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ABSTRACT  

 

The background to the development of so-called ‘green’ or ‘low carbon’ vehicles continues to 

be relentlessly rehearsed throughout the literature. Research and development (R&D) into novel 

powertrains – often based on electric or hybrid technology – has been dominating automotive 

engineering around the world for the first two decades of the twenty-first century. Inevitably, 

most of the R&D has focused on the powertrain technology and the energy management 

challenges. However, as new powertrains have started to become commercially available, their 

effects on other aspects of vehicle performance have become increasingly important. This paper 

focuses on the review of the integration of new electrified powertrains with the vehicle 

dynamics and control systems. The integration effects can be discussed in terms of three generic 

aspects of vehicle motions, namely roll-plane, pitch-plane, and yaw-plane, which however are 

strongly coupled. Topic on regenerative suspension is further discussed. It quickly becomes 

clear that this integration poses some interesting future engineering challenges to maintain 

currently accepted levels of ride, handling and stability performance.  
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1. INTRODUCTION 

 

Vehicle electrification has been increasingly concerned, due to the fossil fuel crisis and the more 

and more stringent standards on vehicle emissions as well as safety [1, 2]. However, this poses 

considerable challenges and demands revolutionary alternatives to the well-established 

traditional vehicle technologies associated with the powertrains, the chassis design and layout, 

and the vehicle dynamics and stability [3, 4]. Significant efforts have been made in the control 

and energy management of the powertrain systems, where a comprehensive overview of control 

strategies and controller designs has recently been conducted in [5]. The study [5] highlighted a 

few key challenges related to practical implementation of the proposed control strategies, 

effectiveness of drive-cycle dependent performance evaluation, and method development for 

quantifying vehicle drivability. Apart from these, vehicle electrification also requires rapid 

advances in development of electric drives and alternative energy storage systems [6, 7]. The 

combined effects of these challenges add considerable difficulties in vehicle design and 

development, and yield complex dependencies among the vehicle dynamics and controls 

integration.  

 

Unlike the research and development in alternative powertrains and associated energy 

management systems, the impact of vehicle electrification on vehicle dynamics and control 

systems has received minimal attention by far [3, 4, 8]. Rauh [4] presented the fundamentals of 

energy dissipation and regeneration in vehicle dynamics, based on which energy-efficient 

chassis systems were discussed by highlighting some selected recent technology advances at 

Daimler AG. Fundamental vehicle dynamics for conventional road vehicles have been fairly 

well understood, and various chassis control systems have also been developed, for contributing 

to enhanced vehicle dynamic performance and driving safety [3, 9-15].  

 

In view of electric and hybrid vehicles, three generic aspects of vehicle motions need to be 

investigated, namely roll-plane, pitch-plane, and yaw-plane [3]. However, these three aspects of 
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the vehicle motions are strongly coupled, which thus affect vehicle dynamics and controls in a 

very complex manner [3, 9]. Figure 1 presents a schematic view of the generic vehicle motions 

and their indications to vehicle system dynamics, controls and energy regeneration/consumption. 

Although the vehicle motions are in a coupled manner, their main contributions to different 

aspects of vehicle dynamics, stability and performance characteristics can be partially decoupled. 

For instance, vehicle handling dynamics and directional stability are mostly influenced by 

vehicle lateral, yaw and roll motions, while vehicle ride, attitude control and road-holding (and 

road friendliness) are dominated by vehicle pitch-plane motions (vertical, pitch and longitudinal). 

In general, energy regeneration potentials are associated mainly with vehicle braking and 

secondarily with suspension damping, while certain energy consumption is associated with 

vehicle sideslip. This indicates that the energy regeneration/consumption is strongly coupled 

with vehicle dynamics (ride/handling/stability/braking) and controls.     

 

 
 

Fig. 1: Schematic view of generic vehicle motions and their indications to vehicle dynamics, 

controls and energy regeneration/consumption. 

 

Further advances in vehicle dynamic characteristics and stability are likely to come from further 

exploitation of control systems, and in particular, the integration of controlled subsystems [16-

19], which have historically been developed independently, and the closed-loop driver-vehicle 

system controls [20, 21]. The specific contribution of control system to enhancements in vehicle 

safety has recently been reviewed by Nagai [22], where the potential improvements associated 

with individual wheel motor (IWM) control, were highlighted.  

 

The key component connecting electrified vehicle performance with vehicle dynamic behaviour 

is the electric motor. Electric motors have three recognised performance attributes [23-25]: (i) 

Extremely responsive and controllable to either torque or speed demand inputs; (ii) Reversible – 

so that they are roughly equally efficient as either a motor or a generator; and (iii) High energy 

efficiency with efficiencies as high as 90%. Depending upon the vehicle/chassis configuration, 

the motor might be arranged in series with another powerplant, at an individual axle, or as an 

IWM. A vehicle with four IWMs provides the significant potential of being able to control the 

tyre force at each of the vehicle corners independently [13, 23, 24]. 
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Murata [24] presented the state of the art of IWMs from a Toyota viewpoint. The potential 

benefits in terms of improved vehicle controllability in driving, steering and braking were 

quantified and contrasted with the practical issues of designing an IWM to fit into the limited 

space available at the wheel station. It was concluded in [24] that the best packaging solution 

was to fit the IWM at the rear, unsteered wheels, which also has the benefits of providing rear-

wheel-drive (RWD) and more mass on the rear axle and can be assisted if necessary by fitting 

slightly wider wheels at the rear. In a prototype large saloon, the total mass of the rear driveline 

components was reduced by 36% in moving from a ‘one motor + differential + driveshafts’ 

arrangement to IWMs. The unsprung mass was only increased by 23%. 

 

Two early studies [25, 26] developed a complex control architecture with four neural adaptive 

controllers for the vehicle handling dynamics and an adaptive dynamic programming controller 

for the vehicle energy management. Another study [27] also tackled the problem in a generalised 

manner by distributing individual wheel force demands to each of the four corners from a central 

controller. This was even taken a stage further [28] by assuming each wheel to be steered 

independently. The safety implications of failure either of an individual wheel [29] or axle [30] 

motor inevitably pose some difficult challenges in practice. Recent work has explored an 

integrated control concept which integrates both the vehicle dynamics and energy management 

[31]. This is known to be challenging [32] since control systems have historically been 

developed as discrete sub-systems which have been added incrementally to the vehicle, e.g. anti-

lock braking system (ABS), electronic stability program (ESP), active roll control (ARC), 

switchable dampers, active front steering (AFS), etc. The concept of an ‘e-corner’ has been 

proposed, probably by Siemens VDO initially, but the idea of a central controller which 

communicates with the four individual wheel modules where the forces are generated appears to 

offer an elegant solution [33]. 

 

However, most of the research work linking the performance of electric and hybrid vehicles with 

vehicle dynamic behaviour has tackled specific aspects of the problem, rather than dealing with 

the generalised case. In analysing vehicle dynamic behaviour, it is well understood that it is 

often separated into these categories as a convenient way of looking at primary effects. In 

practice, it is obviously the case that dynamic coupling occurs between the three coordinate 

directions, such as, the longitudinal forces – whether tractive or braking - can be employed to 

alter the directional characteristics through the yaw stability control (YSC), and the dynamic 

tyre loads controlled by vehicle suspension affect the ability of the tyres to develop longitudinal 

and lateral forces. 

 

The overall aim of this paper is to review the integration of these new energy efficient 

powertrains with the vehicle dynamics and chassis controls, and in particular examine the effects 

on vehicle ride, handling and stability performance, and energy regeneration.  

 

2. IMPACT ON ROLL-PLANE DYNAMICS AND CONTTROLS 

 

Roll-plane vehicle dynamics and controls primarily concern vehicle roll stability, vertical ride 

vibrations, and road-holding, while vehicle roll motion is strongly coupled with lateral/yaw 

motions and thus handling characteristics [3, 34]. The integration of the electric and hybrid 

powertrains would alter the mass and inertia properties of the sprung as well as unsprung masses, 

and the height of vehicle centre of gravity (c.g.). The sprung mass and roll moment of inertia 

tend be increased, together with a higher vehicle c.g., mainly due to the substantial added mass 

of the batteries. With current technology, the battery packs are still extremely heavy; the scale of 

this problem is exemplified by the electric powered Tesla (weight of 1250 kg) which has a 
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battery pack weighing 450 kg, while the Nissan Leaf and Mitsubishi i-MiEV electric cars have a 

battery pack of roughly 300 kg. A significant increase in the unsprung mass arises when an 

IWM drive is employed, where a 20~50% increase can be observed [24, 35, 36].   

 

These associated variations in the mass and inertia properties and the vehicle c.g. height are 

generally undesirable in view of vehicle dynamics and controls. An increase in the sprung mass 

and the c.g. height indicates deteriorated roll stability and poses a higher challenge in vehicle 

roll controls. In addition, a heavier vehicle body combined with a higher c.g. tends to yield 

larger dynamic lateral load transfers during steering manoeuvres, which have negative effects in 

view of vehicle handling and directional stability controls. These would also pose extra 

challenges on maximizing braking energy recuperation (during braking-in-a-turn scenarios).  

 

Traditional suspension tunings can be used to achieve a new compromise among the sprung 

mass vertical acceleration, suspension travel, and dynamic tire load, according to the variations 

in the sprung mass. However, such compromise might be deteriorated when an IWM drive is 

used. A larger unsprung mass tends to yield a considerable challenge in vertical wheel motion 

controls (for both road-holding and road friendliness), where optimal passive damping settings 

for vertical ride and road-holding might differ considerably upon the driving conditions. In 

addition, the IWM drive might require wider tires, suggesting a higher challenge in steering 

system design and suspension kinematics/packaging, and also slightly deteriorated roll stability 

limit. In terms of ride vibrations, a larger unsprung mass due to the IWM drive may yield a 

lower unpsrung mass natural frequency, which would undesirably be closer or even within the 

frequency range (4-8 Hz) that is most sensitive to human body in vertical direction [3].   

 

Although the principles can be well understood and explained, considerable efforts need to be 

made to quantify the effects of electrified powertrains on vehicle roll dynamics/stability, vertical 

ride vibrations, and road-holding. Passive suspension design and tuning optimization and 

alternative semi-active suspension systems should be explored for enhancing both ride and road-

holding qualities of IWM drive electric and hybrid vehicles. Controlled anti-roll bars together 

with semi-active dampers may further be investigated for realizing a better compromise among 

the roll-plane vehicle performance measures. For electrified vehicles with the IWMs employed 

only at one axle, a further suspension design/tuning compromise may exit for vertical wheel 

motion control of IWMs and vehicle roll moment distribution (thus handling balance and 

stability).  

 

The use of controlled anti-roll bars and semi-active dampers could also be helpful in varying roll 

moment distribution between the front/rear axles, and thus vehicle steering/handling behaviours. 

In addition, the coordinated traction control with the controlled roll moment distribution can 

improve vehicle tractive performance during acceleration-in-a-turn manoeuvres. However, these 

control authorities are quite limited when driving on low-friction surfaces or at low lateral-

acceleration levels.      

 

3. IMPACT ON PITCH-PLANE DYNAMICS AND CONTROLS 

 

Pitch-plane vehicle dynamics and controls concern vehicle performance measures, such as 

traction/braking, drivability, pitch and vertical ride vibrations, pitch attitude control, and road-

holding [3, 37]. Electric motor drives offer considerable potentials for enhanced traction control 

systems (TCS) compared with conventional IC engine vehicles (ICEVs). Electric motors are 

very responsive with time constants of the order of milliseconds, and they can be controlled 

either by torque or speed. In contrast, traction control systems for ICEVs, which typically may 
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use both the braking system and the engine control, are much less responsive with time 

constants of the order of hundreds of milliseconds, and neither torque nor speed is directly 

controllable. The potential benefits only apply to vehicles in which the electric motor is the sole 

driving force of the vehicle, thus they are only relevant for fully electric vehicles and are not 

available for hybrid electric vehicles.  

 

The traction control system for conventional vehicles does not control traction force directly. 

They attempt to prevent excessive longitudinal slip of the wheel. Controlling wheel slip within a 

limited range could maximise the available traction force and retain a lateral force capability to 

maintain vehicle directional stability. Therefore, despite the advantages of an electric motor 

drive, some fundamental problems remain with the estimation of wheel slip. Since the wheel 

speed can always be measured accurately, the problem still hinges on the accurate estimation or 

measurement of vehicle forward velocity.  

 

Early work thus focused on devising a TCS which only required the available variables of motor 

torque and speed. A model following control (MFC) scheme was suggested [38, 39], which is 

based on the idea of the equivalent inertia of the driven wheels – including the effect of the 

vehicle mass providing sufficient friction force exists at the tyre/ground interface. Further work 

attempted to refine this simple approach to compromise stability and feedback gain [40-42]. It 

has also been tested on a prototype electric vehicle over differing surface conditions [38, 39]. 

However, this version of MFC has not proved to be sufficiently robust over a range of practical 

operating conditions [43, 44]. The studies [38, 39] also devised an optimal slip ratio control 

based on the assumption that vehicle velocity measurement was available, so that an accurate 

estimate of wheel slip could be obtained. However, this approach still has the problem that the 

‘optimal’ slip ratio depends on the tyre/ground condition, and so some form of road surface 

estimation is still required. 

 

More recently, Yin and Hori [45-47] proposed an alternative approach, based on maximum 

transmittable torque estimation (MTTE), which does not require either vehicle velocity or 

information about the road-tyre conditions. The controller is based around controlling wheel 

torque directly, rather than wheel slip. It works effectively by estimating friction force via wheel 

torque and acceleration. Successful practical experiments were carried out on a small, single-

seater prototype vehicle fitted with two rear wheel motors. 

 

Regenerative braking is one of the most obvious benefits associated with vehicle electrification, 

by enhancing energy efficiency, particularly in city driving with frequent stop/go operations. 

However, there are two sets of limiting factors, suggesting that only a modest percentage of the 

available regeneration energy can be harvested. One set is associated with the actual process of 

regeneration, including:  

(i) Battery state of charge (SOC);  

(ii) Rate of charge of battery;  

(iii) Battery temperature;  

(iv) Generator power, speed and torque; and  

(v) Overall efficiency – losses.  

The other set is related to the overall braking performance of the vehicle. To achieve acceptable 

braking behaviour which is fully controllable by the driver, the regenerative braking must be 

integrated with the conventional hydraulic braking.  

 

Conventional vehicle design involves a decision about the braking ratio between front and rear 

axles, where the design compromise is that the brake balance, normally a fixed ratio, is biased 
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towards the front axle. If the regenerative braking is limited to modest levels (e.g., equivalent to 

conventional overrun conditions), then the effects on the brake balance are not likely to be a 

problem. However, if higher levels are used in an attempt to maximise the amount of energy 

recuperated, then it must be taken into account in the brake balance design.  

 

The regenerative braking force is, rather obviously, only available at the axle connected to the 

motor/generator (MG) unit. In many mild hybrid applications, this will be the same as the axle 

driven by the IC engine – and so it has a negligible impact on the F:R force balance. However, 

in other schemes such as front-wheel-drive (FWD) hybrid with rear wheel motor assist, the F:R 

balance of forces will be modified during regenerative braking – and this could have a 

significant effect on the handling balance. The most obvious example with such a vehicle would 

occur during severe cornering; if the driver lifts off and regenerative braking is suddenly applied 

to the rear wheels, it may be sufficient to saturate the tyre force capabilities and cause an 

oversteer situation. 

 

The simplest approach to gaining some braking regeneration energy is to control the MG unit to 

emulate conventional overrun braking, where the deceleration arises from the overrun torque on 

the engine. This appears to be straightforward, and has the attraction to the driver of retaining 

the feel of a traditional IC engined vehicle. However, there are a few issues to consider:  

a) In a mild hybrid (e.g. integrated starter alternator (ISA)) or hybrid electric vehicle 

application, the engine overrun torque would preferably be disabled, e.g., by 

controlling the valves;  

b) The amount of regeneration torque is controllable via the MG torque, but is limited 

by the fact that the MG speed decreases as the vehicle speed decreases; and  

c) As the vehicle approaches a complete stop, the MG torque needs to be disabled – 

analogous to depressing the clutch of an IC engine – to ensure smooth control via the 

hydraulic brakes at very low speed prior to stopping. 

 

Certain efforts have recently been made on how to maximise the amount if energy recuperated 

during braking for different hybrid electric vehicle designs [48, 49]. One approach to optimising 

energy recovery is through the transmission controls, such as continuously variable 

transmissions (CVTs) [50] and infinitely variable transmissions (IVTs) [51]. The idea 

underlying these studies is basically the same; in the hybrid electric vehicle driving mode, the 

variable transmission is controlled to maintain the IC engine on or around its optimum operating 

line, and so in braking it is similarly controlled to maximise energy recuperated taking into 

account the MG efficiency map, battery SOC and driving conditions. 

 

To optimise energy recovery demands an integrated control of the regenerative braking and the 

friction brakes [52]. The critical issue is the design of an independently controlled system for the 

friction brakes, where three approaches have been evaluated: (a) Brake-by-wire; (b) 

Electrohydraulic brakes [53]; and (c) Electromechanical brakes [54]. There is a fixed 

relationship between the driver pedal pressure and the braking forces in conventional hydraulic 

braking systems, which indicates that any regenerative braking can only be added to the existing 

braking system when the driver applies the brakes. But if the friction brakes can be controlled 

independently, then the net braking force on the vehicle can be a controlled blend of 

regenerative and friction braking, depending on the driving conditions.  

 

Assuming such braking system hardware is available, the blending strategy is not entirely 

straightforward, and a simple example is shown in Fig. 2. It presents the time histories for a 

vehicle during a step braking manoeuvre with an initial speed of 28 m/s. The brakes are applied 
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fairly rapidly over a 0.4-second period and then held constant to provide a constant deceleration 

of 3 m/s
2
. The description of a potential brake blending strategy can be summarised over the five 

phases:  

I. Initial phase: accelerator pedal released and brakes applied, where initial 

deceleration is achieved by regenerative braking;  

II. Deceleration demand increasing as brakes are applied: friction brakes begin to be 

deployed as well;  

III. Constant deceleration: a balance between regenerative and friction braking is 

varied;  

IV. As speed reduces, all the deceleration demand can be achieved by the 

regenerative brakes, so the friction brakes are released;  

V. At low speed, when the vehicle is approaching a full stop, the regenerative brakes 

are blended out and the driver takes full control via the friction brakes.  

 

 
 

Fig. 2: Time histories of brake blending for a step deceleration input. 

 

The situation is generally more complex in real-world driving, since the deceleration demand 

typically varies according to the driving conditions. For example, as the vehicle is approaching a 

complete stop, the driver normally releases and controls the brakes in order to stop gradually at a 

precise point. The control algorithm around this point is very sensitive to the estimates it has to 

make about the tyre/ground conditions and the anticipated stopping point – minor discrepancies 

can be sensed by the driver and it is probably around this region that Toyota had recent customer 

issues with the brake behaviour of the Prius and Lexus. 

 

For vehicles with IWMs, it would generally be possible to control the MG unit to modulate the 

braking torque to achieve anti-lock braking [55]. However, since the hydraulic brakes will 

always have priority under emergency braking, the approach used is to simply disable the 
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regeneration torque during anti-lock braking system (ABS) operation. The associated design 

challenge is that if the axle is using significant regenerative braking torque when wheel locking 

is sensed, it requires a rapid response to reduce the regenerative torque and replace it with a 

hydraulic braking torque. 

 

The use of a conventional hydraulic braking system is generally able to provide a driver with a 

subjectively acceptable brake feel. If a portion of the braking force is generated by regeneration 

torque (with no automatic feedback to the driver), the brake pedal feel should be controlled 

independently by employing some type of haptic feedback. It has been assumed that the driver 

should be unaware of the ratio of how much braking is generated through regeneration and 

hydraulic braking, where the driver is only concerned with the overall braking performance and 

the confidence in being able to control it accurately [56].  

 

Another issue has recently attracted concerns with fully electric vehicles. The level of 

regenerative braking applied, during overrun when the driver releases the accelerator pedal, is a 

design variable. Some vehicles (e.g. Prius) offer driver an option of moderate or more aggressive 

mode. The latter setting enhances the overall energy efficiency, while providing the driver with 

a different feel at the accelerator pedal, instead of the brakes. For example, the driver can control 

the early phase of braking at modest deceleration levels through the accelerator pedal release 

close to lift-off. Opinions still vary about the subjective feel of this arrangement, which is clearly 

different from conventional vehicles. Mercedes have taken this idea a stage further in the 

prototype SLS E-Cell and provided four levels of regenerative braking selected by a steering 

wheel-mounted paddle, to emulate changing down through the gears. 

 

The integration of regenerative braking (generally inboard except IWMs) with hydraulic braking 

(outboard) may further necessitates a tuning refinement for suspension geometry and kinematics 

for achieving an acceptable level of vehicle anti-pitch properties without inducing much jerk 

motion. As mentioned in the last section, the IWM drive poses considerable challenges on the 

combined steering/suspension system and wheel vertical motion control, which could negatively 

affect both the vehicle braking performance and drivability. Planetary gear, popularly employed 

in power-split hybrid electric vehicles, suggests inherently low damping in driveline, which may 

induce torsional vibrations. Due to the closed-loop nature of power-split control, such torsional 

vibrations can lead to sustained oscillations of the driveline system, which would affect driver’s 

comfort as well as vehicle drivability [57]. The study [57] explored active damping controls to 

effectively suppress the driveline oscillations.     

 

A higher sprung mass combined with a higher vehicle c.g., due to the integration of electrified 

powertrains, tends to generate larger longitudinal load transfers during braking/traction 

manoeuvres, which thus deteriorates the vehicle braking/tractive performance, as well as vehicle 

handling balance and stability. Moreover, the difficulties associated with batteries layout and 

packaging yield a lower flexibility in tuning pitch moment of inertia of the sprung mass, and 

thus in the dynamics index, which has a strongly influence on vehicle pitch ride. The battery 

swapping concept indicates an extra compromise between the swapping operation flexibility and 

vehicle dynamics parameters tuning.  

 

4. IMPACT ON YAW-PLANE DYNAMICS AND CONTROLS 

 

Yaw-plane vehicle dynamics and controls are most critical in view of vehicle handling 

performance and directional stability, where the combined steady-state and transient 

steering/handling characteristics play the most important roles. A compromise between vehicle 
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handling responsiveness and directional stability exists and should be balanced, where vehicle 

path, yaw rate and lateral acceleration are assumed to be closely related to responsiveness, while 

vehicle sideslip angle and roll angle are correlated to stability [58].  

 

The steady-state vehicle steering/handling dynamic characteristics are dominated by a set of 

fundamental vehicle design and chassis tuning parameters, including geometrical parameters 

(e.g., wheelbase), front/rear load distribution ratio, tyre stiffness properties, front rear suspension 

roll stiffness distribution ratio, etc. Minimal variations on these design parameters, and thus on 

the steady-state vehicle steering/handling dynamics, could be achieved by an appropriate 

integration of electrified powertrains.  

 

Unlike the steady-state characteristics, transient handling dynamics are also strongly affected by 

the mass and yaw moment of inertia properties of the vehicle and damping properties, apart 

from those fundamental vehicle design parameters. A vehicle with desirable transient handling 

dynamics should have the following expectations, as described in [59]: 

  

“During transient events, drivers first expect the quickness in the lateral response of 

the front axle. The rear axle should be ‘planted on ground’ (i.e. the perceived vehicle 

yaw motion should pivot about the rear axle). Slow body roll motion should follow the 

front lateral motion, not precede it. Responses in all the channels should not have 

excessive overshoot (perceived as lack of precision and/or stability) and be smooth 

(without a two-stage feel). There should not be excessive roll, yaw, pitch or heave 

oscillation after the initial steer input.” 

 

The integration of electrified powertrains tends to alter the mass and yaw moment of inertia 

properties of the vehicles, which is thus expected to have an impact on the transient vehicle 

handling dynamics. Such impact would most likely be negative, due to the relatively less 

flexibility in the chassis layout and packaging by integrating electrified powertrains, as well as 

the heavy battery pack.  

 

Control of the wheel/tyre longitudinal forces can influence the handling balance and thus 

directional stability of electric and hybrid vehicles, in three different ways: (a) If the front and 

rear axle torques can be controlled independently, the vehicle handling balance can then be 

tuned via the F:R torque balance that is currently popular in rallying using a controlled centre 

differential; (b) The amounts of regenerative braking at IWMs can be controlled to yield 

left/right asymmetric braking and thus an additional yaw moment; and (c) During normal 

driving, the driving torque at each wheel motor can be controlled. Again, this can be used in 

both two-wheel-drive (2WD) and four-wheel-drive (4WD) applications to achieve torque 

vectoring, i.e. the application of an additional yaw moment to influence the handling balance 

and directional stability. This approach can be used in two regimes: the low/mid lateral 

acceleration region to modify the vehicle steering feel, and the limit region to provide a yaw 

stability control. 

 

F:R Axle Balance  

 

Little effort has been attempted on this topic. The main application of tuning the F:R traction 

balance is in the rallying world. A number of hybrid electric vehicle designs add an additional 

electric drive to the axle not driven by the main IC engine, which tends to lead to potential 

problems by altering the F:R traction balance suddenly as the electric motor torque is applied. 
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However, in most applications, the electric motor torque is relatively smaller compared with that 

of the IC engine and the effect on the F:R balance is not normally problematic. 

 

Brake-Based Yaw Moment  

 

Brake-based yaw stability control (YSC) systems have been proposed as a requirement on future 

passenger cars, though these are historically known by a variety of alternative names (e.g. ESC, 

VSC, DYC, etc.) from different vehicle manufacturers. To ensure stability under emergency 

conditions, these safety systems will continue to be fitted to vehicles, irrespective of powertrain 

architecture. Therefore, while the topic of yaw stability and control has been discussed in 

relation to controlling regenerative braking at individual wheels, it seems unlikely that 

asymmetric braking using regenerative torques will offer any additional benefits to the 

conventional YSC systems [60, 61]. 

 

Torque-Based Yaw Moment 

 

Electric motors offer a considerably potential advantage in providing torque vectoring control. 

Although the subject of Variable Torque Distribution (VTD) has received a substantial amount 

of attention mainly through analytical studies, its commercial applications has been hindered due 

to the difficulties associated with the hardware. A very recent study [62] reviewed different 

active driveline torque management systems, including centre couplings, electronic limited-slip 

differentials (ELSDs), and torque vectoring systems. Electronically controlled differentials have 

been available for several years, but their uptake has been limited by high costs and the 

inevitable energy losses involved in their design.  

 

Both these drawbacks are overcome by the use of IWMs. The potential for using electric motors 

for controlling vehicle handling has been dealt with in a number of studies, often as an extension 

of investigating traction control at an individual wheel [63]. Moreover, practical 

implementations have been carried out on both small scale electric vehicles [64, 65] and 

prototype passenger electric vehicles [66]. IWM drive clearly offers significant advantages in 

VTD schemes [67], which also overcomes the practical drawbacks of mechanical-based systems.  

 

However, despite the significant volume of theoretical studies of torque vectoring on vehicle 

handling control, there is not a widely accepted design methodology of how to exploit it to 

improve vehicle handling and stability significantly [68, 69]. IWMs have really opened up the 

practical opportunity for individual force control at the four wheels of a vehicle [70, 71] – but it 

is a dynamics challenge to understand the driver-vehicle interaction issues to exploit it as a 

measurable handling benefit [20, 21, 72, 73].  

 

Abe et al. [20] proposed a method to evaluate vehicle handling qualities based on a closed-loop 

driver-vehicle system using a simplified driver model (with three parameters). These three 

parameters are related to human driver’s steering gain, time preview and time lag, respectively. 

The steering gain of human drivers could vary significantly with little workload. However, the 

time preview and time lag characteristic of human drivers during driving could be associated to 

the workload, e.g., a larger time preview or a smaller time lag could indicate a higher workload 

or a more stressful driving. The study [20] showed that drivers could adapt themselves (reflected 

on the variations of the three parameters of the driver model) to the vehicle with/without chassis 

controls. The chassis control systems considered in the study [20] could help reduce drivers’ 

workload and thus improve the vehicle handling quality.  
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The very high responsiveness of electric motor drive may allow human drivers to have a 

relatively larger time lag (especially beneficial for aged drivers) and thus reduced driving 

workload. Instead of driver’s adaptation to a vehicle with conventional chassis controls, chassis 

controllers design based on a closed-loop driver-vehicle system would be expected to 

considerably improve the total vehicle dynamics performance and stability. An enhanced 

understanding of human drivers’ physiological limits and driving behaviours is thus becoming 

important [74].     

 

5. DISCUSSIONS ON REGENERATIVE SUSPENSION 

 

Vehicle electrification offers an excellent opportunity to integrate suspension energy 

regeneration function, apart from the regenerative braking. However, compared to braking, 

power dissipation due to a vehicle suspension damper could be much smaller. A brief review on 

the energy consumption in vehicle suspensions and regenerative suspension systems was 

conducted in [3]. For a particular passenger car, the power dissipation due to the suspension 

system is about 80 W and 100 W at 50 km/h and 100 km/h, respectively [75], which is at the 

similar level to that stated in [4].  

 

In order to quantify the level of power dissipation due to vehicle suspension, a dimensionless 

measure, coefficient of suspension motion resistance (SMR), is defined in this study, which is 

the drive force that is used to compensate the energy dissipated in the suspension damper 

normalized by the vehicle weight. It is quite similar to the definition of coefficient of tyre rolling 

resistance. A classic four degree-of-freedom (DOF) pitch-plane vehicle ride model (e.g. in [37]) 

is used to investigate the SMR properties under random road inputs. The measured roughness 

data of three different urban roads [34] are considered for the simulation analyses. Figure 3 

illustrates the spatial displacement power spectral density (PSD) characteristics of the three road 

profiles. Based on their relative spatial displacement PSD properties, these three selected roads 

are named as “smooth”, “medium-rough” and “rough”, respectively, as shown in Fig. 3.  

 

Figure 4 presents the SMR properties of a road vehicle, under the three different road inputs and 

five different vehicle speeds (30, 50, 70, 90, and 110 km/h). The results show that an increase in 

vehicle speed or road roughness tends to increase the SMR. However, the SMR is generally less 

than 10% of the typical rolling resistance of a passenger tyre (about 0.01), for the measured 

urban road data considered. To give a general sense of roughness levels of the three roads, the 

vertical accelerations of the sprung mass at the speed of 90 km/h, are at the levels of 0.28, 0.6 

and 1.15 m/s^2, respectively, for the three roads considered here. It should be noted that both the 

suspension tuning and wheelbase filtering have relatively small effects on the overall SMR 

characteristics of the vehicle, which are not presented here.  

 

Based on the above discussions, the potential of integrating a regenerative suspension within a 

vehicle should be justified, in terms of the added weight and cost, the efficiency and reliability 

of the whole regeneration system, as well as the vehicle operating conditions. Regenerative 

suspension might hold the most potential for high-speed off-road vehicle applications, such as 

military vehicles and SUVs.       
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Fig. 3: Spatial roughness PSD of three measured urban road profiles. 

 

 
Fig. 4: SMR characteristics of a road vehicle under different road inputs and different speeds. 

 

6. CONCLUSIONS 

 

This paper reviewed the impact of the electrified powertrains on the vehicle dynamics and 

controls, and particularly examined the influence on vehicle ride, handling and stability 

performance, and energy regeneration. In a summary: 

 In the longitudinal direction, electric motors provide improved torque control which 

benefits TCS and provides regenerative braking, but to date has not been used to improve 

ABS;  

 In view of ride vibration and comfort, the two main issues are increased body and 

unsprung masses. Further research is required to quantify these effects, but the increase 

in unsprung mass is almost certain to result in a deterioration in the ride/handling 

compromise;  

 In view of handling and stability, individual wheel motor drive provides significant 

benefits in providing torque vectoring to enhance vehicle handling and stability. The 
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challenge is to identify how to exploit torque vectoring to offer handling/stability 

benefits which are noticeable to customers;  

 Regenerative suspension might hold the most potential for high-speed off-road vehicle 

applications; 

 Chassis and powertrain control systems should be coordinated so as to enhance both the 

vehicle dynamics/stability and energy efficiency.  

 An enhanced understanding of driver-vehicle interactions is one of the most emerging 

topics in modern vehicle dynamics and controls.   
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Definitions, Acronyms and Abbreviations 
 

ABS:   Anti-lock braking system 

AFS:   Active front steering 

ARC:   Active roll control 

CVT:   Continuously variable transmissions 

DYC:   Direct yaw control 

ELSD:  Electronic limited-slip differential 

ESC:   Electronic stability control 

ESP:   Electronic stability program 

FWD:   Front-wheel-drive 

ICEV:   Internal combustion engine vehicle 

ISA:   Integrated starter alternator 

IVT:   Infinitely variable transmissions 

IWM:   Individual wheel motor 

MFC:   Model following control 

MG:   Motor/generator 

MTTE:  Maximum transmittable torque estimation 

RWD:   Rear-wheel-drive 

SMR:   Suspension motion resistance 

SOC:   Battery state of charge 

TCS:   Traction control system 

VSC:   Vehicle stability control 

VTD:   Variable torque distribution 

YSC:   Yaw stability control 

2WD:   Two-wheel-drive 

4WD:   Four-wheel-drive  


