given at least one claim is reported.

Scheel et al. (2013) assess the predictive performance of their BPH model on a weekly basis

and the results are generally positive. Table 2 in Scheel et al. (2013) indicates, however, that their

BPH model substantially underestimates the most important feature of the distribution, the high

numbers of claims, and hence underpredicts the impact of high precipitation levels, especially for

Oslo.

Figure 1 provides some insight into the causes of the lack of model fit for the BPH model by

Scheel et al. (2013). Firstly, observations Nk,t > 3 for Oslo or Bergen are not always associated

with high amounts of precipitation on either the claim day t or the previous day t−1. While some
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Figure 1: Observed covariate values for Rk,t and Rk,t−1 for the original data by Scheel et al. (2013) for
(a) Oslo and (b) Bergen. Days with Nk,t > 3 are highlighted, giving the value of Nk,t.

claims are linked to weak rainfall coinciding with snow-melt, others occur over periods of mild

and dry weather. The latter may be caused by localized weather events which are not recorded

by any measurement station. Further, claims caused by blocked pipes or sewage back-flow are not

necessarily related to the recent weather. Ignoring such effects may influence the estimated model

and lead to biased estimation of the covariate effects. Finally, while claim numbers for Oslo lie

between zero and three claims on about 97% of days, much higher numbers occur and these are

generally related to high precipitation levels, sometimes in combination with snow-melt. A Poisson

distribution is incapable of fitting these extremes while accounting for the high frequency of lower

claims.

This paper introduces several new methods in order to improve the model fit which have generic

relevance to the modelling of insurance claim data. Interest lies, in particular, in the days with

high numbers of claims. We extend the zero-truncated Poisson component in the BPH approach

of Scheel et al. (2013) using discrete extreme value and mixture models. Extreme value models

such as the generalized Pareto distribution (GPD) are widely applied to estimate the tail of a

random variable (Holmes and Moriarty, 1999; Coles, 2001; Li et al., 2005). Here, a discretized

analogue of the GPD is used since Nk,t takes non-negative integer values only. There are only

very limited previous examples of discrete extreme value models (Prieto et al., 2014; Buddana and

Kozubowski, 2014) or mixture models (Smith and Goodman, 2000; Bottolo et al., 2003) used in

extreme value modelling, and none of these cover cases where both are relevant and non-extreme

values are simultaneously modelled, i.e., what we require for modelling the claims data.
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In addition to advancing the statistical model, the input data are transformed following an

exploratory analysis of the data for Oslo in Figure 1(a). This leads to the derivation of new

daily covariates which exploit temporal and spatial patterns in Xk,t. Furthermore, we introduce a

temporal clustering algorithm to obtain periods of consecutive days which are exposed to the same

weather event for each municipality. The distribution of clustered claims, conditional on a set of

cluster covariates, is then modelled municipality-wise. Specifically, our methodology is applied to

the data for the municipalities of Oslo (Figure 1(a)), Bergen (Figure 1(b)) and Bærum. The model

estimates are used to assess dependence of claims over different municipalities, conditionally on

the covariates, and to derive the marginal distribution in expression (1) to predict the frequency

of extreme claim numbers, under the assumption of no climate change. We find that the clustered

claims are spatially independent, given the covariates, indicating that our model has captured the

key meteorological factors that explain water-related insurance claims in Norway.

The remainder of this paper is organized as follows: Section 2 details our extensions of the

zero-truncated Poisson distribution and introduces an approach to optimize tail dependence for

additional covariates. Section 3 defines the new daily covariates and Section 4 introduces the

temporal clustering algorithm. Our extended model is then applied to the three Norwegian mu-

nicipalities in Section 5 where conditional, marginal and spatial properties of the claim process are

estimated. The paper concludes with a summary and discussion in Section 6.

2 Extension of the Bayesian Poisson hurdle model

This section details our extensions to the Poisson hurdle model in expression (2). Specifically, we

focus on the zero-truncated Poisson component to obtain a better model for claim occurrences,

that is, Nk,t | (Xk,t, Nk,t > 0). Since λk,t and αk,t are conditionally independent, given the data

(Scheel et al., 2013), any change in this component does not affect αk,t. For notational simplicity,

the indexes k and t are dropped in the following. Section 2.1 introduces a mixture model while

Section 2.2 presents an integer-valued GPD and combines it with the zero-truncated Poisson dis-

tribution via an extremal mixture model. The marginal distribution for the number of claims in

an event is then derived in Section 2.3. Section 2.4 details a general methodology to optimize the

tail dependence between a response and a family of predictors which is later applied in Section 4.

2.1 Mixture modelling

Figure 1, coupled with exploratory analysis, indicates that claim dynamics are mainly driven by the

observed precipitation and snow-melt levels. However, some claims are reported over periods which

exhibit mild and dry weather, implying the occurrence of unobserved claim processes. Information

on the precise cause of damage, e.g., snow-melt or sewage back-flow, may allow the fit of a separate

model for each cause but these data are not available.
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We propose a two-component mixture distribution with discrete positive-valued random vari-

ables Y and Z for N | (X, N > 0) to accommodate for the varying weather-dependence of these

claim types. The first component Y captures the dependence of N on the weather covariates X

while the second component Z considers the claims which are caused by unobserved processes. All

claims on a day are assumed to come from exactly one of the two components. The probability

mass function for N | (X, N > 0) is then formally given by

P (N = n | X, N > 0) = p P (Y = n | X) + (1− p) P (Z = n) , n ≥ 1, (3)

where p denotes the probability of N | (X, N > 0) being distributed according to Y | X, with the

modelling of this distribution discussed in Section 2.2. We assume that Z has a zero-truncated

Poisson distribution with rate parameter κ > 0, with

P (Z = n) =
κn

n! [exp(κ)− 1]
, n ≥ 1. (4)

Note, the case p = 0 in distribution (3) corresponds to the BPH model in (2) without covariate

structure and p = 1 gives exactly the BPH model if Y | X is a zero-truncated Poisson distribution.

The choice of only two components is due to parsimony and the results in Section 5 indicate that

this number appears to be sufficient.

2.2 Extremal mixture modelling

Defining the mixture component Y | X in model (3) as a zero-truncated Poisson distribution leads

to a poor fit of the extreme claim numbers for Oslo and Bergen in Figure 1. Hence, we extend

the model in order to allow for a more flexible tail behaviour. In particular, the lower claim

numbers are still modelled as being distributed according to a zero-truncated Poisson model but

the highest observations are modelled using an extreme value tail model. First, a distribution for

the extremes of a discrete random variable is presented without the consideration of covariates. The

zero-truncated Poisson model is then combined with this distribution and covariates are included.

Consider the modelling of Y | Y > u, where u ∈ R is a high threshold. We view that the

best modelling approach for the discrete variable Y is to consider it as Y = dHe, where H is

a continuous random variable. In an extreme value modelling framework, the distribution of H

above a high threshold u is generally modelled by a GPD with scale parameter σu and shape

parameter ξ (Coles, 2001). For a large enough choice of u, the distribution of H | H > u is then

approximately given by

P (H ≤ h+ u | H > u) = 1−
(

1 +
ξh

σu

)− 1
ξ

+

, h > 0, (5)
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where x+ = max(x, 0), σu > 0 and ξ ∈ R, with the value for ξ = 0 interpreted as the limit as

ξ → 0. We then derive a discretized GPD to model Y | Y > u via a GPD for H above threshold

buc. The probability mass function for Y | Y > u, for n > u, is formally given by

P (Y = n | Y > u) = P (H ≤ n | H > buc)− P (H ≤ n− 1 | H > buc)

=



[
1 +

ξ(n− 1)

σu

]− 1
ξ

+

−
[
1 +

ξn

σu

]− 1
ξ

+

ξ 6= 0

exp

(
−n− 1

σu

)
− exp

(
− n

σu

)
ξ = 0.

(6)

In the following, the distribution (6) is termed an integer-valued Generalized Pareto distribution,

IGPD(σu, ξ, u), above threshold u with scale σu and shape ξ. Interpretation of the shape parameter

ξ is equivalent to that of the GPD: a negative shape parameter ξ < 0 corresponds to the distribution

being short-tailed, with upper bound. Conversely, ξ > 0 indicates a power-law tail, much heavier

than a Poisson distribution.

It is interesting to examine how the properties of this distribution vary with the threshold, i.e.,

how the distribution changes as the threshold is increased to v > u. The GPD has a threshold

stability property, that is, if H − u | H > u ∼ GPD (σu, ξ), then for any higher threshold v > u,

H − v | H > v ∼ GPD (σu + ξ(v − u), ξ) .

As such, ξ is constant with increasing threshold while the scale parameter σu is not. An equivalent

property also holds for the defined IGPD. In particular, if Y | Y > u ∼ IGPD(σu, ξ, u), then for

any v > u,

Y | Y > v ∼ IGPD(σu + ξ(bvc − buc), ξ, v); (7)

see Appendix A for the proof. This is important since it allows the selection of a threshold u

for the IGPD via a threshold stability property, the same technique as applied for a GPD (Coles,

2001).

Prieto et al. (2014) and Hitz (2017) consider a similar formulation to expression (6). The

GPD has an asymptotic justification for its form given by limit results of Pickands (1971) as the

threshold tends to the upper endpoint of the distribution. Similar limit results hold for discrete

random variables (Anderson, 1970, 1980; Shimura, 2012) but these only hold for ξ ≥ 0 and are

unable to provide non-degenerate limits for the Poisson distribution as the tail decays too quickly.

Thus, these limit results do not provide flexible tail models for discrete random variables above

non-limit thresholds.

The Poisson distribution does not follow an IGPD exactly above any high threshold u for any

value of ξ. However, Anderson et al. (1997) show that asymptotically the distribution of the

excesses of the threshold of a Poisson variable GPD limit, with ξ = 0, if the threshold and the
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Poisson mean parameter tend to infinity at appropriate rates. Therefore, an estimate of ξ that is

statistically significantly different from zero for the IGPD indicates that the tail of the underlying

distribution is not Poisson.

The IGPD in expression (6) is combined with the zero-truncated Poisson distribution to form an

extremal mixture distribution, i.e., a distribution with different forms below and above a threshold

u. Such mixtures have been widely studied in a continuous variable setting (Coles and Tawn,

1991; Frigessi et al., 2002; Behrens et al., 2004; Carreau and Bengio, 2009; MacDonald et al., 2011)

and the estimation of the threshold u is considered too. Here, observations smaller than or equal

to u are modelled as being zero-truncated Poisson distributed while being IGPD otherwise. The

probability mass function for Y | X is then given by

P (Y = n | X) =


λn

n! [exp(λ)− 1]
1 ≤ n ≤ u

Cu P (Y = n | X, Y > u) n > u,

(8)

where Cu denotes the probability of a zero-truncated Poisson distribution with parameter λ ex-

ceeding u and P (Y = n | X, Y > u) is given by model (6). The parameters λ and σu both vary

with the covariates X, with ξ constant, a standard modelling assumption in extreme value mod-

elling (Coles and Tawn, 1996). Following Eastoe and Tawn (2009), from distribution (7), σu needs

to be linear in ξ to ensure that the structural form of the model is invariant to the precise choice

of threshold. However, σu is typically modelled in applications with a log-linear model (Davison

and Smith, 1990) which is not of the required form for threshold invariance. To overcome this

weakness, we propose taking

σu = ζ + exp
(
β0 + βTX

)
, (9)

with ζ > 0, β0 ∈ R and β ∈ Rq, where q denotes the number of covariates.

The model defined via the expressions (3), (4) and (6) leads to N | (X, N > u) being a mixture

of an integer-valued GPD, i.e., Y | Y > u ∼ IGPD(σu, ξ, u), and a truncated Poisson distribution,

i.e., Z | Z > u ∼ tPois(κ, u), with mixing probability pu given by

pu =
p P(Y > u)

p P(Y > u) + (1− p) P(Z > u)
. (10)

Critically for model and threshold selection is the property of threshold-stability. For any v > u and

with v < u−σu/ξ for ξ < 0, the distribution of N | (X, N > v) is also a mixture of IGPD(σv, ξ, v),

and tPois(κ, v) variables with mixing probability given by expression (10) with u = v, and where

σv = σu + ξ(bvc − buc), with σu given by representation (7); see Appendix B for the proof. Thus

both the distribution and structure of the covariate effect in our model is not a function of the

threshold u, provided a sufficiently high threshold is selected.
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2.3 Marginal distribution of claims

In addition to wanting to know about how covariates lead to the largest number of claims, we are

also interested in estimating the marginal distribution of the number of claims, as explained in

the introduction. Although it is possible to estimate P (N = n) directly with some new statistical

model, it is likely to be complex due to the strong effects of the covariates, and it is unlikely

to be self-consistent with the conditional distribution of N | X. It is more natural to estimate

P (N = n) using the estimated conditional distribution P (N = n | X) described in Section 2.2 since

the weather covariates X describe the key sources of variation of N . Specifically, we can write the

marginal survivor function for v > 0 as

P (N > v) = P (N > v | N > 0) P (N > 0)

=

∫
x

P (N > v | x, N > 0) π(x) dx P (N > 0) ,
(11)

where π is the joint density of X given that N > 0. The benefits of conditioning on N > 0 first

are that we only have to model the distribution of covariates when they lead to a claim and we

avoid the need to model P (N > 0 | X). For our model, the term P (N > v | x, N > 0) is given by

expression (3); P (N > 0) is estimated empirically and the estimation of π(·) is discussed below.

From expressions (3) and (11), the distribution of N is given by the following mixture model

P (N > v | N > 0) = p

∫
x

P (Y > v | x) π(x) dx + (1− p) P (Z > v) , (12)

where Z does not depend on the covariates X but Y does. We then model the probability

P (Y > v | x) using the extremal-truncated Poisson-IGPD mixture model (8) with threshold u.

It is generally sufficient to estimate the integral in expression (12) with the empirical distribution

of X | N > 0 being sufficient for estimating π. However our exploratory analysis has shown that

events of the form Y > v, where v � u, i.e., a large marginal quantile of Y , can only be achieved

when one of our weather covariates is in the upper tail of its distribution, so we cannot simply

use the empirical estimate of π in this case. For this case, we propose a univariate parametric

tail model which is applied to the relevant marginal component of X; details are explained in

Section 5.3.

2.4 Optimizing tail dependence to develop new covariates

The generalized linear modelling framework by Scheel et al. (2013) has limited ability to account

for the interaction effect of multiple risk factors; e.g., snow-melt and rainfall. This is due to a

range of reasons, these include: simple interaction terms not capturing the non-linearity of the

known physical properties of the relationship, parsimony, and a lack of weight given to extreme

events, which is when the signal to noise ratio is at its greatest. These weaknesses motivate our
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approach to construct an additional covariate, based upon X, which overcomes these deficiencies

and is tuned using the extreme number of claims data.

Specifically, a new covariate X∗ is derived non-linearly from X, as X∗ = f(X,θ), with unknown

parameters θ and the function f is selected based on the context of the problem. Since X∗ is

motivated by the extreme claim numbers, θ should be selected such that the tail dependence

between X∗ and N is maximized. As the dependence structure between X∗ and N is invariant to

the marginal distributions (Nelsen, 2007), we transform the observations of X∗ and N to common

marginals. Furthermore, as our interest is in extreme values, we use a distribution with a heavy

tail to emphasize the extremes and, therefore we map (X∗, N) to Fréchet margins. Specifically,

we use the probability integral transformation with the distributions of X∗ and N each being

estimated empirically; see Section 4.3 for details. Let (V1(θ), V2) denote the transformed variables.

Although N is discrete, the approximation by a continuous random variable is reasonable as the

focus is on the upper tail which has considerably variability. We adapt the approach by Russell

et al. (2016) for maximizing covariate combinations for extreme value analysis to estimate θ. For

notational simplicity, we write V1 instead of V1(θ) in the following paragraphs and we will return

to this notation at the end of the section.

The approach of Russell et al. (2016) is based on the properties of bivariate regular variation

(Resnick, 2013), which is a weak assumption. For (V1, V2) identically distributed random variables

with unit Fréchet margins, bivariate regular variation means that for any Borel set B ⊂ [0, 1] and

v ≥ 1

lim
s→∞

P(V1 + V2 > sv, V1/(V1 + V2) ∈ B | V1 + V2 > s) = v−1Ψ({B}), (13)

where Ψ is known as the spectral distribution, corresponding to the distribution function of a

[0, 1] random variable with mean 1
2
. Critically, bivariate regular variation implies that V1 +V2 and

V1/(V1 +V2) are asymptotically conditionally independent. The weakest tail behaviour between V1

and V2 occurs when Ψ({0}) = Ψ({1}) = 1/2 and the strongest when Ψ({1
2
}) = 1, the former and

latter corresponding to asymptotic independence (Ledford and Tawn, 1996) and perfect depen-

dence, respectively. The greater the mass that the spectral measure places close to 1
2
, the stronger

the tail dependence.

To apply the asymptotic property of bivariate regular variation in practice, we need to be able

to estimate Ψ. In practice, we assume that the limit (13) holds for a large finite value of s, i.e.,

for 0 ≤ w ≤ 1, with

P(V1/(V1 + V2) ≤ w | V1 + V2 > s̃) = Ψ(w), ∀s̃ > s. (14)

Given observations {(V1,i, V2,i)}mi=1, Ψ can then be estimated by

Ψ̃s(w) =
1

|Qs|

m∑
i=1

1(V1,i + V2,i > s, V1,i/(V1,i + V2,i) ≤ w), (15)
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where Qs denotes the set of points (V1,i, V2,i) with V1,i+V2,i > s and 1 corresponds to the indicator

function. Empirical estimators of the spectral distribution of this form are widely used (Einmahl

et al., 1997). Note, more recent approaches impose a constraint on the mean (Boldi and Davison,

2007; Einmahl and Segers, 2009; de Carvalho and Davison, 2014; Hanson et al., 2017) and may be

considered alternatively.

In the next step, we construct an objective function to assess the closeness of the spectral density

Ψ to 1
2
. A classic way of measuring dependence in extremes is via the coefficient of asymptotic

dependence, χ, defined as

χ = lim
s→∞

P(V2 > s | V1 > s), (16)

with χ = 0 corresponding to asymptotic independence, χ = 1 to perfect dependence, and larger

values of χ corresponding to stronger asymptotic dependence (Coles et al., 1999). In terms of Ψ

we can write

χ =

∫ 1

0

2 min(w, 1− w) dΨ(w). (17)

Here, the term 2 min(w, 1−w) can be viewed as a weighting term, which downweights any departure

of Ψ from {1
2
} as the weighting gives the value 1 at w = 1

2
and the weighting effect on χ decreases

linearly away from this point. In empirical studies, using χ as an objective function to maximize

over θ, we found that the χ measure does not downweight strongly enough values of θ that lead to

Ψs(w) putting mass near 0 and 1 (i.e., very weak dependence) and, hence, results in poor inference

for θ. Part of the reason is that the threshold s is finite, so mass that should be at 0 and 1 in

the limit as s → ∞ is still away from these values, implying stronger dependence than is really

present.

Instead of χ, we want a functional of Ψ(w) which downweights large departures of V1/(V1 +V2)

from 1
2

more strongly, in particular giving them zero weight if V1/(V1 + V2) is within ε, 0 < ε < 1
2

of 0 or 1 to overcome the sub-asymptotic choice of the threshold s in practice. For fixed ε, we

propose the functional

Dε =

∫ 1

0

[
1−min

{ ∣∣∣∣∣ log
(

w
1−w

)
log
(

ε
1−ε

) ∣∣∣∣∣ , 1
}]

dΨ(w). (18)

This functional, with a ”tent-like” weighting function, has some similar properties to χ, such as

Dε = 0 and 1 for asymptotic independence and perfect dependence, respectively, and increasing

values indicate stronger asymptotic dependence. However, the key differences between χ and Dε

are that if Ψ(w) puts all its mass within ε distance of 0 and 1, then Dε = 0 but χ > 0 and also

that Dε does not weights small departures of V1/(V1 + V2) from 1
2

as much as χ does. Thus, there

are advantages of using Dε over χ for estimating θ in order to give a strong relationship between

X∗ and N in their extremes.

The defined functional Dε can then be used to estimate the set of parameters θ, with each

11



value of θ providing a different estimate {Ψ̃s(w;θ) : 0 ≤ w ≤ 1}. Here, the dependence measure

Dε = Dε(θ) is estimated using

D̃ε,s(θ) =

∫ 1

0

[
1−min

{ ∣∣∣∣∣ log
(

w
1−w

)
log
(

ε
1−ε

) ∣∣∣∣∣ , 1
}]

dΨ̃s(w;θ)

= 1− 1

|Qs|

m∑
i=1

min


∣∣∣∣∣∣
log
(
V1,i(θ)

V2,i

)
log
(

ε
1−ε

)
∣∣∣∣∣∣ , 1

1(V1,i(θ) + V2,i > s).

(19)

We select θ∗ as θ∗ = argmaxθ D̃ε,s(θ) and set X∗ = f (X,θ∗). The choice of ε depends primarily

on sample size and on Ψ̃, with the larger the sample size and the more concentrated Ψ̃s(w;θ)

about 1
2

leading to smaller and larger ε, respectively.

3 Defining new daily covariates

The original covariates Xk,t in Table 1 mainly summarize the daily weather conditions. However,

the daily resolution and the derivation of the covariate values via weighted spatial interpolation

induce inaccuracy in the input variables as critical information, such as the maximum rainfall

intensity, is smoothed out over time and space. Consequently, weather events which induce a

substantial difference in the claim risk may appear similar in terms of Xk,t and, hence, lead to an

underestimation of the effect of severe rainfall events. With a view to reducing this uncertainty,

we analyze the spatial and temporal structure in Xk,t for the highest daily claim numbers in

Oslo. This analysis motivates the introduction of three new physically/topologically motivated

daily covariates for each municipality which exploit the spatial and temporal patterns in Xk,t as

an additional source of information. The generic relevance of these covariates is demonstrated by

applying them to both Bergen and Bærum in Section 5.

The absence of more detailed weather data excludes the possibility of a more structured con-

struction of covariates using physical rainfall-runoff models. Similarly, using machine learning ap-

proaches to derive empirical relationships proved unsuccessful relative to our approach of covariate

construction, as it fails to account for our knowledge of physical/topological and neighbourhood

structures between municipalities.

Section 3.1 introduces a covariate to capture the amount of snow-melt affecting the properties.

Sections 3.2 and 3.3 then define covariates associated to the temporal and spatial rainfall patterns,

respectively. In the following, the notation k′ ∼ k refers to municipalities k and k′ being adjacent.

3.1 Snow-melt

Long periods of snow-melt, or rapid melts of large volumes of snow, can give flood levels that are

comparable to large rainfall events. Hence, periods of high temperatures or rain, conditional on
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snow being on the ground, may affect the claim dynamics and induce a higher risk for property

damages. Information on the level of snow-melt is derived via the daily observed mean temperature

Ck,t and the snow-water equivalent Sk,t. Scheel et al. (2013) consider the difference in the snow-

water equivalent over a day, that is, Sk,t−1 − Sk,t. Positive values then represent an additional

source of water for properties to deal with while negative values correspond to a rise of the amount

of snow on the ground.

We argue that Sk,t−1 − Sk,t is limited in its capability to capture the risk induced by snow-

melt. Firstly, an explanatory analysis concluded that a negative difference does not affect the

claim dynamics on the day. Secondly, positive values of Sk,t−1 − Sk,t only approximate the true

amount of snow-melt in municipality k. Certain topological factors are likely to be ignored since

observations are weighted according to the population density. Consider a city which lies at the

foot of a mountain range. Properties are then affected by the snow-melt both within the city and

on higher ground while Sk,t−1 − Sk,t captures the former only.

We use the observations for the adjacent municipalities to introduce a new snow-melt covariate

∆Sk,t as a spatially weighted average. In particular, our formulation for ∆Sk,t varies from Scheel

et al. (2013) as ∆Sk,t > Sk,t−1−Sk,t if an adjacent municipality exhibits higher levels of snow-melt.

Formally, ∆Sk,t is defined by

∆Sk,t =
1

1 + ωSk

[
Sk,t−1 − Sk,t + ωSk max

m∈{k,k′∼k}
(Sm,t−1 − Sm,t)

]
1{Ck,t≥0}, (20)

with weight ωSk ≥ 0. The maximum term in (20) is derived over the set of adjacent municipalities

k′ ∼ k and k itself. Note, ∆Sk,t = Sk,t−1−Sk,t if the snow-melt in municipality k exceeds snow-melt

in its neighbours and Ck,t > 0, or if ωSk = 0. The indicator function is included in order to ensure

that no snow-melt occurs for temperatures Ck,t below 0◦C.

3.2 Surface water

An increased claim risk is induced by the interaction of multiple weather events or the duration

of one event over consecutive days. Scheel et al. (2013) attempt to account for such processes via

the values of two covariates: the drainage run-off Dk,t and the aggregated rain on the previous

three days, denoted by Rk,3t. Their results indicate that both Rk,3t and Dk,t have a small effect

on the distribution of Nk,t | Nk,t > 0. However, Rk,3t and Dk,t are limited in their potential to

explain interaction effects. Values for Dk,t change very slowly from day to day, that is, Dk,t may be

high despite the last rain being several days ago. Further, Rk,3t cannot distinguish whether high

amounts of rainfall were recorded two or three days ago. The derivation of new covariates appears

advisable.

To help our construction of a new covariate, we consider a highly idealized model of the ability

of infrastructure to handle surface water. Assume that a maximum ck mm of water drains off
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within a day. Here, the value ck may correspond to a certain quantile of the observed rain and be

linked to the capacity of the drainage system. The amount of water left in the system on day t,

Wk,t, is then given by

Wk,t = (Wk,t−1 +Rk,t−1 + ∆Sk,t−1 − ck)+ . (21)

A value of Wk,t greater than 0 implies that the previous weather events affect the risk induced

by the weather on day t, for instance, in the form of surface water. Further, Wk,t is assumed

to influence the claim dynamics if, and only if, Rk,t + ∆Sk,t > ck since the value of Wk,t in (21)

decreases otherwise, implying that no additional properties are threatened by surface water. This

results in the definition of a new amplifier covariate,

Ak,t = Wk,t1{Rk,t+∆Sk,t>ck}, (22)

which captures the risk induced by heavy rainfall in combination with high surface water levels.

3.3 Rainfall intensity

SinceRk,t corresponds to the aggregated precipitation measurements over 24 hours, it provides little

insight into the peak-daily intensity. High values of Rk,t can be due to either short-term intense or

longer-term moderate rainfall but the former is likely to induce a higher risk for property flooding.

We attempt to derive additional information from the spatial variation of {Rk,t} on day t. To

achieve this, we assume that the intensity correlates with the difference in the precipitation levels

of adjacent municipalities. Further, an intense rainfall within a municipality is also taken to affect

the claim dynamics of the adjacent municipalities, though on a smaller scale.

These considerations result in our definition of the covariate intensity, Ik,t, which is based on

the spatial pattern of {Rk,t} at day t. Let k̃ be the municipality, adjacent to municipality k, with

the highest level of precipitation, i.e.,

k̃ = argmax
k′∼k

Rk′,t.

If Rk,t ≥ Rk̃,t, the centre of the rainfall event lies within municipality k and, hence, may be rather

intense. Similarly, if Rk̃,t > Rk,t, we consider the adjacent municipalities k′ ∼ k̃ to explore whether

the rainfall event leads to the highest precipitation levels in municipality k̃. In order to represent

the impact of a rainfall event at municipality k̃ for municipality k, we introduce a weight ωRk ∈ [0, 1]

to downscale the intensity. Finally, if the rainfall is centred in neither of these municipalities, the
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rainfall is considered as not intense. The covariate value Ik,t is then defined as

Ik,t =


Rk,t −Rk̃,t if Rk,t > Rk̃,t

ωRk

(
Rk̃,t −max

k′∼k̃
Rk′,t

)
if Rk̃,t > max

k′∼k̃
Rk′,t

0 otherwise.

(23)

Note, the last case in (23) corresponds to the municipalities k and k̃ observing lower precipitation

levels than at least one of their adjacent neighbours. The upper bound for ωRk is justified since Ik,t

should not be higher than Ik′,t if the highest precipitation levels are recorded for municipality k′.

Similarly to Ak,t, Ik,t only affects the claim dynamics for high rainfall levels, Rk,t > ck, since the

intensity of the rainfall is presumably not important for the claim dynamics otherwise.

4 Clustering approach

We introduce an algorithm to obtain clusters of consecutive days which are exposed to the same

severe weather event. This approach is motivated by the observed dependence between Nk,t and

Nk,t+1, in particular, for their large values. For instance, the highest rainfall level in Figure 1(b)

results in observations of 11 and 50 claims on consecutive days. From a practical perspective,

these observations are mainly due to two processes. Firstly, the recording process is lagged as

some policy holders report a damage the same day while others do so the following day. Secondly,

the daily resolution potentially splits a weather event across two or more observations. Hence, it is

desirable to derive time periods, such that each of them covers a weather event and the subsequent

period of elevated claim risk, where the latter may correspond to no claims arising.

Section 4.1 details our cluster algorithm which derives such periods of consecutive days, based

on the covariates, and thus reduces the effects of claim lag in the recording process. Covariates

summarizing the weather events over the cluster periods are defined in Section 4.2. The event-

based covariates are then tuned to increase their ability to describe the occurrence of the largest

numbers of claims in Section 4.3. We conclude by defining a probability model for the association

between the clustered number of claims and weather covariates in Section 4.4, using the approaches

introduced in Section 2.

4.1 Derivation of cluster periods

Interest lies in the derivation of Jk clustered weather periods for municipality k, {(αk,j, βk,j)}Jkj=1,

based upon Xk,t, where αk,j and βk,j represent the start and end point, respectively, of the jth

cluster. While the daily claims within a cluster period [αk,j, βk,j] are assumed to depend on the

same weather event, the claims in two different clusters are considered as temporally independent.
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In particular, the claim dynamics on day αk,j are solely dependent on the weather events on the

same day, irrespective of the weather on day βk,j−1.

Our approach to identify cluster start points αk,j is based upon two pre-specified trigger events

which affect the claim dynamics on subsequent days: rain on the current day exceeding ck, Rk,t >

ck, and snow-melt occurring, ∆Sk,t > 0. The first trigger event is motivated by the discussion in

Section 3.2 while the second trigger reflects our expectation that snow-melt in combination with

rainfall induces a high claim risk over several days. These events then initialize clusters of length

greater than or equal to one day. The main criterion for the end of a cluster considers the change

in the drainage run-off, i.e., ∆Dk,t = Dk,t − Dk,t−1. In particular, a cluster period ends if ∆Dk,t

drops below a threshold dk. Additionally, clusters triggered by snow-melt also end if no snow is

left on the ground. The cluster approach described above results in Algorithm 1.

Algorithm 1 Derive clusters for municipality k

Require: Weather covariates ∆Sk,t, ∆Dk,t, Rk,t, and thresholds ck and dk
1: Go to first time point t = 1
2: while Unclustered observations left do
3: if ∆Sk,t > 0 then
4: Set start point α = t and initial end point β = t+ 1
5: while ∆Dk,β > dk AND ∆Sk,β > 0 do
6: Shift end point β ← β + 1

7: else if Rk,t > ck then
8: Set start point α = t and initial end point β = t+ 1
9: while ∆Dk,β > dk do

10: Shift end point β ← β + 1

11: else
12: Set start and end point to α = β = t

13: Store start and end points of cluster period (α, β)
14: Go to next time point t = β + 1

return Cluster periods

4.2 Cluster data

The daily data have to be adapted to the cluster periods derived by Algorithm 1. Consider the

jth cluster period for municipality k with start and end point αk,j and βk,j, respectively. Instead

of the daily numbers of claims, interest lies the aggregated number of claims over the jth cluster

period which is given as

Ñk,j =

βk,j∑
t=αk,j

Nk,t. (24)

While adaption of the original response Nk,t to the cluster periods is straightforward, more care

is required for the explanatory variables. Scheel et al. (2013) find that the amount of rainfall is
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correlated with Nk,t for Oslo, Bergen and Bærum in terms of the Poisson component of the hurdle

model. Further, the results also suggest that snow-melt is informative for Bergen. Our analysis

also revealed that snow-melt is informative for Oslo when accounting for spatial patterns. We thus

derive cluster covariates which capture information related to these events. As the daily amount of

snow-melt does not take very high values, snow-melt for cluster j is summarized via one covariate,

the accumulated snow-melt over the cluster period

∆SΣ
k,j =

βk,j∑
t=αk,j

∆Sk,t, (25)

where ∆Sk,t is defined via expression (20).

Considering rainfall, intense rainfall on a day and longer-term rainfall scenarios have to be ac-

counted for. To capture these characteristics, we define two covariates Rmax
k,j and RΣ

k,j, respectively.

While Rmax
k,j focuses on a single day over the cluster period, RΣ

k,j, takes the amount of precipitation

over all days into account. Let γj denote the day with highest value Rk,t over the period αk,j to

βk,j, i.e., αj ≤ γj ≤ βj. Then

Rmax
k,j = ηk Ak,γj +Rk,γj exp

(
ρk Ik,γj

)
, (26)

where Ak,γj and Ik,γj are defined as in (22) and (23), respectively. The parameters ηk and ρk are

selected to optimize the tail dependence of Rmax and Ñ , details are given in Section 4.3. The

non-linear structure of expression (26) aims to account for two separate claim processes which are

associated to rainfall. In particular, the first additive component accounts for the risk in terms

of surface water induced by previous rainfall events while the second component considers the

rainfall on the day. The impact of the rainfall on the day for claims depends on both the rainfall

and its intensity. Our arguments for the construction of the covariates Ak,t and Ik,t suggests that

ηk ∈ [0, 1] and ρk ≥ 0. Covariate RΣ
k,j is

RΣ
k,j =

βk,j∑
t=αk,j

Rk,t −Rk,γj , (27)

i.e., the aggregation of the rainfall, except for the highest day, in the cluster. Note, RΣ
k,j takes the

value zero if the jth cluster is of length 1.

4.3 Selection of parameter values

The covariates introduced in this work depend on several parameters whose tuning is considered

in this section. First, the parameter ωSk in (20) is selected based upon a simple generalized linear

model fit for the original daily data for municipality k. The parameter ωSk has to be estimated
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prior to the cluster algorithm since it is important to gain insight into whether ωSk = 0 or not. The

maximum likelihood estimator of ωSk is found using the model

Nk,t ∼ Poisson
(

exp[φ0 + φ1∆Sk,t(ω
S
k )]
)
.

The parameter may be estimated again after the clustering algorithm but the results in Section 5

are obtained without this additional step.

The vector of covariate observations of the maximum rainfall covariate in expression (26),

Rmax
k , depends on the parameters ρk, ηk and also on the weight ωRk via Ik,t. Since Ik,t and Ak,t are

predominately designed with respect to the high numbers of claims, ρk, ηk and ωRk are selected such

that the tail dependence between Rmax
k and Ñk in expression (24) is maximized. Here, we adapt

the approach detailed in Section 2.4 with X∗ = f(X,θk) = Rmax
k given by expression (26) and

the optimization is over a set of candidates for θk =
(
ηk, ρk, ω

R
k

)
. This involves first transforming

the data to Fréchet margins, selecting a threshold s above which the conditional independence

property (13) holds, then estimating Ψ̃s(w;θk) and finally deriving the distance measure D̃ε,s(θk)

for each candidate. Combining these ideas leads to the following selection process for the optimal

candidate:

1. Derive the covariate values Rmax
k (θk) for each candidate θk on a grid.

2. Use the empirical distribution functions and the probability integral transform to transform

Rmax
k and Ñk to have Fréchet margins

N∗ = −

log

rank
(
Ñk

)
m+ 1


−1

and R∗ = −
{

log

[
rank (Rmax

k )

m+ 1

]}−1

3. The threshold s in (15) is chosen as a 99.5% quantile of the set {N∗ + R∗}. Further set

Qs = {i = 1, . . . ,m : N∗i +R∗i > s := q0.995 (N∗ + R∗)} .

4. Derive the distance measure as outlined in Section 2.4 by substituting V1,i = N∗i and V2,i = R∗i

into the distance measure in (19), where we used ε = 5× 10−4.

5. The optimal set of parameters θ∗k is then the one which provides the maximum of D̃ε,s (θk).

4.4 Statistical model and inference for clustered claims

We consider the association between the response Ñk,j and the covariates X̃k,j =
(
RΣ
k,j,∆S

Σ
k,j, R

max
k,j

)
in expressions (24) through (27). Specifically, only cluster periods with at least one claim are

considered, that is, the distribution Ñk,j |
(
X̃k,jÑk,j > 0

)
. The extremal mixture model introduced
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in Section 2 is applied and so Ñk,j |
(
X̃k,jÑk,j > 0

)
is modelled via a mixture of two random

variables Ỹk and Z̃k with mixture probability pk. Here, Ỹk is distributed according to expression

(8) with the scale σk,u and the rate λk varying in the covariates while the shape ξk is constant.

Formally, we define

log(σk,u − ζk) = βk,0 + βk,1R
Σ
k,j + βk,2∆SΣ

k,j + βk,3R
max
k,j

log λk = δk,0 + δk,1R
Σ
k,j + δk,2∆SΣ

k,j + δk,3R
max
k,j .

(28)

The component Z̃ is defined as a zero-truncated Poisson distribution with rate κk. As noted in

Section 2.2 this model for Ñk,j is stable in its distribution and covariate representational forms for

all choices of the threshold uk.

For the data considered in the following Section 5, we found strong evidence, by using the

Bayesian Information Criterion (BIC) (Schwarz, 1978), that for our chosen thresholds ζk = 0 could

be taken without loss of efficiency. This has the benefit of parsimony (reducing the number of

parameters to 11) but removes the threshold-stability of the covariate model (28) for the scale

parameter of the IGPD. Conclusions of the statistical analysis are approximately unchanged by

our choice, but we note that others may prefer to have retained the ζk parameter in the inference.

The selected statistical model is, thus, specified by 11 parameters which are estimated via

Bayesian inference. Specifically, a Metropolis-Gibbs algorithm is used which updates each pa-

rameter values individually in turn; see Appendix C for details. Alternatively, estimates may be

obtained via an Expectation-Maximization algorithm. However, we found that this led to poor

estimates since the support of Ỹ varies in the shape parameter ξk, in particular, in case ξk < 0.

5 Application to the insurance data

We apply the methodology developed in Sections 2–4 to address the features of the insurance claims

data we identified in the introduction. In this section, we present results for the municipalities of

Oslo, Bærum and Bergen, where the first two are adjacent and the latter is approximately 300

miles away from them. Oslo and Bergen were chosen since they have both the highest number of

policies and the largest average number of claims per day. Bærum was selected as it records the

highest daily claim number over the 10-year period for Norway.

Section 5.1 considers the derivation of the cluster weather periods and Section 5.2 explores the

model estimates. The marginal distribution for N is then derived in Section 5.3 and we illustrate

its use in predicting the frequency of very large claims. As our covariate selection in Section 3

involves some parameters that were either chosen or estimated, we conduct a sensitivity analysis in

Section 5.4 to illustrate that the uncertainty of this stage of the analysis does not lead to any major

changes in our overall model fit. Finally, Section 5.5 investigates the extent to which the fitted

covariate model captures the spatial dependence between claims for the adjacent municipalities of
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Table 2: Occurrence of cluster lengths for the three Norwegian municipalities considered in Section 5.

Cluster length 1 2 3 4 5 6 > 6

Oslo 2091 254 57 98 43 23 17
Bærum 2453 105 43 92 46 19 18
Bergen 1868 340 55 131 39 23 11

Oslo and Bærum.

5.1 Derivation of the cluster data

The first step to deriving the cluster periods for each of the three municipalities, via Algorithm 1,

is the estimation of the weight ωSk in expression (20), as this is required for the snow-melt covariate

∆Sk,t. We do this using the method in Section 4.3 with ωSk being found to be positive for Oslo and

Bergen, cities which are both located at the foot of mountain ranges and may, hence, be exposed to

snow-melt on higher ground. Further, we need to select the thresholds ck and dk for surface water

and drainage run-off, respectively. An explanatory analysis for Oslo indicates that daily rainfall

levels exceeding the 80% quantile induce periods of higher claim numbers. Similarly, an increased

claim risk is found for the following days, as long as the change in drainage levels exceeds the

80% quantile. Hence, we set ck = q0.8 (Rk,t | Rk,t > 0) and dk = q0.8 (∆Dk,t) for each municipality

individually.

With the clusters now identified, we use the optimization approach in Section 4.3 to estimate

the parameters
(
ηk, ρk, ω

R
k

)
of Rmax

k,j in expression (26) to help us derive the key covariate for our

analysis. The optimization yields values of ηk > 0 for all municipalities while ρk = 0 for Bærum

and Bergen. Since Bergen is surrounded by mountain ranges, values of the rainfall intensity of the

event covariate, Ik,t of expression (23), may be potentially high but uninformative. The sensitivity

of the overall inference to these selected clusters and covariate parameters is explored in Section 5.4.

Under the cluster identification described above, Table 2 shows that about one third of the

days are allocated to clusters of a length greater than 1. Further, clusters are almost always less

than 7 days, which is the window that the insurance industry typically treats as a single event

for re-insurance purposes. Figure 2 illustrates that, post clustering, most of the high number of

claims coincide with high values for Rmax and RΣ, suggesting that our methods of Section 3 for

constructing justifiable covariates and their relationship to claims has been successful.

5.2 Model estimates

The IGPD threshold uk is set to be 4,2 and 4 for Oslo, Bærum and Bergen, respectively, as these

appear to correspond to levels which only can arise due to weather induced claim sizes. For the
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Figure 2: Dependence between the aggregated rain RΣ and the maximum rain within a day Rmax for
(a) Oslo and (b) Bergen. Periods with Ñ > 4 are highlighted.

model in Section 4.4, we define uninformative priors for all model parameters and run a MCMC

algorithm for 100,000 iterations with every 50th sample being stored for analysis after a burn-

in period of 25,000 to generate a sample from the posterior distribution. Convergence to the

posterior distribution is checked via trace plots and Brooks–Gelman–Rubin diagnostics (Brooks

and Gelman, 1998) with three sampled chains. Our R implementation took about 20 minutes

per chain on a 2.80-GHz Intel Core i7 processor. In the following, when the municipalities are

considered individually, the indexes are dropped for notational simplicity.

Summaries of the marginal posterior distributions of the 11 model parameters are presented in

Table 3. The posterior distributions of p indicate that 80 − 90% of the observations with Ñ > 0

are estimated to be related to the weather covariates X̃. Furthermore, ξ = 0 is contained in the

90% credibility interval for only 2 of the 3 municipalities. Hence, there is evidence that the tail

behaviour of Ỹ is not of a Poisson form for Bergen. The covariate effects (βi, δi : i = 1, . . . , 3) are

generally lower for Bergen than for Oslo and Bærum. Since Bergen exhibits higher precipitation

levels than Oslo and Bærum, the buildings are presumably designed to withstand more severe

rainfall events than the ones in Oslo. The posterior estimates further show that covariate effects

are non-negative except for β1, which measures the effect of RΣ, i.e., the accumulated effect of

rainfall of the event excluding the maximum daily rainfall. Hence, the increased risk induced by

larger values of RΣ is mainly captured via δ1. Collectively, this indicates that an increase in RΣ

results in more claims above 4 in Bergen but a reduction in the variability of these claims over 4.

The municipalities of Oslo and Bærum exhibit similar covariate effects for each of the covariates
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Table 3: Posterior mean estimates and central 90% credibility interval of the model parameters for the
municipalities of Oslo, Bærum and Bergen with thresholds uk = 4, 2 and 4, respectively.

City Statistic p β0 β1 β2 β3 ξ δ0 δ1 δ2 δ3 κ

Oslo Mean 0.90 0.12 0.21 0.23 0.76 -0.32 -0.16 0.42 0.32 0.71 2.21
5% quantile 0.83 -0.61 0.09 0.10 0.46 -0.76 -0.30 0.29 0.22 0.57 1.65
95% quantile 0.96 0.81 0.33 0.35 1.03 0.15 -0.03 0.56 0.42 0.86 2.93

Bærum Mean 0.83 -1.80 0.15 0.35 1.31 0.16 -0.87 0.44 0.33 0.89 1.14
5% quantile 0.67 -2.92 -0.01 0.18 0.87 -0.40 -1.31 0.18 0.20 0.58 0.70
95% quantile 0.95 -0.90 0.34 0.53 1.70 0.82 -0.56 0.88 0.50 1.30 1.79

Bergen Mean 0.88 -0.61 -0.03 0.19 0.37 0.53 -0.52 0.15 0.13 0.41 1.23
5% quantile 0.79 -1.64 -0.17 0.05 0.17 0.10 -0.74 0.09 0.07 0.33 0.65
95% quantile 0.95 0.30 0.12 0.33 0.57 1.10 -0.35 0.20 0.20 0.49 1.99

RΣ and ∆SΣ, which is unsurprising given their spatial proximity. Further, the estimates for the

non-weather related rate κ differ by a factor of 2 for Oslo and Bærum, which is consistent with

the number of policies in Oslo being about twice that of Bærum. The large difference of the

β3 posteriors (i.e., the effect of Rmax) between Oslo and Bærum is mainly driven by one large

observation of 143 claims. Indeed, β3 has much more similar posterior means of 0.75 and 0.81 for

Oslo and Bærum, respectively when leaving out each of the their highest number of claims.

At each municipality, the estimated behaviour of Ñ |
(
X̃, Ñ > 0

)
is further investigated in

Figure 3 which shows the changes in the estimated frequency for a set of Ñ events for each

covariate whilst fixing the other covariate values. In general, the probability of a high number of

claims increases with increasing values for each of the three covariates, with Rmax being the main

risk factor for high number of claims. Further, the risk for very high numbers of claims increases

more strongly for Oslo and Bærum than for Bergen. For instance, a covariate value of Rmax = 50

results in a probability of 0.6 for observing more than 6 claims in Oslo while it is only ∼ 0.1 in

Bergen. These findings are consistent with previous arguments that properties in Bergen are likely

to be designed to withstand higher precipitation levels than in Oslo.

Table 4 assesses the fit of the estimated overall model for each possible value less than or

equal to the threshold u and for a pooled estimate for above u. This assessment is derived for

each of three non-overlapping ranges of the covariates. In particular, observations are split into

three subsets with respect to Rmax: zero values, and below and above the median of the covariate

given Rmax > 0 for which empirical and model-based frequencies are estimated. The estimated

frequencies are derived from the marginal posterior predictive probabilities. For instance for the

first case Rmax = 0, we derive the predictive frequency via expression (12) and set π(x) as the

product of empirical distributions of (RΣ, Rmax = 0) and ∆SΣ, that is, rainfall and snow-melt are

assumed to be independent. Table 4 illustrates that the model-based estimated frequency for Ñ
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Figure 3: Probability for certain events of Ñ | (X̃, Ñ > 0) for Oslo, Bærum and Bergen varying with

each of the covariates RΣ, ∆SΣ and Rmax. The events are Ñ = 1 ( ), Ñ = 3 ( ),

Ñ = 5 ( ) and Ñ > 6 ( ). In Column 1, the probability is considered with respect to
RΣ while the remaining covariates are fixed at their minimum value. Equivalently, Column 2
and 3 consider ∆SΣ and Rmax, respectively.

lies within the empirical 95% confidence interval in all cases, where the confidence intervals are

obtained by considering observations as realizations of a multinomial distribution with 5 possible

outcomes for Oslo and Bergen and 3 for Bærum.

To conclude our analysis on the estimated model for Ñ |
(
X̃, Ñ > 0

)
, we compare the full

model to three less-complex alternatives: (i) a zero-truncated Poisson as in (2), (ii) a Poisson-
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Table 4: Posterior mean and empirical frequencies both times ×102 for the number of claims between 1
and 4 for different rainfall settings for Oslo, Bærum and Bergen. For the empirical frequency,
central 95% confidence intervals are given in parentheses. The rainfall settings are (1) Rmax = 0,
(2) 0 < Rmax ≤ q0.5 (Rmax|Rmax > 0) and (3) Rmax > q0.5 (Rmax|Rmax > 0).

Ñ Rmax Oslo Bærum Bergen

estimated empirical estimated empirical estimated empirical

1 (1) 72 75 (72,79) 83 84 (80,87) 77 79 (74,83)
(2) 69 74 (69,80) 81 83 (78,90) 74 76 (72,81)
(3) 40 34 (28,41) 49 47 (39,57) 44 45 (40,51)

2 (1) 20 18 (14,21) 13 13 (9,17) 19 16 (12,21)
(2) 22 17 (12,23) 15 14 (9,21) 21 18 (13,22)
(3) 25 24 (17,30) 25 22 (14,31) 26 24 (18,30)

3 (1) 5 5 ( 1, 8) 4 4 (0,9)
(2) 6 7 ( 2,14) 4 3 (0,8)
(3) 14 12 ( 6,19) 13 13 (7,19)

4 (1) 2 2 ( 0, 6) 1 0 (0,5)
(2) 2 0 ( 0, 6) 1 2 (0,6)
(3) 9 14 ( 7,21) 7 8 (2,13)

> uk (1) 1 0 ( 0, 4) 3 4 (0,8) 0 0 (0,4)
(2) 1 1 ( 0, 7) 4 2 (0,9) 0 1 (0,5)
(3) 13 16 (10,23) 25 31 (23,40) 10 11 (6,17)

mixture without the extremal mixture model for Ỹ and (iii) an extremal mixture model without

the component Z̃. Table 5 gives the BIC averaged over all posterior samples and results indicate

that our full model fits the data better than the competing models. Using the deviance information

criterion (Spiegelhalter et al., 2002) largely supports this conclusion. The municipalities are similar

in showing evidence that the additional flexibility offered by both our mixture and tail modelling

components leads to substantial improvements.

5.3 Marginal distribution of clustered claims

The posterior distribution of marginal distribution of Ñ is derived as the product of the posterior

distributions of P
(
Ñ > 0

)
and P

(
Ñ > v | Ñ > 0

)
. The former probability is straightforward

to obtain by assuming that the occurrence of Ñ > 0 is Bernoulli distributed with a uniform

prior. Table 6 (Column 4) provides the posterior mean and central 90% credibility intervals. The

posterior probability for P
(
Ñ > v | Ñ > 0

)
is more complex to derive as it requires Monte Carlo

integration over the weather covariates using expression (12) by replacing π(x) by its the empirical

estimate π̃(x) for X | Ñ > 0. For the posterior this needs evaluating for each of the J posterior
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Table 5: Average Bayesian Information Criterion (ABIC) and Deviance Information criterion (DIC) for
several competing models considering the distribution of Ñ | (X̃, Ñ > 0) for Oslo, Bærum and
Bergen. The best model fit for each municipality is highlighted.

Model City ABIC DIC

Poisson Oslo 2158 4.06
Bærum 1079 3.96
Bergen 2005 3.92

Poisson-Mixture Oslo 2137 5.74
Bærum 963 6.21
Bergen 1977 5.63

Poison-IGPD Oslo 2088 8.26
Bærum 939 8.69
Bergen 1937 8.75

Poisson-IGPD-Mixture Oslo 1779 3.18
Bærum 596 −0.62
Bergen 1632 4.72

samples θ(1), . . . ,θ(J) obtained by the MCMC algorithm in Section 5.2.

We use the posterior distribution of Ñ to assess the model fit in Section 5.2 in terms of the

marginal distribution of Ñ . An individual QQ plot is derived for each sample θ(j), j = 1, . . . , J,

from the posterior distribution and collectively these give the posterior intervals for the QQ plot.

Figure 4 (Column 1) shows that our model fits the whole distribution very well as the diagonal

line lies within the 95% credibility interval for each municipality. The fit is at its weakest for Oslo

around 20 claims which is due to the occurrence of three claim periods with 22-25 claims and two

with 16-21 claims. For Bærum, the highest observation is not fitted ideally due to it being by far

the highest observation over the 10-year period, however it is still consistent with our model when

uncertainty is accounted for.

Using this marginal assessment of fit we can illustrate clearly how our clustering approach

improves upon an analysis of the daily data. We fit the model of Section 2 to the original daily

data with the covariates being the precipitation on the previous and current day, Rt−1 and Rt,

respectively, and the difference in the snow-water equivalent St−1−St. We set the IGPD threshold

to u = 3 for Oslo and Bergen while u remains unchanged for Bærum. The modification of the

threshold is required since the frequency of higher number of claims is lower in the daily data than

in the clustered data. Figure 4 (Column 2) shows a much worse model fit for the daily data, in

particular, for the medium to large claim numbers.

Interest lies in estimating the probability of extreme numbers of claims since it appears that

the marginal distribution of Ñ has a heavy tail, e.g., the largest claim event of 143 for Bærum

substantially exceeds all events with other large numbers of claims in this municipality. Hence we

25



Clustered Data Daily Data

Oslo

0 20 40 60 80

0
20

40
60

80

Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

0 10 20 30 40 50 60

0
10

20
30

40
50

60

Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

Bærum

0 50 100 150

0
50

10
0

15
0

Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

0 50 100 150

0
50

10
0

15
0

Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

Bergen

0 20 40 60

0
20

40
60

Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

0 10 20 30 40 50 60

0
10

20
30

40
50

60

Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

Figure 4: Posterior Quantile-Quantile plots for Oslo, Bærum and Bergen obtained by the full model.
Column 1 provides the results for the clustered data while Column 2 considers the original

daily data. The lines in each plot represent ( ) Posterior mean, ( ) Posterior median

and ( ) Central 95% posterior interval.
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Table 6: Estimated scale ν and shape η for the distribution Rmax|Ỹ > u ∼ GPD (ν, η) and standard
errors. Column 3 provides the posterior mean and central 90% credibility intervals of the
probability that Ñ exceeds 100 conditional on Ñ > 0. Column 4 gives the empirical maximum
likelihood estimate and central 90% confidence intervals of the frequency for Ñ > 0.

Municipality ν η P
(
Ñ > 100 | Ñ > 0

)
P
(
Ñ > 0

)
Oslo 37.6 -0.48 0.00029 0.391

(6.7) (0.11) (6.3× 10−7, 0.00096) (0.376, 0.407)

Bærum 27.73 -0.47 0.00044 0.209
(4.8) (0.11) (5.1× 10−5, 0.00122) (0.197, 0.222)

Bergen 67.34 -0.40 0.00052 0.393
(12.0) (0.10) (4.8× 10−5, 0.00148) (0.377, 0.409)

want to estimate P
(
Ñ > v

)
for large v, with v � u. Figure 3 shows that our conditional model

indicates that extreme claims are strongly associated with extreme values ofRmax but that the other

covariates have limited association. Hence the use of empirical estimate π̃(x) in expression (12)

is likely to lead to underestimation of P
(
Ñ > v

)
since this limits Rmax to the observed sample.

Hence a parametric model is required to enable extrapolation for the distribution of Rmax, but we

do not need to be concerned with the other covariates.

To help motivate our approach note that the first term on the right hand side of expression (12)

is P
(
Ỹ > v

)
, and that for v > u,

P
(
Ỹ > v

)
= P

(
Ỹ > v | Ỹ > u

)
P
(
Ỹ > u

)
=

∫
x

P
(
Ỹ > v | x, Ỹ > u

)
π
(
x | Ỹ > u

)
dx × P

(
Ỹ > u

)
.

(29)

The probabilities P
(
Ỹ > u

)
and P

(
Ỹ > v | x, Ỹ > u

)
are estimated as described as above, with

the latter entirely determined by the IGPD. However for v � u we used a semi-parametric model-

based estimate of π
(
x | Ỹ > u

)
. Specifically, marginal exceedances of Rmax | Ỹ > u over some

threshold uR are modelled by a GPD(ν, η) model, with tail probability λ, i.e., λ = P(Rmax >

uR | Ỹ > u) and the other covariates (RΣ,∆SΣ) | Rmax > uR, Y > u) are fixed at their average

observed values (µ1, µ2) from this empirical conditional distribution. Hence we have a model for

π
(
x | Ỹ > u

)
of

π̂
(
x | Ỹ > u

)
=

π̃
(
x | Ỹ > u

)
for rmax < uR

λ
ν

(1 + η(rmax − uE)/ν)−1−1/η
+ 1(rΣ = µ1,∆s

Σ = µ2) for rmax ≥ uR.

The mean residual life plots in Figure 5 are used to select the threshold uR. A threshold of
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Figure 5: Mean residual life plots (Row 1) and Quantile-Quantile plots with central 95% confidence

intervals of the fitted GPD distribution (Row 2) for π
(
Rmax | Ỹ > u

)
for the municipalities

of Oslo, Bærum and Bergen.

uR = 0.1mm seems suitable as the plot is approximately linear above this level once uncertainty

is accounted for. The level corresponds to the smallest positive amount of rainfall. The GPD is

fitted separately for each municipality via maximum likelihood and estimates and standard errors

for the scale parameter ν and shape parameter η for the GPD, as in expression (5), are provided

in Table 6. The estimated shape parameter η is negative for all three municipalities, that is, the

associated GPD is short-tailed with a finite upper end point. Figure 5 shows that the tail fit for

Rmax | Ỹ > u is good for Oslo and Bærum while being slightly off for Bergen.

Focusing on v = 100, Table 6 shows posterior summaries for the P
(
Ñ > 100 | Ñ > 0

)
for the

three municipalities. The results indicate that about 1 in 5000 events for Bergen will cause more

than 100 claims. Considering that about 2,500 events were observed over a 10 year horizon, that

corresponds to one occurrence every 20 years on average. The same approach implies that such

an event happens every 30–40 years for Oslo and Bærum. Hence, the observation of 143 claims

for Bærum is a very rare event.
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5.4 Sensitivity analysis

Several thresholds were fixed in Section 5.1 to derive the cluster periods, as well as, the parameters

ωR and (η, ρ) in expressions (23) and (26), respectively. Specifically, c and d in Algorithm 1 were

set to the 80% quantile of the observed rainfall and difference in drainage, respectively, while the

threshold t in expression (19) was fixed to the 99.5% quantile in Section 4.3. Here, interest lies in

exploring the sensitivity of the results in Section 5.2 with respect to these settings for c, d and t.

We start by considering the threshold t. If t is the 98.5% quantile, instead of the 99.5% quantile,

then the estimated ρ is now positive for all three municipalities. To assess sensitivity in terms of

model fit, the full parametric model (28) is estimated with the resulting new covariate values. By

comparing the BIC and DIC of this estimated model to the one in Table 5, we find little, to no,

change in the BIC. In particular, the largest difference is found for Bærum with an increase in

BIC of 7. With respect to the estimated covariate effects, Oslo and Bergen are very similar while

some larger changes are found for Bærum. The latter is related to the cluster period with the

highest number of claims as it is the period of rainfall which is both most ’intense’ and contains

the largest daily accumulation. Consequently, while different threshold choices for t affect the

estimated parameters, and potentially the covariate effects, little sensitivity is found in terms of

model fit and subsequent inferences.

To assess the sensitivity on c and d, we consider the QQ plots for Ñ , considered in Section 5.3,

of the estimated models rather than comparing the BIC and DIC. This is due to the clustered data

being dependent on these thresholds, affecting the interpretability of the BIC and DIC measures.

We take d as the 75% and 85% quantile while keeping c fixed to the original 80% quantile and

vice-versa. The QQ plots illustrate that these models fit the clustered data essentially as well as

the original model in Section 5.2. There is a slightly poor fit of the highest claim numbers for

Oslo and Bærum when c or d, corresponds to the 85% quantile. Since higher values c or d imply,

on average, shorter cluster periods, taking c or d too high leads to some claims across days being

classified as independent although they are related to the same severe weather event. For instance,

in the case of Bærum, a higher c leads to a lower estimated p and a lighter tail which provides a

poorer fit of the extremes.

5.5 Examination of the conditional spatial claim dependence

Neighbouring municipalities tend to have dependent numbers of aggregated claims from the same

weather event. This dependence is illustrated in the left panel of Figure 6, which shows positive

dependence of the claim numbers for the adjacent municipalities of Oslo and Bærum, with there

being a particularly strong dependence in the extreme values. The plot is presented after the use

of a square root transformation since the marginal claim numbers distribution is heavy tailed.

The estimated Kendall’s τ has a central 95% confidence interval of (0.26, 0.44) and this interval is

invariant to the square root, or any monotone, marginal transformation.
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Figure 6: Plots of simultaneous (a) clustered claims for Oslo and Bærum and (b) the randomized prob-
ability integral transformed samples using the estimated conditional distributions of claims
given weather at each municipality. Observations for which simultaneously more than 4 and
2 claims are observed for Oslo and Bærum, respectively, are highlighted.

The only possible cause for this dependence in claims is through the spatial dependence of the

weather covariates, as claims in one region are not directly related to those in a different area.

Specifically, for any weather event at time t, it is logically reasonable that conditional independence

of claim numbers given weather conditions holds, i.e., that[(
Ñ1,t, Ñ2,t

)
|
(
X̃1,t, X̃2,t

)]
=
[
Ñ1,t | X̃1,t

]
×
[
Ñ2,t | X̃2,t

]
,

where here the municipalities of Oslo and Bærum are numbered 1 and 2, respectively. Thus a good

test of the predictive ability of our selected weather covariates is to test whether the conditional

variables Ñ1,t | X̃1,t and Ñ2,t | X̃2,t are independent or not.

The complexities of this assessment relates to the cluster periods of events at the two locations

not having identical start and end times and the discrete nature of Ñk,t are discussed below. Ig-

noring these issues for the moment, in the right panel of Figure 6 we show model-based estimates

of P
(
Ñi,t ≤ ñi,t | X̃i,t = x̃i,t

)
, where {(ñi,t, x̃i,t) : t = 1, . . . ,m} denote the set of cluster periods

data derived for municipality i, (i = 1, 2). These two conditional distributions are evaluated using

the fitted model in Section 5.2. If the model is a good fit then, marginally, each variable should

be Uniform(0, 1). This aspect of fit for each individual municipality was assessed in Section 5.3.

The points also appear to be relatively uniformly distributed over (0, 1)2, indicating independence.

Kendall’s τ for this joint sample has a central 95% confidence interval of (0.00, 0.14), showing that

the dependence has been much reduced relative to the unconditional joint distribution. Further-
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more, as independence, corresponding to τ = 0, is in this interval, it is supportive of the hypothesis

that our selected covariates X̃ capture all the important weather features related to claim numbers.

First consider the issue of cluster periods not being identical for the two municipalities. Many of

the weather event clusters that are identified by the weather cluster extraction scheme of Section 5.1

start at the same time, but some have non-overlapping periods. Between the jth and (j + 1)th

occurrence when weather cluster starts at exactly the same time for both municipalities there are

li,j ≥ 0 weather events for municipality i (i = 1, 2). Of these li,j events, we select separately the

weather event giving maximum number of claims at each municipality and the associated weather

covariates from that event are recorded. In case of ties, that is, two or more of the li,j clusters give

the same maximum number of claims, the first of these clusters is selected. We treat these events

as joint spatial events even though their start times do not necessarily always match up. Given

that the dependence in weather covariates is so strong between municipalities, in practice this

joint event definition process retains approximately 90% of the weather cluster periods identified

previously using municipality specific selection methods. As we are interested in cases where

Ñi,t > 0 for i = 1 and 2, then events which fail to achieve this condition are discarded, leaving

50% and 70% of the total claims for Oslo and Bærum respectively. These are the data shown in

Figure 6 and analysed subsequently.

To account for the discrete nature of the clustered claims Ñ when evaluating the model-

based estimates of P
(
Ñi,t ≤ ñi,t | X̃i,t = x̃i,t

)
we use the randomized probability integral transform

(Smith, 1985; Brockwell, 2007). Specifically we replace this conditional probability by a

Uniform
[
P
(
Ñ ≤ ñi − 1 | x̃i, Ñ > 0

)
,P
(
Ñ ≤ ñi | x̃i, Ñ > 0

)]
(30)

values, where the probabilities in expression (30) are set to their posterior means.

6 Discussion

We extended the modelling framework by Haug et al. (2011) and Scheel et al. (2013) in order to

improve the model fit for higher number of claims. Additional information was gained by analysing

the spatial and temporal patterns with respect to snow-melt and precipitation. A temporal cluster

algorithm, based solely on the observed weather covariates, was introduced in order to reduce the

effects of potential lags in the recording process and to account for weather events which affect the

claim dynamics on consecutive days. The original daily data were then adapted to the respective

cluster periods and one covariate was tuned to maximize its relevance to large claims.

A mixture model with an extremal mixture component was applied to model the number of

claims over the cluster periods. Results have shown good performance for lower as well as higher

marginal and conditional numbers of claims. Furthermore, the spatial dependence between claims

in different municipalities appears to be accounted for by the derived weather covariates.
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The derived model can also be applied to assess the impact of climate change. Haug et al. (2011)

use the daily data and perform an effect study, subject to the insurance portfolio of properties of

future periods being close in value and quality to the one of the model fitting period. Their results

indicate an increase in the claim frequency for all municipalities. In order to perform a similar

study with our new model, it is necessary to simulate weather observations for cluster periods

rather than single days.

There are various way to extend the model presented in this paper. Firstly in the model fitting

of the extremal mixture model for claims, the distribution can be restricted to a uni-modal form

by excluding parameter settings which induce

P
(
Ỹ = buc − 1 | X̃

)
> P

(
Ỹ = buc | X̃

)
< P

(
Ỹ = buc+ 1 | X̃

)
.

This set of inequalities imposes additional constraints on the parameters λ, σu and ξ. This paper

focused on the periods with Ñ > 0 but there is interest for all periods. We considered a Poisson-

IGPD mixture with the same parameter values as for the zero-truncated Poisson-IGPD mixture

in Section 4 and found that the model underpredicts the frequency of periods with zero claims

Ñ = 0. Hence, the model could be extended via a hurdle component as in the BPH. Furthermore,

Figure 3 shows that the event Ñ = 1 has a probability of about 0.10 even for very high values of

Rmax due to the non-weather related mixture component. One may argue that such predictions are

unrealistic since extreme precipitation levels over a day should lead to large damages, regardless

of their intensity. Therefore, the mixture probability p could be modelled as a function of the

covariate Rmax.

Further research can also be undertaken from a spatial perspective. Spatial dependence of

the parameters of the conditional distribution of Ñ |
(
X̃, Ñ > 0

)
may be introduced to allow

for a better model fit similarly to Scheel et al. (2013). For instance, the threshold u = 2 for

Bærum may be too low for the extremal mixture model but there are not enough observations to

raise it to u = 3. Additional information may be borrowed from the adjacent municipalities, in

particular Oslo, in order to achieve this. Spatial dependence could be modelled via a conditional

autoregressive prior (Besag, 1974; Besag et al., 1991) on (β1, β2, β3) in (28).
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A Threshold-stability of the IGPD

Lemma 1. Let N be an integer-valued random variable with N | N > u ∼ IGPD(σu, ξ, u), u ∈ R.

Then for any u < v < u − σu
ξ

, N | N > v ∼ IGPD (σu + ξ (bvc − buc) , ξ, v) for any σu > 0 and

ξ ∈ R.

Proof. We prove the lemma via the survival function P (N > n | N > v), where n is integer with

n > v. By applying conditional probabilities, P (N > n | N > v) can be expressed by

P (N > n | N > v) =
P (N > n | N > u)

P (N > v | N > u)

=
P (H > n − buc)
P (H > bvc − buc)

where N = dHe, with H a GPD with parameters σu and ξ. It follows that

P (N > n | N > v) =

[
1 + ξ( n −buc)

σu

]− 1
ξ

+[
1 + ξ(bvc−buc)

σu

]− 1
ξ

+

=

[
σu + ξ ( n − buc)
σu + ξ (bvc − buc)

]− 1
ξ

+

=

[
σu + ξ ( n − bvc+ bvc − buc)

σu + ξ (bvc − buc)

]− 1
ξ

+

=

[
1 +

ξ ( n − bvc)
σu + ξ (bvc − buc)

]− 1
ξ

+

,

which is the survival function of a IGPD above threshold v with scale parameter σu+ξ (bvc − buc) >
0 and shape parameter ξ.

B Threshold-stability of the mixture tail

Lemma 2. Let N be an integer-valued random variable with N | N > u having distribution

function

P (N = n | N > u) = p P(Y = n) + (1− p) P(Z = n)

where Y ∼ IGPD(σu, ξ, u) and Z being a truncated Poisson above threshold u with parameter κ.

Then for any v > u, the random variable N | N > v, is distributed according to a mixture of an

IGPD(σu+ ξ (bvc − buc) , ξ, v) and a truncated Poisson above v with rate parameter κ and mixture
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probability

pv =
p P(Y > v)

p P(Y > v) + (1− p) P(Z > v)
.

Proof. Consider any combination n > v > u. Then, based on conditional probabilities,

P(N > n | N > v)

=
P(N > n | N > u)

P(N > v | N > u)

=
p P(Y > n) + (1− p) P(Z > n)

p P(Y > v) + (1− p) P(Z > v)

=
p P(Y > n | Y > v) P(Y > v) + (1− p) P(Z > n|Z > v) P(Z > v)

p P(Y > v) + (1− p) P(Z > v)

By defining

pv =
p P(Y > v)

p P(Y > v) + (1− p) P(Z > v)
,

we obtain

P(N > n | N > v) = pv P(Y > n | Y > v) + (1− pv) P(Z > n | Z > v).

Based on the threshold-stability in Appendix A, Y | Y > v ∼ IGPD(σu + ξ(bvc − buc), ξ, v).

Further, Z | Z > v is a truncated Poisson above v with rate κ. Hence, N | N > v is distributed

according to a mixture of an IGPD and a truncated Poisson.

C Details of the MCMC algorithm

Let D = {(ñi, x̃i) , i = 1, . . . ,m} denote the set of observed claim numbers and covariates effects.

Further, a latent binary variable vi is introduced for each observation ñi which is defined by

vi =

1 if ñi is a realization from the distribution Ỹ

0 otherwise.

We set a Beta(1, 1) prior π(p) on the mixing probability p and an improper prior on the remain-

ing parameters, π(β, δ, ξ, κ) ∝ 1. Hence, the posterior distribution π(p,β, ξ, δ, κ, v1, . . . , vI |D) is

proportional to

m∏
i=1

{[
p P

(
Ỹ = ñi | β, ξ, δ, x̃

)]vi [
(1− p) P

(
Z̃ = ñi | κ

)]1−vi
}
π(p)
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Realizations from this posterior distribution are sampled by a Metropolis-within-Gibbs algorithm

which runs for a fixed number of iterations J . Let p(0),β(0), ξ(0), δ(0) and λ(0) denote the initial

parameter values. The update procedure for all parameters within one iteration step j = 1, . . . , J

is as follows:

At the start of iteration step j, the latent variables v
(j)
1 , . . . , v

(j)
m are sampled from a Bernoulli

distribution

v
(j)
i ∼ Bernoulli

(
w

(j)
i

)
.

The probability of observation ñi being sampled from the covariate-driven component Ỹ , w
(j)
i , is

given by

w
(j)
i =

p(j−1) P
(
Ỹ = ñi | β(j−1), ξ(j−1), δ(j−1), x̃i

)
p(j−1) P

(
Ỹ = ñi | β(j−1), ξ(j−1), δ(j−1), x̃i

)
+ (1− p(j−1)) P

(
Z̃ = ñi

) .
Since we placed a conjugate Beta prior on p, the parameter value is updated by sampling from the

full-conditional Beta posterior

p(j) ∼ Beta

(
I∑
i=1

v
(j)
i + 1, I −

I∑
i=1

v
(j)
i + 1

)
.

The model parameters β, ξ and δ are updated separately via Random-Walk-Metropolis with

Gaussian proposal. For the covariate effects β, the proposal β∗ is accepted with probability

min

1,
∏

v
(j)
i =1, ñi>u

P
(
Ỹ = ñi | β∗, ξ(j−1), δ(j−1), x̃i

)
P
(
Ỹ = ñi | β(j−1), ξ(j−1), δ(j−1), x̃i

)
 ,

whilst the proposal ξ∗ has acceptance probability

min

1,
∏

v
(j)
i =1, ñi>u

P
(
Ỹ = ñi | β(j), ξ∗, δ(j−1), x̃i

)
P
(
Ỹ = ñi | β(j), ξ(j−1), δ(j−1), x̃i

)
 .

Note, the likelihood needs only to be evaluated for the observations with latent variable v
(j)
i = 1

and the number of observations ñi greater than the threshold. Next, the covariate effects for the

rate parameter κ are updated. Here, the likelihood has to be evaluated for all observations with

v
(j)
i = 1 as δ effects the threshold exceedance model. The acceptance ratio is thus given by

min

1,
∏
v
(j)
i =1

P
(
Ỹ = ñi | β(j), ξ(j), δ∗, x̃i

)
P
(
Ỹ = ñi | β(j), ξ(j), δ(j−1), x̃i

)
 .
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Finally, the rate parameter κ is updated via an independence sampler with uniform proposal

distribution. The acceptance probability then yields to

min

1,
∏
v
(j)
i =0

P
(
Z̃ = ñi | κ∗

)
P
(
Z̃ = ñi | κ(j−1)

)
 .
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