
Experiments in Genetic Divergence for Emergent Systems
Christopher McGowan

Lancaster University
christopherdavidmcgowan@gmail.com

Alexander Wild
Lancaster University

a.wild3@lancaster.ac.uk

Barry Porter
Lancaster University

b.f.porter@lancaster.ac.uk

ABSTRACT
Emergent software systems take a step towards tackling the ever-
increasing complexity of modern software, by having systems self-
assemble from a library of building blocks, and then continually
re-assemble themselves from alternative building blocks to learn
which compositions of behaviour work best in each deployment
environment. One of the key challenges in emergent systems is
populating the library of building blocks, and particularly a set of al-
ternative implementations of particular building blocks, which form
the runtime search space of optimal behaviour. We present initial
work in using a fusion of genetic improvement and genetic synthe-
sis to automatically populate a divergent set of implementations of
the same functionality, allowing emergent systems to explore new
behavioural alternatives without human input. Our early results
indicate this approach is able to successfully yield useful divergent
implementations of building blocks which are more suited than any
existing alternative for particular operating conditions.
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1 INTRODUCTION
Emergent software systems use a paradigm of continuous runtime
self-assembly to automate the construction and runtime optimi-
sation of complex software systems. Starting from a goal, these
systems use a large library of micro building blocks to dynamically
discover all possible behaviours that can be composed together to
meet this goal; this will include alternative implementations for
many such building blocks which carry out the same functionality
but do so in a different way, such as alternative search or sort al-
gorithms. Online learning is then used to experiment on the live,
running system, by seamlessly adapting between different possible
compositions of behaviour to learn which ones best satisfy a reward
function of interest (such as performance) against periodic obser-
vations of the system’s current deployment environment [1, 2].

Emergent systems partially solve the challenge of manual design
and optimisation of complex software systems by automatically
discovering potential building blocks for those systems and continu-
ously learning which particular combination of alternative building
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blocks offers the best performance in each environment range that
is encountered at runtime. At present, however, these building
blocks must be manually developed – and in particular, variations
of building blocks (such as alternative search or sort algorithms)
must be manually written by human programmers in the hope that
they will be useful in certain deployment environment conditions.
Because the range of environments is virtually infinite, and the
correlation of a particular set of deployment conditions to its ideal
implementation of sub-behaviours for a given system is difficult to
predict, the development of these building blocks represents one of
the largest open challenges in emergent software systems.

We present an approach to using genetic improvement to help
automatically populate a design space of software building blocks;
emergent systems can then learn the runtime characteristics of
these new behaviours by seamlessly integrating them into the live
system and observing their characteristics, thus discovering increas-
ingly optimal compositions of behaviour for each set of deployment
conditions encountered by the running system. Because emergent
systems are inherently modularised at a fine granularity, we apply
genetic improvement at the level of an individual building block
(typically 100 lines of code). As each individual building block does
not have a large amount of code from which to source genetic mod-
ifications, we use a blend of improvement and synthesis to explore
genetic material from both existing and newly synthesised logic.

In detail, our specific contributions are:
• To identify emergent software systems and genetic improve-
ment as natural partners and a rich area for future research:
emergent systems are inherently composed of fine-grained
modules which limit the search space for genetic improve-
ment, and emergent systems require a large pool of alter-
native implementations of behaviours which are likely to
perform differently in different operating environments.

• To demonstrate an approach that blends genetic improve-
ment with synthesis of new behaviour to gain genetic diver-
gence. We use mutations that can create highly generalised
new logic, together with a two-phase algorithm which cy-
cles between a traditional improvement phase and a distinct
synthesis phase that prefers to expand a component’s source
code. All of our genetic operators work at the source code
level and guarantee not to produce compiler errors.

• To show promising initial results in an emergent software
system, using a web server as an example, in which the
hash map sub-behaviour of the web server’s caching module
is mutated to alternative implementations that better suit
specific deployment environment conditions.

The source code of our genetic improvement framework is made
available along with instructions on how to replicate our results at
[3]. In the remainder of this paper we first survey related work in
Sec. 2, then describe our approach in detail in Sec. 3. We present
our initial evaluation results in Sec. 4 and conclude in Sec. 5.
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2 RELATEDWORK
The genetic approach to code modification is one of the most popu-
lar approaches to automated software improvement [4] with recent
progress in automated bug-fixing [5–7], optimising non-functional
properties [8–10], and automatic test-case generation [6].

Our work falls into the category of genetic improvement, as we
take an input component and attempt to produce a functionally
equivalent one which has improved non-functional properties for a
particular set of operating conditions. Because our approach fuses
traditional improvement with new code synthesis, we survey recent
work in both genetic improvement and program synthesis.

Genetic Improvement. Genetic improvement has been applied
to source code [9, 11], abstract syntax trees [5, 12, 13], intermediate
compiled code forms such as Java bytecode [14], and compiled
machine code [15]. It is unclear whether any particular level of
operation across this spectrum has quantitative benefits (in terms
of the resulting program) over any other level, though in qualitative
terms the modification of source code may have benefits in human
legibility (and verification) of genetic modifications. We choose
to operate on the abstract syntax tree of our input components,
resulting inmodifications that aremore likely to be legible to human
programmers if desired.

One of the most compelling results in genetic improvement is
that of Forrest et al [5], which demonstrates effective automated
repair of bugs. The approach uses a negative test case which acti-
vates the bug, together with positive test cases which verify correct
behaviour. During the improvement process, mutation operations
are preferentially applied to the execution path that is activated
by the negative test case, which reduces the search space to a size
tractable for genetic improvement to navigate in reasonable time.
The specific genetic operators used are delete, swap, and insert;
delete and swap only take place within the negative execution path,
while insert may take a statement from anywhere in the program
and insert it into the negative execution path. Our work differs in
that: we do not use a preferential execution path to bias our search;
we restrict our improvement to a single component rather than
the entire program; we seek to derive behaviours that demonstrate
a useful un-filled point in the divergent optimality space rather
than fix bugs; and we blend improvement operations with a set of
genetic operators that can synthesise brand new logic.

Building on the technique used by Forrest et al, Langdon and
Harman use genetic improvement to enhance performance of a
large C program [9], using the same set of genetic operators (delete,
swap and insert), where insertions are sourced from existing code
in the program being modified. The code to which genetic oper-
ators are applied is similarly weighted to code activated by test
cases, though a formal grammar is additionally used to aid in gen-
erating only syntactically valid code. The resulting program is
demonstrated to be significantly faster than the original. Similarly,
Haraldsson et al [16] uses genetic improvement for performance
enhancement of the ProbAbel bioinformatics program written in
C and C++, using delete, replace, swap and copy as its genetic
operators, where the swap operation can either swap entire lines
or operators from common groups known to be type compatible
(like − and +). In both of these approaches, when source mate-
rial is needed for additive operations such as copy, this material is

randomly (and exclusively) sourced from the existing code of the
program being improved. These approaches are closer to our goal
of deriving higher-performance component variants for a given en-
vironment, but our work differs in that we restrict our operations to
a single component rather than a selected execution path through
the whole program, and we blend improvement operations with
the synthesis of brand new logic.

Finally, we note that our aim to produce multiple functionally
equivalent variants of each component is similar to the concept of
N-version development [17], traditionally used for fault tolerance.
It has recently been suggested by Petke that genetic improvement
may be a good approach to generate a search space of runtime
variants [18], but we are not aware of any other work besides ours
that has attempted this to date.

Code Synthesis. Because we apply genetic improvement to
small components that have relatively little genetic material, we
combine traditional genetic improvement operators (which take
genetic material exclusively from existing code), with operators
that synthesise brand new logic, aided by a set of heuristics. In this
section we review recent research in pure code synthesis.

Code synthesis traditionally attempts to start from an empty
or near-empty program file, either to produce a program which
matches a desired input-output mapping [19], or which approxi-
mates a function (such as a regressor or classifier) [20].

Gulwani et al propose an approach to generate a computer pro-
gram that transforms a set of input examples to a set of corre-
sponding output examples [19]. This is done by first defining a
domain-specific language for a certain class of program (like string
manipulation) which helps to restrict the search space for synthesis-
ing a program. For each input-output pair, all possible programs are
synthesised in the language, and then an intersection operation is
applied across the set of programs for all input-output pairs to iso-
late a program that works for all examples. While the approach of
generating all variants from which to select is appealing, doing this
to generate even small components in a fully generalised (rather
than specialised) programming language would be prohibitively ex-
pensive. We instead perform synthesis operations heuristically and
incrementally, deriving the set of possible single synthesis actions
from an existing piece of code and applying one at random.

Swan and Burles [21] propose a mixed synthesis approach with
genetic improvement, using a concept of template functions by
which the programmer writes a generic version of a function, such
as a sorting algorithm, and defines variation points within that
function to be automatically generated. This is close in spirit to the
aims of emergent systems in generating a variant of that algorithm
which is efficient to a particular input data class. Our approach
operates at the level of a multi-function component, and does not
use a special template description language that the programmer
must learn. The actual mutations applied are also relatively simple,
adjusting the pivot point of a quicksort algorithm, where our ap-
proach is capable of synthesising complex generalised source code,
from variable declarations to nested for-loops.

As far as we are aware, our work represents a new point in the de-
sign spectrum of improvement and synthesis, able to incrementally
synthesise new, fully-generalised, logic and blend it with existing
genetic source material in a component to improve.
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3 GENETIC DIVERGENCE FRAMEWORK
3.1 Background
We use the emergent systems framework reported in [1] as the
domain towhichwe apply genetic improvement, andwe specifically
use the emergent web server example from the same paper as the
target application. The source code of both is publicly available at
[22]. Here we briefly summarise the way in which the emergent
web server works before describing our genetic framework.

The web server is assembled from a collection of building blocks
written in the Dana programming language [23], a highly adaptive
component-based language which can hot-swap (‘adapt’) behaviour
in a running system. These adaptations are safe to the state machine
of the executing program and occur very quickly (a few microsec-
onds) which makes runtime behavioural exploration very cheap.
Emergent systems are uniformly built from such adaptable compo-
nents, so that any element of a running program can be adapted,
and it is assumed that all candidate compositions of components
made available to a running emergent system are correct, such that
adapting to them will not normally create erroneous conditions.

The components that form an emergent system are intercon-
nected via interfaces, such that each component will provide one
or more interfaces and may require one or more interfaces. Each
required interface of a component must be connected to a type-
compatible provided interface of another component to satisfy the
dependency. These inter-interface connections can later be adapted
at runtime to change the implementation of the system, by loading
a different implementation of a provided interface into memory,
adapting a required interface to connect to that implementation,
and unloading the previously-used one.

The emergent systems concept is able to optimise software at run-
time because different (functionally equivalent) implementations
of a provided interface have different performance characteristics
under different operating environment conditions. During execu-
tion, an online learning algorithm discovers which components can
be used to compose a particular system and then learns which com-
position works best under each detected operating environment
range. This learning is performed on the live system, using the
cheap adaptations mentioned above, so that learned information
is relevant to the actual conditions experienced by the system in
its real production environment and the actual effects that those
conditions are observed to have on its behavioural alternatives.

As an example, the emergent web server that we target here
exhibits divergent optimality around its caching and compression
components. In its resource-fetching subsystem, the web server has
different building blocks that can either serve content directly from
the disk, can cache a limited amount of content inmemory and serve
from this cache, and/or can compress content before returning it to
a client. In operating conditions where a large number of requests
are for the same content, compositions that include the caching
behaviour tend to be faster because reading from memory is faster
than reading from the disk. Conversely, in operating conditions that
have very few requests in common, compositions without caching
tend to be faster (as checking the cache takes time). Within these
behavioural variations there are further sub-variations, such as
alternative cache algorithm implementations, which themselves
perform differently under different kinds of input patterns.

Genetic
Improvement
Framework

Component

source code

Unit
tests

Benchmark
test

Component

specialised

for input

benchmarkAvailable

interfaces

Figure 1: Our genetic improvement framework.

3.2 Genetic improvement procedure
Our overall genetic improvement procedure is illustrated in Fig. 1.
As input to our framework, we assume that we are given four kinds
of information: (i) the source code of a component implementing
one particular interface; (ii) a set of test cases for this interface
which confirm that inputs to functions of the interface produce the
correct outputs; (iii) a specific benchmark of inputs, for which the
framework will attempt to derive a higher-performing implemen-
tation of the given component; and (iv) a set of other interfaces
that can be used by the generated code. This set of other inter-
faces is typically the required interfaces that are already used by
the input component, plus any other standard library interfaces
believed to be of potential use towards the improved component.
The benchmark test that is input to the framework is assumed to
have been derived from the running system in its actual operating
environment, collected by triggering a phase of capturing inputs
via dynamically-inserted probes, for offline replay and analysis.

Our genetic improvement framework operates by cycling be-
tween two main phases: improvement and synthesis. In the improve-
ment stage, we reward shorter code and faster performance in
completing the benchmark. In the synthesis stage we reward longer
code and place less emphasis on performance. The framework al-
ways starts in an improvement phase, using only the submitted
component as its existing genetic source material, and runs in this
phase until it appears to have reached a stable reward value. The
framework then moves to a synthesis phase for a fixed number of
generations, before returning to an improvement phase. If, once
this successive improvement phase has reached a stable reward
value, the framework has ended up with a worse reward value than
that achieved prior to the synthesis phase, we revert to the best
entire population from before that synthesis phase. The framework
then cycles between these improvement and synthesis stages for a
fixed amount of wall-clock time (provided as a parameter).

The intention of the synthesis stage is to augment the relatively
small amount of genetic source material (because components in
emergent systems tend to be quite small) with generated new ma-
terial. This may allow new implementation permutations to be
reached during mutations that would otherwise not have been
reachable using only the code present in the source material.
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3.3 Genetic algorithm
Our genetic algorithm uses a population size of 14, for which all
members of the first population are a copy of the input source code.
We use elitism whereby the best two members of a population are
preserved, such that they are not themselves affected by mutation
or crossover. Within a population we use a mutation probability of
80% and a crossover probability of 20%1.

Our algorithm then proceeds in generations by first running our
benchmark test (and test cases) on all members of the current gener-
ation, then applying our fitness function which takes into account
the number of test cases passed, the performance against the bench-
mark measured in a component-specific way, and the total code
length of the component, preferring shorter code in improvement
phases and longer code in synthesis phases. These three metrics
are arithmetically combined into a single overall fitness score for
the genetic algorithm. Following testing, the population members
are then rank-ordered by fitness and mutation and crossover take
place among the (non-elite) population members according to their
respective probabilities, using a roulette wheel strategy to select
population members [24]. The new population members are com-
piled and we then return to the testing and ranking stage for the
next generation using this new population.

3.4 Genetic operators
As discussed in Sec. 2, the majority of genetic improvement research
to date uses delete, insert and swap operators, using only the genetic
material of the program being improved as needed for insert and
swap. Because our framework works at the level of individual, fine-
grained software components, we take a different approach which
is significantly biased towards genetic operators that synthesise
new genetic material. This synthesis is done randomly, but using
heuristics that reduce the possible search space, and in such a way
that synthesised code is likely to integrate with existing source
code by (for example) re-using existing declared variables in newly
synthesised behaviour. In addition, all of our genetic mutation
operators are designed to result in compilable code, for example
avoiding syntactic, type compatibility and scope errors.

We use the mutation operators insert, modify and delete. When a
mutation occurs we choose uniformly at random from among these
operators, then randomly choose a specific sub-operator and apply
this sub-operator at a randomly-selected location in the source code
(if possible, according to the language grammar). We now describe
each operation in detail.

Insert Operations
All insert operations work at the level of lines-of-code. The sub-

operators are: declare variable (local of global); assign a variable;
insert control statement; insert return statement.

When declaring a variable, our framework is currently able only
to declare a variable of primitive type (int, bool, char, dec) or an
array of one of these types. When variable declaration is chosen, at
the randomly selected point in the source code, we randomly select

1The particular parameters used in our genetic algorithm were chosen because they
were empirically observed to work well among several alternatives. However, we have
not yet conducted a methodical evaluation of the available parameter space and the
effects of different parameters on performance.

a type for the variable and give the variable a name that does not
collide with any other variable already declared in this scope.

The remainder of our insert operations, in addition to the state-
ment being inserted, may require an input which is used alongside
that statement, such as the expression to which a variable is as-
signed or from which a parameter is passed. For this input, we
always make a random choice from the set Fi , which includes func-
tion calls (selected at random from among the available interfaces
passed into our framework); in-scope type-compatible variables;
constants declared in the source file; or a literal value (i.e., true/false
for boolean types; or a randomly chosen integer for integer types).
Note that if the chosen member of Fi is a function call with param-
eters, we randomly select inputs to those parameters from Fi .

When inserting a variable assignment, an in-scope local or global
variable is randomly selected and then a type-compatible member
of Fi is chosen as the expression to which the variable is assigned. If
a variable being accessed or assigned is an array, and the assignment
is occurring within the scope of a for-loop, we always use the loop
variable as the index for assignment/access. Otherwise, if not in a
for-loop, we assume that the array itself is being assigned/accessed.

When inserting a control statement, we can insert a for-loop,
while-loop, break statement, or if-statement; alternatively we can
insert an else-branch of an existing if-statement. The insertion of
a for-loop follows the additional rules that it must use an integer
as its loop variable, its loop condition must return a boolean value,
and its ‘increment’ operation must involve the loop variable in
some way (but not necessarily as an increment). Once a control
statement has been selected and any parameters chosen, along with
its insert location, we then randomly choose how much code below
the insert location should become part of the control statement’s
scope (if any). Control statements can be arbitrarily nested inside
other control statements, to any nesting depth.

When inserting a new return statement, we again elect to return
something randomly chosen from Fi .

Our general inclusion of any in-scope variable in Fi helps to allow
newly-synthesised code to integrate with existing code, and our
restrictions on for-loops, and the way in which variable accesses /
assignments are used within them, encourage this kind of loop to
be used for array iteration. Note that the framework is still able to
synthesise arbitrary kinds of loop via the use of while loops.

Modify Operations
For modify, our sub-operators are assignment; function call;

function parameter; or return statement. If an assignment is being
modified, the right-hand-side of the assignment is changed to a ran-
domly chosen member of Fi . For function calls, we simply swap a
function call to a type-compatible alternative function call and ran-
domly populate any parameters of that alternative call from Fi . The
modification of a function parameter similarly chooses from among
Fi , as does the modification of a return statement’s operand. In
addition to local/global variable assignments, our modify operators
can also alter declared constants in the component’s scope.

Delete Operations
For delete, we have sub-operators for declaration; assignment;

control statement; and return statement. When deleting a decla-
ration, we first check that the declared variable is not used. The
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deletion of assignments has no restrictions. When deleting a control
statement, if the statement under consideration is a for-loop we
simply delete the entire for-loop due to the frequency with which
its loop body will use the loop variables. In the case of a while-loop
or if-statement, we make a random choice between deleting the en-
tire control statement, or deleting the control statement header but
retaining the body of the statement as an unconditionally-executed
piece of code. When keeping the body of a control statement we
check all variables declared within the body and, for any name
clashes with variables declared outside of the original control state-
ment’s scope, we rename those variables to avoid clashes.

Language operators as function calls
A key part of the generality of our approach is that we make lan-

guage operators synonymous with function calls. To do this, before
the genetic algorithm starts its first generation, the input source
code passed into the framework is first parsed so that all syntactic
language operators (such as ‘+’) are transformed to pseudo-function-
calls (such as ‘add(a, b)’) which are considered to be members of
a built-in ‘operator interface’. As such, all language operators are
then simply equivalent to function calls for the purposes of all of
the genetic operators described above, allowing a ‘+’ to be changed
to a ‘-’ by altering the ‘add(a, b)’ call to any function call with the
same parameter list (such as ‘sub(a, b)’), or indeed to any function
call with a type-compatible return value.

3.5 Crossover
In genetic programming, the crossover stage attempts to mimic
chromosomal crossover in biological reproduction. We chose to
implement this for source code as a line-by-line crossover mechanic
in which a random line of code is selected in two source files (popu-
lation members)A and B. The line at this point inA is then inserted
into the chosen point in B. If the line in A is a control statement
header, the entire control statement is inserted, otherwise the single
line is inserted. If the insertion would mean that the inserted line
refers to any variables that are not declared in the destination scope,
declarations of these variables are also inserted from the original
code in A. Any duplicate variable declarations that would collide
with variables already declared in B are then renamed.

The random nature of line selection inherently allows crossover
to insert either genetic material that already existed in the source
component, or genetic material that was synthesised from one of
our mutation operators. This crossover-by-line-insertion can occur
N times, where N is a parameter of our framework; for N > 1 we
ensure that the same line from A is not taken twice.

3.6 Infinite loops
Our genetic operators allow us to insert brand new loops with
arbitrary termination conditions, which presents the possibility of
non-terminating functions. We use a simple solution to mitigate
this, via the built-in halt operation in the Dana language. If the
execution of our benchmark tests takes more than twice the amount
of time taken by the original component, we use the halt operation
to forcibly stop all execution in the object (any in-progress function
calls return with an exception) and mark this population member
as having a very poor fitness value.

3.7 Limitations
The main limitation in our approach is the set of data types that can
be used by our genetic operators, which focus on primitive types
and arrays of those types. Our genetic operators cannot use com-
posite Data types (analogous to structs in C) and cannot instantiate
Object types. This limits the kinds of code that our approach can
currently evolve, and is a key area of future work.

4 EVALUATION
We focus our evaluation on the hash map component of the emer-
gent web server’s set of potential building blocks, used by its cache
component. The default hash map component is 92 lines of code
long, which represents the entirety of the genetic source material
over which our framework operates. We use this component in
particular because different hash algorithms are known to perform
differently over different sets of input data, producing a better or
worse distribution of hashed keys across buckets. This component
also does not use any composite data types and so is a good target
as our genetic operators cannot yet work with these types.

We submit the default hash map component to our framework
with a variety of different benchmarks and observe the resulting
level of genetic divergence that is achieved. Each experiment is
executed on a server of equal performance for a duration of six
hours, after which we take the best-performing member of the final
generation as the output of our framework that has been specialised
for the given benchmark.

Our evaluation explores the following specific questions:
(1) To what extent we see genetic improvement, aided by our

operators that are biased towards code synthesis, starting
from a relatively small pool of genetic source material.

(2) The effect that the distinct synthesis phase has on genetic
improvement, measured by running experiments in which
entering this phase is prevented.

(3) The level of divergence we see when applying our approach
to different benchmarks, measured by testing specialised
output for each benchmark against all other benchmarks.

Our results are divided into three sections which provide initial
data towards answering each of these questions.

4.1 Results
Core algorithm performance

Wefirst focus on the extent to whichwe see genetic improvement
of the hash component in a certain direction, given a particular
benchmark test. In these tests our framework operates in its stan-
dard mode, with the synthesis phase enabled using an exploration
period of 6 generations, and crossover taking one line of source code
(or an entire control statement, if that line is a control statement
header). Fig. 2 shows the performance of executing the benchmark
over successive generations, averaged across 24 executions of the
framework, focusing specifically on the performance of the best
population member from each generation. The Y-axis of the graph
is measured in percent, which represents how close the solution
is to a perfectly even distribution of hash keys across buckets – a
measure of optimal performance in a hash component.

The graph shows that the component’s original implementation
is relatively poor for this benchmark. Average performance of the
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Figure 2: Average distribution fitness of the best population
member across generations, with standard error.
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Figure 3: Average distribution fitness of all populationmem-
bers across generations.

mutated component across the experiments increases steadily up to
generation 35, then increases more slowly up to generation 50, after
which no further improvement is observed. The standard error,
also plotted on the graph, indicates a significant range of variation
between different experiment runs; from analysis of the raw data
we see that this is predominantly caused by some experiments in
which no improvement is made at all over the entire experiment.

Fig. 3 shows the average performance of all population members
from the above experiments (not just the best-performing one).
Here we see a more mixed result, with highly varying performance
of individual members of a population, though the overall upward
trend in improved performance is still present. This suggests that
elitism has the desired effect in maintaining a high-performing
member of each generation (as show in Fig. 2), that there is signifi-
cant exploration of alternative solutions even towards the end of
the experiment, and that positive attributes spread to the majority
of population members as the experiment progresses.

Examining the code that is output by our framework in more
detail, over the course of these experiments the average code length
of the hash component increases from 92 lines of code up to 107.
Considering the best-performing population member across each
generation from the best-performing experiment, an average of
56 mutations occurred, and 6 crossovers; this is expected due to
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Figure 4: Average distribution fitness best population mem-
ber with no synthesis phases.

the way in which we configured our algorithm with an 80% bias
towards mutations (see Sec. 3). Of the mutations that took place,
the best-performing population member experienced an average of
17.3 insertions, 17 modifications, and 22 delete operations.

At the end of the experiments, the resulting code of the best-
scoring population members includes additional for-loops iterating
over the key to hash, new declared variables, and new arithmetic
operators that use these variables to store intermediate values. In
addition to the creation of new algorithmic logic, an unexpected
result of these experiments was that in some cases the ‘bucket
count’ of the hash table was changed to a different value (because
our mutators are permitted to modify constants). Our data therefore
reflects the fact that the genetic search is simultaneously optimising
both the bucket count and the hash distribution function for that
bucket count towards a maximally even distribution of keys.

Synthesis phase evaluation
In the experiments reported in the previous section, an average of

two synthesis phases were triggered – in which our framework ob-
served a stable fitness value for an extended period and so switched
from using reduced code length as part of its fitness value to instead
using increased code length as an indicator of greater fitness, and
discarding performance as a contributing factor to fitness.

To further investigate the effect of this mechanism, we ran exper-
iments in which the synthesis phase was disabled. We also explore
the effects of changing the number of generations for which a
synthesis phase executes before returning to improvement mode.

Fig. 4 shows the average performance of the best population
member across generations with the synthesis phase disabled. This
shows similar upward trends in performance, finishing at a similar
(very slightly higher) final fitness level. We also note that the num-
ber of generations executed is higher than in experiments with the
synthesis phase enabled. These results suggest that the synthesis
phase does not have a marked effect in reaching more distant ar-
eas of the search space, and that the inherent bias in our genetic
operators towards those that synthesise new logic is already suf-
ficient to have this effect. The increase in generations observed
in these experiments indicates that the synthesis phase itself is
computationally more expensive than the improvement phase.
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Figure 5: Average distribution fitness of best population
member using different synthesis phase lengths.

We further examine the effect of using a distinct synthesis phase
by varying the amount of generations it is permitted to use to
explore longer programs, to reveal whether the synthesis phase is
more effective when given more time. For these experiments we
alter the exploration length of the synthesis phase to 5, 10, 15 and
20 generations. The results of these experiments are shown in Fig. 5.
These results indicate that different synthesis phase lengths have
little effect, even when given significantly more generations over
which to operate, reinforcing the above observation that the distinct
synthesis phase does not greatly increase the level of improvement
seen. Although further investigation of this point is needed, we
speculate that at least one reason for these negative results is that all
of our experiments were bounded by the same total wall-clock time,
such that the use of longer synthesis phases equates to spending
proportionately more time exploring larger programs rather than
improving programs (i.e., making the improver’s job harder).

Divergence degree
In our final set of experiments we examine the extent to which

our approach is able to achieve useful implementation divergence
for different benchmarks. This is our primary goal in contribution
to emergent systems, which require that different building block
implementations are available to better suit different operating
environment ranges detected at runtime.

For this experiment we take three different benchmark traces
representing three different operating environment conditions; we
refer to these three benchmark traces asTA,TB andTC . For each one
of these traces we then carry out a set of experiments in which we
input the original hash map component into our framework with
the corresponding benchmark trace. The output of an experiment
run should then be a variant of the hash map component which is
specialised towards that particular benchmark.

With the resulting three divergent implementations, optimised
against these different benchmarks, we then run each of the three
implementations against all three benchmark tests to observe the
degree of specialisation that has taken place. Fig. 6 shows the results,
grouped by experiment series on the x-axis.

Here we see clear specialisation within in each benchmark series.
The best component produced by our framework for TA clearly
specialises towards that benchmark, achieving a fitness of 98%when
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Figure 6: Distribution fitness of best population member,
specialised against one of three different benchmark tests
and then run against all three benchmarks.

used against this benchmark compared to 93% and 92% when tested
against benchmarks TB and TC respectively. The best component
produced in specialisation for benchmark TB demonstrates a more
dramatic difference, showing that the best component derived by
our framework against this benchmark has 98% fitness when tested
against TB , with only 84% and 67% fitness when this component is
then tested against benchmarks TA and TC respectively.

Finally, the best component produced in specialisation for bench-
mark TC presents a more mixed picture, with a final component
that performs relatively well against all three benchmarks, with
a slightly worse performance against TB . This suggests that the
content of the benchmark TC may be representative of generally
common input sequences from other benchmarks, though we also
note that this component does still perform slightly worse than the
best component in the other two experiment groups against their
specialised benchmarks.

Discussion
Returning to our evaluation questions, for the first question our

results indicate that a mixed synthesis approach is consistently able
to improve component performance towards a particular bench-
mark despite the small amount of genetic source material available;
in other words, that we can usefully augment the limited genetic
source material with randomly-selected, newly-synthesised logic
in a general-purpose programming language.

For the second question, we see that the use of distinct synthesis
phases – in which longer-length programs are rewarded – does not
seem to be a useful approach in itself. From this data we conclude
that the inherent bias towards synthesis in our set of genetic opera-
tors is sufficient to reach useful parts of the search space, without
the need for dedicated synthesis phases.

Finally, for the third question, we see useful genetic divergence
towards specific benchmarks, indicating that our approach may
be a promising way of automatically populating a valuable set of
diverse building blocks for emergent software systems that are
likely to be useful in optimising towards different sets of operating
environments observed at runtime.



5 CONCLUSION
We have presented an approach to achieving genetic divergence in
sub-components of emergent software systems, in which we use a
set of genetic operators that have a bias towards new code synthesis
as well as being able to use existing genetic material. Emergent soft-
ware systems are a natural fit for genetic improvement because they
require a large pool of building blocks, where many such building
blocks must alternative (but functionally equivalent) implemen-
tations that are better suited to different operating environment
conditions detected at runtime. By capturing various observed op-
erating conditions from the running system, we can recreate these
conditions offline to specialise new components towards operating
more optimally within each set of conditions.

Our initial results demonstrate that improvements in fitness are
observed despite the relatively small amount of genetic source ma-
terial available to our framework, indicating that our generalised
synthesis operators are able to successfully augment this genetic
source material to improve it in useful directions that would oth-
erwise be unreachable. We also observe positive results in genetic
divergence, where component implementations are seen to become
specialised towards a specific benchmark (reflecting one particu-
lar set of operating environment conditions) and away from other
benchmarks. While our experiment repetition count is limited in
this paper, the trends shown in the results are sufficiently com-
pelling to warrant further investigation of the technique.

In our future work we will enhance our genetic improvement
framework to be able to deal with composite data types, object
instantiation, and any other features needed so that it can oper-
ate with generality on any source code. We will then explore the
effectiveness of our mixed synthesis approach in a much broader
set of examples, enabling us to draw more general conclusions. We
also intend to explore the ability of our framework to divide and
combine logic from multiple components, so that it can automati-
cally ‘refactor’ the broader design of a system; this will enable the
improvement framework to present an emergent software system
with different design options, in terms of software architectures, in
addition to different implementations of individual building blocks.
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