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Abstract

Detecting recent changepoints in time-series can be important for short-term predic-

tion, as we can then base predictions just on the data since the changepoint. In many

applications we have panel data, consisting of many related univariate time-series. We

present a novel approach to detect sets of most recent changepoints in such panel data

that aims to pool information across time-series, so that we preferentially infer a most

recent change at the same time-point in multiple series. Our approach is computa-

tionally efficient as it involves analysing each time-series independently to obtain a

profile-likelihood like quantity that summarises the evidence for the series having ei-

ther no change or a specific value for its most recent changepoint. We then post-process

this output from each time-series to obtain a potentially small set of times for the most

recent changepoints, and, for each time, the set of series that has their most recent

changepoint at that time. We demonstrate the usefulness of this method on two data

sets: forecasting events in a telecommunications network and inference about changes

in the net asset ratio for a panel of US firms.
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1 Introduction

There are many modern applications where high-dimensional observations are collected and

stored over time. This type of data can be viewed as a (potentially large) collection of time

series and in the literature is often known as panel data. For an overview of this area see

Wooldridge (2010).

We are interested in structural changes, also known as changepoint detection. For an overview

of some of the methods used on univariate time series see Jandhyala et al. (2013). In this

work, however, we will look at structural changes in panel data. Some recent work in this

area includes Kirch et al. (2015), Ma and Yau (2016) and Preuss et al. (2015). Applications

of these methods to detect changes occur in many areas such as finance, bioinformatics and

signal processing (Cho and Fryzlewicz, 2015; Vert and Bleakley, 2010; Cao and Wu, 2015).

Our work is motivated by a real-life problem of predicting the number of events that occur

across a telecommunications network. We have weekly data on the number of events in the

network, with this number recorded for each of a set of event types and for each of a set

of geographical regions. Being able to make short-term predictions of future event counts is

important for planning. These event counts are observed to change over time, often abruptly,

and it is natural to model the time series data using a changepoint model.

The challenge with analysing the data is dealing with the large number of separate time

series, one for each event type and region pair. In total there are 160 time series. Six

example time series are shown in Figure 1. It is natural to assume that some reasons, such as

large external factors, that affect the event count for one time series may also affect the event

counts for other time series. However, not all time series may see a changepoint at exactly the

same time. We would like a changepoint method that encourages, but does not force, time

series to share common changepoints. As our primary interest is in short-term prediction,

we particularly want a method that is accurate in estimating the location of the most recent

change-point for each time series, so that we can use the data since that change-point to

predict the likely number of events in the future.

Detecting changepoints in multiple time series introduces computational challenges that are

not present when analysing a single time series. A simplistic approach to the problem would
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Figure 1: An example of six of the event count time series. These show different patterns. The
left-hand column has two series consistent with a constant positive trend since around week
40. The middle column show series with evidence for a recent increase in trend around week
140. The right-hand column shows series with evidence for a decrease in the rate of events
from around week 160. In each case we show our estimate of the most recent changepoint –
see Section 5.1 for more detail.

thus be to try and apply univariate changepoint methods (Jandhyala et al., 2013). There

are two ways of doing this. One is to analyse each time series separately. The other is

to aggregate the time series, and analyse the resulting univariate series. Each method has

its drawbacks. The former will lose power when detecting changepoints, as it ignores the

information that different time series are likely to have changepoints at similar times. The

latter approach can perform poorly if the signal from changepoints that affect a small number

of series is swamped by the noise in the remaining series when they are aggregated.

An alternative approach to analysing data of this form is to treat the data as a single time

series with multivariate observations. We then model the multivariate data within a segment,

and allow for this model to change, in an appropriate way, between segments. This approach

is taken by Lavielle and Teyssière (2006), who model data as multivariate Gaussian but

with a mean that can change from segment to segment. Similarly, Matteson and James

(2014) present a non-parametric approach to detecting multiple changes in multivariate data.

However, like aggregating the data, these methods may lack power if a change only affects a

small proportion of the time series. (Though see Wang and Samworth, 2017, for ideas that

try to overcome this problem).
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Recently there have been methods specifically designed for detecting changes that affect

only a subset of series. Cho and Fryzlewicz (2015) and Cho (2016) propose a way to detect a

single, potentially common, changepoint in such data. They consider a novel, non-linear, way

of combining summaries of individual time series, so-called CUSUM statistics, that contain

information about the presence and location of a changepoint. The intuition is to retain

CUSUM values from all series that show strong evidence for a change at a given time-point,

but down-weight the values from other time series. Thus they are able to share information

across time series without any signal being swamped by noise from series that do not share the

common changepoint. Similarly, Xie and Siegmund (2013) introduce a generalised likelihood

ratio test for detecting a single common changepoint that affects only a subset of series. This

test needs an estimate of the proportion of series affected by the change, and this estimate

then affects the weight given to evidence for a change from each series. Again, the intuition

of the approach is to give large weight to series that show strong evidence for a change, but

lower weight to those with little evidence.

The approaches of Cho and Fryzlewicz (2015), Cho (2016) and Xie and Siegmund (2013) can

each be used within a binary segmentation procedure to find multiple changes. Empirical

results in these papers show that this type of approach can be more powerful than either

analysing series individually or aggregating them.

As we are primarily interested in estimating the most recent changepoint for each time series,

we take a different approach. Our approach aims to partition the panel of time series into

groups, each of which share the same most recent changepoint, with, potentially, a group

corresponding to time series with no change. This is achieved by analysing each time series

independently using a penalised cost, or penalised likelihood, approach to detecting changes

(Lavielle, 2005; Killick et al., 2012; Maidstone et al., 2017). From each analysis we output

a measure of evidence for the most recent changepoint being at each possible time-point, or

that the series has no change. We then post-process the output from these analyses in a way

that encourages time series to share a common most recent change. This post-processing step

involves trying to partition the time series into a small number, K, of groups that share the

same value for their most recent changepoint. We show that this post-processing step can be

formulated in terms of solving a combinatorial optimisation problem, known as the K-median
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problem. Whilst this problem is NP-hard, we use a heuristic solver that is computationally

inexpensive, and, empirically, works well in terms of the estimated most recent changepoints.

The outline of the paper is as follows. Firstly we define the problem of finding the most

recent changepoint in a univariate time series using a penalised cost approach, and show

how this can be extended to panel data. To infer the most recent changepoints requires

solving a combinatorial optimisation problem. We discuss how to solve this in Section 3.

In Section 4 we evaluate our method, and compare it with a number of alternatives on

simulated data. We then apply our method to two real data applications. The first data set

represents a telecommunications event time series, shown in Figure 1, where the aim is to

improve prediction. Secondly, we analyse financial data from a large number of firms. In this

application we are more concerned about detecting the locations of most recent changepoints

and the sets of firms that change, with the aim of understanding the causes of these changes.

Finally we end with a discussion on the advantages and limitations of our method.

2 A Penalised Cost Approach to Most Recent Change-

point Detection

We begin by assuming we have panel data consisting of N time series of length n. Denote

the ith time series by y1,i, . . . , yn,i. Throughout we will use the notation ys:t,i to denote the

subset of observations from time s to time t inclusive.

Our approach to detecting the common most recent changepoints is based on a penalised

cost approach. We will first describe how this approach can be used to analyse individual

time series, before then explaining how the output from these individual analyses can be

combined to estimate a set of common most recent changepoints for our N series.

2.1 Analysing a Univariate Time Series

First consider analysing data from one of the N time series in our panel data. To simplify

notation we will drop the subscript i that denotes which time series, and instead denote the

data by y1:n. We will denote the number and position of changes by m and τ = (τ1, . . . , τm)
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respectively. We assume the changepoints are ordered, and define τ0 = 0 and τm+1 = n.

A penalised cost approach to detecting changepoints in this time series involves introducing a

cost associated with each putative segment. This cost is often derived by modelling the data

within a segment, and defining the cost to be proportional to minus the maximum likelihood

value for fitting that model to a segment of data. If our model for data in a segment is that

they are IID with some density f(y|θ), where θ is a segment-specific parameter, then we can

define the cost for a segment ys:t as

C(ys:t) = −2 max
θ

t∑
u=s

log f(yu|θ).

The segment cost function can include a component that depends on the length of segment

as is used in some penalised cost approaches (Davis et al., 2006; Zhang and Siegmund, 2007).

To make this idea concrete we will give two examples of cost functions that we will use later.

The first is for detecting a change in mean. A simple model is that the data in a segment is

IID Gaussian with common known variance, σ2, and segment specific mean, θ. In this case

we get

C(ys:t) = −2 max
θ

−1

2σ2

t∑
u=s

(yu − θ)2 =
1

σ2

t∑
u=s

(
yu −

∑t
v=s yv

t− s+ 1

)2

.

The second is where we model the mean of the data within a segment as a linear function

of time, but allow this linear model to vary between segments. Denote θ = (θ1, θ2) to be

the segment intercept and slope. If the noise for this model is IID Gaussian we then get a

segment cost

C(ys:t) =
1

σ2
max
θ

t∑
u=s

(yu − θ1 − uθ2)2 .

We use this model for analysing the data presented in the introduction, however in that

application some time series have clear outliers. To make our inferences robust to these

outliers we follow Fearnhead and Rigaill (2017) and instead use a segment cost

C(ys:t) =
1

σ2
max
θ

t∑
i=s

min
{

(yi − θ1 − iθ2)2 , 4σ2
}
. (2.1)

This cost limits the impact of outliers if their residuals are greater than 2 standard deviations
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away from the segment mean.

For all these costs we require knowledge of σ2, the residual variance (or in the latter example,

the variance of the non-outlier residuals). In practice we use a simple and robust estimator of

σ, based on the median absolute deviation of the differenced time series (Fryzlewicz, 2014).

Once we have defined a segment cost, we then define a cost for a segmentation as the sum

of the segment costs for that segmentation. To segment the data, and find the changepoints,

we then want to minimise this cost over all segmentations. However to avoid over-fitting we

add a penalty, β > 0, for each segment. Thus to segment the data we solve the following

optimisation problem

min
m,τ

m+1∑
j=1

[
C(y(τj−1+1):τj) + β

]
. (2.2)

The choice of β in this approach is important. Higher values for β will mean fewer change-

points detected. There are various suggestions for how to choose β, and the most common

for detecting changes in a single time series is the BIC criteria. If our segment specific param-

eter is of dimension p, then this corresponds to β = (p + 1) log n. This has good theoretical

properties, if our modelling assumptions are correct (e.g. Yao, 1987). However care is needed

in practice where this is not the case, see Haynes et al. (2017) for guidance in selecting an

optimal value for β for a given time series.

Solving (2.2) is possible using dynamic programming. This requires the solution of a set of

intermediate problems. Define F (t) for t = 1, 2, . . . , n as

F (t) = min
τ

{
m+1∑
j=1

[
C(y(τj−1+1):τj) + β

]}
, (2.3)

where the minimisation is over m and 0 = τ0 < τ1 < · · · < τm < τm+1 = t. Thus F (t) is the

minimum cost for segmenting data y1:t. The functions F (·) can be efficiently calculated, for

example using the PELT (Killick et al., 2012) algorithm, as

F (t) = min
s<t
{F (s) + C(ys+1:t) + β} .
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Recalling that our interest is in detecting the most recent changepoint, let us consider G(r),

which we define to be the minimum cost of the data conditional on the most recent change-

point prior to n being at time r. This is related to F (r) as it is just the minimum cost of

segmenting y1:r plus the cost of adding a changepoint and the cost for segment y(r+1):n,

G(r) = F (r) + C(y(r+1):n) + β, for r = 1, . . . , n− 1, (2.4)

with G(0) = C(y1:n). This quantity can be viewed as related to the idea of a profile likelihood,

as we have optimised over all nuisance parameters (the number and locations of the change-

points prior to the most recent changepoint). It is trivial to see that our estimate for the

most recent changepoint is given by argminr∈{0,...,n−1}G(r). If the most recent changepoint

is at r = 0, then this corresponds to no change within the time series.

2.2 Extension to panel data

We now return to the problem of finding a set of common most recent changepoints in our

panel data. Let Gi(r) denote the minimum cost for segmenting series i with a most-recent

changepoint at r, defined in (2.4). Our idea is to search for a set of K locations for the

common most recent changepoints for our N series.

Firstly assume that an appropriate value for K is known. Denote a set of common most

recent changepoints as r1:K = (r1, . . . , rK). For the kth most recent changepoint, located at

rk, then there will exist a set, Ik ⊂ {1, 2, . . . , N}, such that for all series i ∈ Ik the most recent

changepoint is located at rk. The sets I1:K will partition the full set of series {1, 2, . . . , N}.

It is natural to estimate the r1:K , and the associated sets, by the values that minimise the

sum of costs for each series

CK = min
I1,...,IK r1,...,rK

K∑
k=1

∑
i∈Ik

Gi(rk). (2.5)

The minimisation of (2.5) is challenging, however we will describe a method adopted from

the field of combinatorial optimisation to solve it for a given value of K in Section 3.

In practice we do not know what value of K to choose. Thus to choose K we resort to
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minimising a penalised version of (2.5). We first solve the optimisation problem in (2.5) for

a range of K, and then choose the value of K that minimises

CK +N log2K +K log2 n,

where log2 is log base two. This uses a minimum description length criteria (Grünwald, 2007),

and the penalty can be viewed as the log, in base two, of the model complexity for allowing

K most recent changepoints: the number of choices of the K changepoints is approximately

nK and then each of the N time series can choose which of the K most recent changepoints

to have, which gives KN possible choices.

This approach penalises adding most recent changepoints. Thus when we implement our

method we use a value of β, the penalty for adding a change used in calculating Gi(r), which

is slightly lower than the BIC choice. Specifically, we suggest using β = (p + 1/2) log n, as

on simulated data with no change, values of β lower than this produce G(r) functions that

on average get smaller as r increases for r ≥ 1. This suggests smaller choices of β would be

biased towards adding erroneous very recent changepoints. By comparison our choice of β

produced G(r) functions whose average value appeared constant for r ≥ 1.

3 Optimal set of most recent changepoints

We now turn to solving the optimisation problem in (2.5) for a fixed value of K. Solving this

is computationally challenging if a brute force method is applied, due to the exponentially

large number of ways of choosing either r1:K or the sets I1:K . However it can be reduced to

a well studied problem in the field of combinatorial optimisation.

To formulate this problem we proceed as follows. Let G be a matrix of the conditional costs

that we defined in (2.4), so that for i = 1, 2, . . . , N and r = 0, 1, . . . , n− 1, Gir = Gi(r) the

optimal cost of the most recent changepoint of the ith series being at time r. We want to

find the K columns of G such that if, for each row, we take the minimum of elements in

these columns, and then sum these across all N rows, the total is minimised. This allocates

each of the N series into K disjoint classes according to which series are affected by a specific
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most recent changepoint. The specific optimisation problem is

min
S

N∑
i=1

min
r∈S

Gir, where S ⊂ {0, 1, . . . , n− 1} and |S| = K.

It turns out that this optimisation problem is mathematically equivalent to the so-called

K-median problem (Reese, 2006). This problem can be formulated, and solved, as an integer

program with binary variables xir and zr where

xir =

 1 if series i has its most recent changepoint at time r,

0 otherwise,

and

zr =

 1 if there is a most recent changepoint in any series at time r,

0 otherwise.

The objective is then simply to solve the following problem:

min
N∑
i=1

n−1∑
r=0

Girxir (3.1)

subject to
n−1∑
r=0

xir = 1,∀i, (3.2)

xir ≤ zr,∀i, r, (3.3)

n−1∑
r=0

zr = K. (3.4)

Here constraint (3.2) ensures each series has only one most recent changepoint, whilst the

two remaining constraints, (3.3) and (3.4), ensure that K different most recent changepoints

are selected.

Approaches for solving the K-median problem are discussed in Reese (2006) and references

therein. We use the method of Teitz and Bart (1968), available within the R package tbart.

This is a simple algorithm that tries to improve on a current solution by replacing one of the

K values for a most recent changepoint with a value that is not currently in the set of most

10



recent changepoints. It loops over all such pairs, and makes the replacement if it will reduce

the objective function (3.1). This is repeated until there is no replacement that will improve

the objective any further. This method is heuristic, in that it is not guaranteed to find the

global optimum to the optimisation problem. However we found that it is computationally

efficient and empirically leads to good estimates of the most recent changepoints, as shown

below.

4 Simulation study

As described in the introduction, there are a number of methods in the literature that allow

us to detect multiple changes in panel data. We compare our method, which we call MRC,

to several of these to see empirically how they compare. None of these alternative methods

were specifically designed to just estimate the most recent changepoints, and we are unaware

of any other methods that focus solely on this. Furthermore some of these methods are able

to infer quantities, such as earlier common changepoints, that MRC cannot.

The alternative methods can be split into two groups. The first set of methods estimate

common changepoints for each series. We compare with three such approaches. These

are analysing the aggregated data (AGG) and two approaches for detecting common change-

points in multivariate data. The latter two methods are the approach of Lavielle and Teyssière

(2006) that models data within a segment as multivariate Gaussian with known covariance

(MV); and the ECP method (Matteson and James, 2014), which is a non-parametric change-

point detection procedure (ECP).

Both the AGG and MV methods require a choice of penalty and we use the BIC penalty.

However, for the ECP method every proposed changepoint is tested for statistical significance

using a permutation test and a threshold obtained via a bootstrap that is described in

Matteson and James (2014).

The second group of alternative methods includes two methods that can estimate common

changepoints that affect only a subset of the time series. The simplest method we consider

(IND) involves analysing each series in the panel independently and finding the most recent

changepoint in each series. The second method in this group is Double CUSUM Binary
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Segmentation (DCBS) (Cho, 2016). Whilst the focus of this method, and the theory that

underpins it, is on consistently detecting the location of changepoints, the paper also mentions

an intuitively natural way of identifying which series change at each changepoint. We again

use the BIC penalty when segmenting each series as part of the IND method. The DCBS

method has two parameters that need to be chosen. The first parameter, ψ, is related to

the expected degree of sparsity or the number of series affected by a change compared to the

total number of series. Guidance is available on how to choose this parameter in Cho (2016).

The second parameter, πψ, is the threshold for testing whether or not a change is significant

as is done in the ECP method mentioned above. This threshold is chosen using a bootstrap

style procedure where the null hypothesis of no changepoint is assumed and some empirical

quantile of this distribution is taken. We chose this parameter by simulating 100 replications

from the null hypothesis, i.e. no changepoints at all, and measured the proportion of false

positives for a number of different values for πψ. In practice, we found that a value of πψ = 10

worked well.

Each panel data set we simulate consists of 100 series all having length 500. For a given

value of K we first simulate K distinct values for the most recent changepoints from the

set {300, 320, . . . , 480}. This ensures each most recent changepoint position is at least 20

time-points away from all other positions, which helps interpretation when we measure the

accuracy of methods in detecting the location of the changes. We partition our 100 time series

evenly across the K most recent changepoint locations. We then simulate earlier common

changepoints by first simulating potential changepoints independently with probability 0.02

at each time-point prior to the earliest most recent common changepoint. For each of these

we simulate a probability from a uniform distribution, and then simulate that a changepoint

appears in each time series independently with this probability. The observations in each of

the segments are IID Gaussian distributed with mean µ drawn from its prior distribution

N (0, 22). For simplicity we keep a fixed variance σ2 = 1 for all the observations. In this study

the parameter of the last segment differs by ε from the mean in the penultimate segment,

with the sign of the change being chosen uniformly at random for each time series. We use

ε = 1 for the studies in Cases 1, 3 and 4 below, whereas for Case 2 we look at the effect of

varying ε.
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In the first three studies we consider the accuracy of estimates of the most recent changepoints

and which series are affected. We only compare IND and DCBS with MRC, as these are the

only methods that estimate those series affected by each of the most recent changepoints.

We evaluate these three methods on a number of different criteria. A specific changepoint

is then defined as being detected if it is within 5 time points of an estimated changepoint,

and we calculate the proportion of changepoints that are detected. To define the location

accuracy we take only those changepoints that are detected then take the average of the

absolute difference between the true and estimated locations.

Two of the methods we consider, namely MRC and DCBS, return more information than

IND, including the estimated number of most recent changepoints K̂ and the subset of series

that are affected by each most recent changepoint. We measure the accuracy of the estimate

of the number of most recent changepoints using the absolute error, |K̂ −K|, and call this

the changepoint accuracy. We then measure the accuracy of the estimates of the subsets of

series affected by each of the changepoints using the set coverage

Dj = 1− |Îj ∩ Ij|√
|Îj||Ij|

.

Here Ij is the true subset of series affected by the jth most recent changepoint and Îj is

the estimated subset. This measure satisfies Dj ∈ [0, 1], with Dj = 0 indicating that the

estimated subset overlaps exactly with the true subset, and Dj = 1 if the two subsets are

disjoint. More generally, smaller values of Dj indicate a greater overlap. In the simulations

presented for each panel we calculate the mean of D1, D2, . . . , DK̂ .

Case 1. Effect of K.

For the first study we simulated data as described above for a range of values for K from

K = 1 to K = 10. Results are shown in Table 1.

It is clear from Table 1 that our MRC method outperforms both IND and DCBS across

the criteria we consider. The ability to synthesise information across time series means that

MRC is able to more accurately detect changes and locate where they occur than analysing

each time series independently. Not surprisingly we see that the advantage of using MRC

over IND decreases as K increases. We also see that DCBS is more accurate than IND for
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IND DCBS MRC
K PD LA PD CA LA D PD CA LA D

1 0.73 1.46 0.86 2.98 0.05 0.09 0.98 0.10 0.06 0.01
2 0.76 1.43 0.82 2.55 0.04 0.14 0.97 0.04 0.04 0.03
3 0.77 1.39 0.70 2.64 0.13 0.24 0.95 0.05 0.03 0.05
4 0.77 1.37 0.67 2.47 0.18 0.28 0.94 0.03 0.05 0.06
5 0.78 1.38 0.58 2.09 0.24 0.35 0.93 0.03 0.04 0.07
10 0.78 1.41 0.29 1.77 0.76 0.62 0.89 0.10 0.19 0.10

Table 1: For all of the methods and differing values of K we repeated each experiment
100 times and recorded the proportion of true changes we detected (PD), the accuracy in
detecting the number of distinct most recent changes (CA), the accuracy of the estimated
location of these changes (LA) and the set coverage (D). These values are averaged over the
100 replications.

small values of K, and is consistently more accurate in estimating the position of detected

changepoints, but appears less powerful at detecting the most recent changes as K increases.

Case 2. Effect of size of change at final changepoint.

Next we look at how the performance of each method is affected by the size of the mean

change at the most recent changepoint, ε. We fix the number of most recent changepoints as

K = 5, meaning that there are 20 series affected by each different changepoint. We vary the

value of ε from ε = 0.2 to ε = 1.6. Results are shown in Table 2.

We again see MRC giving consistently stronger performance for all values of ε. The advantage

of MRC over IND is largest for moderate values of ε. For small values of ε the information

about changes in each time series is small, and thus the benefit of merging information across

time series is limited. For larger values of ε it is relatively easy to detect changes from an

individual time series, and hence the benefit of using MRC over IND is mainly seen in its

ability to more accurately locate the position. Surprisingly DCBS does not improve as much

as the other methods as we increase ε. The DCBS method was not specifically designed to

detect most recent changes, and it appears not to be as accurate at identifying the time series

that change at each changepoint. This, in turn, impacts the DCBS method’s accuracy at

detecting which changes are most recent for a given time series.

Case 3. Dependent observations.

One of the key assumptions we made when modelling the most recent change process was
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IND DCBS MRC
ε PD LA PD CA LA D PD CA LA D

0.2 0.11 1.49 0.09 3.49 0.75 0.66 0.11 2.06 0.47 0.64
0.4 0.22 1.75 0.22 3.43 1.01 0.55 0.36 1.27 0.88 0.42
0.6 0.46 1.76 0.37 3.00 0.64 0.51 0.76 0.30 0.29 0.20
0.8 0.65 1.57 0.48 2.51 0.35 0.45 0.89 0.09 0.12 0.10
1 0.78 1.38 0.58 2.09 0.24 0.35 0.93 0.03 0.04 0.07

1.2 0.86 1.19 0.62 1.63 0.16 0.31 0.95 0.04 0.02 0.05
1.4 0.91 1.01 0.65 1.44 0.13 0.26 0.95 0.04 0.00 0.05
1.6 0.93 0.85 0.66 1.47 0.10 0.25 0.96 0.04 0.00 0.04

Table 2: For all of the methods with a fixed value of K = 5 and differing values of ε
we repeated each experiment 100 times and recorded the proportion of true changes we
detected (PD), the accuracy in detecting the number of distinct most recent changes (CA),
the accuracy of the estimated location of these changes (LA) and the set coverage (D). These
values are averaged over the 100 replications.

the independence of observations, both within and between segments. This greatly simplifies

the modelling and especially the inference procedure. However, in most real time series

applications observations are not independent and display serial autocorrelation.

To assess the robustness of the MRC procedure we simulated an MRC process with a piecewise

constant mean function as before, but instead of adding IID normally distributed ‘noise’ we

simulated an AR(1) noise process, Zt, with standard normal errors et

Zt = φZt−1 + et.

This process was simulated for a range of values of φ, representing mild to moderate auto-

correlation. The number of most recent changepoints was fixed at K = 5 and we set ε = 1.

Results are shown in Table 3.

As φ increases the dependence between observations increases and the measures for all meth-

ods we consider decrease. The impact on both MRC and DCBS is larger than the impact

on IND, with IND correctly detecting more recent changepoints for φ = 0.4. Both MRC and

DCBS still give more accurate estimates of the position of the changes that they do detect,

and MRC is again more accurate than DCBS for all cases we consider.
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IND DCBS MRC
φ PD LA PD CA LA D PD CA LA D

0 0.78 1.38 0.58 2.09 0.24 0.35 0.93 0.03 0.04 0.07
0.1 0.73 1.47 0.55 2.17 0.29 0.40 0.89 0.03 0.07 0.11
0.2 0.64 1.56 0.43 2.66 0.31 0.49 0.75 0.74 0.18 0.21
0.3 0.51 1.59 0.12 3.05 0.66 0.71 0.47 1.71 0.35 0.38
0.4 0.36 1.72 0.04 2.70 1.59 0.80 0.21 1.79 0.82 0.55

Table 3: For each of the methods and differing values of AR parameter, φ, we repeated
each experiment 100 times and recorded the proportion of true changes detected (PD), the
accuracy in detecting the number of distinct most recent changes (CA), the accuracy of
estimated location of these changes (LA) and the set coverage (D). Fixed values for K = 5
and ε = 1.0 were used.

We then simulated an MA(1) noise process, Zt, with standard normal errors et

Zt = et + φet−1.

This process was simulated for a range of values of φ. The number of most recent changepoints

was fixed at K = 5 and we set ε = 1. Results are shown in Table 4. We see similar patterns

to those observed for the AR(1) model. Increased autocorrelation reduces the accuracy of

all methods. For the largest values of φ we tried, IND performs slightly better than MRC in

terms of the proportion detected, but MRC and DCBS still give more accurate estimates of

the location of the changes they do detect. For all cases MRC outperforms DCBS.

The fact that increasing the level of autocorrelation in the residuals of the mean model, for

both the AR(1) and MA(1) models, reduces the accuracy of all methods is not surprising. As

we increase the autocorrelation there will be less information in the data about the position of

changes. Furthermore, all methods were implemented with a choice of penalty that assumes

IID residuals. When there is positive autocorrelation this can lead to such methods detecting

a larger number of spurious changepoints.

There are two ways to overcome this problem. One is to model the residual process of the

mean model as, say, an ARIMA model. We can then adapt the cost function so that it is

based on the negative log-likelihood under such a model. If we implement such an approach

we need to assume the parameters of the ARIMA model are common across all segments,
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and it is just the mean parameter that changes. Otherwise we would be detecting changes

in the second order structure of the time-series as well as in the mean.

A simpler approach is suggested by theoretical results in Lavielle and Moulines (2000). This

paper presents asymptotic theory for detecting changes in mean that show you can consis-

tently estimate the number and location of the changepoints using the square error loss even

when there is autocorrelation in the residuals. However to do so you need to increase the

penalty, β, with the level of autocorrelation in the residuals. We tested this simpler approach

by re-analysing the data simulated with AR and with MA residual processes but with an

increased value of β. As suggested by the results in Lavielle and Moulines (2000) we scaled

β by the sum of the autocorrelation function for the residuals from −∞ to ∞. This is just

(1 + φ)/(1 − φ) for the AR model and 1 + 2φ for the MA model. We also scaled the MDL

penalty used to choose the number of most recent changepoints by the same factor.

Results are shown in Table 5. These show that by adapting the penalties appropriately we

can much more accurately detect the most recent changepoints, with close to or above 80% of

changepoints correctly idepentified for the AR models with φ up to 0.4, and for the MA model

with φ up to 0.6. We only see a substantial drop-off in performance for the AR residuals

when φ = 0.6. In part this will be because of the reducing amount of information about

the location of the changepoints when we have strongly positively correlated residuals. In

practice we would not know the exact form of the auto-correlation structure of the residuals,

but we can estimate this from the data by first fitting a changepoint model and looking at

the auto-correlation of the residuals we obtain.

Case 4. Accuracy of prediction.

Finally, we consider how each method performs if the aim is to predict Yi,n+1, . . . , Yi,n+5 for

each time series. Each method gives an estimate for the most recent changepoint for each

time series. Conditional on this estimate we can estimate the mean in the final segment.

This estimated mean is our prediction for the next value(s). We use the same data as in Case

1 but leave out 5 time points at the end of the data. We then predict the last 5 points using

the most recent changepoints found by each method and measure the Mean Squared Error

(MSE) between the truth and our predictions. Results are shown in Table 6.

MRC gives the most accurate predictions for all values of K, and is the only method to
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IND DCBS MRC
φ PD LA PD CA LA D PD CA LA D

0 0.78 1.38 0.58 2.09 0.24 0.35 0.93 0.03 0.04 0.07
0.1 0.73 1.45 0.56 2.23 0.27 0.39 0.89 0.04 0.06 0.11
0.2 0.67 1.50 0.50 2.46 0.31 0.45 0.81 0.37 0.09 0.17
0.3 0.60 1.57 0.27 2.78 0.50 0.61 0.65 1.32 0.23 0.28
0.4 0.51 1.65 0.09 2.70 0.80 0.73 0.45 1.78 0.40 0.39

Table 4: For each of the methods and differing values of the MA parameter, φ, we repeated
each experiment 100 times and recorded the proportion of true changes detected (PD), the
accuracy in detecting the number of distinct most recent changes (CA), the accuracy of the
estimated location of these changes (LA) and the set coverage (D). Fixed values for K = 5
and ε = 1.0 were used.

AR MA
φ PD CA LA D PD CA LA D

0 0.93 0.03 0.04 0.07 0.93 0.03 0.04 0.07
0.1 0.93 0.04 0.05 0.07 0.93 0.04 0.04 0.07
0.2 0.90 0.06 0.06 0.10 0.91 0.06 0.05 0.08
0.3 0.86 0.11 0.09 0.13 0.89 0.06 0.07 0.10
0.4 0.79 0.35 0.16 0.19 0.86 0.07 0.08 0.13
0.5 0.67 0.55 0.28 0.27 0.83 0.12 0.12 0.16
0.6 0.48 1.00 0.62 0.40 0.79 0.19 0.17 0.19

Table 5: Results of applying MRC to data with AR or MA residuals when we inflate the
penalties, β and the MDL penalty, to account for the positive autocorrelation. Results
are averages over 100 data sets for each value of the AR/MA parameter, φ. We show the
proportion of true changes detected (PD), the accuracy in detecting the number of distinct
most recent changes (CA), the accuracy of the estimated location of these changes (LA) and
the set coverage (D).

consistently be more accurate than analysing each time series individually. The method

that treats the N time series as a multivariate time series, where the mean changes in all

components at a change (MV), does well for K = 1 and K = 2, but loses accuracy for larger

K. The method that aggregates the time series, and then detects changes in the resulting

uni-variate time series, does particularly poorly. This is because the aggregation step reduces

the signal for a change, even when all changes are in the same location, as the sign of the

change in mean differs across time series.
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k IND AGG MV ECP DCBS MRC
1 1.04 1.29 1.01 1.09 1.08 1.01
2 1.06 1.27 1.05 1.09 1.08 1.03
3 1.04 1.25 1.06 1.08 1.07 1.02
4 1.04 1.34 1.08 1.09 1.08 1.02
5 1.04 1.23 1.08 1.09 1.07 1.02
10 1.04 1.29 1.12 1.09 1.09 1.02

Table 6: The average Mean Squared Error (MSE) for predictions of each method. The MSE
was calculated for the difference between the truth and predicted values and averaged over
100 replications.

5 Applications

We look at two different applications of our method using real data. These applications differ

in their focus and the aim of the analysis. The first is that of the telecommunications event

count data introduced in Section 1. Our second application concerns the balance sheets of a

large number of firms. In this latter case we look for changes in a parameter that measures

the ratio between the cash holdings of a company and the net assets held on its balance

sheet. The goal of this analysis is to explore why the cash holdings of many large firms have

increased over time, and if there are any specific events that have caused this. By using our

method we can identify the years when a change occurs and for each of these years, which

firms change. This information helps us to tie in specific legal or economic changes to the

years within which they occurred, and the types of industries that are affected.

5.1 Telecommunications event data

Our panel data consists of the number of events that occur each week over a 175 week

period. Events are recorded for each of 10 geographical regions and 16 different event types.

Thus there are 160 possible series, with 18 exhibiting no weekly events over the 175 weeks

measured. We are therefore left with 142 series to analyse.

We can obtain an overall time series for the number of events per week across the entire

network if we aggregate all of these series together. This fully aggregated series is shown

in Figure 2. We can see that there are distinct changes in the slope of this series and it is
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segmented into piecewise linear regressions.

We can get some idea of the level of auto-correlation within the data by calculating the

auto-correlation for the residuals from this fit, and this is shown by the ACF plot in Figure

2. This shows a significant auto-correlation, of ≈ 0.2, at lag 1. We also looked at the partial

auto-correlation function and this suggested that the residuals could be modelled via an

MA(1) process with a parameter of 0.2.
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Figure 2: The aggregate series segmented into piece wise linear regressions and ACF plot of
the residuals from the piecewise linear fit.

As mentioned in the introduction, the main interest with this data is in making short-term

predictions. To do this we use the method described in Section 3 to find the number of most

recent changes. Our method is applied assuming the mean of the data within each segment

is a linear function of time, and using the robust cost function (2.1). We inflate beta β, the

penalty of the penalised cost function when analysing each time-series, and the MDL penalty

by 1.4 to account for the correlation in the residuals – as suggested by the Case 3 results

from our simulation study. We estimate that there are six different most recent changepoints.

This means that all of the 142 series can be separated into six groups, depending on which

of the most recent changepoints affects each series.

Figure 3 show the aggregate series for each of the six groups. The groups contain 22, 16, 29,

21, 27 and 27 series from left to right, and top to bottom, respectively. All of the aggregated
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Figure 3: The aggregate series for each of the six groups of series. Their respective most recent
changepoints are added, with the final segment shown in blue. The previous segmentation
prior to the most recent change is shown as a red dashed line.

series show an increasing trend since their most recent changepoint, but they differ in terms

of the location of this change and the slope of the trend after the most recent changepoint.

Once we have found the most recent changepoints, the parameters of the resulting regression

line in the last segment can be estimated. These estimates can then be used to predict

succeeding time points. We analyse the data up to four data points (weeks) from the end

of the data and then use the predictions obtained from the regression model to evaluate the

Mean Square Error (MSE) of the prediction for the last four weeks.

We compare predictions using the estimated most recent changepoints from MRC with pre-

dictions where we segment each time series separately. The MSE for the predictions in the

latter case is 43442 while for our algorithm (with K = 6) it is 41476. This is an improvement

of 4.5% in the MSE of the prediction compared to analysing each time series individually.

21



5.2 Corporate finance data

We now apply our method to a panel data set from the field of corporate finance. This data

set comprises the annual value of a range of different financial indicators for a number of firms.

These include, for example, the value of a firm’s assets or whether the firm pays dividends or

not. This particular data set is known as an unbalanced panel as the observations for each

firm do not all begin or end in the same year. We can view this as a longitudinal data problem

where the cohort are the firms that are tracked over time. As is common in these problems

there is a large (cohort) number of firms, 7039 in this example, but these are observed over

a much smaller time frame. In this case there are a maximum of 54 observations per firm

(annually from 1962 - 2015).

An intriguing phenomenon in corporate finance is the fact that U.S. firms hold considerably

more cash nowadays compared with a few decades previously. Specifically, cash as a propor-

tion of total assets held by U.S. firms has more than doubled in the past three decades. The

evolution of corporate cash holdings has received a lot of attention from academic researchers,

policy makers, and practitioners. Numerous explanations for this have been offered in the

literature, including increased cash flow volatility (Bates et al., 2009, 2017), competition

(Brown and Petersen, 2011), changes in production technology (Gao, 2017) and changes in

the cost of carry (Azar et al., 2016).

Azar et al. (2016) argue that changes over time in the cost of carry, that is the net cost of

financing one dollar of liquid assets, explains the evolution of corporate cash holdings (see

also Graham and Leary, 2016). They measure the cost of carry as the spread between the

risk-free Treasury-bill rate and the return on the portfolio of liquid assets for the corporate

sector. However a limitation of existing studies is that they split their data along the time

domain into distinct ‘regimes’ by eyeballing the data. Such an approach is highly subjective

and increases the opportunity for data snooping. It would be preferable to introduce a formal

procedure for detecting any distinct regimes.

We therefore re-examine the ability of the cost of carry to capture variation in corporate

cash by formally modelling the breakpoint process using our changepoint methodology. Our

analysis follows Azar et al. (2016) and therefore uses the same dataset (see Azar et al., 2016,

for a detailed description of the dataset). We control for a number of variables that may
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affect cash holdings of a firm, such as capital expenditure, spending on R&D and the amount

of leverage it has amongst others. Specifically we consider a fixed effects linear model where

the response variable, yit, represents the cash to net asset ratio of firm i in year t is regressed

against 12 covariates,

yit = αi + β1X1it + β2X2it + . . .+ β12X12it + εit. (5.1)

These covariates are described in Table 1 of Azar et al. (2016). The βjs are pooled estimates of

the effect of the covariates measured over all 7039 firms and the years that they are observed.

Each fixed effect term, αi, captures a firm-specific characteristic in terms of a firm specific

intercept. These fixed effects can be interpreted as the difference between the predicted cash

to net assets ratio and the true value observed. As such, the fixed effects are able to capture

differences caused by external changes that cannot be explained by the covariates in the

model.

For a specific firm the fixed effects term may change due to a number of factors such as a

CEO change, a merger or takeover by another firm or some scandal such as a product recall

that requires large amounts of cash to be spent. However, we are more interested in the

times when the fixed effect parameter changes in a significant number of firms at the same

time. The causes of these changes would be due to wider economic events such as changes

in policy, technological innovation, or regulatory changes.

Having estimated the βjs via maximum likelihood estimate, we can rewrite (5.1) as a change

in mean model

yit −
(
β̂1X1it + β̂2X2it + . . .+ β̂12X12it

)
= αit + εit, (5.2)

where the β̂is are the parameter estimates.

Our MRC method can be applied to this problem and aims to find the year(s) when the most

recent changepoint(s) occur and the subsets of firms that are affected. We now follow the

method of Section 3 to find the optimal number of most-recent changepoints and the sets of

firms that are affected by them.

We first analysed each series independently, to estimate the auto-correlation of the residuals.
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When we average the estimated auto-correlation across firms, we observe positive correlation

of 0.08 at lag 1, and negative auto-correlation at lag 2. Thus we implemented our method

with the penalties inflated by 1.16. One advantage of our approach is that it can easily deal

with the different amounts of missing data for each time-series, as the values, G(r) defined

in (2.4), that we need for each individual time-series can be calculated for time-series with

missing data. For example, if a firm has data missing in year 1980 then a change in year 1979

and a change in year 1980 both correspond to a change between that data values recorded

in 1979 and 1981; and thus these changes would have the same value of G(r).

The result of our method is to infer a single most recent changepoint common to all firms,

in year 2008. This corresponds to the recent financial crisis and the large fluctuations in the

value of assets held by many firms in that period.

6 Discussion

In this paper we have developed novel methodology to detect changepoints in panel data.

The specific changepoints we aim to detect are the most recent changes that affect different

and disjoint subsets of the series that make up the panel. We focus on detecting the most

recent changes as this can be useful in forecasting, as shown in Section 5.1. We are also able

to identify the series affected by different changes, which leads to a greater understanding of

why and how the changes have occurred.

In our analysis of the two real data sets, we used cost functions for segmenting each individual

time series that are based on assuming no temporal dependence in the residuals. This can

be justified theoretically by results that show, for example, that detecting changes in mean

using a least squares criteria is robust to the presence of temporal dependence in the residuals

(Lavielle and Moulines, 2000). Our empirical results suggest that our method is robust to

short-term autocorrelation in the residuals if we use this approach. Furthermore, our general

approach can easily be extended to allow for modelling of the error structure of the residuals,

by using cost functions for the data within each segment that are based on models that allow

for autocorrelation. Such an approach is likely to be needed for time-series with substantial

or long-range dependencies.
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Our method also ignores any dependence across time series, either in the form of cross-

correlation in the residuals or of similar changes at common changepoints. Whilst the former

is an active area of research within the non-stationary time series community (see for example

Ombao et al., 2005; Park et al., 2014) this is an open and intriguing area of future research

for the changepoint community. The consquence of ignoring such (time-varying) structure

might be that we infer some spurious changes to fit unusual patterns in the residuals that

are seen in multiple time series. It is not clear how to develop a method that accounts for

the latter, but such a method could have greater power at detecting changes than our MRC

procedure.
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R code to run this method is available here http://www.research.lancs.ac.uk/portal/en/

datasets/r-code-from-most-recent-changepoint-detection-in-panel-data(7f5f1b5e-492b-4afa-9644-83765edee4bc)

.html
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