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Despite being studied for over a century, the use
of quadrupoles have been limited to Cartesian
coordinates in flat spacetime due to the incorrect
transformation rules used to define them. Here
the correct transformation rules are derived, which
are particularly unusual as they involve second
derivatives of the coordinate transformation and an
integral. Transformations involving integrals have
not been seen before. This is significantly different
from the familiar transformation rules for a dipole,
where the components transform as tensors. It
enables quadrupoles to be correctly defined in general
relativity and to prescribe the equations of motion
for a quadrupole in a coordinate system adapted to
its motion and then transform them to the laboratory
coordinates. An example is given of another unusual
feature: a quadrupole which is free of dipole terms
in polar coordinates has dipole terms in Cartesian
coordinates. It is shown that dipoles, electric dipoles,
quadrupoles and electric quadrupoles can be defined
without reference to a metric and in a coordinates
free manner. This is particularly useful given their
complicated coordinate transformation.
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(a) (b)

Figure 1: Color: Flow of a quadrupole in coordinates adapted to the flow (a) and laboratory
coordinates (b). Observe the appearance of a dipole (arrows) in the laboratory coordinate. Here
quadrupoles are represented by ellipsoids, and dipoles by arrows. Clearly the equations of motion
are far simpler in the adapted coordinate system.

1. Introduction
Multipole expansions are used extensively as an approximation of extended particles where
the mass or charge is considered to be concentrated at one point. Multipoles have been used
in classical electrodynamics [1–3], quantum mechanics [4], as a model for polarisation and
magnetisation [1,5–9], in determining the stucture of molecules in chemistry [10–13] and recently
in the idea of meta-atoms [14]. A distribution of charge can be approximated by a point charge
together with a sum of moments [15]. The first correction is called the dipole, the second order
correction a quadrupole and so on. Three of the magnetic quadrupoles are identified as toroidal
moments [14,16,17] and controversially called toroidal dipoles. The sources and potentials for
electric and magnetic multipoles at rest (in flat space) are given in table 1. (See also [18])

What are the correct equations of motion for a quadrupole and higher order moments?
Although the equations of motion for the force and torque on a dipole are well established [1],
the equivalents for quadrupoles is much less clear. One method is to consider that quadrupoles
evolve due to a flow, as depicted in figure 1. The easiest method for analysing this quadrupole
motion and evolution is to choose coordinate systems adapted to the flow, i.e. rectify the flow. In
this coordinate system the quadrupole simply progresses unchanged as in figure 1(a). One then
needs to transform this equation into the laboratory coordinate system. For example to construct
the equivalent of the Liénard-Wiechart fields, [3]. See figure 1(b). However to do this one needs
the correct coordinate transformation rules. The primary goal of this article is to establish the correct
coordinate transformations. This is important not only for transforming between an adapted and
laboratory coordinate systems, but also between the spherical polars and Cartesian coordinates
in flat space and also between the arbitrary coordinate systems in general relativity.

The components of a dipole, transform in the familiar way as tensors. That is, using the
Jacobian matrix, the entries of which are the partial derivatives of the coordinate transformation.
One may naturally assume that the components of a quadrupole transform in a similar manner.
Indeed this is the case if one limits oneself to Lorentz boosts and rotations in flat Minkowski space.
Furthermore in such cases a pure quadrupole, i.e. one that contains no dipole terms, would remain
a pure quadrupole in all coordinate systems. However with quadrupoles we have the following
unusual properties:

I: The coordinate transformations of quadrupoles require the derivatives of the Jacobian matrix
and an integral. Although second derivatives of the coordinate functions are familiar for
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Multipole charge distribution current distribution
Number
of
components

Electric
Monopole:

ρM = q δ(x) JM = 0 1

Electric
dipole:

ρED = pED · ∇δ(x) JED = 0 3

Magnetic
dipole:

ρMD = 0 JMD = pMD ×∇δ(x) 3

Electric
quadrupole:

ρEQ = γ0µν
∂2δ

∂xµ∂xν
JEQ = 0 6

Magnetic
quadrupole:

ρMQ = 0 JµMQ = γµνσ
∂2δ

∂xν∂xσ
8

Multipole
Electric
Potential

Magnetic
Potential

Falloff of potentials
as r→∞

Electric
Monopole:

φM = q
4πε0r

AM = 0 ∼ r−1

Electric
dipole:

φED = pED · ∇φM AED = 0 ∼ r−2

Magnetic
dipole:

φMD = 0 AMD = pMD ×∇φM ∼ r−2

Electric
quadrupole:

φEQ = γ0µν
∂2φM
∂xµ∂xν

AEQ = 0 ∼ r−3

Magnetic
quadrupole:

φEQ = 0 Aµ
EQ = γµνσ

∂2φM
∂xν∂xσ

∼ r−3

Table 1: Sources of static electric and magnetic dipoles and quadrupoles at the origin and their
corresponding potential fields. Here r= ‖x‖ and the components γabc satisfy the symmetry
condition (2.3). Here a= 0, 1, 2, 3 and µ= 1, 2, 3. Even in the static case we can see that there
are three electric dipoles, three magnetic dipoles, six electric quadrupoles and eight magnetic
quadrupoles.

Christoffel symbols and jet bundles, those involving integrals have, as far as the authors are
aware, never been considered before.

II: There is no such thing as pure quadrupole. The coordinate transformation of a quadrupole
moment will, in general, produce a dipole moment.

Since the correct coordinate transformations for quadrupoles have been unknown up to now, the
use of multipole expansions has been limited to Cartesian coordinates in flat space. This work,
therefore will greatly expand the role of quadrupoles, so that they can be used to model extended
charges in arbitrary coordinate systems and in arbitrary spacetimes. The tools developed in this
article will enable researches to extend the results to higher order multipoles.

With regards to point II above, we give an example of a quadrupole which in polar coordinates
has no dipole terms, whereas in Cartesian coordinates does have dipole terms. As suggested in
figure 1, the quadrupole which flows unchanged in the the adapted coordinates gains a dipole
in the laboratory frame. Although such a fluid flow is uncommon in electromagnetism, it is the
natural Vlasov description for the dynamics of a distribution of charge in seven dimensional
phase-space-time. The extension of the coordinate transformations to seven dimensions can
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be easily handled using the coordinate free approach detailed in this article. In the adapted
coordinate system, one can also add additional forces, modelling internal collisions or self forces.

As well as the equation of motion for multipoles one may ask what are the electromagnetic
fields for generated by them. The electromagnetic fields due to an arbitrary moving dipole, in
flat Minkowski spacetime, were first calculated by Ellis [2], and have been re-derived and re-
expressed many times since [19–22]. The fields due to an arbitrary moving quadrupole or higher
multipole were also derived by Ellis [3]. He derived the electromagnetic fields due to an arbitrary
moving multipole in Minkowski spacetime by differentiating the Liénard-Wiechart fields. As
stated these results require that the quadrupole is expressed in Cartesian coordinates. However
quadrupoles have been much less examined in the literature.

Is it is common to separate out dipoles into three electric and three magnetic dipoles. There is
a choice however as to how to do this, one can separate them out with respect to the rest frame
of the dipole [2] or with respect to a laboratory frame [20]. Since the components of a dipole
transform covariantly these are easy to perform. One can also separate out the quadrupoles with
respect to the rest frame or the laboratory frame. The complicated transformation rules however
mean that these will mix with the dipoles under change of coordinates. Thus the question of what
is an electric or magnetic quadrupole in an arbitrary spacetime is more subtle. We show that, with
respect to the particle rest frame the electric quadrupole is well defined. As a result, multipoles
form a natural hierarchy{

Electric dipoles
(Dim=3)

}
⊂

{
All dipoles

(Dim=6)

}
⊂

{
Electric quadrupoles

(Dim=12)

}
⊂

{
All quadrupoles

(Dim=20)

}
(1.1)

There is considerable interest in which aspect of electrodynamics can be defined without
the use of a metric and hence without gravity [23]. If one relaxes the requirement that τ be
proper time, then we see that monopoles, dipoles and quadrupoles do not require a metric for
their definitions. Indeed even electric dipoles and electric quadrupoles can be defined without
reference to a metric. By contrast the magnetic multipoles require either a metric or a preferred
coordinate system to define them. The advantage of such definitions are many fold:

• In general relativity, the stress-energy-momentum tensor can be derived by a variation
of the metric in the Lagrangian. Knowing that multipoles are metric-free objects makes the
variation much simpler.

• The definitions given mean that the concept of multipoles and electric multipoles can be
generalised not only to higher dimensional spacetimes but also to manifolds such as phase
space or contact manifolds where there is no preferred metric. In particular one can talk
about multipole expansions of plasmas and beams of particles, where one takes moments of
a probability distribution function in phase space.

When dealing with physical objects in arbitrary spacetimes, one has the choice either to define
them with respect to a coordinate system and then give the coordinate transformations or to
define them in a coordinate-free manner. Thus it is perfectly acceptable to define quadrupoles
using coordinates. However such complicated transformations rules strongly promotes the
coordinate-free definition of quadrupoles. In this article we give such a coordinate-free definition.

This article is arranged as follows:
In section 2 we present quadrupoles in the standard notation using coordinates and an integral

over the worldline.
In section 3 we derive the general coordinate transformation for quadrupoles. We also show

which quadrupoles are in fact dipoles and which quadrupoles are electric dipoles.
In section 4 we demonstrate a more abstract property of dipoles and quadrupoles, that is that

they can be defined without reference either to a coordinate system or to a metric.
Finally in section 5 we conclude with some discussion and suggestion of future research. In

the appendix we prove some of the the more technical statement from section 4.
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2. The standard representation of Quadrupoles
In this article the Greek indices µ, ν, σ= 1, 2, 3 and the Latin indices a, b, c= 0, 1, 2, 3. We use the
summation convention with implicit summation over pairs of matching high and low indices,
unless otherwise stated.

The static electric and magnetic dipoles, table 1, can be combined into a single two component
antisymmetric tensor γab,

γab + γba = 0 (2.1)

where

γ0µ = pµED and γµν = εµνσ (pMD)σ (2.2)

The quadrupoles components in table 1 can be combined into a single three component object
γabc. Due to conservation of charge, these satisfy the symmetry conditions:

γabc = γacb and γabc + γbca + γcab = 0 (2.3)

The symmetry conditions (2.3) give eight quadrupole components. These may be written γµνν

for µ 6= ν (no sum) which give six components and the pair (γ123, γ231). So that from (2.3) γνµν =
− 1

2γ
µνν and γ312 = γ123 + γ231.

Toroidal “dipoles” are given by

γµνσTor = T ν δµσ + Tσ δµν − 2Tσ δνσ (2.4)

Substituting (2.4) into JMQ (table 1) gives JTor =∇×∇× (T δ). In our classification these are
considered quadrupole terms. In [14,16,17] these are actually referred to as toroidal “dipoles”.
This despite the fact that 1: they involve the second derivative and 2: their potential fields fall off
as r−3. In addition they are not immune from the complicated transformations rules investigated
in this article.

For moving multipoles the sources given in table 1 have to be integrated over the worldline.
In Minkowski spacetime, the electromagnetic fields due to a moving electric charge are known
as the Liénard-Wiechart fields. The source for the Liénard-Wiechart is the 4-current Ja(x) which
may be written in terms of the Dirac δ−function [1]

JaM(x) = q

∫
I
Ċa(τ) δ

(
x− C(τ)

)
dτ (2.5)

where Ca(τ) are the components of the worldline of the particle of charge q, Ċa = dCa

dτ and x is
a point in spacetime. The parameter τ is usually considered to be the proper time of the particle,
although it need not be, and the interval I ⊂R is the range of τ . The source (2.5) is valid for any
spacetime, although in general the corresponding electromagnetic fields have not been calculated.

An arbitrary moving dipole in an arbitrary moving spacetime may be written

JaD(x) =

∫
I
γab(τ)

∂δ

∂xb
(
x− C(τ)

)
dτ (2.6)

Multiple authors have found the electromagnetic field for a dipole in Minkowski spacetime in
terms of an integral of the retarded Green’s function.

Due to conservation of charge the parameters defining the dipole are constrained to be
antisymmetric (2.1) giving six components. However once (2.1) is imposed the components
γab = γab(τ) may be arbitrary functions of τ . It is easy to show that under a change of basis the
γab transforms as a tensor, given by (3.9) below. This is true both for global linear transformations,
in Minkowski spacetime, xa→ x̂a =Aabx

b and for local coordinate transformations xa→ x̂a =

x̂a(x0, . . . , x3).
The generalisation of (2.6) to quadrupoles is less common. Kaufmann [24] was the first to

express the quadrupole as an expansion to the second derivative of the δ−function. Ellis [2,3]
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observed that these can be written

JaQ = 1
2

∫
I
γabc(τ)

∂2δ

∂xb∂xc
(
x− C(τ)

)
dτ (2.7)

He also calculated the electromagnetic fields for arbitrary moving quadrupoles and higher order
moments in Minkowski spacetime, in terms of the integral of the retarded Green’s function. The
γabc subject to (2.2) give twenty independent quadrupoles components. Again the γabc = γabc(τ)

may be arbitrary functions of τ .
We observe that the quadrupoles given in (2.7) can also contain dipole terms. This can be seen

in the static case when t= τ = x0 and so∫
I
γab0(τ)

∂2δ

∂xb∂x0
(
x− C(τ)

)
dτ =−

∫
I

dγab0

dτ

∂δ

∂xb
(
x− C(τ)

)
dτ

Thus the electromagnetic fields due to a general static quadrupole given in (2.7) will contain
both terms that fall off as distance cubed and terms that fall of as the fourth power of distance.
The twenty quadrupole components split into six dipole components and fourteen dipolefree-
quadrupole components.

Although for global linear transformations in Minkowski spacetime xa→ x̂a =Aab x
b

the components γabc(τ) transformation tensorially, this is not true for general coordinate
transformation. As stated, the rules for a general coordinate transformation requires a second
derivative of the coordinate functions and an integral. These are given in (3.10-3.12) below.
Perhaps, it is less surprising since (2.7) contains a second derivative and an integral. However it
is unexpected when contrasted with the dipole case, where the components transform as tensors.
One problem with such a transformation is that it will give rise to an arbitrary constant of
integration. Fortunately this constant does not effect the resulting quadrupole, as the terms are
subsequently differentiated. Likewise it will not effect the corresponding electromagnetic fields
in flat spacetime.

A quadrupole which does not appear to contain any dipole terms, will in general, acquire
dipole terms when one performs a change of coordinates. This contrasts with the monopole
term (2.5) which does not mix with other multipole terms under change of coordinates. As a
simple example consider a quadrupole at rest given in axial cylindrical coordinates (t, r, θ, z)

with γabc = 0 except γ211 =−2γ121 =−2γ112 = 2κ where κ∈R, κ 6= 0 is a constant. Since it
contains no components with a 0 index one may expect that in Cartesian coordinates (t, x, y, z)

with x= r cos θ and y= r sin θ, it would not contain any dipole terms. Indeed if one were to
assume that γabc transforms tensorially then this would be the case. However, with the correct
transformation rules, given in (3.10-3.12) below, even in this simple case gives rise to a dipole
term. Writing γ̂ab and γ̂abc for the (dipole and quadrupole) components with respect to Cartesian
coordinates, the dipole term is γ̂12 = κ. As stated this would give rise to an r−2 fall off for the
potential. Furthermore, when expressed in terms of (2.7) the component γ̂012 = κt+ κ0 which
grows indefinitely and contains an arbitrary constant κ0. Fortunately as stated above these are
differentiated away.

As with the monopole and dipole terms, one can define a quadrupole in an arbitrary spacetime,
using (2.7) with γabc subject to (2.3). In this case the lack of a preferred coordinate system
means that one cannot separate out the dipoles from the quadrupoles. Likewise since we
are not in Minkowski spacetime, one cannot in general, use the fall off of the corresponding
electromagnetic fields to distinguish the terms either. Thus in this case there is no concept of a
dipolefree-quadrupole.

3. Coordinate Transformations of Quadrupoles
Since the multipoles involve Dirac δ−functions it is necessary to integrate them with test functions
in order to evaluate them. Recall, these test functions are smooth and have compact support. That
is, they are infinitely differentiable and are non zero only on a bounded region of spacetime. We
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write these test functions as (φ0, . . . , φ3) which are components of a covector. Acting on φa we
have from (2.5-2.7), it is easy to see that the monopole, dipoles and quadrupoles give∫

M
JaM φa d

4x= q

∫
I
Ċa(τ)φa|C(τ) dτ (3.1)∫

M
JaD φa d

4x=−
∫
I
γab(τ)

∂φa

∂xb

∣∣∣
C(τ)

dτ (3.2)∫
M
JaQ φa d

4x= 1
2

∫
I
γabc(τ)

∂2φa

∂xb∂xc

∣∣∣
C(τ)

dτ (3.3)

where M is spacetime and we have assumed that φa is only non zero on the coordinate patch
(x0, . . . , x3). Given new coordinates (x̂0, . . . , x̂3) then we require that JaM, JaD and JaQ all transform
as vectors. That is

ĴaM =
∂x̂a

∂xb
JbM , ĴaD =

∂x̂a

∂xb
JbD and ĴaQ =

∂x̂a

∂xb
JbQ (3.4)

These transformation are automatic in (3.1-3.3) since we assumed φa transformed as a covector,
i.e.

φ̂a =
∂xa

∂x̂b
φb (3.5)

We also wish to consider allowing different parametrisation τ ∈ I and τ̂ ∈ Î. For example one
may be proper time and the other lab time.

Thus relating the new and old coordinates then (3.1-3.3) and (3.4),(3.5) imply∫
I
Ċa(τ)φa|C(τ) dτ =

∫
Î

˙̂
Ca(τ̂) φ̂a|C(τ̂) dτ̂ (3.6)∫

I
γab(τ)

∂φa

∂xb

∣∣∣
C(τ)

dτ =

∫
Î
γ̂ab(τ̂)

∂φ̂a

∂x̂b

∣∣∣
C(τ̂)

dτ̂ (3.7)∫
I
γabc(τ)

∂2φa

∂xb∂xc

∣∣∣
C(τ)

dτ =

∫
Î
γ̂abc(τ̂)

∂2φ̂a

∂xc∂x̂b

∣∣∣
C(τ̂)

dτ̂ (3.8)

The charge q associated with the monopole is invariant under coordinate transformation,
which follows from (3.6). As stated in the introduction the coordinate transformation of dipole
components γab is tensorial, i.e.

γ̂ab =
∂φ̂c

∂x̂d
∂x̂d

∂xb
∂x̂c

∂xa
dτ

dτ̂
γab (3.9)

since ∫
I

∂φ̂a

∂xb
γ̂ab dτ̂ =

∫
I

∂φa

∂xb
γab dτ =

∫
I

∂x̂d

∂xb
∂

∂x̂d

( ∂x̂c
∂xa

φ̂c
)
γab dτ

=

∫
I

(∂x̂d
∂xb

∂x̂c

∂xa
∂φ̂c

∂x̂d
+

∂2x̂c

∂xa∂xb
φ̂c
)
γab dτ

=

∫
I

∂x̂d

∂xb
∂x̂c

∂xa
∂φ̂c

∂x̂d
γab dτ =

∫
I

∂φ̂c

∂x̂d
∂x̂d

∂xb
∂x̂c

∂xa
dτ

dτ̂
γab dτ̂

In contrast to the dipole, the coordinate transformation of the components γabc of the
quadrupole is given by

γ̂def =
dτ

dτ̂

(
AdaA

e
bA

f
c γ
abc + P de Ċf + P df Ċe

)
(3.10)

where

Aab =
∂x̂a

∂xb

∣∣∣
C(τ)

, Aabc =
∂2x̂a

∂xc ∂xb

∣∣∣
C(τ)

, Ċe =
dCe

dτ
(3.11)
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and

P de(τ) =

∫τ
γabc(τ ′)

(
Adc (τ

′)Aeab(τ
′)−Aec(τ ′)Adab(τ

′)
)
dτ ′ (3.12)

The proof of (3.10) is as follows:

1
2

∫
I

∂2φa

∂xc∂xb
γabc dτ = 1

2

∫
I

∂

∂xc

(
∂

∂xb

(∂x̂d
∂xa

φ̂d

))
γabc dτ

= 1
2

∫
I

∂

∂xc

( ∂2x̂d

∂xa∂xb
φ̂d +

∂x̂d

∂xa
∂x̂e

∂xb
∂φ̂d
∂x̂e

)
γabc dτ

= 1
2

∫
I

( ∂3x̂d

∂xc∂xa∂xb
φ̂d +

∂x̂e

∂xc
∂2x̂d

∂xa∂xb
∂φ̂d
∂x̂e

+
∂2x̂d

∂xa∂xc
∂x̂e

∂xb
∂φ̂d
∂x̂e

+
∂x̂d

∂xa
∂2x̂e

∂xb∂xc
∂φ̂d
∂x̂e

+
∂x̂d

∂xa
∂x̂e

∂xb
∂x̂f

∂xc
∂2φ̂d
∂x̂f∂x̂e

)
γabc dτ

= 1
2

∫
I

((
Aec A

d
ab +Aeb A

d
ac +AdaA

e
bc

)∂φ̂d
∂x̂e

+AdaA
e
b A

f
c

∂2φ̂d
∂x̂f∂x̂e

)
γabc dτ

= 1
2

∫
I

(
Sde

∂φ̂d
∂x̂e

+AdaA
e
b A

f
c γ

abc ∂2φ̂d
∂x̂f∂x̂e

)
dτ

where

Sde =
(
Aec A

d
ab +Aeb A

d
ac +AdaA

e
bc

)
γabc

However (
Aec A

d
ab +Aeb A

d
ac

)
γabc =Aec A

d
ab

(
γabc + γacb

)
= 2Aec A

d
abγ

abc

and

AdaA
e
bc γ

abc =−AdaAebc(γ
cab + γbca)

=−Adb A
e
caγ

abc −Adc Aeabγ
abc =−2Adc Aeabγ

abc

Hence

Sde = 2
(
Aec A

d
ab −A

d
c A

e
ab

)
γabc

so that Sde + Sed = 0. From (3.12) Sde =−2dP
de

dτ
giving

1
2

∫
I
Sde

∂φ̂d
∂x̂e

dτ =−
∫
I

dP de

dτ

∂φ̂d
∂x̂e

dτ =

∫
I
P de

d

dτ

∂φ̂d
∂x̂e

dτ =

∫
I
P deĊf

∂2φ̂d
∂x̂f∂x̂e

dτ

= 1
2

∫
I

(
P deĊf + P df Ċe

) ∂2φ̂d
∂x̂f∂x̂e

dτ

Thus

1
2

∫
I

∂2φ̂d
∂xe∂xf

γ̂def dτ̂ =JQ[φ] =
1
2

∫
I

(
P deĊf + P df Ċe +AdaA

e
b A

f
c γ

abc
) ∂2φ̂d
∂x̂f∂x̂e

dτ

= 1
2

∫
I

dτ

dτ̂

(
P deĊf+P df Ċe+AdaA

e
b A

f
c γ

abc
) ∂2φ̂d
∂x̂f∂x̂e

dτ̂

which gives (3.10).
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As stated certain quadrupoles are in fact dipoles. Consider the quadrupole given by (3.3) with
γabc(τ) given by

γabc = pab Ċc + pac Ċb (3.13)

where pab = pab(τ) and pab + pba = 0. Note that these satisfy (2.3). The quadrupole JaQ is in fact a
dipole JaD where

γab = ṗab (3.14)

where ṗab = dpab/dτ . This follows since substituting (3.3) into (3.13) gives

1
2

∫
I
(pab Ċc + pac Ċb)

∂2φa

∂xc∂xb
dτ

=

∫
I
pab Ċc

∂2φa

∂xc∂xb
dτ =

∫
I
pab

d

dτ

(∂φa
∂xb

∣∣∣
C(τ)

)
dτ

=−
∫
I
ṗab
(∂φa
∂xb

∣∣∣
C(τ)

)
dτ

Hence by comparing with (3.2) we see that JQ contains only a dipole term with (3.14).

We can now demonstrate our example of the “dipolefree-quadrupole” in axial cylindrical
coordinates outlined in the introduction. Let xa = (t, r, θ, z) be axial cylindrical coordinates and
x̂a = (t, x, y, z) be Cartesian coordinates, with transformation functions x= r cos θ and y= r sin θ.
The transformation rules (3.11) are given by

Aab = δab except A1
1 =

∂x

∂r
= cos θ, A2

1 =
∂y

∂r
= sin θ,

A1
2 =

∂x

∂θ
=−r sin θ, A2

2 =
∂y

∂θ
= r cos θ

and Aabc = 0 except A1
12 =A1

21 =− sin θ,

A2
12 =A2

21 = cos θ, A1
22 =−r cos θ, A2

22 =−r sin θ

Thus the integrated in (3.12) corresponding to P 12, the only no zero dipole component, is given
by

γabc(τ ′)
(
A1
c(τ
′)A2

ab(τ
′)−A2

c(τ
′)A1

ab(τ
′)
)

= γ112(A1
2A

2
11 −A2

2A
2
11) + γ121(A1

1A
2
12 −A2

1A
2
12) + γ211(A1

1A
2
12 −A2

1A
2
12)

= κ

Hence P 12 =−P 21 = κt+ κ0 where κ0 is an arbitrary constant of integration. Hence γ̂012 = κt+

κ0. Using (3.13) and (3.14) we see that P 21 gives rise to a dipole component with γ̂12 = κ.

With respect to a coordinate system, the dipole components
{
γ01, γ02, γ03

}
are electric and{

γ12, γ13, γ23
}

are magnetic. In this article we only consider splitting the electric and magnetic
components with respect to the instantaneous rest frame of the particle. In an arbitrary coordinate
system, the electric dipole JED may be written

γab =waĊb − wbĊa (3.15)

where wa(τ) transforms as a vector. Note that replacing wa(τ) with wa(τ) + ξ(τ)Ċa(τ), for any
scalar ξ(τ), does not change J aED.

In spacetime there is a preferred rest coordinate system, called the Fermi coordinates, about a
worldline. For quadrupole we say that electric dipoles are those which in the Fermi coordinate
system have components with a zero, i.e. γ0ab, γa0b, γab0. From (3.13) we see that these contain all
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the dipoles. There are six dipolefree electric quadrupoles. Likewise the magnetic eight magnetic
quadrupole components contain only γµνρ, where Greek indices run over µ, ν, ρ= 1, 2, 3,.

It turns out that identifying the electric quadrupoles in an arbitrary coordinate system is easy.
These become

γabc = Ċa qbc + Ċa qcb − Ċb qac − Ċc qab (3.16)

The qab(τ) have no restrictions, but the γabc(τ) is unchanged if we replace qab(τ) = qab(τ) +

sa(τ)Ċb(τ) + sb(τ)Ċc(τ) for any indexed scalars sa(τ). The γabc given by (3.16) satisfy the
symmetry conditions (2.3). This gives the twelve independent electric quadrupole terms. If
qab + qba = 0 then (3.16) reduces to (3.13), with pab = qab. Equation (3.16) is proved in the
appendix after we have introduced the coordinate-free and metric-free definitions.

4. Coordinate-free and metric-free definition of multipoles
As stated in the introduction, in this section we introduce coordinate-free and metric-free
definitions of dipoles, quadrupoles, electric dipoles and electric quadrupoles. This is because
quadrupoles and electric quadrupoles are much easier to define in a coordinate-free manner. Let
the set of all smooth p−form fields on spacetime M be written ΓΛpM . A test form is a form
φ∈ ΓΛpM with compact support. The set of all test p−forms is written Γ0ΛpM .

Since the dipoles and quadrupoles are only non-zero along a worldline one must use notion of
distributions in order to define them. Recall that the current 3−form, J , which includes dipoles
and quadrupoles, is the source of Maxwell’s equations. In the language of exterior differential
forms, Maxwell’s equations become

dF = 0 and dH =J (4.1)

where F ∈ ΓΛ2M is the electromagnetic 2-form encoding the electric fields E and the magnetic
flux density B, and whereH ∈ ΓΛ2M is the excitation 2-form encoding the displacement field D

and the magnetic field intensity H . Here d is the exterior derivative. The fields F and H have to
be related by constitutive relations. The constitutive relations for the vacuum are given by H =

?F , where ? is the Hodge dual, derived from the metric. These lead to the microscopic Maxwell
equations, d ? F =J . Taking the exterior derivative of the second equation in (4.1) leads to the
continuity equation

dJ = 0 (4.2)

which in turn leads to conservation of charge. We say a J which satisfies (4.2) is closed.
Since Maxwell’s equations are linear one can consider distributional currents. Following

Schwartz, we define a distribution what is does on a test (4− p)−form φ∈ ΓΛ4−pM . A test
(4− p)−form has compact support. If α∈ ΓΛpM is a smooth p−form, we can construct a regular
distribution αD via

αD[φ] =

∫
M
φ ∧ α (4.3)

The definition of the wedge product, Lie derivatives, internal contraction and exterior derivatives
on distributions are defined to be consistent with (4.3). Thus for a distribution Ψ we set

(Ψ1 + Ψ2)[φ] = Ψ1[φ] + Ψ2[φ] , (β ∧ Ψ)[φ] = Ψ [φ ∧ β] , (dΨ)[φ] = (−1)(3−p)Ψ [dφ] ,

(ivΨ)[φ] = (−1)(3−p)Ψ [ivφ] and (LvΨ)[φ] =−Ψ [Lvφ]
(4.4)

Thus for J to be closed requires

J [dλ] = 0 (4.5)

for all test forms λ∈ Γ0Λ0M .
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C

ψ=0 ψ=1 ψ=1 ψ=0,

λ=λ1

λ=λ0

Figure 2: Construction of the test form ψ dλ∈ Γ0Λ1M . Its support is the shaded region.

The monopole current JM is defined in terms of the worldline C : I →M where I ⊂R is the
domain of the parameter τ ,

JM[φ] = q

∫
I
C?(φ) (4.6)

where C? : Γ0Λ
1M→ Γ0Λ

1I is the pullback. Conservation of charge dJM = 0 implies q is
constant. In a coordinate system this becomes (2.5) and (3.1).

Higher order multipoles may be constructed by acting on JM with the operations given in
(4.4), and then ensuring that the resulting distribution in closed. Unlike the dipole/quadrupole
relations where they mix, the monopole can be separated off. That is all multipoles may be written

Jtotal =JM + JMonopole Free (4.7)

for some value of the charge q. We say that J is monopole free if for any

J [ψ dλ] = 0 (4.8)

for all scalar fields λ, ψ such that ψ is flat in a neighbourhood ofC,C?(ψ) = 1 and the combination
ψ dλ has compact support. See figure 2. It is trivial to see that

JM[ψ dλ] = q

∫
I
dC?(λ) = q(λ1 − λ0) (4.9)

where λ1 = lim
τ→sup(I)

λ(τ) and λ0 = lim
τ→inf(I)

λ(τ). We show in the appendix that J [ψ dλ] is

independent of the choice of λ, ψ and hence (4.9) can be used to evaluate the charge associated
with a multipole.

The order of a multipole is defined as follows. If

J [λk+1φ] = 0 for all λ∈ ΓΛ0M and φ∈ Γ0Λ1M

such that C?(λ) = 0
(4.10)

then we say that the order of J is at most k. Since we impose that λ vanishes on the image of C,
this implies that we need to differentiate the argument λk+1φ at least k + 1 times for J [λk+1φ] 6=
0. We say dipoles have order at most one and quadrupoles have order at most two. Therefore the
terms in a dipole have at most one derivative, and those in a quadrupole at most two. This is
consistent with the fact that the set of quadrupoles include all dipoles.

As stated the electric multipoles can be defined in a metric-free and coordinate-free manner,
which contrast with the magnetic multipoles. We say that J is an electric multipole of order at
most ` if

J [λ`dµ] = 0 for all λ, µ∈ ΓΛ0M such that

C?(λ) =C?(µ) = 0
(4.11)

Clearly if J satisfies (4.10) at order k then it satisfies (4.11) at order `= k + 1. Hence all dipoles
are electric quadrupoles. In the appendix we show that if J satisfies (4.11) at order ` then it also
satisfies (4.10) at order k= `. Thus all electric quadrupoles are quadrupoles.
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For a dipole at rest, not satisfying (4.11) with `= 1, i.e. JD[λdµ] 6= 0 for some λ, µwith C?(λ) =
C?(µ) = 0 then JD contains magnetic dipole components. Likewise if a quadrupole JQ does not
satisfy (4.11) with `= 2, we say it has magnetic components.

Using (4.9),(4.10),(4.11) we can now define the multipoles we are interested in:

• A monopole, JM is a zero order 3-form distribution over C.

• A dipole, JD, is a closed, monopole free, first order 3-form distribution over C. This is
equivalent to both (2.6) and (3.2).

• An electric dipole, JED, is a dipole satisfying (4.11) with `= 1. This is equivalent to
(2.6),(3.2) together with (3.15).

• A quadrupole, JQ, is a closed, monopole free, second order 3-form distribution over C.
This is equivalent to both (2.7) and (3.3).

• An electric quadrupole, JEQ, is a quadrupole satisfying (4.11) with `= 2. This is equivalent
to (2.7),(3.3) together with (3.16).

These equivalences are all demonstrated in the appendix.

5. Conclusion and Discussion
In this article we have calculated the coordinate transformations associated with quadrupoles
and the their unusual property, namely second order derivative and integration. There is always
a tension as to the pro and cons of the using coordinate-free approaches. However given
the complicated coordinate transformation given here, it is the opinions of the authors that
the coordinate-free definition of quadrupoles is clearly justified. We have shown that electric
multipoles are more “fundamental” than magnetic multipoles since they can be defined without
a metric or preferred coordinate system.

This work raises many interesting questions and directions one may pursue:

• As stated, using the metric one may define a pure magnetic dipole. I.e. a dipole with no
electric dipole terms. However it is unknown to what extend one can define a magnetic
quadrupole which does not contain any electric terms. Also unknown is whether one can
define an electric quadrupole which does not contain magnetic dipole terms. By contrast
if one prescribes a laboratory coordinate system then one can define all the objects: electric
dipole (dim=3), magnetic dipole (dim=3), dipole free electric quadrupole (dim=6) and
dipole free magnetic quadrupole (dim=8). As stated these will mix with respect to other
coordinate systems. It is natural to extend this analysis to higher order multipoles. Raab
and Lange [7] list the 77 electric terms up to octopole.
• It should be possible to extend this analysis to look at quadrupole sources for linearised

gravity. This is important as a source for gravitational waves. In contrast to the closed
3−form for electromagnetic currents, the quadrupole in linearised gravity is a stress-
energy-momentum tensor.
• As mentioned above, the results presented here can be extended not only to higher

dimensions but also to one and two dimensional sources, i.e. which trace out world-
sheets and three dimensional timelike manifolds. One can even construct an event
multipole, which has support in just one event in spacetime. One application of
multipoles on higher dimensional manifolds is in accelerator physics where the high
energy bunch of electrons can be expressed as a multipole expansion in seven dimension
(phase space + time).
• There is a longstanding debate in the literature about the correct equation of motion

for a point charge that includes the back reaction, with most authors favouring the
Abraham-Lorentz-Dirac equation [25–27]. This despite its well documented pathologies.
The problem for dipoles is more challenging as one would have to renormalise a force
which goes as ∼ r−3 as one approaches the dipole. Should that challenge be achieved
and the radiation reaction for quadrupoles be desired then the prescription given here
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for the equations of motion will be needed. Alternatively a higher order theory of
electromagnetism could be considered such as the Bopp-Podolski theory [28]. In this
theory the distributional sources for the moving multipoles would still be valid. Hence
the electromagnetic fields due to a dipole would, we conjecture, grow as ∼ r−2 as r→ 0

and hence may be renormalisable. Consequently the quadrupole fields would grow as
∼ r−3.
• The fact that the transformation rules for quadrupoles involve an integral poses the

question about the bundle structure of quadrupoles. Since γabc is a function of τ one
would look for a vector bundle over I, whose sections are in one to one correspondence
with the set of quadrupoles. In future work [29] we show that such a vector bundle exists
but is not unique and depends on a choice of thickening, that is a domain U ⊂M and a
map Π :U→I such that the combination Π(C(τ)) = τ .

A. Statement and proof of the results in section 4
Lemma 1. The classification of dipoles and quadrupoles:

All dipoles JD, i.e. closed, monopole free, first order 3−form distribution over C are given by (3.2).
All quadrupoles JQ, i.e. closed, monopole free, second order 3−form distribution over C are given by

(3.3).

Proof. Let JD be given by (3.2) and λ∈ ΓΛ0M with C?(λ) = 0. Since there is only one derivative
of λ2φa then JD[λ

2φ] = 0 hence JD has degree at most one. Likewise JQ given by (3.3) has degree
at most two. By requiring (4.5), i.e. JD[dλ] = 0 and JQ[dλ] = 0 implies the symmetry conditions
on γab and γabc respectively.

In order to show that a general dipole or quadrupole distribution with order k according
to (4.10) can be written as (3.2) or (3.3) we need to consider an adapted coordinate system. Let
(z0, z1, z2, z3) be a coordinate system adapted to the embedding C, so that C(τ) = (τ, 0, 0, 0).

By the manipulations in (4.4) we can see that the general multipole can be constructed from
just addition, internal contraction, Lie derivatives and wedge products. Thus

Ψ [φ] =
∑

terms like

∫
I
C?(Lv1 · · ·Lvrφ) +

∑
terms like

∫
I
C?(Lv1 · · ·Lvr iwφ) dτ

For the dipole case then (4.10) implies JD[(z
µ)2φ] = 0 and JD[(z

µ + zν)2φ] = 0 for µ= 1, 2, 3 and

hence JD[z
µzνφ] = 0. Thus there cannot be any terms with

∂2φa
∂zµ∂zν

. Thus the general degree
three distribution of order at most one is given by

JD[φ] =

∫
I

(
ζ∅,0 φ0 +

∑
µ

ζµ,0 ∂µφ0 +
∑
ν

ζ∅,ν φν +
∑
µ,ν

ζµ,ν∂µφν
)
dτ

where ∂µ =
∂

∂zµ
. In this section (indexed) scalar fields (such as ∂cφ0) are implicitly evaluated on

C(τ). Set dJD = 0 and hence JD[dλ] = 0 for all λ∈ Γ0Λ0M . This gives the following equations

ζ̇∅,0 = 0 , ζ̇µ,0 − ζ∅,µ = 0 and ζµ,ν − ζν,µ = 0 (A 1)

where ζ̇µ,0 =
dζµ,0

dτ
. The ζ∅,0 = q gives the monopole term. The remaining terms are then given

by

JD[φ] =

∫
I

(∑
µ

(
ζµ,0 ∂µφ0 − ζ̇µ,0 φµ

)
+
∑
µ<ν

ζµ,ν
(
∂µφν − ∂νφµ

))
dτ

=

∫
I

(∑
µ

ζµ,0
(
∂µφ0 − ∂0φµ

)
+
∑
µ<ν

ζµ,ν
(
∂µφν − ∂νφµ

))
dτ

(A 2)
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Thus there are six free parameters. These correspond to the γab for the adapted coordinates via
γ0µ =−ζµ,0 and γνµ =−ζµ,ν . Since there are six free parameters which is the same number in
(3.2), then (3.2) covers all the dipoles.

For quadrupoles the general degree three distribution of order at most two is given by

JQ[φ] =

∫
I

(
ζ∅,0 φ0 +

∑
µ

ζµ,0 ∂µφ0 +
∑
ν

ζ∅,ν φν +
∑
µ,ν

ζµ,ν ∂µφν +
∑
µ≤ν

ζµν,0 ∂µ∂νφ0

+
∑
µ≤ν

∑
ρ

ζµν,ρ ∂µ∂νφρ

)
dτ

Again setting dJQ = 0 implies

ζ∅,0 = q , ζ̇µ,0 − ζ∅,µ = 0 , ζµ,µ − ζ̇µµ,0 = 0 , ζµ,ν + ζν,µ − ζ̇µν,0 = 0 ,

ζµµ,µ = 0 , ζµµ,ρ + ζµρ,µ = 0 and ζ12,3 + ζ13,2 + ζ23,1 = 0

for µ< ν and µ 6= ρ. This gives

JQ[φ] =

∫
I

(∑
µ

ζµ,0
(
∂µφ0 − ∂0φµ

)
+ 1

2

∑
µ<ν

(
ζµ,ν − ζν,µ

) (
∂µφν − ∂νφµ

)
+
∑
µ≤ν

ζµν,0
(
∂µ∂νφ0 − 1

2∂0∂νφµ −
1
2∂0∂µφν

)
+
∑
µ6=ν

ζµµ,ν (∂µ∂µφν − ∂ν∂µφµ)

+ ζ12,3 (∂1∂2φ3 − ∂2∂3φ1) + ζ13,2 (∂1∂3φ2 − ∂2∂3φ1)
)
dτ

(A 3)
Again the twenty, non monopole, parameters ζab,c correspond to the twenty free parameters γabc.
These are given by

γµνρ = ζνρ,µ , γνµµ = ζµµ,ν , γ0µµ = ζµµ,0 ,

γ0µν = ζµν,0 , γ̇µ0ν = ζν,µ , γ̇µ00 = ζµ,0
(A 4)

for µ 6= ν = 1, 2, 3. Recall (2.3) implies γabb =−2γbab =−2γbba. Observe that some of the
components γabc are differentiated.

Lemma 2. The monopole term given by (4.9) is independent of λ, µ.

Proof. Substituting φ=ψ dλ into (A 2) and (A 3). We can use for example∫
I

∑
µ<ν

ζµ,ν
(
∂µ(ψ∂νλ)− ∂ν(ψ∂µλ)

)
dτ =

∫
I

∑
µ<ν

ζµ,ν
(
∂µ∂νλ− ∂ν∂µλ

)
dτ = 0

Similarly with the other terms. Thus the only non zero term is the monopole term.

Lemma 3. For electric dipoles the following definitions are equivalent

• Equation (4.11) with `= 1.

• Equation (3.15) in arbitrary coordinates.

• In adapted coordinates with γµν = 0 for all µ, ν = 1, 2, 3.

For electric quadrupoles the following definitions are equivalent

• Equation (4.11) with `= 2.

• Equation (3.16) in arbitrary coordinates.

• In adapted coordinates with γµνρ = 0 for all µ, ν = 1, 2, 3.
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Proof. To show that (3.15) implies (4.11) with `= 1 we have.

JED[λ dµ] =

∫
I

(
waĊb − wbĊa

) ∂

∂xa

(
λ
∂µ

∂xb

)
dτ

=

∫
I

(
waĊb − wbĊa

) ∂λ
∂xa

∂µ

∂xb
dτ

=

∫
I

(
wa

dC?(µ)

dτ

∂λ

∂xa
− wb dC

?(λ)

dτ

∂µ

∂xb

)
= 0

since C?(µ) =C?(λ) = 0.
To show that (4.11) with `= 1 implies (3.15) then write JD in adapted coordinates (A 2). By

acting on (ψ zρ dzσ) where ψ has compact support, we have from (A 2)

JD[ψ z
ρ dzσ] =

∫
I

(∑
µ

ζµ,0
(
∂µ(ψ z

ρδσ0 )− ∂0(ψ zρδσµ)
)
+
∑
µ<ν

ζµ,ν
(
∂µ(ψ z

ρδσν )− ∂ν(ψ zρδσµ)
))
dτ

=

∫
I
2ζρ,σ C?(ψ) dτ

Since this is true for all ψ we have ζρ,σ = 0. Thus we are left with three parameters ζµ,0. Thus
both (3.15) and (4.11) are defined by three parameters and so they are equal.

Since γµν = ζν,µ then the definitions in terms of adapted coordinates follows.

The proof for quadrupoles is the same as the proof of dipoles. First substitute (3.16) into
(4.11) with `= 2 to show that JEQ[λ

2 dµ] = 0. Then impose JQ[λ
2 dµ] = 0 using JQ in adapted

coordinates (A 3). This imply the eight terms ζµµ,ν0 = ζ12,30 = ζ13,20 = 0 for µ 6= ν = 1, 2, 3. The
remaining twelve terms give rise to the electric quadrupoles.

Lemma 4. If J satisfies (4.11) at order ` then J also satisfies (4.10) at order k= `.

Proof. Let J satisfies (4.11) as order `. By expanding out powers of the form J [(λi1 + λi2 +

. . .)`dµ] = 0 we can show J [λ1λ2 · · ·λ` dµ] = 0 for all λ1, . . . , λ`, µ∈ Γ0Λ0M such that C?(λ1) =
· · ·=C?(λ`) =C?(µ) = 0.

In adapted coordinates φ= φ0 dτ + φµ dz
µ. So

J [λ`+1φ] =J [λ`+1(φ0 dτ + φµ dz
µ)]

=J [λ`φ0 d(λτ)]− J [λ`φ0τ dλ] + J [λ`+1φµ dz
µ]

=J [λ`−1(λφ0) d(λτ)]− J [λ`−1(λφ0τ) dλ] + J [λ`(λφµ) dzµ] = 0
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