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Abstract

Western Europe is typically prone to extreme weather events during the winter months,

which typically take the form of windstorms or flooding. The storm Desmond brought

strong winds and heavy rain to Ireland, northern England and Scotland in December

2015, resulting in an estimated £500 million worth of damage and extensive flooding,

particularly in the region of Cumbria. Accurate modelling of such extreme weather

events is necessary to ensure that the societal and infrastructural risk associated with

these phenomena is minimised.

In statistical modelling, extreme value analysis is typically used to model the rate and

size of extreme weather events. Typically, practitioners can use the outputs of such an

analysis to design flood defences to a standard such that there is only a small probability

that defences are breached in a given year. These models can be applied at individual

sites or adapted to address questions related to the spatial extent of an event, which is

important for policy makers eager to reduce the economic and societal impacts associ-

ated with extreme weather.

One aim of this thesis is to improve inference with regarding to existing extreme value

methodology. First, we propose a reparameterisation of the likelihood corresponding to

the Poisson process model for excesses above a high threshold, which improves mixing

in a Bayesian framework and ensures more rapid convergence of the parameter chains in
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a Markov Chain Monte Carlo routine. The Poisson process model is often preferred for

modelling extremes of non-stationary processes as the parameters are invariant to the

choice of threshold; our approach may increase the possibility of this model being used

more widely. Second, we propose an adjustment to the likelihood when implementing

a spatial hierarchical model for extremes, which accounts for the dependence in the

data when estimating model uncertainty. In both cases, the improvement in inference

should increase confidence among practitioners of the outputs obtained from extreme

value models.

The main influence of extreme weather events in winter is from the passage of low-

pressure extratropical cyclones from the North Atlantic. The second aim of this the-

sis is to quantify the risk associated with extreme wind speed events, which we call

windstorms, arising from an extratropical cyclone system. First, we develop a model

capturing the spatial variation of the track associated with the cyclone, from which we

can simulate synthetic tracks with the same statistical characteristics of the observed

record. Second, we describe an approach for modelling the spatial extent and severity of

windstorms relative to the storm track, from which we can provide improved estimates

of risk associated with windstorms at individual sites and jointly over a spatial domain.

The methods described in this thesis can be used to address multiple questions related

to windstorm risk, that is not available using current methodology.
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Chapter 1

Introduction

1.1 Motivation

In light of a number of devastating weather events in recent years, the importance

of accurate modelling, forecasting and prediction of such events is greater than ever.

Hurricane Katrina decimated the city of New Orleans in August 2005, originating as a

tropical depression in the Caribbean and intensifying over the Gulf of Mexico. Storm

Desmond caused an estimated £500 million worth of damage to northern England and

Scotland in December 2015, as an atmospheric river of moist air resulted in unprece-

dented levels of rainfall and consequently led to widespread flooding. More recently,

Hurricane Irma caused mass damage to the Caribbean islands in September 2017, with

the strongest sustained winds observed in the United States in over a decade.

These large-scale impacts are directly linked to well-defined meteorological events, in

these cases, hurricanes and extratropical cyclones, that are associated with strong winds

and large quantities of precipitation. These natural hazards are strongly linked to in-

creased water depths in rivers and coastal areas, which can result in a heightened risk

of flooding. Flood defences are often in place to protect large settlements; however

1
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in many cases the prevalence and durability of these are subject to cost constraints.

It is therefore imperative that defensive infrastructure is designed optimally to give

maximum protection against natural hazards. Models are used to inform policy by

providing guidelines related to the vulnerability of a location with regard to extreme

weather events, as well as information from which design codes can be derived such

that the risk of failure of the flood defence is minimised. In particular, hydrological

models can be used to quantify the risk of flooding given the local weather conditions

and properties of a catchment. Statistical models are also used to answer questions

related to the occurrence of strong winds and heavy rain; for example, the frequency at

which can we expect to observe a certain amount of rain, the location at which we can

expect the most amount of rain, and the locations that are likely to experience large

levels of rainfall given that a particular site has experienced a certain level.

These questions are inextricably linked to the characteristics of the meteorological event

itself. In western Europe, extratropical cyclones are widely regarded as the meteoro-

logical drivers behind the strong winds and heavy rain that are characteristic of winter

weather. These systems are associated with low pressure and develop as a result of hor-

izontal temperature gradients. Convergence of hot and cold airmasses create weather

fronts, which can intensify winds and result in large amounts of precipitation. Knowl-

edge regarding the structure of a cyclone should be used where possible to inform

statistical models for extreme weather events, which can consequently be used to pro-

duce more realistic representations of these events, for example, relating to their spatial

extent and heterogeneity. The location corresponding to the meteorological ‘centre’ of a

storm has substantially different weather characteristics compared to a location on the

edge of the region of influence. This motivates the need to incorporate such physical

information in our modelling procedure.
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Modelling extreme events represents an additional challenge as by definition, such events

do not often occur within the observational record. Models are therefore required to

allow extrapolation to very extreme levels in order to estimate the probability of ob-

serving events beyond the range of the data. Much of the statistical literature linked

with this approach to extrapolation is based on methods from extreme value analysis,

where mathematically rigorous models have been developed aimed at estimating the

tail behaviour of a process. Consequently, using data from a time period significantly

shorter than 200 years, one can estimate the rainfall level one would expect to see once

every 200 years, for example, which can be incorporated into design of infrastructure

for defence against natural hazards. These models are well-established and are widely

used by practitioners. However, some issues remain with regard to inference; this thesis

will address current problems relating to parameter estimation and quantification of

uncertainty.

Physical information can be incorporated into extreme value models through regression

of the model parameters on covariates, and thus one can estimate a high quantile con-

ditional on some physical characteristic of the process being modelled. For example,

extreme wave heights are known to vary according to what direction the waves are

coming from; this variation can especially arise if there are land shadow effects on the

site being studied. However, in the context of an extratropical cyclone, it is not trivial

to construct a covariate that summarises the effects of, say, bearing with respect to the

storm centre, lifecycle of the storm or the spatial extent of an event. As such, existing

statistical models insufficiently capture the spatial and temporal characteristics of the

cyclone that generate the weather extremes of interest. This represents an interesting

modelling challenge that requires an alternative approach motivated by the atmospheric

properties of the meteorological event.
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Figure 1.1.1: From Shadloo et al. (2016): a visual representation of Eulerian and
Lagrangian frames of reference. In the Eulerian specification (left), measurements are
recorded in a fixed location as the flow passed through. In a Lagrangian specification
(right), measurements are collected along the path determined by the flow.

Existing statistical models are typically based on analysis of fixed locations and observ-

ing the process at each location as time passes. In fluid mechanics, this is commonly

referred to as an Eulerian specification of a process. An example of this would be a

person sitting on a bank of a river and watching the water flow past the fixed loca-

tion. Alternatively, one can specify a Lagrangian specification of a process, whereby

the observer follows the process as it moves through space and time (see Figure 1.1.1).

This would correspond to a person sitting on a boat and drifting down the river. In

oceanography, Eulerian data is typically gathered using fixed sensors at locations in

the ocean, where observations are collected at regular intervals as the flow passes by.

This is advantageous in the sense that long time series can be collected, but it may not

perform well at addressing questions related to the pathway of the flow. Oceanogra-

phers alternatively collect Lagrangian measurements through drifters, which are used

to track the transport pathways.

A Lagrangian approach to modelling extratropical cyclones seems more intuitive than

an Eulerian approach, as the extremes of interest are generated relative to the path

taken by the storm in space and time. An Eulerian approach to modelling was motivated
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by the sparse availability of observational data, e.g., from weather gauges. However,

recent advances in climate modelling have resulted in the availability of high-resolution

datasets that are spatially and temporally complete, from which large scale systems like

extratropical cyclones can be identified and tracked. By fixing the centre of the storm

as our frame of reference, we can address questions about the influence of the path and

the intensity of a storm on the occurrence of extreme weather events. In particular, this

approach provides a natural mechanism for exploring the likely position, spatial extent

and magnitude of extreme weather events relative to the path of the storm. Because the

locations affected by a storm are largely determined by its path, an Eulerian approach

can only model the observed events relative to these fixed locations. However, we can

improve inference by modelling the path of the storm and pooling over all events de-

fined relative to the path. This allows us to generate events relative to synthetic paths,

allowing us to estimate probabilities of events not yet observed at certain locations.

As well as being concerned with questions regarding marginal risk at a given location,

practitioners are often interested in quantifying the joint risk of an extreme event occur-

ring at multiple locations; for example, what is the probability of observing an extreme

windstorm event at site B given that one occurs at site A? This is of particular interest

due to the potential devastating impacts that can arise from an event whose spatial ex-

tent is especially large. In the extreme value literature (Coles et al., 1999), the quantity

χ is defined such that

χ = lim
x→xF

Pr{XB > x | XA > x},

where XA and XB denote the wind speed at sites A and B respectively (transformed

onto common margins) and xF is the upper endpoint of the distribution. This expression

is the limiting probability that XB is extreme given that XA is extreme. A value of

χ > 0 corresponds to the case of asymptotic dependence, where extremes at sites A

and B can occur simultaneously, while a value of χ = 0 refers to the case of asymptotic
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independence, where extreme events at sites A and B tend to occur at different times.

Distinguishing the two cases is highly important when modelling extremal dependence,

as the application of asymptotically dependent models to data exhibiting properties

of asymptotic independence can lead to conservative estimates of extreme joint events.

However, diagnostics used to estimate χ are often highly uncertain due to the sparsity of

data near the endpoint of the distribution. By simulating a large number of synthetic

windstorms, however, we can estimate χ with a greater degree of confidence. This

also allows us to estimate the probability of observing extreme joint events beyond the

range of the data. By modelling the processes driving the spatial extent and magnitude

of windstorm events, our estimation of χ is derived from physically realistic scenarios

matching the statistical characteristics of the observed record.

1.2 Thesis outline

The aims of this thesis are twofold. First, we aim to improve inference for existing ex-

treme value methodology in the form of parameter estimation and correct quantification

of uncertainty. Second, we aim to develop a statistical model for extreme windstorms

arising from extratropical cyclones that is a physically consistent representation of the

generating process. The thesis is split into chapters, each outlining the different ap-

proaches taken to achieve these aims.

In Chapter 2, we introduce models from univariate extreme value theory which are used

as the basis of statistical methodology in this thesis. In particular we describe theory

and inference for the block maxima approach as well as two approaches for modelling

excesses above a high threshold. We also introduce the concept of an extratropical cy-

clone and describe its meteorological and climatological properties, as well as previous

attempts to model these weather systems in a statistical context.
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In Chapter 3, we propose a reparameterisation of the Poisson process model for excesses

above a high threshold to improve estimation and inference in the Bayesian framework.

This reparameterisation is based on the optimal selection of a tuning parameter in the

likelihood which near-orthogonalises the model parameters, enabling better mixing in

the Markov Chain Monte Carlo routine. We consider the cases of independently and

identically distributed random variables along with a linear trend in the location pa-

rameter. The approach is applied to simulated data and a case study is presented on

rainfall data in Cumbria, UK.

Chapter 4 outlines a spatial model in the Bayesian hierarchical framework, which bor-

rows strength across locations in the estimation of marginal return levels. This class

of models assumes conditional independence across space and time, which often results

in underestimation of model uncertainty. We propose an adjustment to the likelihood,

which has been used in previous studies on max-stable processes, to account for the

spatial and temporal dependence in the data when making the misspecification of con-

ditional independence. This approach is applied to precipitation data in Great Britain.

In Chapter 5, we present a model for the lifecycle and track of extreme extratropical

cyclones in the North Atlantic. Specifically, we model the path of local vorticity max-

ima characterising the storm, referred to as a track. This model comprises submodels

for the beginning, propagation and termination of a track over space and time, that

preserve the dependence structure between movement and intensity and the spatial

variation inherent in these characteristics. Through Monte Carlo simulation of a large

number of synthetic tracks, we estimate extremal quantities such as the return period

corresponding to storm Herta, a particularly damaging storm that occurred in 1990, as

well as the 100− and 1, 000-year return levels for vorticity over space.
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Chapter 6 builds on the work in Chapter 5 by constructing a model for extreme Eu-

ropean windstorms. We approach this from a Lagrangian viewpoint, extracting wind

events relative to the storm centre using a combination of spatial filtering and clustering

methods. We use information from the storm track to determine the evolution of event

characteristics such as its position, size and magnitude, using empirical observations to

inform the statistical modelling. We simulate a large number of synthetic windstorm

events, from which we can estimate the risk associated an extreme event occurring at

a number of locations simultaneously.

In Chapter 7, we conclude with a summary of the contributions made by this thesis as

well as some opportunities for further work.



Chapter 2

Literature Review

2.1 Extreme value methods

2.1.1 Overview

Extreme value theory is a rapidly emerging field in modern statistics, with practical

significance in disciplines including finance, hydrology and medicine. The importance

of analysing and predicting extreme events creates a necessity for a statistically rigorous

model for the tail of a distribution of a random variable. Standard statistical modelling

approaches are often biased when estimating tail behaviour, as central values tend to

drive parameter estimates and model fit. This creates the need for a tail model that is

not compromised by these issues. Further, one might be interested in the level corre-

sponding to an event expected once every 200 years; in the context of flood frequency

analysis, this may influence the design of defensive infrastructure. However, by defi-

nition, observations in the tails are rare, and so it is often required that inference for

unobserved scenarios is made using observed data which are not as extreme as the events

that must be predicted. Extreme value analysis allows this by using asymptotic models

fitted only to tail data to extrapolate beyond the range of the data to unobserved levels.

9
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This section provides an overview of theory and inference in extreme value analysis. In

particular, we describe two approaches for analysing univariate extreme values that are

unified by asymptotic theory. In Section 2.1.2, we describe the block maxima approach.

We introduce some threshold-based methods in Section 2.1.3.

2.1.2 Block maxima approach

Consider a sequence of independently and identically distributed (i.i.d.) random vari-

ablesX1, . . . , Xn with an unknown distribution function F . DefineMX,n = max(X1, . . . , Xn)

to be the maximum of this sequence of random variables. The distribution function of

the sample maxima can then be expressed as

Pr(MX,n ≤ x) = Pr(X1 ≤ x, . . . , Xn ≤ x)

= Pr(X1 ≤ x) . . .Pr(Xn ≤ x)

= {F (x)}n.

An analogous result for minima can be obtained by defining

mX,n = min(X1, . . . , Xn)

= −max(−X1, . . . ,−Xn)

= −M−X,n.

This subsection focuses on application of extreme value analysis to sample maxima,

noting that results for minima can be obtained using the above identity. Henceforth,

Mn and mn will be used in place of MX,n and mX,n respectively.

The above formula for the distribution of maxima is unhelpful in practice as the dis-

tributional form of F is typically unknown. One approach is to search for families of
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models for which the expression F n converges for the tails of the distribution of F .

However,

Mn → xF as n→∞,

where

xF = sup{x : F (x) < 1}.

In other words, the distribution of Mn degenerates to a point mass on the upper end

point of F . A method of overcoming this difficulty is to obtain a linear renormalisation

of Mn to give a non-degenerate limit distribution. Let M∗
n be defined as

M∗
n =

Mn − bn
an

,

for sequences of constants an > 0 and bn, which stabilise the location and scale of M∗
n

as n increases, avoiding the issues that arise with the distribution of Mn. The Extremal

Types Theorem (Fisher and Tippett, 1928) states that given appropriate choices of

these normalising constants, as n→∞

Pr

(
Mn − bn
an

≤ x

)
→ G(x), (2.1.1)

where G is non-degenerate and is of the same type as one of the following distributions:

• Gumbel: G(x) = exp{− exp(−x)} −∞ < x <∞;

• Fréchet: G(x) =

 0 x ≤ 0

exp{−x−α} x > 0, α > 0;

• Negative Weibull: G(x) =

 exp{−(−x)α} x < 0, α > 0

1 x ≥ 0.

The Unified Extremal Types Theorem (UETT) unites these distributions under one

parameterisation, the generalised extreme value (GEV) distribution, with distribution
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function

G(x) = exp

{
−
[
1 + ξ

(
x− µ
σ

)]−1/ξ

+

}
, (2.1.2)

where x+ = max(x, 0) and σ > 0. The parameters µ, σ and ξ are interpreted as the

location, scale and shape parameters respectively. The distribution of M∗
n is of the same

type as a GEV distribution as n → ∞, for some value of ξ. A Gumbel distribution

corresponds to ξ = 0, with the feature of an exponential upper tail. A Fréchet distri-

bution corresponds to ξ > 0, with a heavy upper tail. A Negative Weibull distribution,

for which ξ < 0, has the property of a finite upper end point.

In practical applications, interest lies in the estimation of a probability that extreme

events are sufficiently large. The return period of level xp is defined as the inverse of

the probability that xp is exceeded in any one year. The T -year return level is defined

as the level for which the probability of exceeding this level in any one year is 1/T . The

1/p return level xp is the 1 − p quantile of the GEV distribution for 0 < p < 1. From

this definition, distribution (2.1.2) can be rearranged to give as expression for xp such

that

xp =

 µ− σ
ξ
[1− {− log(1− p)}−ξ] for ξ 6= 0

µ− σ log{− log(1− p)} for ξ = 0,

where (µ, σ, ξ) denote the GEV parameters.

The GEV distibution is typically used to model a series of maxima of a pre-selected

number of blocks (e.g. years). Inference for the GEV model is typically carried out

using maximum likelihood estimation with respect to parameters (µ, σ, ξ). There exists

no analytical solution for the parameter estimates, so numerical maximisation schemes

are required. The maximum likelihood estimators are asymptotically Gaussian sub-

ject to the conditions that ξ > −1/2 (Smith, 1985). A distribution where ξ < −1/2
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corresponds to very short bounded upper tails and is rarely seen in practice, so these

restrictions do not cause practical difficulties. The asymptotic normality of the esti-

mators means that the uncertainty of return level estimates can be evaluated using

the delta method. However, this approximation performs poorly when considering re-

turn levels corresponding to long return periods that fall beyond the scope of the data.

Profile likelihood-based confidence intervals provide a more accurate representation of

uncertainty when a strong degree of extrapolation is required (Coles, 2001).

An alternative approach to estimation is through Bayesian inference, which requires the

specification of a prior distribution on the parameters. As no conjugate prior exists for

the GEV, inference is carried out using Markov chain Monte Carlo (MCMC) methods.

Bayesian inference provides flexibility for incorporating expert knowledge of the process

being modelled into the analysis through the specification of the prior. Because of the

data limitations in extreme value problems, this can substantially improve inference.

Bayesian methods also provide a natural way of estimating parameter uncertainty with-

out the theoretical complication of maximum likelihood. For more details, see Coles

and Powell (1996) and Stephenson (2016).

2.1.3 Threshold methods

While the block maxima approach is easily used and interpretable, one of its drawbacks

is its failure to capture the full behaviour of the tail of a distribution. The model is

limited to analysing data selected as the maximum of a pre-selected block, despite

the strong possibility of there being other observations in the same block that may be

characterised as extreme (see Figure 2.1.1). Threshold methods account for the extra

tail information in these observations by analysing data above a pre-determined level

u. This leads to a more efficient modelling procedure as a result of the added data used

in the analysis.
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Figure 2.1.1: Rainfall accumulations in a grid cell in southeast England from 2008-
2014, taken from reanalysis data used in Chapter 4. The blue observations represent
the values used in a block maxima approach, whereas all observations above the red
line would be used in a threshold-based model.

Let X1, . . . , Xn be a sequence of i.i.d. random variables with distribution function F .

Assuming the asymptotic theory of equations (2.1.1) and (2.1.2) hold, then a sequence

of point processes Pn can be constructed on [0, 1]× R by

Pn =

{(
i

n+ 1
,
Xi − bn
an

)
; i = 1, . . . , n

}

and the behaviour as n → ∞ can be examined. The limit process is non-degenerate

as the distribution of the normalised maxima is non-degenerate. Large points of the

process are retained in the limit process while small points are normalised to the same

value bl, with

bl = lim
n→∞

xF − bn
an

.
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Under these conditions on Pn, on the set [0, 1]× (bl,∞)

Pn → P as n→∞, (2.1.3)

where P is a non-homogeneous Poisson process with intensity function

λ(t, x) =
1

σ

[
1 + ξ

(
x− µ
σ

)]−1−1/ξ

+

.

This result motivates the idea that the behaviour of large values from F are deter-

mined asymptotically by the characteristics of an, bn and ξ, as with the block maxima

approach. Under the conditions for the limit in (2.1.3) to hold, Pickands (1975) shows

that for x > 0 and X ∼ F

Pr(X > un + anx | X > un)→
(

1 +
ξx

ψ

)−1/ξ

+

, (2.1.4)

as n → ∞, where un → xF with xF being the upper endpoint of F and ψ > 0 and

ξ ∈ R. The distribution function

G(x) = 1−
(

1 +
ξx

ψ

)−1/ξ

+

x > 0,

corresponds to the generalised Pareto distribution (GPD), with scale parameter ψ > 0

and shape parameter ξ ∈ R, parameterised as GPD(ψ, ξ). Expression (2.1.4) shows

that the scaled excesses of a threshold tends to a GPD as the threshold tends to the

upper endpoint of the distribution.

The limiting result in (2.1.4) motivates the use of a GPD for an approximate distribution

of excesses above a suitably high threshold, such that (X − u) | X > u ∼ GPD(σu, ξ),
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with

Pr(X > x|X > u) =

(
1 + ξ

x− u
σu

)−1/ξ

+

, x > u.

The threshold stability property of the GPD states that if X−u | X > u ∼ GPD(σu, ξ)

for some high threshold u, then for a higher threshold v ≥ u, X − v | X > v ∼

GPD(σu + ξ(v− u), ξ). Thus, ξ is invariant to threshold choice, but σu is not (Davison

and Smith, 1990).

We can obtain return levels in a similar way to the block maxima approach, but first we

must undo the condition of exceeding the threshold to calculate the marginal survival

function Pr(X > x). We define the parameter λu = Pr(X > u) to be the rate of

exceedance above u. It follows that

Pr(X > x) = λu

[
1 + ξ

(
x− u
σu

)]−1/ξ

+

, (2.1.5)

for x > u. The m-observation return level xm, that is, the value one would expect to

exceed once every m observations, is then calculated by inverting (2.1.5) such that

xm =

 u− σu
ξ

[
(mλu)

ξ − 1
]

for ξ 6= 0

u− σu log(mλu) for ξ = 0.

The T -year return level can be obtained by setting m = Tny, where ny is the average

number of observations in a year.

A concern in practical implementation of the GPD for modelling threshold exceedances

is the choice of threshold u. The asymptotic approximation of the GPD model may not

be valid if the threshold is too low, while a threshold that is too high will reduce the

size of the dataset, which leads to greater parameter uncertainty. An ideal threshold

choice is based on this trade-off between bias and variance. While there are no exact
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methods for threshold selection, diagnostics are available to guide selection based on

properties of the GPD distribution. Classical methods include the analysis of mean

residual life plots and parameter stability plots (Coles, 2001). The former is based on

the idea that if a GPD model is a good fit, then the sample mean excess over a threshold

should be a linear with respect to the threshold. The latter is used based on the idea

that ξ and a reparameterised scale parameter σ∗ = σu − ξu are constant with respect

to the threshold. Recent advances in threshold selection include Wadsworth and Tawn

(2012b), Wadsworth (2016) and Northrop et al. (2017). Other methods are outlined

comprehensively in Scarrott and MacDonald (2012).

The point process framework provides an alternative approach for characterising thresh-

old excesses. We assume the limit Poisson process P defined in (2.1.3) is a reasonable

approximation to the behaviour of Pn on Au = [0, 1] × [u,∞), where u is a suitably

high threshold. It is common practice to multiply the intensity function by a factor m

(Smith, 1989), where m is free, such that the likelihood can be expressed as

L(µm, σm, ξ) = exp

{
−m

[
1 + ξ

(
u− µm
σm

)]−1/ξ

+

}
r∏
j=1

1

σm

[
1 + ξ

(
xj − µm
σm

)]−1/ξ−1

+

,

(2.1.6)

where (µm, σm, ξ) denote the rescaled parameters (that now depend on m), r denotes

the number of excesses above the threshold u and xj > u, j = 1, . . . , r denote the thresh-

old excesses. This point process characterisation is a generalisation of both the GEV

and GPD models. The GEV parameters are recovered when m is set to be the number

of years of observation, whereas a choice of m = r recovers the GPD parameters. For

general m, the parameters (µm, σm, ξ) are invariant to the choice of threshold. This can

be beneficial when adapting the model to account for non-stationarity by modelling the

parameters as functions of covariates.
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Inference for both the GPD and Poisson process models is carried out typically in the

same way as the block maxima approach, where maximum likelihood estimation can be

used subject to the restriction that ξ > −1/2. Bayesian methods are also often applied

as in the block maxima approach. Typically, more precise inferences are obtained from

threshold models due to there being more data available than in the block maxima

approach. Parameter estimation is often difficult for the Poisson process model, as

the parameters are highly non-orthogonal. Numerical maximisation schemes are highly

dependent on starting values, while MCMC schemes are often associated with poor

mixing and failed convergence. In contrast, the GPD model is easier to fit as the rate

parameter λu is orthogonal to both σu and ξ. In Chapter 3, we explore options for

reparameterising the Poisson process model to improve parameter estimation in the

Bayesian framework.

2.2 Extratropical cyclones

2.2.1 Overview

In this section, we review the physical processes known as extratropical cyclones, which

form the basis for the material in Chapters 5 and 6. Section 2.2.2 features a broad

summary of the meteorological and climatological properties of extratropical cyclones,

examining their structure, the factors influencing their evolution, and the weather effects

they can cause. In Section 2.2.3, we discuss previous studies aimed at modelling these

systems in a statistical context.

2.2.2 Meteorology and climatology

Extratropical cyclones are low pressure systems in the mid-latitudes that are largely re-

sponsible for stormy weather conditions in the United Kingdom and Northern Europe.

For example, Storm Desmond devastated northern England and Scotland in December
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Figure 2.2.1: From Schultz et al. (1998): (a) Norwegian cyclone model: (I) incipient
frontal cyclone, (II) and (III) narrowing warm sector, (IV) occlusion; (b) Shapiro-Keyser
cyclone model: (I) incipient frontal cyclone, (II) frontal fracture, (III) frontal T-bone
and bent-back front, (IV) frontal T-bone and warm seclusion.

2015, bringing severe winds and torrential rain, resulting in record-breaking water lev-

els that caused considerable damage. This motivates the need for understanding the

factors relating the presence of a cyclone to the impact on the ground, so that infras-

tructure can be suitably designed for defence against these natural hazards.

In meteorological terms, an extratropical cyclone forms when the interface between

warm and cold air masses develops into a wave form with its apex located at the centre

of the low-pressure area. This behaviour was formalised by meteorologists behind the

Norwegian Cyclone Model (Bjerknes, 1919) (see Figure 2.2.1), who developed meth-

ods for classifying the boundaries between air masses, otherwise known as fronts, into

four types: cold, warm, stationary and occluded. High levels of precipitation and wind

speeds are characteristic of the locations of warm and cold fronts. This model is gen-

erally characteristic of oceanic extratropical cyclone formation, but analyses following

cyclone formation over land found substantial departures from the Norwegian model.
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The ideology behind the Norwegian model was born from analysis of surface weather

maps over Europe in a time before routine air observations began. In recent years, due

to inconsistencies between data and the Norwegian model, revisions have been made

to the original configuration, such as the Shapiro-Keyser model (Shapiro and Keyser,

1990) (see Figure 2.2.1). As with the Norwegian cyclone model, an incipient cyclone

develops cold and warm fronts, but in this case, the cold front moves roughly perpen-

dicular to the warm front such that the fronts never meet, the so-called ‘T-bone’ (see

Figure 2.2.1). This is followed by seclusion, the mature phase of the cyclone life-cycle,

which may result in hurricane winds and torrential rain. Not all extratropical cyclones

originate as frontal waves. Some begin as tropical cyclones before moving into the mid-

latitudes, where different types of behaviour have been observed; see Bengtsson et al.

(2006) for a detailed overview.
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Figure 2.2.2: The storm track of the Great Storm of 1987 extracted using the feature
tracking algorithm of Hoskins and Hodges (2002). The Great Storm of 1987 caused
devastating wind gusts leading to 22 fatalities and £2bn worth of damage in the UK.
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An extratropical cyclone is typically characterised in a spatial sense by a path known

as a track (see Figure 2.2.2), which represents the movement of the centre of the cy-

clone. Many factors affect the movement of the track, and consequently, the complexity

of quantifying the intensity of extratropical cyclones makes their occurrence difficult

to predict. Cyclones are usually identified as minima in mean surface level pressure

(MSLP), either by searching for closed isolines on weather maps (Schinke, 1993) or

with an automated approach. However, in some regions, low pressure systems have

characteristics different from mid-latitude cyclones, such as monsoon depressions.

Automated approaches are usually based on extracting features of a cyclone from re-

analysis data. A reanalysis dataset is the output from a numerical weather prediction

model where the past atmospheric observations have been re-analysed using fixed, up-

to-date data assimilation systems. This provides a dynamically consistent estimate of

the climate state at each timestep. Reanalysis projects have produced global datasets of

weather variables with continuously improving temporal and spatial resolution. How-

ever, biases in models and observations can induce spurious trends and variability into

outputs. Examples of reanalysis projects are featured in Uppala et al. (2005) and Dee

et al. (2011).

With regard to extratropical cyclones, a number of identification schemes exist that

extract information about cyclones from reanalysis data using vorticity as an indica-

tor. Vorticity measures the rotation of the atmosphere about some vertical axis. It has

units of “rotations” per second, where “rotations” are dimensionless. Absolute vorticity

refers to the spin caused by local conditions and the rotation of the earth. Relative

vorticity refers to the spin caused by local atmospheric flow only. For the remainder of

the thesis, relative vorticity is referred to as vorticity, for simplicity. Vorticity is high

in atmospheric troughs and low on atmospheric ridges. Hoskins and Hodges (2002)
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suggest that vorticity is a better indicator than surface-level pressure for identifying

synoptic-scale systems such as extratropical cyclones. Once cyclones are detected, the

track is identified using techniques based on a nearest-neighbour search, accounting

for the expected movement of a cyclone based on atmospheric conditions (Murray and

Simmonds, 1991). Chapters 5 and 6 feature statistical models constructed based on the

cyclone tracking algorithm of Hoskins and Hodges (2002) for detecting local vorticity

maxima in space. Further details on this feature extraction algorithm can be found in

Chapter 5.

There have been numerous studies on relating the weather conditions in the vicinity of

the extratropical cyclone system to the physical structure of the cyclone itself. Catto

et al. (2010) analysed the distribution of surface weather features in a spherical cap of

a 15◦ radius centred at the storm track, identified as the local vorticity maximum using

the approach of Hoskins and Hodges (2002). In particular, they assessed the behaviour

of surface-level pressure, temperature and wind speeds and matched this behaviour to

cyclonic features such as cold fronts, and the cold and warm conveyor belts. Rudeva

and Gulev (2011) conduct a similar analysis, in which the relationship between the

surface-level pressure associated with an extratropical cyclone and its weather features

are explored. They found that the highest precipitation rates tend to occur east of the

storm centre, where the warm conveyor belt is typically located, while the rate tends

to increase as the pressure gradient increases.

Bengtsson et al. (2006) provide a compehensive analysis of the climatology of extra-

tropical cyclones affecting Northern Europe. Regions where storms begin, known as

cyclogenesis regions, tend to be concentrated in the North Atlantic, with some activity

on the east coast of the United States. It is suggested that high orography may in-

fluence the triggering of a cyclone on land, whereas at sea, cyclones may be activated
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by local ocean heat fluxes. Tracks generally move in a north/northeasterly direction

towards Northern Europe, with evidence to suggest a ‘rebirth’ of sorts in the eastern

North Atlantic. Largest mean intensities tend to be observed south of Greenland in the

North Atlantic.

The climatology of extratropical cyclones has been the subject of numerous studies

related to how it might vary under anthropogenic climate change. Ulbrich et al. (2009)

provide a comprehensive review. Many studies have found that the number of extreme

cyclones will increase in winter, with an overall reduction in the total number of cyclones

(Lambert and Fyfe, 2006). Several studies emphasise that increased mean intensities

only manifest in specific regions, such as the British Isles (Bengtsson et al., 2006),

without an increase in the track density at these sites. Jiang and Perrie (2008) see an

increase of cyclone radius and a northward shift of the track density, but only small

increases in intensity. Many studies (Bengtsson et al., 2006; Pinto et al., 2007) give

evidence of a reduced impact from cyclones on the Mediterranean region in winter.

Despite no overwhelmingly broad consensus on the issue, there is little doubt that

the characteristics of extratropical cyclones are changing in response to climate change

induced by human activity.

2.2.3 Statistical modelling

Literature on statistical modelling of cyclonic behaviour in the extratropics is sparse.

Rather than explicitly modelling the events themselves, authors have used many of the

extreme value methods introduced in Section 2.1 to gain insight into how the extremal

behaviour of various measures of storm intensity is changing with respect to climatic

variables. Lionello et al. (2008) fit a GEV model to monthly pressure minima derived

from regional climate models in order to analyse the impact of a changing climate on cy-

clone intensities. This paper found that, in two climate change scenarios, it is projected
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that North Atlantic regions will have stormier winters and milder summers, consistent

with the predicted effects of a poleward shift of storm tracks. Similarly, Della-Marta

and Pinto (2009) used a GPD model to assess future changes in extreme wind intensity,

with the result that the frequency of intense wind events in western Europe is predicted

to increase. Sienz et al. (2010) extended this model to incorporate a temporal trend

and the North Atlantic Oscillation (NAO) index. However, these analyses fail to ac-

count for the spatial variability of both the storm track and the extremes over Europe,

a key issue as local estimation of extreme weather conditions is of specific interest to

practitioners.

Bonazzi et al. (2012) uses a bivariate extreme value copula to assess the tail dependence

of wind intensities between pairs of locations over Europe. Tail dependence exhibits

stronger coupling in the west-east direction, which is consistent with the dominant

track of extratropical cyclones. The analysis did not incorporate any direct modelling

of the dependence between extreme wind and the storm track, however. Economou

et al. (2014) specify a spatial extreme value model for pressure minima in the Bayesian

hierarchical framework, in which the parameters of the Poisson process model (2.1.6)

are dependent on a spatio-temporal covariate structure and spatial random effects. The

model enables a regional analysis of pressure minima and the upper endpoint of the

distribution of pressure minima is estimated. However, this approach largely ignores

the spatial and temporal evolution of the storm track itself, which could be critical in

terms of the extreme weather that it generates. A Bayesian hierarchical model of this

type is constructed and applied to rainfall data in Chapter 4.

Most developments in storm track modelling have come from the tropical cyclone lit-

erature. Casson and Coles (2000) generate synthetic storm tracks by sampling from

observed data with random perturbations. The authors incorporate various aspects of
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cyclone structure, including the distribution of wind speeds in the vicinity of the track

as a function of the pressure minimum. Rumpf et al. (2007) sampled from kernel density

estimates of speed and direction increments to propagate the track in space, while Hall

and Jewson (2007) use a first-order autoregressive process to accomplish this. Neither

approach incorporates a model for cyclone intensity.

Youngman and Stephenson (2016) develop a geostatistical approach to simulating the

spatio-temporal development of wind gusts generated from extratropical cyclones in

Europe. A GPD is used to model the marginal tail behaviour, while the residual de-

pendence across locations is modelled using a Gaussian process. This approach allows

fast simulation of synthetic windstorm events over Europe. While the model incorpo-

rates the velocity of the storm track in propagating the wind gust events, it lacks a

direct link between the storm and the process being modelled. In particular, one might

be concerned with how the spatial distribution of wind gusts evolves with respect to

the storm centre, and how the strength of the storm affects the magnitude and spatial

extent of wind gust events.



Chapter 3

A Poisson process

reparameterisation for Bayesian

inference for extremes

3.1 A Poisson process model for extremes

The aim of extreme value analysis is to model rare occurrences of an observed process

to extrapolate to give estimates of the probabilities of unobserved levels. In this way,

one can make predictions of future extreme behaviour by estimating the behaviour

of the process using an asymptotically justified limit model. Let X1, X2, . . . , Xn be a

series of independent and identically distributed (i.i.d.) random variables with common

distribution function F . Defining Mn = max{X1, X2, . . . , Xn}, if there exists sequences

of normalising constants an > 0 and bn such that:

Pr

{
Mn − bn
an

≤ x

}
→ G(x) as n→∞, (3.1.1)

26
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where G is non-degenerate, then G follows a generalised extreme value (GEV) distri-

bution, with distribution function

G(x) = exp

{
−
[
1 + ξ

(
x− µ
σ

)]−1/ξ

+

}
, (3.1.2)

where x+ = max(x, 0), σ > 0 and µ, ξ ∈ R. Here, µ, σ and ξ are location, scale and

shape parameters respectively.

Using a series of block maxima from a dataset {Xt}, typically with blocks corresponding

to years, the standard inference approach to give estimates of (µ, σ, ξ) is the maximum

likelihood technique, which requires numerical optimisation methods. In these prob-

lems, particularly when covariates are involved, such methods may converge to local

optima, with the consequence that parameter estimates are largely influenced by the

choice of starting values. The standard asymptotic properties of the maximum likeli-

hood estimators are subject to certain regularity conditions outlined in Smith (1985),

but can give a poor representation of true uncertainty. In addition, flat likelihood sur-

faces can cause identifiability issues (Smith, 1987a). For these reasons, we choose to

work in a Bayesian setting. Bayesian approaches have been used to make inferences

about θ = (µ, σ, ξ) using standard Markov Chain Monte Carlo (MCMC) techniques as

no closed-form posterior distribution exists. They have the advantage of being able to

incorporate prior information when little is known about the extremes of interest, while

also better accounting for parameter uncertainty when estimating functions of θ, such

as return levels (Coles and Tawn, 1996). For a recent review, see Stephenson (2016).

An approach to inference that is considered to be more efficient than using block maxima

is to consider a model for threshold excesses, which is superior in the sense that it

reduces uncertainty due to utilising more extreme data (Smith, 1987b). Given a high

threshold u, the conditional distribution of excesses above u can be approximated by a
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generalised Pareto distribution (GPD) (Pickands, 1975) such that

Pr(X − u > x|X > u) =

(
1 +

ξx

ψu

)−1/ξ

+

, x > 0,

where ψu > 0 and ξ ∈ R denote the scale and shape parameters respectively, with

ψu dependent on the threshold u, while ξ is identical to the shape parameter of the

GEV distribution. This model conditions on an exceedance, and a third parameter λu,

denoting the rate of exceedance of X above the threshold u, must also be estimated.

Both of these extreme value approaches are special cases of a unifying limiting Poisson

process characterisation of extremes (Smith, 1989; Coles, 2001). Let Pn be a sequence

of point processes such that

Pn =

{(
i

n+ 1
,
Xi − bn
an

)
: i = 1, . . . , n

}
,

where an > 0 and bn are the normalising constants in limit (3.1.1). The limit process

is non-degenerate since the limit distribution of (Mn− bn)/an is non-degenerate. Small

points are normalised to the same value bL = limn→∞(xF − bn)/an, where xF is the

lower endpoint of the distribution F . Large points are retained in the limit process. It

follows that Pn converges to a non-homogeneous Poisson process P on regions of the

form Ay = (0, 1)× [y,∞), for y > bL. The limit process P has an intensity measure on

Ay given by

Λ(Ay) =

[
1 + ξ

(
y − µ
σ

)]−1/ξ

+

. (3.1.3)

It is typical to assume that the limit process is a reasonable approximation to the

behaviour of Pn, without normalisation of the {Xi}, on Au = (0, 1) × [u,∞), where

u is a sufficiently high threshold and an, bn are absorbed into the location and scale

parameters of the intensity (3.1.3). It is often convenient to rescale the intensity by a
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factor m, where m > 0 is free, so that the n observations consist of m blocks of size

n/m with the maximum Mm of each block following a GEV(µm, σm, ξ) distribution,

with ξ invariant to the choice of m. The Poisson process likelihood can be expressed as

L(θm) = exp

{
−m

[
1 + ξ

(
u− µm
σm

)]−1/ξ

+

}
r∏
j=1

1

σm

[
1 + ξ

(
xj − µm
σm

)]−1/ξ−1

+

, (3.1.4)

where θm = (µm, σm, ξ) denotes the rescaled parameters, r denotes the number of

excesses above the threshold u and xj > u, j = 1, . . . , r, denote the exceedances. It is

possible to move between parameterisations associated with different numbers of blocks.

If for k blocks the block maximum is denoted by Mk and follows a GEV distribution

with the parameters θk = (µk, σk, ξ), then for all x

Pr(Mk < x) = Pr (Mm < x)m/k.

As Mk is GEV(µk, σk, ξ) and Mm is GEV(µm, σm, ξ) it follows that

µk = µm −
σm
ξ

(
1−

(
k

m

)−ξ)

σk = σm

(
k

m

)−ξ
. (3.1.5)

In this chapter, we present a method to improve inference for θk, the parameterisa-

tion of interest. For an ‘optimal’ choice of m we first undertake inference for θm before

transforming our results to give inference for θk using the mapping in expression (3.1.5).

In many practical problems, k is taken to be ny, the number of years of observation, so

that the annual maximum has a GEV distribution with parameters θny = (µny , σny , ξ).

Although inference is for the annual maximum distribution parameters θny , the Poisson

process model makes use of all data that are extreme, so inferences are more precise
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than estimates based on a direct fit of the GEV distribution to the annual maximum

data as noted above.

To help see how the choice of m affects inference, consider the case when m = r, the

number of excesses above the threshold u. If a likelihood inference was being used

with this choice of m, the maximum likelihood estimators (µ̂r, σ̂r, ξ̂) = (u, ψ̂u, ξ̂), see

Appendix A.1 for more details. Therefore, Bayesian inference for the parameterisation

of the Poisson process model when m = r is equivalent to Bayesian inference for the

GPD model.

Although inference for the Poisson process and GPD models is essentially the same

approach when m = r, they differ in parameterisation, and hence inference, when

m 6= r. The GPD model is advantageous in that λu is globally orthogonal to ψu and

ξ. Chavez-Demoulin and Davison (2005) achieved local orthogonalisation of the GPD

model at the maximum likelihood estimates by reparameterising the scale parameter

as νu = ψu(1 + ξ). This ensures all the GPD tail model parameters are orthogonal

locally at the likelihood mode. However, the scale parameter is still dependent on the

choice of threshold. Unlike the GPD, the parameters of the Poisson process model are

invariant to choice of threshold, which makes it more suitable for covariate modelling

and hence suggests that it may be the better parameterisation to use. In contrast, it has

been found that the parameters are highly dependent, making estimation more difficult.

As we are working in the Bayesian framework, strongly dependent parameters lead

to poor mixing in our MCMC procedure (Hills and Smith, 1992). A common way of

overcoming this is to explore the parameter space using a dependent proposal random

walk Metropolis-Hastings algorithm, though this requires a knowledge of the parameter

dependence structure a priori. Even in this case, the dependence structure potentially
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varies in different regions of the parameter space, which may require different param-

eterisations of the proposal to be applied. The alternative approach is to consider a

reparameterisation to give orthogonal parameters. However, Cox and Reid (1987) show

that global orthogonalisation cannot be achieved in general.

This chapter illustrates an approach to improving Bayesian inference and efficiency for

the Poisson process model. Our method exploits the scaling factor m as a means of

creating a near-orthogonal representation of the parameter space. While it is not possi-

ble in our case to find a value of m that diagonalises the Fisher information matrix, we

focus on minimising the off-diagonal components of the covariance matrix. We present

a method for choosing the ‘best’ value of m such that near-orthogonality of the model

parameters is achieved, and thus improves the convergence of MCMC and sampling

from the joint posterior distribution. Our focus is on Bayesian inference but the repa-

rameterisations we find can be used to improve likelihood inference as well, simply by

ignoring the prior term.

The structure of the chapter is as follows. Section 3.2 examines the idea of reparame-

terising in terms of the scaling factor m and how this can be implemented in a Bayesian

framework. Section 3.3 discusses the choice of m to optimise the sampling from the

joint posterior distribution in the case where X1, . . . , Xn are i.i.d.. Section 3.4 explores

this choice when allowing for non-identically distributed variables through covariates

in the model parameters. Section 3.5 describes an application of our methodology to

extreme rainfall in Cumbria, UK, which experienced major flooding events in November

2009 and December 2015.
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3.2 Bayesian inference

Bayesian estimation of the Poisson process model parameters involves the specification

of a prior distribution π(θm). Then using Bayes Theorem, the posterior distribution of

θm can be expressed as

π(θm|x) ∝ π(θm)L(θm),

where L(θm) is the likelihood as defined in (3.1.4) and x denotes the excesses of the

threshold u. We sample from the posterior distribution using a random walk Metropolis-

Hastings scheme. Proposal values of each parameter are drawn sequentially from a

univariate Normal distribution and accepted with a probability defined as the poste-

rior ratio of the proposed state relative to the current state of the Markov chain. In

all cases throughout the chapter, each individual parameter chain is tuned to give the

acceptance rate in the range of 20%−25% to satisfy the optimality criterion of Roberts

and Rosenthal (2001). For illustration purposes, results in Sections 3.2 and 3.3 are

from the analysis of simulated i.i.d. data. A total of 300 exceedances above a threshold

u = 30 are simulated from a Poisson process model with θ1 = (80, 15, 0.05). Figure
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Figure 3.2.1: Random-walk Metropolis chains run for each component of θ1.

3.2.1 shows individual parameter chains for θk from a random walk Metropolis scheme
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run for 50, 000 iterations with a burn-in of 5, 000 removed, where k = 1 and a chosen

m = 1. This figure shows the clear poor mixing of each component of θ1, indicating

non-convergence and strong dependence in the posterior sampling.

We explore how reparameterising the model in terms of m can improve sampling per-

formance. For a general prior on the parameterisation of interest θk, denoted by π(θk),

Appendix A.2 derives that the prior on the transformed parameter space θm is

π(θm) =
(m
k

)−ξ
π(θk). (3.2.1)

In this example, independent Uniform priors are placed on µ1, log σ1 and ξ, which gives

π(θ1) ∝ 1

σ1

; µ1 ∈ R, σ1 > 0, ξ ∈ R. (3.2.2)

This choice of prior results in a proper posterior distribution, provided there are at

least 4 threshold excesses (Northrop and Attalides, 2016). By finding a value of m that

near-orthogonalises the parameters of the posterior distribution π(θm|x), we can run

an efficient MCMC scheme on θm before transforming the samples to θk. It is noted

in Wadsworth et al. (2010) that setting m to be the number of exceedances above the

threshold, i.e. m = r, improves the mixing properties of the chain, as is illustrated

in Figure 3.2.2. This is approximately equivalent to inference using a GPD model, as

discussed in Section 3.1.

Given this choice of m, the MCMC scheme is run for θm before transforming to estimate

the posterior of θ1 using the mapping in (3.1.5), where k = 1 in this case. Figure 3.2.3

shows contour plots of estimated joint posterior densities of θ1 based on 5,000 and

50,000 run lengths (with 1,000 and 5,000 samples removed as burn-in respectively).

It compares the samples from directly estimating the posterior of θ1 with that from
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Figure 3.2.2: Random-walk Metropolis chains run for parameters θr, where r = 300 is
the number of exceedances in the simulated data.

transforming from the MCMC samples of the posterior of θm to give a posterior sample

for θ1. Figure 3.2.3 indicates that θ1 are highly correlated, with the result that we

only sample from a small proportion of the parameter space when exploring using

independent random walks for each parameter. This explains the poor mixing if we were

to run the MCMC without a transformation. In particular, very different estimates

of the joint posterior are achieved for the 5,000 and 50,000 run lengths. Even with

50,000 iterations the estimated density contours are very rough, indicating considerable

Monte Carlo noise as a result of poor mixing. In contrast, it is clear that, after back-

transforming to θ1, the reparameterisation enables a more thorough exploration of the

parameter space, with almost identical estimated joint density contours based on both

5,000 and 50,000 iterations. This shows a very rapid mixing of the associated MCMC. In

fact, we found that the reparameterisation yielded smoother density contours for 5, 000

iterations than for 5 million iterations without the transformation. However, while this

transformation is a useful tool in enabling an efficient Bayesian inference procedure,

further investigation is necessary in the choice of m to achieve near-orthogonality of

the parameter space and thus maximising the efficiency of the MCMC procedure.
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Figure 3.2.3: Contour plots of the estimated joint posterior of θ1 for 4,000 iterations
(top) and 45,000 iterations (bottom) created from the transformed samples drawn from
the MCMC procedure for θm (in black) and samples of θ1 drawn directly (in red).

3.3 Choosing m optimally

As illustrated in Section 3.2, the choice of m in the Poisson process likelihood can

improve the performance of the MCMC required to estimate the posterior density of

model parameters θk. We desire a value of m such that near-orthogonality of θm is

achieved, before using the expressions in (3.1.5) to transform to the parameterisation of

interest, e.g. θ1 or θny . As a measure of dependence, we use the asymptotic expected
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correlation matrix of the posterior distribution of θm|x. In particular, we explore how

the off-diagonal components of the matrix, that is, the correlation between parameters,

changes with m. The covariance matrix associated with θm|x can be derived analyt-

ically by inverting the Fisher information matrix of the Poisson process log-likelihood

(see Appendix A.3). The correlation matrix is then obtained by normalising so that

the matrix has a unit diagonal.

Other choices for the measure of the dependence of the posterior could have been

used, such as the inverse of the Hessian matrix (or the expected Hessian matrix) of

the log-posterior, evaluated at the posterior mode. For inference problems with strong

information from the data relative to the prior there will be limited differences in the

approach and similar values for the optimal m will be found. In contrast, if the prior is

strongly informative and the number of threshold exceedances is small then the choice

of m from using our approach could be far from optimal. Also the use of the observed,

rather than expected, Hessian may better represent the actual posterior distribution

of θm and deliver a choice of m that better achieves orthogonalisation, see Efron and

Hinkley (1978) and Tawn (1987) respectively.

We prefer our choice of measure of dependence as for i.i.d. problems it gives closed

form results for m which can be used without the computational work required for

other approaches, and this gives valuable insight into the choice of m to guide future

implementation without the need for detailed computation of an optimal m. Further-

more, informative priors rarely arise in extreme value problems, and so information in

the data typically dominates information in the prior, particularly around the poste-

rior mode. It should be pointed out however, that the prior is used in the MCMC so

there is no loss of prior information in our approach. Also standard MCMC diagnostics

should be used even after the selection of an optimal m, so if the asymptotic posterior
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correlations differ much from the posterior correlations, making our choice of m poor,

this will be obvious and a more complete but computationally burdensome analysis can

be conducted using the methods described above.

In this section, we use the data introduced in Section 3.2. For all integers m ∈ [1, 500],

maximum posterior mode estimates θ̂m are computed and pairwise asymptotic pos-

terior correlations calculated by substituting θ̂m into the expressions for the Fisher

information matrix, in Appendix A.3, and taking the inverse. Figure 3.3.1 shows how

parameter correlations change with the choice of m, illustrating that the asymptotic

posterior distributions of µm and ξ are orthogonal when m = r, the number of excesses

above a threshold, which explains the findings of Wadsworth et al. (2010).
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Figure 3.3.1: Left: Estimated parameter correlations changing with m: ρµm,σm (black),
ρµm,ξ (red), ρσm,ξ (blue). Right: Expanded region of the graph showing ρµm,ξ = 0 for m
close to r where r = 300 is the number of excesses above the threshold, while ρµm,σm = 0
when m ≈ 310.

It is proposed that MCMC mixing can be further improved by minimising the overall
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correlation in the asymptotic posterior distribution of θm. Therefore, we would like to

find the value of m such that ρ(θm) is minimised, where ρ(θm) is defined as

ρ(θm) = |ρµm,σm|+ |ρµm,ξ|+ |ρσm,ξ|, (3.3.1)

where ρµm,σm denotes the asymptotic posterior correlation between µm and σm for ex-

ample. We also look at the sum of the asymptotic posterior correlation terms involving

0 100 200 300 400 500

1.
0

1.
5

2.
0

2.
5

m

ρ θ
m

0 100 200 300 400 500

0.
0

0.
5

1.
0

1.
5

µm

m

ρ µ
m

0 100 200 300 400 500

0.
8

1.
2

1.
6

σm

m

ρ σ
m

0 100 200 300 400 500

0.
5

1.
0

1.
5

ξ

m

ρ ξ

Figure 3.3.2: How ρ(θm) changes with m (top left) and how correlations in each indi-
vidual estimated parameter, as measured by ρµm , ρσm and ρξ, change with m.

each individual parameter estimate. For example, we define ρµm , the asymptotic pos-

terior correlation associated with the estimate of µm, to be:

ρµm = |ρµm,σm|+ |ρµm,ξ|. (3.3.2)

Figure 3.3.2 shows how the asymptotic posterior correlation associated with each pa-

rameter varies with m. From Figure 3.3.2 we see that while ρµm is minimised at the
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value of m for which ρµm,σm = 0 (see Figure 3.3.1), ρσm and ρξ have minima at the

value of m for which ρσm,ξ = 0. We denote the latter minimum by m1 and the former

by m2. In terms of the covariance function, this can be written as:

ACov(σm1 , ξ|x) = ACov(µm2 , σm2 |x) = 0, (3.3.3)

where ACov denotes the asymptotic covariance. Figure 3.3.2 shows that m2 also min-

imises the total asymptotic posterior correlation in the model.

One would expect that the values of m for which ρ(θm) is minimised would correspond

to the MCMC chain of θm with good mixing properties. We examine the effective

sample size (ESS) as a way of evaluating this objectively. ESS is a measure of the

equivalent number of independent iterations that the chain represents (Robert and

Casella, 2009). MCMC samples are often positively autocorrelated, and thus are less

precise in representing the posterior than if the chain was independent. The ESS of a

parameter chain φ is defined as

ESSφ =
n

1 + 2
∑∞

i=1 νi
, (3.3.4)

where n is the length of the chain and νi denotes the autocorrelation in the sampled

chain of φ at lag i. In practice, the sum of the autocorrelations is truncated when νi

drops beneath a certain level. Figure 3.3.3 shows how ESS varies with m for each pa-

rameter in θm. For these data the ESS follow a pattern we found to typically occur. We

see that ESSµm is maximised at m = m2 due to the near-orthogonality of µm2 with σm2

and ξ. We find that ESSσm is maximised for m1 < m < m2, as σm1 remains substan-

tially positively correlated with µm1 and σm2 is negatively correlated with ξ. Similarly,

ESSξ is maximised at a value of m close to m1, but ξ is negatively correlated with µm1 ,

which explains the slight distortion. From these results, we postulate that a selection
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Figure 3.3.3: How ESS varies with m for each parameter in θm. The blue dashed lines
represent m = m1 (left) and m = m2 (right) in the simulated data example for 45,000
iterations of the MCMC, where m1 and m2 are defined by property (3.3.3). In the
calculations, the sum of the autocorrelations were truncated when the autocorrelations
in the chain drop below 0.05.

of m in the interval (m1,m2) = (118, 310) would ensure the most rapid convergence of

the MCMC chain of θm, thus enabling an effective sampling procedure from the joint

posterior. Figure 3.3.3 shows clearly the benefits of the proposed approach. For exam-

ple, ESSµ310 = 7459 and ESSµ1 = 24, illustrating that the former parameterisation is

over 300 times more efficient than the latter. In addition, by introducing the interval

(m1,m2), this approach gives a degree of flexibility to the choice of m and giving a

balance of mixing quality across the model parameters.

Quantities m1 and m2 can be found by numerical solution of equations ACov(σm, ξ|x) =

0 and ACov(µm, σm|x) = 0 respectively, using the asymptotic covariance matrix of

the posterior of θm, which is given by the inverse of the Fisher information (see Ap-

pendix A.3). Approximate analytical expressions for m1 and m2 can be derived using

Halley’s method for root-finding (Gander, 1985) applied to equations (3.3.3). This
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Figure 3.3.4: How m̂1 and m̂2 change as a multiple of r with respect to ξ̂: m̂1/r
(bottom), m̂2/r (top).

method yields the following approximations of m1 and m2:

m̂1 = r
(2ξ + 1)

(
1 + 2ξ + (ξ + 1) log

[
2ξ+3
2ξ+1

])
(2ξ + 3)

(
3 + 2ξ − (ξ + 1) log

[
2ξ+3
2ξ+1

]) (3.3.5)

m̂2 = r
2ξ2 + 13ξ + 8

2ξ2 + 9ξ + 8
. (3.3.6)

In practice, the values of m̂1 and m̂2 are estimated by using an estimate of ξ, such

as the maximum likelihood or probability weighted moments estimates. Figure 3.3.4

shows how m̂1 and m̂2 change relative to r for a range of ξ. This illustrates that for

negative estimates of the shape parameter, r is not a suitable candidate to be the ‘op-

timal’ value of m as it is not in the range (m1,m2). In the simulated data used in this

section, although a selection of m = r is reasonable, Figure 3.3.3 shows that this may

not be wise if one was primarily concerned about sampling well from ξ, for example.

In this case, m̂2 is relatively close to r, but Figure 3.3.4 shows that this is not the case

for models with a larger positive estimate of ξ.

A simulation study was carried out to assess the suitability of expressions m̂1 and m̂2

as approximations to m1 and m2 respectively. A total of 1, 000 Poisson processes were
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simulated with different values of θm. The approximations were calculated and com-

pared with the true values of m1 and m2, which were obtained exactly by numerical

methods. It was found that |m̂i −mi| < 0.1 for i = 1, 2 always, while |m̂i −mi| < 0.01

for 78% and 88.2% of the time for i = 1, 2 respectively. Both quantities were compared

to the performance of other approximations derived using Newton’s method, which

unlike Halley’s method does not account for the curvature in a function. Simulations

show that the root mean square errors are significantly smaller for estimates of mi using

Halley’s method (0.2% and 5% smaller than Newton’s method for i = 1, 2 respectively).

A summary of the reparameterisation method is given in Algorithm 1.

Algorithm 1: Sampling from the posterior distribution of the Poisson process

model parameters θk = (µk, σk, ξ) or θk = (µ
(0)
k , µ

(1)
k , σk, ξ) after reparameterising

Data: Threshold excesses x

Result: Samples from the posterior distribution π(θk|x)

1 Choose parameterisation of interest θk;

2 if θk = (µk, σk, ξ) then

3 Obtain an estimate of shape parameter ξ using maximum likelihood, for

example;

4 Compute m̂1 and m̂2 as defined in (3.3.5) and (3.3.6);

5 Choose m in range (m̂1, m̂2);

6 else

7 Choose m to be the value of m that numerically solves ρ
µ

(0)
m ,σm

= 0;

8 Obtain MCMC samples for posterior distribution π(θm|x);

9 Transform to obtain samples from π(θk|x) using expression (3.1.5).
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3.4 Choosing m in the presence of non-stationarity

In many practical applications, processes exhibit trends or seasonal effects caused by un-

derlying mechanisms. The standard methods for modelling extremes of non-identically

distributed random variables were introduced by Smith (1989) and Davison and Smith

(1990), using a Poisson process and generalised Pareto distribution respectively. Both

approaches involve setting a constant threshold and modelling the parameters as func-

tions of covariates. In this way, we model the non-stationarity through the conditional

distribution of the process on the covariates. We follow the Poisson process model of

Smith (1989) as the parameters are invariant to the choice of threshold if the model is ap-

propriate. We define the covariate-dependent parameters θm(z) = (µm(z), σm(z), ξ(z)),

for covariates z. Often in practice, the shape parameter ξ is assumed to be constant.

A log-link is typically used to ensure positivity of σm(z).

The process of choosing m is complicated when modelling in the presence of covariates.

This is partially caused by a modification of the integrated intensity measure, which

becomes

Λ(A) = m

∫
z

[
1 + ξ(z)

(
u− µm(z)

σm(z)

)]−1/ξ(z)

g(z)dz, (3.4.1)

where g denotes the probability density function of the covariates, which is unknown and

with covariate space z. The density term g is required as the covariates associated with

exceedances of the threshold u are random. In addition, the extra parameters intro-

duced by modelling covariates increases the overall correlation in the model parameters.

For simplicity, we restrict our attention to the case of modelling when the location

parameter is a linear function of a covariate, that is,

µm(z) = µ(0)
m + µ(1)

m z, σm(z) = σm, ξ(z) = ξ,
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where we centre the covariate z, as this leads to parameters µ
(0)
m and µ

(1)
m being or-

thogonal. Note that the regression parameter µ
(1)
m is invariant to the choice of m. A

total of 233 excesses above a threshold of u = 15 are simulated from a Poisson process

model with µ
(0)
1 = 75, µ

(1)
1 = 30, σ1 = 15, ξ = −0.05. We choose g to follow an Exp(2)

distribution, noting that one could also choose g to be the density of a covariate that

is used in practice. We impose an improper Uniform prior on the regression parameter

µ
(1)
1 and set up the MCMC scheme in the same manner as in Section 3.2.

The objective remains to identify the value of m that achieves near-orthogonality of

the parameters of the posterior distribution. Like before, we run an MCMC sampler on

θm(z) and transform the samples back to the parameterisation of interest θk(z), which

can be obtained as in (3.1.5) using the relations

µ
(0)
k = µ(0)

m −
σm
ξ

(
1−

(
k

m

)−ξ)
µ

(1)
k = µ(1)

m (3.4.2)

σk = σm

(
k

m

)−ξ
.

The complication of the integral term in the likelihood for non-identically distributed

variables means that it is no longer feasible to gain an analytical approximation for the

optimal value of m. A referee has suggested a possible route to obtaining such expres-

sions for m in the non-stationary case by building on results in Attalides (2015) and

using a non-constant threshold as in Northrop and Jonathan (2011), but as this moves

away from our constant threshold case we do not pursue this. We therefore choose a

value of m that minimises the asymptotic posterior correlation in the model. Analo-

gous to Section 3.3, the optimal m coincides with the value of m such that ρ
µ

(0)
m ,σm

= 0.

Using numerical methods, we identify that this corresponds to a value of m = 85 for

the simulated data example. Figure 3.4.1 shows contour plots of estimated posterior
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Figure 3.4.1: Contour plots of estimated posterior densities of θ1(z) having sampled
from the joint posterior directly (red) and having transformed using (3.4.2) after repa-
rameterising from θ85(z) (black). Both contours are constructed from 50,000 MCMC
iterations with a burn-in of 5,000.

densities of θ1(z), comparing the sampling from directly estimating the posterior θ1(z)

with that from transforming the samples from the estimated posterior of θm(z) to give

a sample from the posterior of θ1(z). From this figure, we see that the reparameterisa-

tion improves the sampling from the posterior θ1(z).

We again inspect the effective sample size for each parameter as a way of comparing

the efficiency of the MCMC under different parameterisations. Figure 3.4.2 shows how

the effective sample size varies with m for each parameter. This figure shows how the

quality of mixing is approximately maximised in µ
(0)
m for the value of m that minimises

the asymptotic posterior correlation. Mixing for µ
(1)
m is consistent across all values of

m, which is unsurprising by the invariance of µ
(1)
m by (3.4.2). Interestingly, mixing in

ξ increases as the value of m increases. Without a formal measure for the quality of

mixing across the parameters, it is found that, when averaging the effective sample size
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Figure 3.4.2: Effective sample size of each parameter chain of the MCMC procedure.

over the number of parameters, the ESS is stable with respect to m in the interval

spanning from the value of m such that ρ
µ

(0)
m ,σm

= 0 and the value of m such that

ρσm,ξ = 0, like in Section 3.3. For a summary of how the reparameterisation method

can be used in the presence of non-stationarity, see Algorithm 1.

3.5 Case study: Cumbria rainfall

In this section, we present a study as an example of how this reparameterisation method

can be used in practice. In particular, we analyse data taken from the Met Office

UKCP09 project, which contains daily baseline averages of surface rainfall observa-



CHAPTER 3. POISSON PROCESS MODELLING FOR EXTREMES 47

tions, measured in millimetres, in 25km × 25km grid cells across the United Kingdom

in the period 1958-2012. In this analysis, we focus on a grid cell in Cumbria, which has

been affected by numerous flood events in recent years, most notably in 2007, 2009 and

2015. In particular, the December 2015 event resulted in an estimated £500 million

worth of damage, with rain gauges reaching unprecedented levels. Many explanations

have been postulated for the seemingly increased rate of flooding in the North West

of England, including climate change, natural climate variability or a combination of

both. The baseline average data for the flood events in December 2015 are not yet

available, but this event is widely regarded as being more extreme than the event in

November 2009, the levels of which were reported at the time to correspond to return

periods of greater than 100 years. We focus our analysis on the 2009 event, looking

in particular at how a phase of climate variability, in the form of the North Atlantic

Oscillation (NAO) index, can have a significant impact on the probability of an extreme

event occurring in any given year.

Rainfall datasets on a daily scale are commonly known to exhibit a degree of serial

correlation. Analysis of autocorrelation and partial autocorrelation plots indicates that

rainfall on a day is dependent on the rainfall of the previous five days. In addition,

the data may exhibit seasonal effects. However, while serial dependence affects the

effective sample size of a dataset, it does not affect correlations between parameters,

and is thus unlikely to influence the choice of m. For the purposes of illustrating our

method, we initially make the assumption that the rainfall observations are i.i.d. and

proceed with the method outlined in Section 3.3. We wish to obtain information about

the parameters corresponding to the distribution of annual maxima, i.e. θ55. Standard

threshold diagnostics (Coles, 2001) indicate a threshold of u = 15 is appropriate, which

corresponds to the 95.6% quantile of the data. There are r = 880 excesses above u

(see Figure 3.5.1). We obtain bounds m1 and m2, then choose a value of m, with
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Figure 3.5.1: (Left) Daily rainfall observations in the Cumbria grid cell in the period
1958-2012. The red line represents the extreme value threshold of u = 15. (Right)
Boxplots of rainfall above u against the corresponding monthly NAO index.

m1 < m < m2, that will achieve near-orthogonality of the Poisson process model pa-

rameters to improve MCMC sampling from the joint posterior distribution. We obtain

ξ̂ = 0.087 using maximum likelihood when m = r, which we use to obtain approxi-

mations for m1 and m2 as in (3.3.5) and (3.3.6). From this, we obtain m̂1 ≈ 351 and

m̂2 ≈ 915. We checked that m̂1 and m̂2 represent good approximations by solving

equations (3.3.3) to obtain m1 = 350.82 and m2 = 914.96. Since r = 880 is contained

in the interval (m1,m2), we choose m = r. We run an MCMC chain for θ880 for 50,000

iterations, discarding the first 1,000 samples as burn-in. We transform the remaining

samples using the mapping in (3.1.5), where k = 55, to obtain samples from the joint

posterior of θ55. The estimated posterior density for each parameter is shown in Fig-

ure 3.5.2.

To estimate probabilities of events beyond the range of the data, we can use the esti-

mated parameters to estimate extreme quantiles of the annual maximum distribution.

The quantity yN , satisfying:

1/N = 1−G(yN), (3.5.1)

is termed the N -year return level, where G is defined as in expression (3.1.2). The level
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yN is expected to be exceeded on average once every N years. By inverting (3.5.1) we

get:

yN =

 µ55 − σ55

ξ
[1− {− log(1− 1/N)}−ξ] for ξ 6= 0

µ55 − σ55 log{− log(1− 1/N)} for ξ = 0.
(3.5.2)

The posterior density of the 100-year return level in Figure 3.5.2 is estimated by in-

putting the MCMC samples of the model parameters into expression (3.5.2).

Figure 3.5.2: Estimated posterior densities of µ55, σ55, ξ and the 100-year return level.

We use the same methodology to explore the effect of the monthly NAO index on the

probability of extreme rainfall levels in Cumbria. The NAO index describes the surface

sea-level pressure difference between the Azores High and the Icelandic Low. The low

frequency variability of the monthly scale is chosen to represent the large scale atmo-
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spheric processes affecting the distribution of wind and rain. In the UK, a positive NAO

index is associated with cool summers and wet winters, while a negative NAO index

typically corresponds to cold winters, pushing the North Atlantic storm track further

south to the Mediterranean region (Hurrell et al., 2003). In this analysis, we incorpo-

rated the effect of NAO by introducing it as a covariate in the location parameter. The

threshold of u = 15 was retained for this analysis.

To obtain the value of m that minimises the overall correlation in the model, we solve

numerically the equation ρ
µ

(0)
m ,σm

= 0. We obtain a kernel density estimate of the NAO

covariate, which represents g as defined in expression (3.4.1). We use this to obtain

maximum posterior mode estimates θ̂r. These quantities are substituted into the Fisher

information matrix. The matrix is then inverted numerically to estimate m = 920. This

represents a slight deviation from m̂2 estimated during the i.i.d. analysis. We would

expect this as the covariate effect is small, as shown in Figure 3.5.3. This example

illustrates the benefit of numerically solving for m when modelling non-stationarity, as

the range (m1,m2) estimated analytically during the i.i.d. analysis no longer contains

the optimal value of m.

We run an MCMC chain for θ920 for 50,000 iterations before discarding the first 5,000

samples as burn-in. We transform the remaining MCMC samples to the annual maxi-

mum scale using the mapping in (3.4.2) where k = 55. Figure 3.5.3 indicates that NAO

has a significantly positive effect on the location parameter, as almost all posterior mass

is distributed with µ
(1)
55 > 0.

We wish to estimate return levels relating to the November 2009 flood event, which

is represented by a value of 51.6mm in the dataset. Return levels corresponding to

the distribution of November maxima are shown in Figure 3.5.4. We can also use
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Figure 3.5.3: Estimated posterior densities of µ
(0)
55 , µ

(1)
55 , σ55 and ξ.

the predictive distribution in order to account for both parameter uncertainty and

randomness in future observations (Coles and Tawn, 1996). On the basis of threshold

excesses x = (x1, . . . , xn), the predictive distribution of a future November maximum

M is

Pr{M ≤ y|x} =

∫
θ55

Pr{M ≤ y|θ55}π(θ55|x)dθ55, (3.5.3)

where assuming stationarity of rainfall conditional on NAO:

Pr{M ≤ y|θ55} =



exp

{
− 1

12

[
1 + ξ

(
y−(µ

(0)
55 +µ

(1)
55 z)

σ55

)]−1/ξ

+

}
where z is known

exp

− 1
12

∫
z

[
1 + ξ

(
y − (µ

(0)
55 + µ

(1)
55 z)

σ55

)]−1/ξ

+

gN(z)dz


where z is unknown,

(3.5.4)
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where gN is the density of NAO in November and the integral is evaluated numerically

using adaptive quadrature methods. The integral in (3.5.3) can be approximated using

a Monte Carlo summation over the samples from the joint posterior of θ55. From this,

we estimate the predictive probability of an event exceeding 51.6 in a typical November

is 0.0112, which corresponds to an 89-year event. For November 2009, when an NAO

index of−0.02 was measured, the probability of such an event was 0.0111, corresponding

to a 90-year event. For the maximum observed value of NAO in November, with

NAO = 3.04, the predictive probability of such an event is 0.0132, which corresponds to

a 75-year flood event. This illustrates that the impact that different phases of climate

variability can have on the probabilities of extreme events is slight but potentially

important.

Figure 3.5.4: Return levels corresponding to November maxima. The full line represents
the posterior mean and the two dashed lines representing 95% credible intervals.



Chapter 4

A Bayesian spatial hierarchical

model for extreme precipitation in

Great Britain

4.1 Introduction

In a changing climate with an increased frequency of intense precipitation events (Tren-

berth, 2011), modelling the rate and size of such events has become increasingly im-

portant. In Great Britain, extreme events can arise from the presence of extratropical

cyclones evolving from the North Atlantic Ocean. They can also originate from short-

term localised convective behaviour. Extreme precipitation levels are commonly asso-

ciated with an increased risk of flooding (Kunkel et al., 1999), which can contribute to

substantial infrastructural damage. Consequently, estimation of extreme precipitation

is a vital component of hydrological models for assessing flood risk and therefore needs

to be modelled carefully.

Extreme value analysis is used in practice to model rare events by extrapolating beyond

53
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observed data to give probability estimates of events occurring at unobserved levels.

In this way, one can make predictions of future extreme behaviour by estimating the

behaviour of the process using an asymptotically justified limit model. Let X1, . . . , Xn

be a sequence of independently and identically distributed (i.i.d.) random variables with

distribution function F . Defining Mn = max(X1, . . . , Xn), if there exists sequences of

constants an > 0 and bn, such that, as n→∞

Pr

(
Mn − bn
an

≤ x

)
→ G(x),

for some non-degenerate distribution G, then G is a generalised extreme value (GEV)

distribution with distribution function

G(x) = exp

{
−
[
1 + ξ

(
x− µ
σ

)]−1/ξ

+

}
,

where x+ = max(x, 0), σ > 0 and µ, ξ ∈ R. In this formulation, µ, σ and ξ denote

location, scale and shape parameters respectively.

An alternative to modelling the maxima of random variables is to model excesses above

a high threshold. Conditional on a high threshold u, the distribution of excesses above

u can be approximated by a generalised Pareto distribution (GPD) (Pickands, 1975)

such that

Pr(X − u > x|X > u) =

(
1 +

ξx

σu

)−1/ξ

+

, x > 0, (4.1.1)

where σu > 0 denotes the threshold-dependent scale parameter and ξ denotes the shape

parameter, identical to that of the GEV distribution. A third parameter λu, denoting

the rate of exceedance, must also be estimated. In practice, this approach to inference

is often preferred to analysing block maxima as parameter uncertainty is reduced by

utilising more extreme data. The threshold u is typically chosen using standard diag-
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nostics outlined in Coles (2001). An alternative, but equivalent approach for modelling

threshold excesses is the Poisson process model (Coles, 2001), which is theoretically

more suited to modelling extremes in the presence of covariates, but has more issues

in implementation (see Chapter 3). This work uses the GPD as our asymptotically

justified threshold excess model.

When modelling spatial extremes, a naive approach would be to analyse the tails inde-

pendently at each site, with no inherent spatial structure built into models and instead

relying on the data to reveal any spatial similarity in the marginal distributions. Pre-

cipitation tends to affect clusters of sites simultaneously as a result of a generating

storm system, for example. Intuitively, after accounting for physical effects relating

to geography, one would expect the probability of extreme precipitation events to be

more similar for neighbouring sites than for sites separated by large distances. Analysis

of individual sites independently can produce very different probability estimates for

neighbouring sites, particularly when the data record is short, which justifies the need

for an extreme value model that incorporates spatial information.

A natural class of models for spatial extremes are max-stable processes, which are the

extension of univariate and multivariate extreme value theory to the infinite-dimensional

setting. In particular, the limiting process of the componentwise maxima of a sequence

of normalised stochastic processes is a max-stable process. Max-stable processes are

commonly used to model spatial extremes, but are often difficult to fit due to the number

of terms required in the likelihood computation. Max-stable processes are unsuitable

for modelling variables that are independent in their extremes as they assume extremal

dependence (Kereszturi et al., 2016). In addition, they are limited in the sense that

they are only suitable for observations that are componentwise (e.g. annual) maxima.

Recently, however, generalised Pareto processes have been used to extend the concept
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of threshold excess models to the space of continuous functions (Ferreira and De Haan,

2014). For more details on max-stable processes, see Smith (1990a), Schlather (2002),

Padoan et al. (2010) and Davison et al. (2012).

Another method widely used in the hydrology community is regional frequency anal-

ysis (RFA). The aim of RFA is to borrow strength across neighbouring locations with

homogeneous statistical behaviour to reduce uncertainty in parameter estimates. It

has been extensively studied in Hosking and Wallis (2005). It is a useful approach in

extreme value analysis as the pooled information can increase confidence in return level

estimates, which can often be highly uncertain due to the scarce nature of the data used

in the analysis. The specification of homogeneous regions can be somewhat restrictive

as it imposes artificial spatial boundaries on the quantity to be estimated, which can

lead to very different extremal characteristics at neighbouring sites that are separated

by a boundary. A further disadvantage is that covariates cannot be implemented as

part of the L-moments scheme used for estimation, meaning that physical information

cannot be incorporated into the model in this manner.

Spatial Bayesian hierarchical models have been used in extreme value analysis with a

similar aim to RFA - to use information from neighbouring locations to produce similar

return level estimates at neighbouring sites and reduce uncertainty in these estimates.

These methods are often used to model spatial count and binary data (Diggle et al.,

1998). For a comprehensive overview of such methods, see Banerjee et al. (2004). In re-

cent years, these methods have been extended for use in extreme value analysis. Cooley

et al. (2007) modelled threshold excesses at 56 sites using the GPD with an underlying

latent spatial model for the GPD parameters. This model was used to interpolate the

GPD parameters over the entire domain. Sang and Gelfand (2009) built a hierarchical

model for extreme precipitation on a lattice, using an intrinsic autoregressive Model
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(IAR) as the latent process, but assumed that the shape parameter was constant over

the region they studied. In this work, we use the model of Cooley and Sain (2010),

which builds on the model of Sang and Gelfand (2009) by additionally modelling the

shape parameter using a latent spatial process. Other recent studies include Schliep

et al. (2010), Apputhurai and Stephenson (2013) and Wang and So (2016).

For extreme value analysis, Bayesian hierarchical models are advantageous in their

flexibility and incorporation of physical and spatial information through covariates and

random effects respectively. Because small proportions of data records are used in ex-

treme value problems, the reduction in uncertainty gained from pooling over space is

particularly useful. The Bayesian hierarchical framework relies on the assumption that

the extremes are independent conditional on the covariate structure and latent process.

While this makes the model unsuitable for modelling joint extremes, that is, extremes

that occur simultaneously across locations, our interest lies in how the extremal charac-

teristics of the marginal distribution of precipitation varies across locations. However,

when some degree of spatial and/or temporal dependence is apparent in the data, any

marginal inference approach must be adjusted to account for this dependence under the

misspecified model, otherwise the standard errors derived from the model will be falsely

small. In previous studies using a hierarchical model, however, inference is not adjusted

to account for dependence in the data, with the consequence that model uncertainty is

underestimated.

Previous studies (Smith, 1990b; Fawcett and Walshaw, 2007) have used a modified co-

variance matrix for computing standard errors to correct for this in the presence of

dependence in space and time, due to the fact that the standard asympotic properties

of maximum likelihood estimators do not hold for a misspecified model. Ribatet et al.

(2012) propose two adjustments to the likelihood function in the Bayesian framework
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based on asymptotic arguments that account for spatial dependence in a similar man-

ner. In their work, these adjustments were applied to pairwise likelihoods used in the

estimation of max-stable processes to correct for overly precise inferences which arise

from the pairwise approximation of the spatial dependence structure. However, we ap-

ply this reasoning to a model assuming conditional independence not only over space,

but over time as well. Our approach utilises the likelihood adjustment of Ribatet et al.

(2012) in a hierarchical model, in which we assume conditional independence over space

and time but correctly account for both spatial and temporal dependence in the data

when quantifying model uncertainty. Our study finds a quantifiable difference in the

estimated uncertainty when dependence is accounted for, which serves as a warning

to practitioners to ensure inference is performed correctly when false assumptions are

made. In some applications, the effect of this can be severe, which highlights the im-

portance of performing such an analysis to determine how standard errors are inflated

as a result of dependence in the data.

In this chapter, we describe a spatial extreme value model using the Bayesian hierachi-

cal modelling framework, using an adjusted likelihood to account for the spatial and

temporal dependence in the data when performing inference on the model parameters.

By imposing a condition of spatial similarity on the model parameters, we can produce

a map of probabilities of extreme events that exhibits similar behaviour at neighbouring

sites. Section 4.2 details the precipitation data along with a previous study using the

RFA approach. Section 4.3 gives a comprehensive overview of our modelling strategy.

In Section 4.4, we apply the hierarchical model to the data and compare the results

with other approaches. We conclude in Section 4.5 with some discussion.
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Figure 4.2.1: Locations of gridded reanalysis precipitation data used in the analysis.

4.2 Data

4.2.1 Data description

Reanalysis precipitation data were taken from the Climate Forecast System Reanal-

ysis dataset (CFSR), supplied by the National Centres for Environmental Prediction

(NCEP). Input models for the reanalysis include various atmospheric, ocean and land

models. Data are available on a daily scale from January 1979 - August 2016 on a

0.5◦ resolution grid (see Figure 4.2.1). The data are spatially and temporally complete,

thus do not contain missing values; this avoids any issues resulting from the treatment

of missing data, however, there are limitations. Due to complex processing and the

combination of data sources it is often difficult to ascertain the source of error, making

uncertainty in the data difficult to quantify.

Figure 4.2.2 shows that the largest precipitation events tend to occur in northwest

Scotland, with a general tendency for larger events on the west coast of Great Britain,
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Figure 4.2.2: The 95% quantile (left) and maximum (right) of the daily precipitation
data in each cell in the period 1979− 2014.

which one may expect due to the west-east passage of weather systems over the Atlantic

Ocean and Irish Sea. The spatial distribution of maxima is more varied. The global

maximum value occurs in southeast England, in a region that is typically dry, at least

compared to Scotland. This event, which occurred during summer, was most likely a

result of a short-term, localised convective event, whereas the precipitation in Scotland

is typically the result of large-scale synoptic storms arising from the Atlantic Ocean.

4.2.2 Regional frequency analysis

A study of this dataset is conducted in Winter et al. (2017) using a regional frequency

analysis (RFA) approach. This aims to reduce uncertainty in return level esimation

by pooling information across regions with statistically homogeneous behaviour. The

first step in this approach is to define such regions using techniques in Weiss et al.

(2014). Observations are standardised by a cell-specific threshold and a regional GPD
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Figure 4.2.3: The homogeneous regions specified for RFA (left) and the 10,000 year
return levels (right) estimated using this approach (Winter et al., 2017).

model (4.1.1) is fitted. The cell-specific distribution is obtained by rescaling the re-

gional model using the cell-specific threshold. Inference is carried out using L-moments

estimation.

The main drawback of RFA is the fixed specification of regions deemed to be sta-

tistically homogeneous. Cells within each homogeneous region are pooled together for

parameter estimation. However, this process creates artificial boundaries, meaning that

the cells along these boundaries can potentially have very different characteristics from

neighbouring cells that have been assigned to other regions. Unless there is a physical

analogue of these statistical boundaries, for example, a mountain range, then the intu-

ition behind this specification of spatial similarity begins to break down. Figure 4.2.3

(left panel) shows how the classification algorithm of Weiss et al. (2014) defines the

homogeneous regions over our spatial domain.
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RFA assumes a constant shape parameter over all cells in each homogeneous region,

which is an arguably simplistic assumption to make. When cell-level parameter esti-

mates are used to determine return levels, very different estimates can be produced at

neighbouring sites separated by boundaries of homogeneous regions (see Figure 4.2.3,

right panel). The large return levels obtained for the southeast region are unrealistic

as they are less likely to experience precipitation at the same level as Scotland on a

regular basis. This anomaly is most likely caused by the influence of the maxima caused

by convective events, as observed in Figure 4.2.2. When the data over the southeast

region are pooled together, these events are determining the heaviness of the tail over

the entire region under the assumption of a common shape parameter.

This approach brings about substantial reductions in the statistical estimate of return

level uncertainty. However, this uncertainty has not been adjusted to account for de-

pendence in the data, as the misspecified model assumes independence over both space

and time. Failure to account for this dependence in a model built on independence as-

sumptions can result in misleadingly narrow estimated return level confidence intervals,

and perhaps inaccurate design specifications for practitioners as a consequence.

4.3 Model

Our approach uses a Bayesian spatial hierarchical model, with an assumption of con-

ditional independence, to induce similarity of parameter estimates of an extreme value

model between neighbouring sites. We describe a method for accounting for spatial and

temporal dependence in data when computing standard errors of estimates from this

model. The model consists of data, process and prior levels.
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4.3.1 Data level

Model specification

On the top layer of the hierarchy, we fit a threshold excess model to the tails of the

precipitation distribution in each cell. Let Yj,t be the daily precipitation level in cell

j ∈ {1, . . . , d} on day t. We assume that the excesses above a threshold uj follow a

GPD, defined in (4.1.1). The threshold uj is typically chosen using standard selection

diagnostics (Coles, 2001) or by choosing an appropriately large quantile. We can thus

write

(Yj,t − uj) | (Yj,t > uj, σ̃j, ξj) ∼ GPD(σ̃j, ξj), (4.3.1)

where σ̃j = σuj − ξjuj denotes the threshold-independent scale parameter and ξj de-

notes the shape parameter in cell j. We assume that Yj,t | Yj,t > uj given (σ̃j, ξj)

is conditionally independent of Yi,t | Yi,t > ui for all i 6= j and all t. While this

conditional independence assumption is common in hierarchical modelling, it is often

not well-supported in precipitation-based applications as storms can affect multiple

locations simultaneously, for example. We also make a working assumption that the

precipitation data are i.i.d. over observations in each cell. Partial autocorrelation plots

(not shown) show that these data exhibit signs of a third-order temporal dependence

structure, meaning that the level of precipitation on a given day will be influenced by

levels on the previous three days. Declustering methods are typically used to identify

independent clusters of precipitation events, see Ferro and Segers (2003) for details of

such a method. We proceed with the assumption of conditional independence in both

space and time.

Adjusting for dependence

Given that the data are not independent; rather, we observe clear evidence of spatial

and temporal dependence, we require a modification in our approach to ensure correct
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inference under misspecification of the model. We define the misspecified likelihood to

be

L(θ,y) =
d∏
j=1

L(θj,yj), (4.3.2)

the product of GPD likelihoods over all sites. We denote the log-likelihood as l(θ,y).

In a frequentist setting, a modified covariance matrix is used to compute standard

errors, which arises from the asymptotic properties of maximum likelihood estimators

under misspecified models (Kent, 1982; Chandler and Bate, 2007). An application to

extreme value modelling is featured in Smith (1990b). In a misspecified likelihood, the

maximum likelihood estimator θ̂ is asymptotically distributed such that

θ̂ ∼ N (θ0, n−1H−1V H−1), (4.3.3)

where θ0 is the true value of θ. The quantity H−1V H−1 is the modified covariance

matrix under misspecification of the model, where H = −E∇2 l(θ0,y) and V =

Cov∇ l(θ0,y), where ∇i denotes the ith derivative. Both of these quantities can be

estimated empirically by setting θ0 = θ̂. Smith (1990b) proposed decomposing the

log-likelihood into approximately independent yearly contributions in the estimation of

V in order to remove possible confounding of dependence in time when accounting for

spatial dependence in the data. Fawcett and Walshaw (2007) use a similar approach to

account for temporal dependence in the data at one location. In the Bayesian frame-

work, Ribatet et al. (2012) propose two adjustments to the likelihood as a means of

allowing correct inference under misspecification of the model. The first, a curvature

adjustment, ensures that the asymptotic posterior distribution of θ is the same as

in (4.3.3). The second, a magnitude adjustment, doesn’t ensure this but inflates the

asymptotic variance compared to an approach where an independent model is assumed

correct. Ribatet et al. (2012) show that the choice between the two adjustments makes

little difference in application, however. With this in mind, we proceed with a descrip-
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tion of the magnitude adjustment due to its simplicity and ease of use.

To be precise, we define the adjusted likelihood L∗(θ,y) such that

L∗(θ,y) = L(θ,y)k, (4.3.4)

where k > 0 and L(θ,y) is defined in (4.3.2). This represents a magnitude adjustment

of the likelihood that leaves parameter estimates unchanged, but scales the uncertainty

of these estimates to account for model misspecification. The adjustment is based on

the property that Dfull → χ2
p as n → ∞, where Dfull denotes the deviance function

corresponding to the full likelihood, which is unknown, and p is the number of param-

eters and n is the number of data points. For the deviance Dmis corresponding to the

misspecified likelihood (4.3.4), Dmis → k
∑p

i=1 λiXi as n → ∞, where X1, . . . , Xp are

independent χ2
1 random variables and λ1, . . . , λp are the eigenvalues of the modified

covariance matrix H−1V H−1. Setting k = p/
∑p

i=1 λi ensures that E[Dmis] converges

to E[χ2
p] = p. However, in general, higher moments do not match those of χ2

p. Ribatet

et al. (2012) show that this adjustment inflates the asymptotic variance of the posterior,

and in practice performs well compared to the curvature adjustment, which ensures the

asymptotic posterior matches with (4.3.3).

Estimation of the adjustment factor k requires estimation of the modified covariance

matrix. The matrix H is approximated by the observed information matrix −∇2 l(θ̂,y).

We follow a similar approach to estimate V as in Smith (1990b) and Fawcett and

Walshaw (2007), which decompose the log-likelihood into its contributions by year.

Our approach differs by decomposition of the log-likelihood into contributions over

7-day periods, which analysis of partial autocorrelations suggests are approximately

independent, thus it captures the short-range temporal dependence in the data. We

can then obtain an empirical estimate of V that accounts for both the spatial and
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temporal dependence structure in the data. The eigenvalues λ̂i for i = {1, . . . , p} of

the estimated modified covariance matrix are obtained and k is estimated such that

k̂ = p/
∑p

i=1 λ̂i. The quantity k can be interpreted as the effective proportion of the

dataset containing independent information.

4.3.2 Process level

This layer of the hierarchical model borrows strength across locations. We assume an

underlying spatial process in the mean of the distribution of both GPD parameters,

such that the parameters are more likely to be similar in neighbouring cells. As well as

these spatial effects, we can also incorporate fixed climate or physical effects in a cell

through the inclusion of covariates in the model. Formally, we assume

θj ∼ N(Xjβ + φj, T
−1
θ ), (4.3.5)

where θj = (log σ̃j, ξj) is the vector of transformed GPD parameters in cell j, Xj

is the design matrix of fixed covariates in cell j, β is the vector of regression coeffi-

cients, φj is a spatial random effect in cell j and Tθ is the common precision matrix

for the transformed GPD parameters over all cells. We include a log-link in the estima-

tion of the scale parameter to ensure positivity in the presence of covariate information.

The latent spatial process is induced through fixed effect terms Xj and the random

effect term φj. Since we are working with lattice data, the natural choice of prior for

φj is a multivariate conditional autoregressive (CAR) model. We make the assumption

that the lattice structure of the region represents a Markov random field, and that

specification of local conditional relationships can be used to specify a global joint

distribution (Banerjee et al., 2004). The intrinsic autoregressive (IAR) model is a
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special case of the CAR model, with the conditional prior for φj written as

φj | φ(−j) ∼ N

 1

mj

∑
i∈δj

φi,
1

mj

Tφ
−1

 ,

where δj denotes the set of neighbours of cell j, mj is the number of neighbours and Tφ

denotes the common precision matrix of random effects over all cells. The IAR model

has an improper density and does not represent a legitimate probability distribution.

For this reason, it cannot be applied directly to data and is often used as a prior,

since inference can still be made as long as the posterior distribution is proper. With

IAR priors, the fixed effects are identifiable as long as the spatial random effects are

centred so that
∑d

j=1φj = 0 (Banerjee et al., 2004). This can be implemented in

practice by centering each joint iteration of the MCMC sampling of the random effect

terms. An alternative to the IAR approach is to specify a propriety parameter ρ,

which controls the level of spatial association between cells. Cooley and Sain (2010)

use a separable formulation to specify the joint prior density of φ = (φ1, . . . ,φd) using

matrix decomposition techniques from Rue and Held (2005).

4.3.3 Prior level

With the exception of the random effect parameters inducing spatial dependence, we

have no prior knowledge regarding any of the parameters in the model. We choose

to assign uninformative priors where possible. We also choose to assign conjugate

priors where possible to allow us to sample from the posterior distribution using Gibbs

sampling. For the regression coefficients, we use an empirical Bayes approach, such

that

β ∼ N(β0, T
−1
β ),
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where β0 and T−1
β denote the prior mean and precision matrix of the regression coeffi-

cients respectively, which are fixed. A fully Bayesian approach could be implemented

but we have no extra information regarding these upper-level parameters. Thus, in

the interest of parsimony and computational benefit, we proceed with the empirical

Bayes approach. We take the intercept terms to be the mean of the cell-wise maximum

likelihood estimates for log σ̃ and ξ while the covariate coefficients are given a mean of

0. The precision matrix is chosen so that the intercept terms have a precision of 0.01

and the covariate effects have a precision of 0.1. These values are typically chosen to

represent the levels of variability one would expect in the parameter estimates. Because

we cannot achieve conjugacy for the GPD parameters, we impose a flat joint prior for

(log σj, ξj) such that π(θj) ∝ 1/σj.

We assign conjugate Inverse-Wishart priors to both Tθ
−1 and Tφ

−1, such that:

Tθ
−1 ∼ Inv-Wishart (νθ,Ωθ)

Tφ
−1 ∼ Inv-Wishart (νφ,Ωφ) .

Matrices Ωθ and Ωφ were chosen to reflect the levels of variability found within each

cell’s parameter estimates and also between each cell’s parameter estimates.

4.3.4 Implementation

As we have used conjugate priors for some parameters, we can construct closed-form

full conditionals from these and thus construct these components of the joint posterior

distribution using a Gibbs sampler. The full conditionals are

β | . . . ∼ N
(
µβ, Vβ

)
Vβ =

[
Tβ +XTTθX

]−1
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µβ = Vβ
[
Tββ0 +XTTθ(θ − φ)

]
φj | . . . ∼ N

(
µφ, Vφ

)
Vφ = [mjTφ + Tθ]

−1

µφ = Vφ

Tθ(θj −Xjβ) + Tφ
∑
i∈δj

φi


Tθ
−1 | . . . ∼ Inv-Wishart

(
νθ + d,Ωθ + (θ − φ−Xβ)T (θ − φ−Xβ)

)
Tφ
−1 | . . . ∼ Inv-Wishart

(
νφ + d,Ωφ + φTWφ

)
,

where W is a matrix defining spatial proximity between cells. The matrix W has off-

diagonal elements wij = −1 if cells i and j are adjacent and wij = 0 otherwise and

diagonal elements wii = −
∑

i 6=j wij, being the number of neighbours of cell i.

Proposals for β, φj, Tθ
−1 and Tφ

−1 can be generated using a Gibbs sampler step. The

GPD parameters are updated using a Metropolis-Hastings step. We use a random

walk Metropolis scheme with a multivariate Gaussian proposal distribution, tuning the

proposal covariance matrix appropriately to give the optimal acceptance rate of Roberts

and Rosenthal (2001).

4.4 Results

In this section, we compare output from the Bayesian hierarchical modelling approach

described in Section 4.3 with two alternative approaches. First, we compare this analy-

sis with results from a model whereby a GPD model is fitted to each cell independently

with an uninformative prior on the model parameters. We henceforth refer to this

approach as the ‘uninformative’ model. The comparison with the spatial hierarchical

model allows us to assess whether there is any value in including a latent spatial process
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in the modelling procedure. Second, we briefly compare against the regional frequency

analysis approach detailed in Section 4.2.2 and describe the strengths of the Bayesian

model relative to this method.

In both the uninformative and spatial hierarchical model, we select the 95% quantile

as our extreme value threshold for each cell. Threshold stability plots were checked

at a handful of cells and the aforementioned threshold represented a sensible choice in

all cases. In the absence of spatial information, the uninformative model is specified

as in (4.3.1), but where uninformative Uniform priors are imposed on log σ̃j and ξj for

j = {1, . . . , d}. Previous studies on extreme rainfall have used the prior density defined

by Martins and Stedinger (2000), which is useful in small-sample cases as it constrains

the shape parameter to be in a sensible interval. In this analysis, however, we obtained

realistic shape parameters for estimating rainfall, so we chose not to use this prior.

To account for spatial and temporal dependence in the data under the misspecified con-

ditional independence model, we use the adjusted likelihood (4.3.4) in the hierarchical

model. The constant k̂ = 0.784 is estimated using methods described in Section 4.3.1

with the adjusted likelihood being used to form the posterior. When accounting for

spatial dependence only, that is, when data at each location are assumed to be indepen-

dent in time, the estimated k̂ = 0.8. This difference highlights the merits of adjusting

for both spatial and temporal dependence in the data in an analysis. We proceed with

the value k̂ = 0.784, which corresponds to a moderate level of spatial and temporal

dependence within the data. In both models, we run the MCMC for 20,000 iterations

and discard the first 5,000 as burn-in. We assess the convergence of the MCMC chains

using the Gelman-Rubin diagnostic (Gelman and Rubin, 1992), which indicates con-

vergence in > 99% of parameter chains. Inspection of trace plots (not shown) indicates

that the parameter chains are mixing well. Parameter estimates in this analysis are
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taken to be posterior means.

As we are working on a relatively coarse lattice, there is a limited amount of physi-

cal information we can incorporate into the problem without being overly simplistic

regarding the assumptions we make. For example, including elevation as a covari-

ate would be unwise because various different landscapes can be observed in a single

cell, and assigning an average to that would mask out any meaningful effect. We as-

sessed whether adding latitude and longitude to the hierarchical model as covariates as

in (4.3.5) would improve the overall fit using the deviance information criterion (DIC)

(Spiegelhalter et al., 2002). We included both linear and second-order terms in model

estimation. The best-fitting model included a significant negative linear relationship

between the scale parameter and longitude. This result is consistent with the tendency

for high precipitation events to occur on the west coast (see Figure 4.2.2). Investigation

of the random effect terms (see Appendix B.1) shows a north-south trend in the scale,

which may correspond to a non-significant latitude fixed effect. There is some evidence

of west-east dependence in the random effect term corresponding to the shape param-

eter, though this is less clear and may instead correspond to localised behaviour. For

example, southeast England sees the highest values of this component, which could re-

flect its tendency to experience short-term convective events, as discussed in Section 4.2.

Figure 4.4.1 (top and centre) compares the GPD parameter estimates from the spa-

tial and uninformative models. In both models, the scale parameter reflects the claim

from the exploratory analysis that larger precipitation events tend to occur on the west

coast of Britain, with particular impact in Scotland. The heavy tails in the southeast of

England are likely determined by short-term, localised convective events. This param-

eter has a clear geographical structure, with higher values in the southeast of England

and smaller values on the south coast and parts of the Midlands, implying that an
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Figure 4.4.1: Parameter estimates of the threshold-dependent scale and shape param-
eters for all cells from the uninformative model (top) and the spatial model (centre).
Also shown (bottom) are the posterior probabilities of the uninformative model estimate
occurring under the spatial model.
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assumption of constancy is overly simplistic. The shape parameter is typically difficult

to estimate given short data records and benefits from the extra information supplied

through the spatial prior. While there is a little visible difference in estimation of the

scale parameter, the spatial model produces a much smoother surface for the shape

parameter. We also investigated the posterior probability of the parameter estimates

of the uninformative model (defined by the posterior mean) occurring under the spatial

model (see Figure 4.4.1). This shows that while there is little significant difference

in estimation of the scale parameter between the two models, the shape parameter is

significantly different in multiple cells. In Appendix B.1, the 95% posterior credible in-

tervals for the shape and scale parameters estimated under the spatial model are shown

for reference.

The true scientific value of this study is only clear when analysing return levels rather

than the GPD parameters themselves. By rearranging the survival function and setting

equal to r−1 such that

nyλu

(
1 +

ξx

σu

)−1/ξ

= r−1, (4.4.1)

where ny denotes the number of observations in a given year, we solve for x to obtain

the r-year return level, that is, the value that is exceeded on average once every r

years. The posterior distribution of the r-year return level is obtained by applying this

function to every MCMC iteration (after burn-in) of the GPD parameter chains. This

enables us to extract posterior confidence intervals in a natural way by looking at the

quantiles of the estimated posterior.

The r-year return level is a more intuitive quantity for practitioners to analyse, as these

estimates can be considered in the design of infrastructure to defend against extreme

precipitation events. Figure 4.4.2 shows that the spatial model produces similar return

level estimates to that of the uninformative model when the return period is short.
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As we move far beyond the range of the data, the dominance of the shape parameter

means that the uninformative model can produce very different return level estimates at

neighbouring sites. The spatial model performs well in the sense that we move further

into the tail in a smooth and realistic way, which is also spatially coherent.

Both RFA and the hierarchical modelling approach pool information across neighbour-

ing locations to induce spatial dependence in parameter estimates and reduce uncer-

tainty of these estimates. The methods differ in the imposition of the spatial process on

the GPD parameters. The artificial boundaries arising from the specification of homoge-

neous regions in RFA can result in very different return level estimates in neighbouring

cells that are separated by a boundary (see Figure 4.2.3). The assumption of a constant

shape parameter in each region means that the most extreme events can determine the

size of the tail over the entire region, which may not be realistic. The hierarchical mod-

elling approach, under the weaker and more intuitive assumption of similarity across

neighbouring locations, produces a more realistic return level landscape, representing a

smoother extrapolation into the tails of the distribution of precipitation.

As well as producing return level estimates that are spatially smooth, spatial hierarchi-

cal models borrow strength across locations, reducing uncertainty in these estimates.

Figure 4.4.3 shows the standard deviation of the estimated posterior 10,000-year re-

turn level distribution in all cells. In all cases, this measure is reduced by using the

spatial model, and in some cases, substantially. The largest standard errors tend to be

observed at coastal locations, which is intuitively a consequence of the increased prior

variance caused by a smaller number of neighbours compared to inland locations. The

uncertainty in these estimates is quantified correctly under the misspecification of the

model using the adjusted likelihood (4.3.4). Without this adjustment, the estimated

confidence intervals of return levels are narrow and can result in misleading inference.
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Figure 4.4.2: 100- (top), 1,000- (centre) and 10,000- (bottom) year return level estimates
for each cell under the uninformative (left) and spatial hierarchical model (right).
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Figure 4.4.3: Standard deviations of the posterior distribution of the 10,000-year return
level for the uninformative (left) and spatial model (right).

Table 4.4.1 shows the 95% credible intervals corresponding to three randomly-chosen

cells, of the scale and shape parameters and the 10, 000-year return level under the

uninformative model, the spatial model when k = 0.784, and the spatial model when

k = 1, which corresponds to a conditional independence model with no adjustment for

dependence. This shows that while the spatial model reduces model uncertainty com-

pared to the uninformative model, the adjustment for dependence ensures that credible

intervals aren’t misleadingly narrow, as is the case when k = 1.

The Bayesian paradigm allows us to handle the issue of prediction in a natural way. We

can construct the distribution of a future threshold excess - the predictive distribution.

This incorporates both parameter uncertainty and randomness in future observations.
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Table 4.4.1: The estimated 95% posterior credible intervals for three randomly-chosen
cells of the scale and shape parameters and the 10, 000-year return level.

Cell Estimate Uninformative Spatial (k = 0.784) Spatial(k = 1)

1 Scale (3.660,4.596) (3.689,4.578) (3.731,4.559)
Shape (0.029,0.196) (0.035,0.177) (0.041,0.176)

10,000 Year RL (74.629,200.710) (75.874,178.028) (77.251,175.099)

2 Scale (4.347,5.472) (4.630,5.747) (4.663,5.674)
Shape (0.076,0.251) (0.045,0.166) (0.051,0.168)

10,000 Year RL (119.850,365.297) (102.635,209.140) (106.075,210.225)

3 Scale (4.284,5.404) (4.382,5.456) (4.441,5.361)
Shape (0.019,0.198) (0.020,0.151) (0.027,0.146)

10,000 Year RL (80.742,237.635) (81.247,172.282) (83.315,166.768)

For cell j, we have that

Pr(Yj ≤ ỹj | y) =

∫
θj

Pr(Yj ≤ ỹj | θj)π(θj | y)dθj.

We can then define the r-year predictive return level to be the value of ỹj that satisfies

Pr(Yj ≤ ỹj | y) = 1− r−1.

While this is analytically intractible, we can approximate using a Monte Carlo summa-

tion of the samples from the estimated posterior distribution. This gives

Pr(Yj ≤ ỹj | y) ≈ 1

N

N∑
i=1

Pr(Yj ≤ ỹj | θ(i)
j ),

where N denotes the number of MCMC samples after the burn-in has been discarded.

The predictive return level estimate can then be evaluated using a standard numerical

solver (Coles and Tawn, 1996). The 10, 000-year predictive return level for all cells is

shown in Figure 4.4.4. The values have the same spatial pattern as that of the mean of

the posterior distribution of 10, 000-year return levels, but the magnitude of the values

is slightly higher. This is due to the additional parameter uncertainty being accounted
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Figure 4.4.4: The 10,000-year predictive return level for all cells.

for in the predictive analysis.

4.5 Discussion

We have described a flexible spatial model for estimating marginal return levels that

adjusts inference to account for dependence in the data. Inducing spatial dependence

in parameter estimates through a prior model allows us to borrow strength across lo-

cations and reduce uncertainty in return level estimates. However, the conditional

independence assumption required for Bayesian hierarchical modelling is often false in

practical applications. We have presented an approach, through an adjustment to the

likelihood, that correctly quantifies model uncertainty under misspecification of the

model that accounts for the spatial and temporal dependence in the data. This ap-

proach may therefore be of benefit to practitioners who base design specifications on

the posterior distribution of return level estimates, as without such an analysis of de-

pendence, it is unclear how exactly to quantify model uncertainty.
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Since the model is flexible by nature, there are many improvements that one could

make to this analysis. If one was looking at cells on a finer grid, one could include

more physical covariates related to the geography of the region. Previous studies have

shown that elevation is a key influence on the size of a rainfall event (Cooley and Sain,

2010). Another extension of this work could be the inclusion of a seasonal component

in the model. It is widely known that heavy rainfall events in the southeast are largely

the result of short-term, localised convective storms that occur in summer. In contrast,

heavy rainfall events in northern Scotland, for example, tend to occur as part of a more

sustained, synoptic storm system from the Atlantic Ocean. It would be useful to be

able to discern between these two systems in the model. This involves introducing a

temporally varying covariate, adding an extra dimension to the model. Economou et al.

(2014) models sea-level pressure using both spatially and temporally varying covariates

in a Bayesian hierarchical model framework. Seasonality can been modelled as a pe-

riodic covariate using Fourier series (Jonathan and Ewans, 2011) in the extreme value

parameters. Alternatively, Fawcett and Walshaw (2006) models extreme precipitation

for multiple sites on a month-by-month basis but induces some temporal smoothness

through a seasonal random effect term modelled through a conditional autoregressive

prior in time.

It is also possible to consider further development of the spatial structure. Here, we

assume a first order neighbourhood structure is sufficient in summarising the spatial

dependence inherent in the parameters. Jalbert et al. (2017) proposes using a second-

order Markov random field, which gives smoother results than the first-order structure.

However, their assessment was over a wider spatial domain and thus their assumption

of a higher-order structure was justified.
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A drawback of previous studies using the Bayesian hierarchical framework concerned

the inference arising from the misspecified conditional independence likelihood, which

our approach adjusts to account for dependence in the data. An alternative approach

could be to advance beyond the assumption of conditional independence. Recent studies

have included a max-stable process in the data layer of a hierachical model (Ribatet

et al., 2012; Reich and Shaby, 2012; Thibaud et al., 2016). This approach captures

the local spatial dependence of the extremes, and provides a mechanism for simulating

realistic fields of precipitation over space.



Chapter 5

A stochastic model for the lifecycle

and track of extreme extratropical

cyclones in the North Atlantic

5.1 Background

Although the winter climate of western Europe is typically benign, it is often subjected

to extreme weather events characterised by strong winds and heavy rainfall from ex-

tratropical cyclones that pose economic, safety and environmental risks. Such events

include floods and windstorms that have caused mass infrastructural damage, transport

chaos and, in some instances, human fatalities. The storm Desmond, which occurred

between 3rd and 8th December 2015, displaced thousands of people from their homes

in northern England and Scotland, resulting in an estimated £500m worth of damage.

Storm Desmond is an example of a synoptic scale, low-pressure weather system in the

North Atlantic Ocean known as an extratropical cyclone. Extratropical cyclones are

usually formed as a result of horizontal temperature gradients and develop with a par-

81
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ticular lifecycle associated with frontal systems (Shapiro and Keyser, 1990). They can

be characterised by the paths of local vorticity maxima they generate, which we re-

fer to as tracks. There has been considerable research into cyclone identification and

tracking in reanalysis datasets (Murray and Simmonds, 1991; Hodges, 1995). However,

this data record is relatively short and thus provides only a limited estimate of the

risk from such weather systems, motivating the need for a model to provide improved

information on their possible long-term and extreme characteristics. In particular, we

would like to know more about the spatial distribution of these storms so that we can

identify the regions with more extreme storm activity at a higher level of confidence.

We might also like to assess the likelihood of observing more intense storms than those

previously observed, where these might occur, and how long these might last. This

chapter proposes a model from which synthetic storm tracks can be simulated and can

be used to perform these assessments in a unified and coherent way.

There is limited literature relating to statistical modelling of extratropical cyclones.

Sienz et al. (2010) used extreme value methods to analyse the effect of climate change

on the impact of the North Atlantic Oscillation (NAO) index on cyclone intensity.

Economou et al. (2014) conducted a spatial extreme value analysis of extratropical cy-

clone pressure minima to estimate probabilities of observing lower-pressure events and

the lower endpoint of the distribution of pressure minima. While the model succeeds

in capturing the spatial variation of the pressure extremes, it only uses the minimum

pressure from a storm track and thus does not account for the spatial and temporal

evolution of a cyclone. For example, it may be of interest to practitioners to assess

where an extreme storm is likely to propagate. In addition, while the model accounts

for the dependence of pressure minima on factors such as its location and the NAO

index, it does not explore how it varies relative to the movement of the track. Our

approach aims to incorporate both these aspects.
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Most developments in track modelling have come from the tropical cyclone literature.

Casson and Coles (2000) generated tropical storm tracks by sampling from historical

data with random perturbations. Cyclone intensity is modelled dynamically but the

history of the process is not incorporated. Rumpf et al. (2007) sampled from kernel den-

sity estimates of displacement and direction increments to propagate the track, while

Hall and Jewson (2007) use a first-order autoregressive process. Neither incorporate a

model for cyclone intensity. This chapter introduces a novel approach to storm track

simulation incorporating various properties of extratropical cyclones. This includes the

smooth propagation of the track through space, the regional differences between tracks

developing at different locations, the tail behaviour of storm intensity and a stochastic

termination mechanism.

Our dataset contains storm track locations at 3-hourly time steps with a vorticity mea-

sure associated with each point on the track. Storms are tracked over 36 years (1979-

2014) from the ERA-Interim reanalysis dataset described in Dee et al. (2011). The

identification and tracking of the cyclones is performed following the approach used

in Hoskins and Hodges (2002) based on the tracking algorithm described in Hodges

(1995). Before the identification and tracking progresses the data are smoothed to a

resolution of approximately 2.8◦ and the large-scale background noise is removed. This

reduces the inherent noisiness of the vorticity and makes the tracking more reliable for

synoptic scale storms. The cyclones are identified by determining the vorticity maxima

in the filtered data. Vorticity is preferred to mean surface-level pressure as it has been

found to be more suitable for identifying synoptic systems like extratropical storms

(Hoskins and Hodges, 2002). Only vorticity values above a threshold of 1.0× 10−5s−1

are considered. Vorticity measurements are linked together through an initial nearest

neighbour search that is then refined by constraints on track displacement and smooth-
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ness. Storms with a lifespan of less than one day are not considered. Our analysis

is focused on storms in an extended winter period (October-March), eliminating any

features that may arise due to seasonal effects and focusing on the time of year when

storms are considered to be most intense. We restrict our attention to storms passing

over the European domain, in particular the region defined in Figure 5.2.1. We have

also removed any Mediterranean storms as these are often influenced by other factors

relating to convective behaviour and are not captured well by reanalysis data (Akhtar

et al., 2014).

The chapter is structured as follows; Section 5.2 details a comprehensive exploratory

analysis carried out to assess the main factors influencing storm movement, intensity

and termination. Section 5.3 describes the methodology to be used in model con-

struction. In Section 5.4, submodels for cyclogenesis, propogation and cyclolysis are

outlined, motivated by findings from the exploratory analysis. Section 5.5 describes the

main results based on simulations from the model, followed by some conclusions and

opportunities for further work.

5.2 Exploratory data analysis

An extensive exploratory data analysis was carried out in order to gain some intuition

regarding the behaviour of storm tracks in the North Atlantic. As discussed in Section

1, our catalogue of observed storm tracks contains only those that have crossed the

region shown in Figure 5.2.1. Our observed set contains 2, 944 storms for the 36 years

of data, with approximately 31 observations per storm on average. As these observa-

tions are measured at discrete 3-hourly time points, this amounts to the average storm

lasting just under four days. Previous analysis of this data (Bengtsson et al., 2006)

has shown that these storms tend to begin their existence, known as cyclogenesis, in
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Figure 5.2.1: The region in which the catalogue of storm tracks cross at some point in
their lifetime.

a corridor across the North Atlantic from southwest to northeast (see Figure 5.2.2).

Cyclolysis regions, where these storms terminate, tend to be located more towards the

eastern Atlantic and Europe. Figure 5.2.2 also shows the spatial density of all storm

track locations; it identifies distinct regions of storm activity in the mid-Atlantic and

in the region between Greenland and Iceland.

We extract components of the storm track in order to explore further the variables that

determine storm movement and intensity. We denote the storm location at time t by

X t = (Xt, Yt), denoting longitude and latitude coordinates at every 3-hourly interval

t respectively. Assuming the Earth is spherical, we derive the speed using distance

corresponding to the shortest path between two points along the surface of the sphere,

commonly known as the “great-circle” distance. We denote the speed of the track be-

tween X t and X t+1 by Vt. We choose to model track direction as the initial bearing

between X t and X t+1, denoted by Θt ∈ [−π, π] measured relative to north. We denote

the vorticity at location X t by Ωt. This variable structure is shown conceptually in

Figure 5.2.3.
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Figure 5.2.2: Spatial densities of genesis, lysis and overall storm track locations in the
analysed dataset.
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Figure 5.2.3: Conceptual diagram of the speed, direction and vorticity variables ex-
tracted from the storm track data.
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Figure 5.2.4: Mean speed (top left, in m/s), mean direction (top right, in radians),
mean vorticity (bottom left, in 10−5s−1) and 99% quantile of vorticity (bottom right,
in 10−5s−1) in 8◦× 4◦ grid cells over the spatial domain. For illustration purposes, only
99% vorticity quantiles of above 9× 10−5s−1 are shown.

These storm variables have a distinct spatial structure (Figure 5.2.4). The storm tracks

tend to begin with an easterly trajectory which becomes more northeasterly as storms

move east and to higher latitudes. Speeds, ranging from 0.07 to 51.46 m/s, tend to

be highest in an approximate corridor between the eastern coast of the USA and the
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United Kingdom, with speeds decreasing smoothly as one moves away from this path.

The maximum observed vorticity is 15.89 × 10−5s−1 with higher vorticities along a

similar southwest northeast corridor albeit further north, identified by Bengtsson et al.

(2006) as the highest mean intensity storm regions. Figure 5.2.4 also shows that the

strongest of these storms tend to occur in the West Atlantic off the coast of North

America.

We investigate the degree of temporal dependence within each variable by examining

the partial autocorrelation (PACF) functions for each variable. We identify the order

of temporal dependence by the maximum lag at which the PACF is significantly differ-

ent from 0. However, because of the size of our dataset, the lowest PACF value that

we deem significant is very small, so we interpret the PACF plot by eye to identify a

practically relevant order. The PACF plots for Vt, Θt and Ωt individually are shown in

Figure 5.2.5; they provide evidence that a third-order relationship for speed, direction

and vorticity will capture most of the structure in the data.
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Figure 5.2.5: Partial autocorrelation plots of speed (left), direction (centre) and vortic-
ity (right).

We explore the possibility that storm intensity and storm movement are interlinked,

in other words, that speed, direction and vorticity are dependent. Figure 5.2.6 shows
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that quickly moving and intense storms are more associated with northeasterly/easterly

trajectories. It is also clear that a wider range of trajectories are possible when the storm

is moving slowly. Figure 5.2.6 also suggests that storms will move more slowly when

vorticity is large.
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Figure 5.2.6: The mutual dependence of speed, direction and vorticity shown through
boxplots defined by intervals of equal length of the variable on the x-axis.

The feature tracking algorithm of Hoskins and Hodges (2002) is designed to assign a

smooth path to local vorticity maxima above a threshold of 1.0 × 10−5s−1. However,

genesis and lysis vorticities are generally above this value (see Figure 5.2.7), which im-

plies either that the storm weakens at a much higher rate or that the tracking algorithm

loses the path of the storm. We note that the data may not be representative of the

physical termination of a storm, but in the absence of extra information, we design our

statistical model to reflect the characteristics of the data. In the context of storm ter-

mination, this requires a stochastic mechanism to account for the evident uncertainty

in the data. An examination of how the proportion of termination occurrences vary

(not shown here) gives evidence to suggest that storms are more likely to terminate if

vorticity is low or if the storm is older. Other indicators of storm termination include

sharp decreases between consecutive vorticities and the location in space. For example,

Figure 5.2.2 shows that storms are more likely to terminate over western Europe than
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over Scandinavia.
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Figure 5.2.7: The distribution of genesis (left) and lysis (right) vorticities.

5.3 Methodology

5.3.1 Introduction

It is evident from the exploratory data analysis in Section 5.2 that extratropical storm

tracks are complex systems with many components to be modelled. We use our findings

from that analysis to inform a model that represents well the principal physical proper-

ties of the storm tracks, in particular, evolution, movement and intensity. We wish to

build a model that reflects these processes on a large scale, but also retains properties

unique to their spatial location (see Figure 5.2.4). We would like the main features

of the track to vary smoothly in time. We would also like to extrapolate in order to

derive from our model more intense storms than those observed in the data, but to do

so requires a rigorous analysis of tail vorticities. We adopt a simulation-based approach

to modelling these storm systems, combining sub-models for genesis, propagation and
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lysis to produce synthetic storm tracks that have the same statistical characteristics as

those observed in the data.

As our approach aims to propagate the storm in time, it is natural to exploit the time

series structure of {Vt}, {Θt} and {Ωt}, which control the movement and intensity of

a storm. Supported by the exploratory data analysis in Section 5.2, we assume that

the multivariate time series {(Vt,Θt,Ωt)} jointly follows a stationary kth order Markov

process. By the Markov property, the distribution of the current value of a process

is affected only by the previous k time steps of the process. We define an arbitrary

d-dimensional multivariate time series ZJ
1:n = {Zij : i = 1, . . . , n; j = 1, . . . , d}, where

Zij denotes the i-th component of the j-th dimension and n is the length of the time

series. We use the notation ZJ
t to denote the tuple at time t. We can write the joint

density of ZJ
1:n as

f1:n(zJ1:n) = f1:k(z
J
1:k)

n−k∏
t=1

fk+1|1:k(z
J
t+k | zJt:t+k−1),

where zJp:q = {zij : i = p, . . . , q; j = 1, . . . , d}, fp:q denotes the joint density function

of ZJ
p:q and fk+1|1:k(· | ·) is the conditional density function of ZJ

k+1 | ZJ
1:k. This

assumption simplifies the modelling process as it becomes only necessary to model the

joint distribution of ZJ
t:t+k, which is determined by its marginal distributions and its

copula. In some applications, interest lies in estimating probabilities of events beyond

the range of the data, for which we draw on methods from extreme value theory.

5.3.2 Marginal modelling

We denote an arbitrary marginal time series component of {ZJ
t } by {Zt}. Under the

assumption of stationarity of {ZJ
t }, observations in marginal time series {Zt}nt=1 are

identically distributed with marginal density function f . A simple choice is to model f
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nonparametrically using the kernel smoothed density function f̂ , such that

f̂(z) =
1

nh

n∑
i=1

K

(
z − zi
h

)
, (5.3.1)

where K denotes the kernel function, often chosen to be the standard Gaussian density

function, and h is the bandwidth. However, this is known to produce biased estimates

in the tails. Instead, for marginal features where the upper tail extremal behaviour is

of interest, such as vorticity, we specify a mixture model where the model for the upper

tail is motivated through the framework of extreme value analysis. For the remainder

of this chapter, we denote the quantity Zi:j = {Zl : l = i, . . . , j}.

Extreme value analysis is often used to model rare occurrences with the aim of esti-

mating probabilities of events beyond the range of available data. Asymptotic limit

models are used in practice as finite-sample approximations for estimating the extreme

behaviour of a process. The most widely-used approach is to consider excesses above

a suitably high threshold. Under weak conditions on Zt, the distribution of scaled

excesses of a threshold by Zt converges to the generalised Pareto distribution (GPD)

(Pickands, 1975; Davison and Smith, 1990) as the threshold tends to the upper end-

point zF . This model assumes that the limiting result holds exactly for a large enough

threshold u. The GPD takes the form

Pr(Zt − u > z|Zt > u) =

(
1 +

ξz

ψu

)−1/ξ

+

, z > 0 (5.3.2)

where c+ = max(c, 0) and where ψu > 0 and ξ ∈ R denote the scale and shape param-

eters respectively. The scale parameter ψu is threshold-dependent. A negative shape

parameter means that the distribution of excesses has a finite endpoint while values of

ξ = 0 and ξ > 0 correspond to exponential- and heavy-tailed distributions respectively.

The threshold u is determined using selection diagnostics such as mean residual life
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plots and checking for threshold stability of ξ (Coles, 2001). For observations of Zt

larger than a chosen threshold u, we replace the kernel estimate defined in (5.3.1) with

the GPD model. The marginal model can thus be summarised by

F (z) =


F̂ (z) z ≤ u

1− λu
(

1 +
ξ(z − u)

ψu

)−1/ξ

+

z > u
, (5.3.3)

where F̂ (z) =
∫ z
−∞ f̂(γ)dγ, where f̂ is defined in (5.3.1), and λu = 1− F̂ (u) is the rate

of exceedance. A censored maximum likelihood approach is used to obtain estimates of

the marginal parameters. For more details on inference for the GPD model, see Coles

(2001).

5.3.3 Temporal dependence

Under the Markov assumption, the joint distribution of a time series can be determined

by a product of conditional distributions determined by the order of the Markov process.

This provides a natural mechanism for propagating a storm in time and incorporating

the history of the process. A simple choice of model for Pr(Zt+k ≤ z | Zt:t+k−1 =

zt:t+k−1), where k is the order of the Markov process, would be the kernel estimate

of the conditional distribution function, the formulation of which can be found in Ap-

pendix C.1. However, like in the marginal model, this approach poorly captures the

temporal dependence structure in the extremes, which is critical when modelling chains

of vorticity. This requires an approach for modelling Zt+k | Zt:t+k−1 in the context of

an extreme event, that is, when some functional of Zt:t+k−1 exceeds a high threshold u.

Under the assumption of a stationary kth order Markov process, we can model the

extremal behaviour of {Zt+k} using the joint distribution of Zt:t+k. We can use multi-

variate extreme value analysis to assess the characteristics of joint tail behaviour with
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separate models for the marginal and dependence structures. Extremal dependence can

be summarised by two broad classes determined by the value of χτ , where

χτ = lim
z→zF

Pr(Zt+τ > z|Zt > z), (5.3.4)

where τ ∈ Z+ and zF is the upper limit of the support of the common marginal distri-

bution. For alternative measures of extremal dependence in a time series context, see

Davis and Mikosch (2009) and Ledford and Tawn (2003). A value of χτ > 0 refers to

the case of asymptotic dependence, where parametric models have been developed with

this intrinsic property (Coles et al., 1999). Asymptotically independent models, corre-

sponding to the case when χτ = 0, include contributions by Ledford and Tawn (1996)

and Bortot and Tawn (1998). Distinguishing between the two classes is crucial as,

for example, applying asymptotically dependent models to asymptotically independent

data leads to conservative probability estimates of extreme joint events (Coles et al.,

1999). However, in practice, diagnostics for choosing between the two cases are often

highly uncertain. The conditional multivariate extreme value approach of Heffernan and

Tawn (2004) is more flexible than standard multivariate models as it covers both cases

of asymptotic dependence and asymptotic independence. However, this model gives a

limiting representation only for Zt+1:t+k | Zt > u. To enable a sequential simulation

of extremes in time, we draw on methods proposed by Winter and Tawn (2017) that

model the extremal temporal dependence structure in Zt+1:t+k provided that Zt > u;

this approach is described later in this subsection. All vector calculations in this section

are to be interpreted componentwise.

After estimation of the marginal model in equation (5.3.3), it is necessary to transform

{Zt} onto common margins to assess extremal dependence after accounting for the

marginal structure. Following Keef et al. (2013), we transform onto Laplace margins
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such that

St =


log{2F (Zt)} if Zt < F−1(0.5),

− log[2{1− F (Zt)}] if Zt ≥ F−1(0.5),

(5.3.5)

where {St} denotes the standardised series and F is defined in (5.3.3). To explore the

conditional distribution Pr(St+1:t+m ≤ s | St > u) for large u and integer m > 0, we

use an asymptotically justified form for this distribution as u→∞. However, St+1:t+m

requires normalisation so that the limiting conditional distribution is non-degenerate

as u → ∞. Heffernan and Tawn (2004) assume that there exist functions a : R → Rm

and b : R→ Rm
+ such that for s > 0

Pr

(
St+1:t+m − a(St)

b(St)
< e1:m, St − u > s

∣∣∣∣St > u

)
→ G1:m(e1:m) exp(−s), (5.3.6)

as u → ∞ with e1:m ∈ Rm, where G1:m is a joint distribution function that is non-

degenerate in each margin. Under weak assumptions on the joint distribution of St:t+m,

Heffernan and Resnick (2007) show that componentwise a and b must be regularly

varying functions satisfying certain constraints, which for Laplace margins corresponds

to each of the components of a (respectively b) being regularly varying functions of

index 1 (respectively less than 1). It was found that normalising functions of the simple

form

a(St) = α1:mSt, b(St) = St
β1:m ,

where α1:m ∈ [−1, 1]m and β1:m ∈ [0, 1)m, hold for a very broad range of copulas repre-

senting a class of functions which enables parsimonious yet flexible modelling. Winter

and Tawn (2017) claim that the stationary kth order Markov behaviour of {St} does

not impose any constraints on α1:k, β1:k and G1:k, where k is the order of the Markov

process, for k ≤ m. However, αk+1:m, βk+1:m and Gk+1:m, for any m ≥ k+ 1, are deter-

mined entirely by α1:k, β1:k and G1:k as a result of the stationary Markov behaviour;

specific details of this when k = 1 are described in Papastathopoulos et al. (2017).
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The parameters α1:m and β1:m can be used to identify different types of extremal depen-

dence structure. The case of asymptotic dependence between St and St+j corresponds

to the case when αj = 1 and βj = 0 for 1 ≤ j ≤ k, while the case of asymptotic

independence arises when αj < 1. Within the asymptotic independence case, posi-

tive dependence occurs with 0 < αj < 1 or αj = 0 and βj > 0; independence when

αj = βj = 0 and negative dependence when −1 ≤ αj < 0.

Our model for the conditional distribution of St+1:t+k given St > u is motivated by

the limiting form of the conditional distribution (5.3.6), which we assume is valid for a

sufficiently high threshold u and m = k. Assuming that St:t+k has a density, we have

that

St+1:t+k|St > u = α1:kSt + St
β1:kE1:k, (5.3.7)

where E1:k is a random variable, independent of t and St, with joint distribution func-

tion G1:k and joint density g1:k. Winter and Tawn (2017) propose an asymptotically

motivated heuristic approach to model St+k|St:t+k−1 when St > u. Under the assump-

tion that model (5.3.7) holds for St = st > u, it follows that

St+k|(St:t+k−1 = st:t+k−1) = αkSt + St
βkEk|1:k−1, (5.3.8)

where Ek|1:k−1 is a random variable with the same distribution as the conditional dis-

tribution of Ek given that

E1:k−1 =
st:t+k−1 −α1:kst

stβ1:k
:= e1:k−1.

It follows that St+k+j|(St:t+k+j−1 = st:t+k+j−1), for j = 1, . . . is also given by equa-

tion (5.3.8), provided St+j > u. We adopt this approach to simulate sequential reali-
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sations of an extremal kth order Markov process when St > u. Series generated under

this process have negative drifts that ensure the process returns from an extreme state

to the body of the distribution, upon which values are generated using the conditional

kernel approach outlined in Appendix C.1. Dependence parameters α1:k and β1:k are

estimated using maximum likelihood under the working assumption that E1:k follows

a Gaussian distribution. The distribution function G1:k is estimated using the kernel

smoothed distribution function of the values of e1:k, which are found by inversion of

equation (5.3.8) under the fitted model. For more details on the inference procedure,

see Heffernan and Tawn (2004) and Winter and Tawn (2017).

5.4 Simulation model

5.4.1 Cyclogenesis

We construct a model for cyclogenesis conditions using the data observed at the begin-

ning of a storm. In doing so, we would like to model the joint distribution of genesis

speed V0, direction Θ0 and vorticity Ω0. The spatial variability of Vt, Θt and Ωt as

shown in Figure 5.2.4 is also reflected in the genesis conditions, and thus (V0,Θ0,Ω0)

should be simulated with respect to genesis location X0. For this reason, we impose an

artificial grid on the spatial domain, where each grid cell has dimensions of 8◦×4◦. This

was chosen to be small enough to be able to capture the properties as locally as possible

and large enough so that there are enough data to estimate the joint distribution of

these properties with sufficient accuracy. We denote ∆t as the grid cell of the location

of the storm track at time t.

We simulate the genesis location from the kernel joint density estimate f̂(x0), defined

in Appendix C.1, where the initial locations x0 are the locations from the observed set

of storm tracks discussed in Section 5.1. We then use the conditional kernel approach
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described in Appendix C.1 to simulate (v0, θ0, ω0) jointly from (V0,Θ0,Ω0) | X0 =

x0 ∈ ∆0. We use a Gaussian density kernel function in all cases. We considered using

a von Mises kernel for Θ0 to ensure continuity of the density function over [−π, π].

However, we used a non-cyclic Gaussian kernel with repeated shifts of 2π in the data

which produced similar results. We use a correlated kernel for V0, X0 and Ω0 and an

independent kernel for Θ0, as we believed that a correlated kernel could not sufficiently

capture the correlation structure of a cyclic variable. Figure 5.4.1 shows the density of

genesis locations from storm tracks simulated from the model and indicates that our

genesis model captures the large scale features quite well whilst having some smaller

scale differences such as the southern flank extending a little too far and having a

maxima over the UK rather than the North Sea (see Figure 5.2.2).
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Figure 5.4.1: Density of the genesis locations of a set of synthetic storm tracks simulated
from the model.
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5.4.2 Propagation

As discussed in Section 5.3, our exploratory analysis supports the assumption that the

storm variables determining movement and intensity jointly follow a kth order Markov

process. As well as temporal dependence, we would like to incorporate any dependence

between variables into the propagation scheme in order to represent the joint proper-

ties accurately. The simulated storm track should also reflect the local properties of

observed tracks as it moves through space, which the artificial grid introduced in Sec-

tion 5.4.1 is designed to induce.

Combining these approaches allows us to construct a joint distribution for Vt and Θt,

which determine the movement of the storm track, conditional on previous states of the

variable, states of other variables, and the grid cell of the storm track location. For all

times 1 ≤ j ≤ k, where k is the order of the Markov process jointly for {(Vt,Θt,Ωt)},

we simulate

θj ∼ Θj | Θ0:j−1 = θ0:j−1,xj ∈ ∆j

vj ∼ Vj | V0:j−1 = v0:j−1,Θj = θj,xj ∈ ∆j (5.4.1)

When j > k, we simulate:

θj ∼ Θj | Θj−k:j−1 = θj−k:j−1,xj ∈ ∆j

vj ∼ Vj | Vj−k:j−1 = vj−k:j−1,Θj = θj,xj ∈ ∆j. (5.4.2)

Simulated values vj and θj are obtained from the kernel estimate of the conditional

distribution in (5.4.1) and (5.4.2) as discussed in Section 5.3.3 and formulated in Ap-

pendix C.1. The exploratory analysis in Section 5.2 suggests that k = 3 is an ap-

propriate choice. The dependence between speed and direction is induced through
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conditioning Vj on Θj. As in Section 5.4.1, we used a Gaussian kernel function in both

cases. When simulating θj, we again considered a von-Mises kernel to ensure continuity

of the density function over [−π, π], but a non-cyclic Gaussian kernel with repeated

shifts of 2π in the data produced similar results. We use the simulated values to prop-

agate the storm. Longitude and latitude coordinates xj+1 = (xj+1, yj+1) are calculated

using the formula:

yj+1 = sin−1

(
sin(yj) cos

(
vj∇j

R

)
+ cos(yj) sin

(
vj∇j

R

)
cos(θj)

)
;

xj+1 = xj + Tan−1

(
sin(θj) sin

(
vj∇j

R

)
cos(yj) cos

(
vj∇j

R

)
− sin(yj) sin(yj+1)

)
,

where (xj, yj) denote the longitude and latitude coordinates at time j, R denotes the

radius of the Earth, taken to be 6371 km, ∇j denotes the time difference in seconds

between time j and j + 1 and Tan−1 denotes the four-quadrant inverse tangent func-

tion. If at time j + 1, a simulated track enters a region such that there has been no

observed storm activity in the data in ∆j+1 , the track is reverted to time j, giving the

algorithm 10 opportunities to find a trajectory towards a grid cell that has observed

storm activity. If no such trajectory is found, the storm is terminated. The QQ plots in

Figure 5.4.2 show that the simulation model replicates exceptionally well the observed

marginal distributions of speed and direction. Figure 5.4.2 also shows the model cap-

tures the tendency of storm tracks to move more quickly in a northeasterly direction

(see Figure 5.2.6).

5.4.3 Vorticity modelling

The relationship between the vorticity of a storm track and its influence on the weather

is complex. Data analysis (not shown here) demonstrates that vorticity is weakly cor-

related with the maximum wind speed observed in the vicinity of the track, as well as

showing evidence that large spatial wind speed events are linked with large vorticities.
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Figure 5.4.2: QQ plots comparing the observed and simulated marginal distributions
of speed (left) and direction (middle) each with 95% tolerance intervals and the depen-
dence between simulated speed and direction shown through a boxplot (right). The
simulated data is based on one set of storm tracks drawn from the model of the same
number as in the observed set.

Therefore it is critical to model carefully the spatial and temporal characteristics of

this variable as well as its behaviour in the extremes. While the kernel approach is

useful at simulating realistic chains of Vt and Θt, the marginal distribution and depen-

dence structure is estimated using the entire series and may therefore lead to bias in

the extremes. In practice, we would like to estimate probabilities of observing storms

with a vorticity not yet observed. We use asymptotically justified limit models from

extreme value theory to estimate these probabilities using the observed extreme events.

Our simulation method combines the kernel approach used in (5.4.1) and (5.4.2) with

techniques outlined in Sections 5.3.2 and 5.3.3 for tail models with extremal temporal

dependence structure.

The exploratory analysis in Section 5.2 shows how the upper tail of vorticity varies

with respect to the movement and location of the track. To account for this in an

extreme value model, we first use the preprocessing method of Eastoe and Tawn (2009)

to transform the data to approximate stationarity. Specifically, we use a Box-Cox-
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location-scale model of the form

Ωλ
t − 1

λ
= µ(νt) + σ(νt)Wt, (5.4.3)

where Wt is assumed to be approximately stationary, λ denotes the Box-Cox parameter

and σ and µ are functions of a vector of covariates νt. For the purpose of inference

on λ, µ and σ, Wt is assumed to be N (0, 1). Parameter estimates are obtained using

maximum likelihood. We fit this model to data within the longitude range (−60◦, 20◦)

and latitude range (40◦, 80◦) as our interest lies in the extremal behaviour of vortic-

ity in this region. A number of combinations of covariates were considered and the

model fit was assessed using likelihood ratio testing. The best-fitting model features

functions of latitude, longitude, direction and speed in both µ and σ. This ensures

that the variation in large vorticities over space is captured (see Figure 5.2.4) while also

ensuring the dependence structure shown in Figure 5.2.6 holds for large vorticity values.

We model the excesses of Wt above some suitably high threshold u using the GPD tail

model as discussed in Section 5.3.2. A threshold of u = 1.5 is selected, corresponding

to the 98.13% quantile of Wt. The maximum likelihood estimates are ψ̂u = 0.449 and

ξ̂ = −0.246. Note that the negative shape parameter estimate implies a physical up-

per limit to the vorticity distribution. This is consistent with the extremal analysis of

mean surface level pressure in Economou et al. (2014), as vorticity and mean surface

level pressure tend to behave similarly in the context of extratropical storms (Hoskins

and Hodges, 2002). Desired tail quantiles of Ωt are determined by back-transformation

of (5.4.3).

The temporal propagation of vorticity is set out as follows. We describe separately

the cases for simulating realisations of Ωj, for some arbitrary time j, given that the k

previous observations of Wj (a function of Ωj) are in non-extreme and extreme states
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respectively. First, consider the process when Ωj is such that the k previous observations

of Wj are in a non-extreme state. In particular, we consider two cases. For all times

1 ≤ j ≤ k = 3 and Ω0:j−1 = ω0:j−1 such that max{W 0:j−1} < u, we simulate

ωj ∼ Ωj | Ω0:j−1 = ω0:j−1,Θj−1 = θj−1,xj ∈ ∆j.

Next, consider when j > k and Ωj−k:j−1 = ωj−k:j−1 such that max{W j−k:j−1} < u. In

this case, we simulate

ωj ∼ Ωj | Ωj−k:j−1 = ωj−k:j−1,Θj−1 = θj−1,xj ∈ ∆j.

Empirical evidence suggests that vorticity and track speed are approximately indepen-

dent conditional on the bearing, and since speed is simulated with this conditioning

in (5.4.1) and (5.4.2), we believe that simulating ωj conditional on θj−1 is sufficient

to represent the dependence between storm movement and intensity. The conditional

distribution Ωj | · is estimated using the kernel approach described in Appendix C.1.

Next, when Ωj is such that at least one of the previous k observations of Wj are in

an extreme state, we adopt the model of Winter and Tawn (2017) for simulating tail

chains under the assumption of an extremal kth order Markov process. In particular, we

transform the preprocessed series Wt onto Laplace margins as in (5.3.5), denoting the

transformed quantity by St. Provided at least one of the last k observations previous to

Wj is in an extreme state, we simulate realisations of Sj using the tail chain approach

before backtransforming to obtain a realisation of Ωj. To be precise, let l be the number

of consecutive excesses of {Wt} above u previous to time j, such that

lj = max{i ∈ {1, . . . , k} : min{W j−i:j−1} > u}.
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For example, if Sj−3 and Sj−2 are less than u but Sj−1 > u, we use a first order structure

to simulate Sj. Therefore lj represents the order to be used in the simulation of Sj.

After determining the order l = lj, we then simulate:

Sj = α̂lSj−l + (Sj−l)
β̂lej|j−l+1:j−1,

where (α̂l, β̂l) denote the maximum likelihood estimates of the dependence parameters

and ej|j−l+1:j−1 is sampled independently from Ĝj|j−l+1:j−1. The value Sj is transformed

to obtain the preprocessed Wj by inverting equation (5.3.5). Vorticity Ωj = ωj is then

obtained by inverting equation (5.4.3). The QQ plot in Figure 5.4.3 shows that the

model captures well both the body of the vorticity distribution and its extremes.
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Figure 5.4.3: QQ plot (with 95% tolerance intervals) comparing observed marginal
distributions to vorticities from a set of simulated storm tracks of the same number as
those in the observed set.
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5.4.4 Cyclolysis

The termination of a storm and its track, termed cyclolysis, is not well defined in the

observed track dataset, as discussed in Section 5.2. There are a number of instances

where a storm terminates at a value of vorticity that is significantly larger than the

critical threshold defined by the tracking algorithm, suggesting storms can fade quickly.

This motivates the need for a stochastic termination mechanism to be applied to the

simulated storm, as discussed in Section 5.1. The exploratory analysis in Section 5.2

suggests several factors influence the risk of termination, including vorticity, age and

location. We model these covariate effects using a logistic generalised additive model

(Wood, 2006). We estimate a probability of termination at each simulated 3-hourly time

step of the storm for t ≥ 8 in order to replicate the constraint of the tracking algorithm

only to consider storms that last for at least 24 hours. The termination mechanism is

implemented after the storm track enters the region shown in Figure 5.2.1. Let Tt be a

Bernoulli random variable such that:

Tt =


1 when the storm terminates at time t

0 otherwise

So Tt ∼ Bernoulli(pt), where

pt =


0 t < 8

exp {
∑q

i=1 si(νi,t)}
1 + exp {

∑q
i=1 si(νi,t)}

t ≥ 8

where si is a smooth non-linear function of covariate νi with i ∈ (1, . . . , q), and q is

the number of covariates. The smooth functions are represented by penalised regression

splines, where the smoothing parameter is determined using generalised cross validation

(GCV) and the model is fitted using a penalised maximum likelihood formulation. For

more details on additive models, see Wood (2006).
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The effect of the covariates on the model fit was assessed using AIC. The best-fitting

model under this criterion consisted of functions of several variables including vorticity,

age, longitude and latitude. As hypothesised based on the exploratory data analysis, the

fitted model shows that a track is more likely to terminate if the vorticity is low or the

storm has experienced a large sudden reduction in vorticity. A track is also more likely

to terminate if it is older. The QQ plot in Figure 5.4.4 shows that storm lifetimes are

being well captured by the model, while the spatial density of lysis locations compares

well with the observed (see Figure 5.2.2). In both cases, storms tend to terminate over

the northeast Atlantic and northwest Europe.
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Figure 5.4.4: QQ plot (with 95% tolerance intervals) comparing observed storm lifetimes
with lifetimes of storms simulated from the model (left). One unit of age is defined as
one 3-hourly interval. Spatial density of storm lysis locations (right) based on a set of
storm tracks simulated from the model of the same number at those in the observed
set.
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5.4.5 Risk analysis

As discussed in Section 5.4.3, the extreme weather impact caused by extratropical

storms is complex and warrants further investigation. As the vorticity of a storm

is known to be correlated with characteristics of large wind speed events, it is use-

ful for practitioners to be aware of the rate and size of extreme vorticity events in

different regions. We can estimate the probability of such events through Monte

Carlo simulation. For illustration purposes, we fix our region of interest to be a

longitude and latitude range containing the UK; in particular, we define the region

Γ = {(x, y) : x ∈ (−11◦, 2◦); y ∈ (50◦, 60◦)}. To estimate the probability of exceeding a

vorticity ω in this region, we calculate

P̂r(Ωt > ω |X t ∈ Γ) =

∑N
i=1

∑ni

j=1 I{ωij > ω,xij ∈ Γ}∑N
i=1

∑ni

j=1 I{xij ∈ Γ}
, (5.4.4)

where I is the indicator function and xij and ωij denote the location and vorticity

respectively at the jth time step of the ith storm, ni denotes the time length of storm

i and N denotes the number of simulated storms. One could alternatively characterise

a risk measure in terms of the maximum vorticity of a storm, denoted ωmax, such that

P̂r(Ωmax > ωmax |X t ∈ Γ) =

∑N
i=1 I{maxj ωij > ωmax,xij ∈ Γ}∑N

i=1 I{xij ∈ Γ}
,

which would remove the possibility that multiple excesses could be observed in the same

storm. For the purpose of illustration, however, we continue with the characterisation

in (5.4.4).

We simulate N = 84, 000 synthetic storms from our model, which represents approxi-

mately 1, 000 years worth of storms, assuming the same average number of storms per

year as observed in the data. Figure 5.4.5 shows the spatial density of the synthetic

storms; it is clear that the model is capturing the spatial extent of the observed tracks as
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Figure 5.4.5: Spatial density of a set of synthetic storm tracks simulated from the
model.

shown in Figure 5.2.2. We assess the model fit by constructing 95% confidence intervals

of the spatial density in each cell using a nonparametric bootstrap. Model estimates

of the density were within these intervals more than 99% of the time, which we deem

sufficient evidence to suggest that the model is performing well.

Using the set of synthetic storms, we can estimate ωr, the r-year return level, that is,

the vorticity value we expect to exceed once every r years in Γ, which we obtain using

order statistics of the simulated data. Figure 5.4.6 shows estimates of the r-year return

level for Γ from the observed data and using the Monte Carlo simulations from the

model, along with 95% confidence interval corresponding to the model estimate, which

we obtained using a parametric bootstrap. The model replicates well the tail behaviour

of observed vorticities in this region, although estimates of tail risk are slightly higher

under our model. Our approach allows us to estimate return levels corresponding to

events beyond the range of the data, meaning we can estimate the vorticity correspond-
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ing to a 100-year or 1000-year event, for example.
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Figure 5.4.6: The r-year return level curve for Γ estimated empirically for a range of
r from the observed data (red) and from the Monte Carlo simulation from the model
(black). The black dashed lines represent 95% confidence intervals derived using a
parametric bootstrap.

One of the most destructive events to impact the UK in the last 35 years was Storm

Herta, which caused approximately $1.5 billion worth of damage after hitting northern

Europe in February 1990 and had a maximum observed vorticity of 13.36 × 10−5s−1

(Roberts et al., 2014). Through Monte Carlo simulation, we can estimate the return pe-

riod of this event and assess the relative risks of extreme vorticity events over space. Fig-

ure 5.4.7 shows the return period corresponding to an observation of ω = 13.36×10−5s−1

over different grid cells in a region containing the UK on a 4◦ × 3◦ grid. Storm Herta

reached its maximum vorticity at x = (1.89◦, 55.63◦). The estimated return period

of this event in the cell containing this location (under this particular discretisation

of space) is approximately 107 years, with 95% confidence intervals (38.49, 230.98)

obtained using a parametric bootstrap. This event is much less rare in the North
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Figure 5.4.7: Return period corresponding to a vorticity value of ω = 13.36× 10−5s−1

over space, estimated from the model through Monte Carlo simulation.

Atlantic, where the estimated return period at one location is 18 years (7.94, 46.19).

This illustrates the strength of our model in assessing the relative risk of such extreme

vorticity events over the spatial domain. Similarly, Figure 5.4.8 shows the 100-year

and 1, 000-year return levels estimated from the model under the same discretisation of

space, again highlighting the increased probability of observing extreme vorticities in

the North Atlantic compared to the UK and mainland Europe.

5.5 Discussion

We have developed a novel approach for simulating extratropical cyclone tracks for the

winter half year in the North Atlantic and European domain based on a stochastic

model that captures the evolution and structure of observed storm systems. The storm

track model is constructed by exploiting the spatio-temporal structure within observed

storm tracks to initialise, propagate and terminate an individual storm, producing a
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Figure 5.4.8: The 100-year (left) and 1, 000-year (right) return level over space, esti-
mated from the model using Monte Carlo simulation.

synthetic track which reflects the key physical characteristics of these weather systems.

Track climatologies derived from very large numbers of simulated tracks generated from

the model reproduce well the observed spatial variation of the vorticity, lifecycle and

tracks of storms.

For practitioners, our model is useful for improving risk assessment related to extreme

weather driven by extratropical cyclone activity. The limited observed record means

that risk assessments based on empirical evidence are highly uncertain and restricted to

observed intensities, with no extrapolation possible beyond the range of the data. By

supplementing the observed data with synthetic tracks from our physically-motivated

model, probabilities of rare events can be calculated with increased confidence, including

events of intensity not yet seen, which can assist in the design of defensive infrastruc-

tures. The robust validation of the simulated storm track climatology supports such an

approach. We find that the return period of storms with the same vorticity as storm

Herta in February 1990, which caused approximately $1.5 billion worth of damage in

northern Europe, is relatively frequent at 10− 25 years over the North Atlantic, reduc-

ing to ∼ 80 years for Scotland and to ∼ 200 years for central France.
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The effect of a changing climate on the climatology of the North Atlantic storm track

and the potential future risk from extreme storms is of pressing concern but one which

is also challenged by the sampling issues addressed in this chapter. Earlier studies have

indicated a poleward shift in the storm track with decreasing frequency and increasing

intensity (McCabe et al., 2001; Bengtsson et al., 2006) whilst more recent studies have

indicated that the future response is regionally and seasonally dependent (Zappa et al.,

2013) with uncertainty arising from competing physical processes and large internal

variability in the climate system (Shaw et al., 2016). Our storm track model provides

another tool to assess such changes and future risk through its application to storm

track data from future climate simulations.

Improvements to the storm track model, both in terms of its physical realism and utility,

include capturing the annual cycle of storm track characteristics. During the summer

the preferred path of extratropical cyclones migrates northwards and returns south-

wards for winter, a feature the track model does not currently capture. Furthermore,

large scale modes of atmospheric variability, such as the North Atlantic Oscillation

(NAO) are known to influence the path and frequency of extratropical storm tracks

and the subsequent risk of extreme rainfall (Brown, 2017). The NAO, an anomalous

dipole pressure pattern between the Icelandic low and the Azores high, significantly

modifies the strength of the large scale westerly flow and location of the storm tracks.

A positive NAO is associated with increased cyclonic activity in Northern Europe, while

southern Europe is typically susceptible to more storm events during a negative NAO

phase (Mailier et al., 2006). Exploring the annual cycle of track behaviour and their

dependence an NAO represent interesting avenues for future work, enabling simulation

of synthetic tracks specific to season and NAO phase.



Chapter 6

Modelling the spatial extent and

severity of extreme European

windstorms

6.1 Introduction

While the winter climate of the United Kingdom and northern Europe is typically as-

sociated with mild, wet weather that poses little infrastructual or societal risk, there

has been an increased focus in recent years on the impact of windstorms in this part

of the world. These events are often the consequence of extratropical cyclones, and are

directly linked to the occurrence of flooding, transport chaos and considerable damage

to infrastructure. Roberts et al. (2014) describe a comprehensive catalogue of Euro-

pean windstorms in the period 1979-2012 that contains extensive information related

to the meteorology and monetary impact of each storm. Storm Daria, which occurred

in January 1990, is believed to be the most destructive windstorm in this period, with

an estimated insured loss of $8.2bn.

113
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Windstorms are often a consequence of the passage of extratropical cyclones. Extrat-

ropical cyclones are synoptic-scale weather systems associated with low pressure that

generally originate in the North Atlantic and progress northeasterly towards northern

Europe. These systems can be characterised by paths of local vorticity maxima, which

we refer to as tracks. Cyclones are typically formed as a result of horizontal temperature

gradients and evolve according to a particular lifecycle with associated frontal systems

(Shapiro and Keyser, 1990). Windstorms tend to occur along the boundary where cold

and warm air masses converge, commonly referred to as a weather front (Hewson and

Neu, 2015). A large body of research exists on cyclone identification, storm tracking

and feature extraction in reanalysis datasets (Murray and Simmonds, 1991; Hodges,

1995), which produce good approximations of how a track develops in space and time.

However, methods don’t currently exist to track the evolution of windstorms relative

to the cyclone centre, and how to quantify these in a robust way.

The data record is relatively short with regard to storm tracks, and even more so with

regard to windstorms, which motivates the need for a statistical model to provide extra

information about the possible extreme, long-term characteristics of windstorms that

are generated by the extratropical cyclone. In particular, we would like to assess the

likelihood of observing more severe storms than those observed, where these might oc-

cur, and how large the spatial extent of the event might be. We would also like to assess

the joint risk of multiple locations experiencing the same windstorm event. This is par-

ticularly difficult to model as the sites experiencing the event are largely determined

by the position of the track relative to these sites. We therefore require a method that

accounts for the spatial variability of the storm track in quantifying the risk associated

with windstorms at multiple sites. This chapter describes an approach to simulate

synthetic windstorms that statistically represents the winds within the cyclone, which

can be used in practice to assess the marginal and joint risk of these weather systems
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over Europe while accounting for the varying probability of storm tracks over the region.

A common approach to statistical modelling of extreme wind speeds is to use tech-

niques from extreme value analysis, which use models built on asymptotic arguments

to estimate probabilities of events beyond the range of the data. In meteorological

applications, such probabilities are commonly used by practitioners to design infras-

tructure appropriately to defend against the natural hazard being studied. The most

widely-used approach in extreme value analysis is to consider excesses above a suit-

ably high threshold. Consider a sequence of independent and identically distributed

(i.i.d.) random variables X1, . . . , Xn. Under weak conditions on the Xi, the unique,

non-degenerate distribution that the scaled excesses of a threshold by Xi converge to,

as the threshold tends to the upper limit xF of Xi, is the generalised Pareto distribution

(GPD) (Pickands, 1975; Davison and Smith, 1990). We make the assumption that this

limiting result holds for a large enough threshold u. The GPD takes the form

Pr(Xi − u > x|Xi > u) =

(
1 +

ξx

σu

)−1/ξ

+

, x > 0 (6.1.1)

where c+ = max(c, 0) and where σu > 0 and ξ ∈ R denote the scale and shape param-

eters respectively. The shape parameter is invariant to the choice of threshold but the

scale parameter is threshold-dependent. The threshold u is typically determined using

some standard selection diagnostics (Coles, 2001) such as ensuring that the parameters

are stable with respect to the threshold for all threshold choices larger than u.

There have been numerous studies using extreme value models to estimate extreme

wind speeds (Coles and Walshaw, 1994; Fawcett and Walshaw, 2006; Ribatet, 2013).

However, these models have no consideration of the physical processes generating the

extremes. Some recent studies have, however, modelled extreme winds in the context

of an extratropical cyclone. Della-Marta and Pinto (2009) use a GPD model to assess
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changes in extreme wind intensity under climate change scenarios, which led to results

showing that that the frequency of intense wind events in Europe is predicted to in-

crease. Sienz et al. (2010) extended this approach to model the effect of the North

Atlantic Oscillation (NAO) index. Bonazzi et al. (2012) modelled the tail dependence

of wind speeds between locations over Europe using a bivariate extreme value copula

and found dependence to be greater in the west-east direction, which is consistent with

the passage of extratropical cyclone tracks over Europe. More recently, Youngman and

Stephenson (2016) use extreme value analysis coupled with a geostatistical model to

capture the spatio-temporal development of windstorms over Europe, but again direct

influence of the storm track is not accounted for.

The approaches described above share a common philosophy in that windstorms are

modelled in an Eulerian frame of reference. In fluid mechanics, this refers to the sce-

nario whereby an observer measures observations of a process at a fixed location while

the process, e.g., a windstorm, passes over. This is the most common approach to

statistical modelling, with the advantage that one can build large spatial data sets with

time series at each location being observed. However, if one’s concern is focused more

on modelling the evolution and influence of the process itself, a Lagrangian frame of

reference is required. Historically, Eulerian approaches have been used to model obser-

vational data from sources such as weather gauges. However, recent advances in climate

modelling have resulted in the increased availability of high-resolution datasets that are

spatially and temporally complete, in which large-scale processes can be modelled in

a Lagrangian framework. Previous climate studies on extratropical cyclones in a La-

grangian framework include Catto et al. (2010), Rudeva and Gulev (2011) and Dacre

et al. (2012). This approach to modelling requires following the process and collecting

observations as it moves through space and time. This is a natural framework on which

to build a model for windstorms, as it allows us to explore and model the behaviour of
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extreme winds relative to the storm track as it moves across the North Atlantic. This

is especially useful as many sites have not experienced events of a large spatial extent

or magnitude during the observational record, possibly as a consequence of the path

storms have taken.

In Chapter 5, a model is described such that synthetic storm tracks are generated that

replicate the climatology of extratropical cyclones in the North Atlantic. This model

also allows the generation of larger extreme storms, with regard to vorticity, than previ-

ously observed. In this chapter, we present an extension to this work that allows for the

simulation of synthetic wind events relative to the storm tracks generated by the model

of Chapter 5. In particular, we are interested in modelling in a Lagrangian framework

the most damaging wind events, which we refer to as windstorms, relative to the centre

of an extratropical cyclone. We first describe a model for the area affected by strong

winds in the vicinity of the storm centre, which we refer to as a footprint. We repre-

sent the footprint as an ellipse and model the evolution of its characteristics through

time relative to the storm centre. Next, we describe an approach for modelling the

magnitude and spatial distribution of the extreme winds within the footprint. These

approaches allow us to generate a series of footprints for multiple windstorms associated

with the synthetic storm tracks of Chapter 5, providing a method for estimating the

risk associated with extreme windstorms over the North Atlantic and Europe.

The chapter is structured as follows. In Section 6.2, we introduce the data and our

methods for extracting the features of the windstorm from the data. We also detail an

exploratory analysis of these features in this section. We discuss our modelling strategy

in Section 6.3, introducing our approaches to modelling the evolution of the windstorm

footprints and the extreme winds within the footprints. We examine some key results

in Section 6.4, before concluding in Section 6.5 with some discussion.
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6.2 Windstorm definition and exploratory analysis

6.2.1 Data description

As in Chapter 5, our work uses storm track data covering the North Atlantic and

European domain. In particular, our dataset consists of storm track locations at 3-

hourly intervals with an associated vorticity measure representing the strength of the

storm. Storms are identified and tracked over the period 1979-2014 from the ERA-

Interim reanalysis dataset (Dee et al., 2011) using a feature extraction approach outlined

in Hoskins and Hodges (2002) based on the tracking algorithm introduced in Hodges

(1995). We restrict our attention to the set of storm tracks produced during an extended

winter period (October-March), when storms are widely regarded to be most intense.

We exclude Mediterranean storms as these often arise as a result of convective behaviour

in the atmosphere and are not captured well by reanalysis data (Akhtar et al., 2014).

We denote the longitude and latitude coordinates of the storm track at time t by Lont

and Latt respectively. The vorticity associated with the track at (Lont,Latt) is denoted

by Ωt.

Our model is based on wind speed data from the EURO4 numerical weather prediction

model (Standen et al., 2017), which is a downscaled version of the ERA-Interim re-

analysis dataset. Data are available on a 4 km spatial resolution over Europe and part

of the North Atlantic, amounting to 1, 100, 000 cells (see Figure 6.2.1). Values are ob-

tained at hourly intervals over the period 1979-2014. We linearly interpolate the storm

track locations and vorticity within each 3-hourly interval to match the hourly tempo-

ral resolution of the wind speed data. We select only the wind speed fields at times

corresponding to the set of storm tracks. In particular, as we are looking to model the

effect of the storm track on the spatio-temporal evolution of wind speeds in the vicinity

of the track, we isolate the field of interest as a square-shaped region centred at the
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Figure 6.2.1: The region corresponding to the availability of data from the EURO4
numerical weather prediction model.

storm centre with sides of approximately 1, 600 km in length (see Figure 6.2.2, which

in the left panel shows such a region at a time step when storm Daria was located over

the UK). We believe that this field is large enough so that the extreme winds generated

by a windstorm are sufficiently captured.

6.2.2 Marginal model

Initial investigation of the data confirms, as expected, that winds over the sea are

markedly stronger than those over land (see Figure 6.2.2, left panel). This is largely

due to open water exerting significantly less drag on the atmosphere in contrast with

the land surface, orography and man-made structures that impede strong winds. The

contrast in scale over land and sea, and to a lesser extent, over low-lying and high-

lying land, motivates a standardisation of wind speeds in each cell to have a common

marginal distribution. Let X(s, t) be a random variable denoting the wind speed in cell

s at time t, for s = 1, . . . , 1, 100, 000. We propose a marginal model for X(s, t) of the
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form

Fs(x) =


F̂s(x) x ≤ us

1− λus
(

1 + ξs
x− us
σus

)−1/ξs

x > us,

, (6.2.1)

where F̂s denotes the empirical distribution function for realisations of X(s, t). For

realisations above us, the GPD in (6.1.1) is used as a conditional model for excesses

above us, with cell-specific parameters (σus , ξs). To undo this conditioning, a third

parameter λus , denoting the probability of an exceedance of us, must be specified.

Parameter stability plots were checked at a number of cells, which indicated that a

threshold corresponding to the 98% quantile would be a good choice for all cells. We

therefore choose this quantile to be the cell-specific threshold in each cell. Parameter

estimates are obtained using maximum likelihood techniques. We note that we do not

attempt to impose spatial smoothness on the form of Fs.

Figure 6.2.3 shows the parameter estimates of the GPD corresponding to each cell in

the region over Europe as shown in Figure 6.2.1 along with the threshold, which cor-

responds to the 98% quantile in each cell. This shows explicitly the contrast in wind

speed magnitudes between locations on land and sea. This contrast is also reflected

in the estimation of the scale parameter, but the shape parameter exhibits no such

contrast between land and sea, with most estimates occurring in the region (−0.2, 0),

indicating that the distribution of wind speeds has a finite endpoint in general. The

numerical maximisation algorithm used to obtain the parameter estimates mostly con-

verges, however there are certain regions that exhibit unusual behaviour. For example,

the 98% quantile corresponding to the threshold is a lot higher in areas over Iceland

than other land locations, while the Italian Alps see unusually high estimates of the

shape parameter. As weather variables are not represented well by reanalysis data in

regions of high orography, as evidenced by these two particular locations, we exclude

regions with orography > 500m in our analysis. Marginal bias of this type has been
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Figure 6.2.2: Wind speeds, in m/s, at 3pm on January 25th, 1990 in the vicinity of
Storm Daria (left) and standardised onto Exp(1) margins (right). The storm centre is
represented by the cross. The white box contains an example of a localised convective
event. Land/sea borders are not explicitly shown on in the left panel, but can be seen
due to the contrast in magnitude between winds over land and sea.

studied, with recalibration methods proposed in Howard and Clark (2007), which offers

a possible extension of our method.

We propose a marginal standardisation to unit exponential Exp(1) margins using a

probability integral transform using the marginal model (6.2.1). We define XE(s, t) to

be the relative wind speed on Exp(1) margins in cell s, such that for all cells and all

times

XE(s, t) = − log{1− Fs(X(s, t))},

where Fs is defined as in (6.2.1). We use the term relative wind speeds to describe

XE(s, t) as this quantity defines wind speeds relative to the marginal characteristics of

cell s. Figure 6.2.2 (right panel) shows the effect of the standardisation on one time

step of Daria. In particular, we see spatially correlated values of high relative wind
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Figure 6.2.3: The extreme value threshold (left) used in the specification of the GPD
model, along with parameter estimates of the scale (centre) and shape parameters
(right) for each cell.

speeds over both land and sea as a result of the transform and the land/sea contrast

is almost entirely removed. This approach provides some intuition regarding the shape

of the windstorm event without the influence of the marginal characteristics at each

location, which should allow for a simpler approach to modelling the spatial extent of

the event. In this sense, our approach is based on a copula modelling strategy over

space (Joe, 1997).

6.2.3 Feature extraction

Figure 6.2.2 shows that, as well as the large band of strong relative winds clustered near

the storm centre, small localised fragments of high relative wind speeds are visible on

the western edge of the footprint. Such events are due to localised convection and not

due to the larger scale dynamics of the storm. Since we believe them not to be directly

linked with the extratropical storm system, we are not concerned with modelling these

features. Our work is focused on modelling the features of an extratropical cyclone that

occur on larger spatial scales and have the potential to produce much larger impacts

than localised convective events. This motivates developing some methodology to ex-

tract the main features of interest from the standardised fields, in particular, the larger
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cluster of high relative wind speeds. We apply a spatio-temporal Gaussian filter (Nixon

and Aguado, 2012) to each field, which removes the effect of the small-scale convective

events. From the locations for which the filtered data exceed some arbitrary threshold

v, we extract the relative wind speeds. Relative winds corresponding to the other loca-

tions are set to zero, thus masking convective wind events and other non-extreme winds.

In many situations, this filtering step masks the entire field, which we interpret as there

being no significant windstorm activity, that is, the windstorm is in an inactive phase.

When this isn’t the case, the filtered footprint consists of at least one cluster of cells

corresponding to non-zero relative wind speeds. Since our objective is to model the

primary effects of the storm on the surrounding winds, we extract the largest cluster of

cells in terms of size and use this to define the features of the windstorm event. We do

this using the DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

algorithm (Ester et al., 1996), which recursively groups cells into distinct clusters based

on adjacency to neighbouring cells. Unlike other standard clustering approaches, this

can be achieved without having to specify the number of clusters in advance. We then

extract the largest cluster of cells in size as defined by the algorithm, an example of

which is shown for storm Daria in Figure 6.2.4 (left panel).

Since we are interested in modelling how the storm influences the magnitude and spatial

extent of wind speeds, we construct a set of variables to adequately represent and

summarise these characteristics. We therefore impose the shape of the region obtained

as a result of the filtering and clustering steps to take the form of an ellipse. We believe

an ellipse is a suitably flexible shape to choose as it can describe well the position (by

the centre of the ellipse), size and shape (by the area defined by the semi-major and

semi-minor axes) of an event. To define this ellipse, we use Khachiyan’s optimisation

algorithm for fitting the minimum-area ellipse enclosing a set of cells (Moshtagh, 2005;



CHAPTER 6. SPATIAL EXTENT AND SEVERITY OF WINDSTORMS 124

Figure 6.2.4: The largest cluster of relative winds (left) after applying the spatio-
temporal filter and DBSCAN clustering to the field in Figure 6.2.2, the ellipse-shaped
footprint determined by Khachiyan’s algorithm (centre) and an example of simulating
wind speeds from our model within this ellipse (right).

Todd and Yıldırım, 2007). Specifically, consider a set S containing m locations in 2-

dimensional space such that S = {s1, . . . , sm} ∈ R2. We can define an ellipse by the set

E such that

E = {s ∈ R2 : (s− c)TE(s− c) ≤ 1},

where c is the centre of the ellipse and E is a positive-definite matrix. The area of E is

{detE−1}1/2
. Therefore, to determine the ellipse of minimum area containing the cells

in S, we must find a vector c and positive definite matrix E which minimises detE−1

subject to (si − c)TE(si − c) ≤ 1 for i = 1, . . . ,m. This optimisation problem is solved

using conditional gradient ascent methods, the details of which can be found in Mosh-

tagh (2005). We remove the masking of wind speeds below v for the empty regions of

the ellipse so that a full ellipse of relative winds is defined. Figure 6.2.4 (centre panel)

shows the ellipse fitted to the largest cluster of cells for the same time step of Daria as

in Figure 6.2.2. For the remainder of the chapter, we refer to the ellipse of high relative

wind speeds associated with an extratropical cyclone as a footprint. In the scenario

whereby a series of footprints are associated with a single cyclone, we refer to this as a
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Figure 6.2.5: Graphical representation of the model variables derived from the ellipse
shape used to summarise the windstorm footprint.

windstorm. If this series has gaps without footprints between periods with footprints,

we refer to these as inactive and active phases of the windstorm.

Figure 6.2.5 shows the set of random variables we extract from the set of footprints that

summarise the shape and magnitude of windstorms at a given time step relative to the

storm centre (Lont,Latt) with associated vorticity Ωt. We use the notation Et to denote

the subset of cells in the spatial domain in Figure 6.2.1 contained within the footprint.

We define At and Bt to be the semi-major and semi-minor axes of the ellipse respectively

at time t. The quantity RE
t represents the grid cell distance between the storm centre

and the centre of the ellipse at time t, while ΘE
t ∈ [−π, π] denotes the bearing of the

centre of the ellipse relative to due south at time t. We define Γt ∈ [−π/2, π/2] to be the

orientation of the ellipse relative to due north, while Wt denotes the maximum relative

wind speed observed in the footprint at time t. We define RW
t as the grid cell distance

between the centre of the ellipse and the cell corresponding of maximum relative wind

speed at time t, while ΘW
t ∈ [−π, π] denotes the bearing between the two cells relative

to due south.
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6.2.4 Exploratory analysis

We undertake an extensive exploratory analysis on a number of aspects driving and in-

fluencing the evolution of windstorm activity, of which some findings are reported here.

First, we investigate the dependence structure of characteristics of the ellipse represent-

ing the windstorm footprint, as shown in Figure 6.2.5. We assess the factors influencing

the activation and termination of windstorm events. We also look at some quantities

representing the spatial distribution of wind speeds relative to the storm centre, and

how these compare with previous studies. Finally, we explore how the distribution of

relative wind speeds within the footprint varies with respect to characteristics of the

storm track and footprint.

Figure 6.2.6 shows boxplots illustrating some key dependencies between variables of a
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footprint. The area of the ellipse, which is proportional to ∆t = At × Bt, tends to

increase as vorticity and maximum relative wind speed increases, indicating that the

strongest events tend to occur on a larger spatial scale. The radius RE
t tends to de-

crease as Ωt increases, although the effect is small, suggesting that footprints tend to

occur closer to the storm centre when a large vorticity is observed. Maximum relative

wind speed Wt tends to increase as Ωt increases, though this dependence is weak. We

also examine partial autocorrelation plots (not shown) to determine how individual

components of the ellipse depend on their lags. This shows evidence of a second-order

temporal dependence structure in most components reflecting the smooth evolution of

footprints through the windstorm.

A consequence of our extraction of footprints is the loss of a large number of wind fields

that have been removed for being non-extreme. Thus, if we are to construct our model

that simulates footprints in time, we need a model that explains the factors influenc-

ing whether a windstorm is active or not. With regards to windstorm activation, we

investigate the components of the track that may trigger an event. We find that the

probability of windstorm activations tends to increase as vorticity increases, signalling

a direct link between the intensity of the storm track and the occurrence of windstorm

events. With regard to an inactive phase caused by termination of an active phase, we

use the variables of the windstorm footprint in addition to information from the track.

We find that a storm is more likely to terminate if it is associated with small values

of relative maximum wind speed, vorticity and area. This indicates a termination is

more likely if the windstorm weakens both in terms of its magnitude and its spatial scale.

This exploratory analysis also shows some spatial variation in the occurrence of foot-

prints. Figure 6.2.7 (top panel) shows the density of storm track locations when wind-

storms are in an active phase. This shows that windstorms tend to occur over the North



CHAPTER 6. SPATIAL EXTENT AND SEVERITY OF WINDSTORMS 128

−20 0 20 40

40
45

50
55

60
65

70

Longitude

La
tit

ud
e

0.000

0.005

0.010

0.015

0.020

0.025

0.030

−20 0 20 40

40
45

50
55

60
65

70

Longitude

La
tit

ud
e

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Figure 6.2.7: The spatial density of track locations that are associated with observed
(top) and simulated (bottom) windstorms.

Atlantic and western Europe, with the density decaying as one moves to the edges of

the domain. The reductions in density on the western boundary are not considered to

be physical but the result of both the filtering of footprints to avoid their truncation by

the EURO4 boundary and the effect of the boundary within the EURO4 simulation of

weather. Most extratropical cyclones enter the EURO4 domain through this western

boundary but their intensity is diminished due to the coarser resolution of the driving

GCM. Their subsequent intensification takes a number of time steps which results in
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Figure 6.2.8: The mean, 95% quantile, 99% quantile and density of the occurrence of
footprints relative to the storm centre (represented here as a cross) over all observed
footprints.

smaller footprints and lower winds towards this boundary (see Figure 6.2.3).

We collect footprints over all fields centred at a point on the storm track, like in Fig-

ure 6.2.2, and assess the spatial distribution of these fields relative to the storm centre.

We find that some events are picked up spuriously by the feature extraction algorithm

that may not be generated as a result of the extratropical cyclone. With this in mind,

we exclude ellipses whose centre occurs on the outer edges of the footprint as well as

events that are sufficiently small. Figure 6.2.8 shows the mean, 95% quantile and 99%
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quantile of wind speeds over the remaining fields after this filtering is implemented.

This shows that relative wind speeds tend to be larger in regions southwest of the

storm centre, which arise with the passage of cold fronts. This figure also shows the

density of events over all footprints, illustrating that windstorms are most likely to oc-

cur southwest of the storm centre, with very few events occurring in the northern half

of the field in comparison. These are consistent with the observations of Catto et al.

(2010) and Rudeva and Gulev (2011).

Unusual events with large magnitudes are detected on the northwest and southeast

edges of the domain. Despite our filtering, these events may not be generated by the

extratropical cyclone; however, they are very rare and their impact minimal. The mean

behaviour shows a local minimum occurring close to the storm centre, which likely arises

as a result of low wind speeds occurring at pressure minima (Catto et al., 2010), which

is known to be spatially adjacent to where the maximum vorticity occurs (Hoskins and

Hodges, 2002).

We investigate the factors influencing the distribution of relative wind speeds within

each footprint through analysis of their mean and standard deviation. This reveals,

intuitively, that the mean and standard deviation of winds tend to increase as the

maximum relative wind increases. In contrast, an increase in vorticity tends to slightly

reduce the mean relative wind, while increasing the standard deviation. Additionally,

the standard deviation of wind increases as the area of the ellipse increases, which one

would expect given the increased chances of observing smaller and larger values of wind

speed. By construction the strongest relative winds tend to occur near the location

of the maximum, determined by RW
t and ΩW

t , while weaker relative winds are more

likely closer to the perimeter of the ellipse. Additionally, the relative winds tend to

exhibit anisotropic properties, which tends to manifest in a ‘stretching’ of the band
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of strongest winds oriented in the direction perpendicular to Θt. As the windstorm

evolves, this gives the effect of the winds ‘bending’ around the storm centre.

6.3 Windstorm modelling

6.3.1 Introduction

We propose an approach for simulating windstorms relative to an extratropical cyclone

track. In particular, we describe methods, motivated by our findings in Section 6.2.4,

for simulating a footprint at each time step of a windstorm along with the spatial

distribution of wind speeds within a footprint. The times at which a windstorm is in an

active phase with respect to a cyclone track are denoted by {tS, . . . , tA, . . . , tT}, where

tS and tT denote the times corresponding to the chronological beginning and end of an

active phase respectively and tA denotes the time at which the windstorm is activated

within the simulation. If the windstorm simulation is activated at time tA, forwards

and/or backwards propagation routines, outlined in Section 6.3.2, are used to model the

forward and backwards evolution of the footprint through the windstorm until times

tT and/or tS are reached, which we refer to as the termination of the active phase. In

practice, it can be more subtle as a windstorm can have repeated phases of activity and

inactivity along a cyclone track. Details of this feature are discussed in Section 6.3.3.

Stochastic models for determining tA, tS and tT are also described in Section 6.3.3,

along with a more detailed description of the simulation procedure. Our approach for

modelling the wind speed fields within the footprint is outlined in Section 6.3.4.

6.3.2 Footprint modelling

Our approach aims to model the spatio-temporal evolution of footprints using the el-

lipse structure of Section 6.2.3. As this structure describes the spatial extent of a

windstorm at a given time step, we can model the temporal evolution of the footprint
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by exploiting the time series structure of the footprint variables shown in Figure 6.2.5,

which determine the position, size and magnitude of a footprint relative to the storm

centre. Supported by the exploratory data analysis in Section 6.2.4, we assume that

the multivariate time series Zt = {At, Bt,Wt, R
E
t ,Θ

E
t , R

W
t ,Θ

W
t ,Γt} jointly follows a

stationary kth order Markov process during active phases along the cyclone track and

are conditionally independent given the track information over tracks and on different

active phases along a track. By the Markov property, the distribution of the current

value of a process is affected only by the previous k time steps of the process. We

define an arbitrary d-dimensional kth order stationary multivariate Markov process

Z1:n = {Ztj : t = 1, . . . , n; j = 1, . . . , d}, where Ztj denotes the t-th time step of the

j-th component and n is the length of the time series. Consequently, it is only necessary

to model the joint distribution of Zt:t+k, from which the conditional density function of

Zk+1 | Z1:k can be derived. This joint distribution is determined by its marginal dis-

tributions and its copula. This structure also allows us to capture dependence between

the different components of the time series, e.g., vorticity and distance from the storm

centre.

Under the assumption of stationarity of Zt:t+k, observations of this d× (k + 1) vector

are identically distributed over t and with joint density function f . A simple choice is

to model f nonparametrically using a multivariate kernel smoothed density function f̂ ,

such that

f̂(z) =
1

n

n∑
i=1

KH (z − zi) , (6.3.1)

where KH denotes the kernel function, defined with respect to a (k+ 1)× (k+ 1) band-

width matrix H. The function KH is chosen to be the multivariate Gaussian density

function with variance H. Our exploratory analysis in Section 6.2.4 helps to identify

which components of Zt:t+k are independent or conditionally independent, which sim-

plifies the form of H and helps to identify k. For example, we found k = 2 and a weakly
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dependent relationship between Ωt and Wt with Ωt and Wt conditionally independent

given At and Bt. This allows us to simplify our model for Pr(Zt+k ≤ z | Zt:t+k−1 =

zt:t+k−1), for which we use the kernel estimate of the conditional distribution function,

the formulation of which can be found in Appendix C.1.

Our approach is designed to construct the joint distribution for {ZtS , . . . ,ZtA , . . . ,ZtT },

where {tS, . . . , tA, . . . , tT} are the consecutive time steps at which the windstorm is

active, as discussed in Section 6.3.1. The characteristics of the footprint are influenced

by the storm track components (Lont,Latt,Ωt) so our footprint propagation routine

needs to reflect this. To account for the spatial variation of the footprint characteristics,

we simulate realisations of Zt only using conditional kernel density estimates based on

footprints associated with values of (Lont,Latt) in ∇t, where ∇t is a region of size

10◦× 6◦ centred at (Lont,Latt). First, consider forward propagation from a given value

ofZtA whilst the windstorm remains in an active phase. For all times tA+1 ≤ j ≤ tA+2.

We simulate forwards realisations of Zj from a conditional kernel density derived from

f̂(z), as described in Appendix C.1, such that

rEj ∼ RE
j | RE

tA:j−1 = rEtA:j−1,Ωj = ωj, (Lonj,Latj) ∈ ∇j

θEj ∼ ΘE
j | ΘE

tA:j−1 = θEtA:j−1, R
E
j = rEj , (Lonj,Latj) ∈ ∇j

aj ∼ Aj | AtA:j−1 = atA:j−1,Ωj = ωj, R
E
j = rEj ,Θ

E
j = θEj , (Lonj,Latj) ∈ ∇j

bj ∼ Bj | BtA:j−1 = btA:j−1,Ωj = ωj, R
E
j = rEj ,Θ

E
j = θEj , (Lonj,Latj) ∈ ∇j

wj ∼ Wj | WtA:j−1 = wtA:j−1, R
E
j = rEj ,Θ

E
j = θEj , Aj = aj, Bj = bj, (Lonj,Latj) ∈ ∇j

γj ∼ Γj | ΓtA:j−1 = γtA:j−1,Θ
E
j = θEj , (Lonj,Latj) ∈ ∇j

rWj ∼ RW
j | RW

tA:j−1 = rWtA:j−1, Aj = aj, (Lonj,Latj) ∈ ∇j

θWj ∼ ΘW
j | ΘW

tA:j−1 = θWtA:j−1, (Lonj,Latj) ∈ ∇j.
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When j > tA + 2, we simulate from the conditional kernel model

rEj ∼ RE
j | RE

j−k:j−1 = rEj−k:j−1,Ωj = ωj, (Lonj,Latj) ∈ ∇j

θEj ∼ ΘE
j | ΘE

j−k:j−1 = θEj−k:j−1, R
E
j = rEj , (Lonj,Latj) ∈ ∇j

aj ∼ Aj | Aj−k:j−1 = aj−k:j−1,Ωj = ωj, R
E
j = rEj ,Θ

E
j = θEj , (Lonj,Latj) ∈ ∇j

bj ∼ Bj | Bj−k:j−1 = bj−k:j−1,Ωj = ωj, R
E
j = rEj ,Θ

E
j = θEj , (Lonj,Latj) ∈ ∇j

wj ∼ Wj | Wj−k:j−1 = wj−k:j−1, R
E
j = rEj ,Θ

E
j = θEj , Aj = aj, Bj = bj, (Lonj,Latj) ∈ ∇j

γj ∼ Γj | Γj−k:j−1 = γj−k:j−1,Θ
E
j = θEj , (Lonj,Latj) ∈ ∇j

rWj ∼ RW
j | RW

j−k:j−1 = rWj−k:j−1, Aj = aj, (Lonj,Latj) ∈ ∇j

θWj ∼ ΘW
j | ΘW

j−k:j−1 = θWj−k:j−1, (Lonj,Latj) ∈ ∇j.

Backwards simulation is implemented similarly, but with substituting Zj for ZtA−j.

The details of whether a forward or backward routine should be used are found in

Section 6.3.3. Realisations of RW
j and ΘW

j are rejected if the simulated position of

the maximum occurs outside of the simulated ellipse. For marginal components of Zt

where the extremal behaviour is of interest, e.g., Wt, one could follow the approach of

Chapter 5 by specifying a model for the extremal marginal and temporal dependence

structure; this is discussed in more detail in Section 6.5.

6.3.3 Activation and termination

As discussed in Section 6.3.1, we require an approach for determining the times at

which a windstorm is in an active phase. Whether the windstorm is active or not

is modelled by a Bernoulli logistic generalised additive model (Wood, 2006) based on

covariate information from the physical structure of an extratropical cyclone. Sec-

tion 6.2.4 demonstrated that the windstorm is typically active at the time when the
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maximum vorticity is observed, which we denote by tΩ, as this time is associated with

the strongest winds over the cyclone track. However, we observe some instances where

the windstorm is inactive at tΩ, but is active at other times on the cyclone track. Simi-

larly, the termination of a windstorm is highly uncertain, but it is shown in Section 6.2.4

to be linked to weakening events in terms of spatial scale and magnitude.

Specifically, first consider the activation of a windstorm phase. Let Tt be a Bernoulli

random variable such that:

Tt =


1 the storm is active at time t

0 otherwise.

So Tt ∼ Bernoulli(pt), where

pt =
exp {

∑q
i=1 βi(νi,t)}

1 + exp {
∑q

i=1 βi(νi,t)}
,

where βi is a smooth non-linear function of covariate νi with i ∈ (1, . . . , q), where

q is the number of covariates and νi,t denotes the realisation of the ith covariate at

time t. The smooth functions are represented by penalised regression splines, where

the smoothing parameter is determined using generalised cross validation (GCV) and

the model is fitted using penalised maximum likelihood. For more details on additive

models, see Wood (2006). An identical formulation is used for the termination of a

windstorm.

For a storm track, let t denote the time from its start t = 1 until its end t = l. We first

attempt to activate the windstorm simulation process at time 1 ≤ tΩ ≤ l. If a wind-

storm is determined to be active at tΩ, then tA = tΩ and we propagate forwards and

backwards in time using the methods described in Section 6.3.2 until the active phase
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terminates. If a windstorm is inactive at tΩ, we proceed successively forwards in time

along the track and check whether a windstorm becomes active at times tΩ < t ≤ l. If

a windstorm is inactive at all these times, we proceed successively backwards along the

track and check whether an activation occurs at times 1 ≤ t < tΩ. If a windstorm is

first found to be active during the forwards procession such that tA > tΩ, we set tS = tA

and propagate forwards using the approach in Section 6.3.2 until termination at time

tT ≤ l. Likewise, if a windstorm is first found to be active during the backwards pro-

cession such that tA < tΩ, we set tT = tA and propagate backwards until termination at

time tS ≥ 1. We allow for the possibility that multiple phases of consecutive footprints

can occur on the same track. If tS > 1, we proceed backwards along the track to check

if the windstorm reactivates, in which the same procedure applies until t = 1. Similarly,

if tT < l, we proceed forwards along the track to check if the windstorm reactivates, in

which the same procedure applies until t = l.

Given that a windstorm is active, some initial footprint characteristics are required

for propagating the storm in time. In doing so, we would like to model the joint

distribution of ZtA = {AtA , BtA ,WtA , R
E
tA
,ΘE

tA
, RW

tA
,ΘW

tA
,ΓtA}, where ZtA represents the

characteristics of the footprint at time tA. Our model should account for the dependence

structure between ZtA and the components of the track, specifically (LontA ,LattA ,ΩtA).

We therefore simulate a realisation of ZtA jointly from ZtA | (LontA ,LattA ,ΩtA), which

we estimate using a conditional kernel density (see Appendix C.1). If tA = tΩ, we use all

observed footprint data ztΩ in constructing our density function. Otherwise, if tA 6= tΩ,

we use zτ where τ = {tA : tA 6= tΩ}, that is, footprint data corresponding to when the

windstorm is activated during the forwards and backwards procession along the track.
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6.3.4 Modelling wind speeds within a footprint

We also require an approach for modelling the spatial distribution of relative wind

speeds within a footprint at each time step of a windstorm. A natural class of models

to consider is Gaussian processes, which are widely used in geostatistics to model spa-

tial data. A Gaussian process can be used to describe the joint distribution of random

variables over a continuous domain such as space inside a footprint, while for any finite

collection of locations in the space the variables follow a multivariate Gaussian distri-

bution. For a comprehensive overview of Gaussian process modelling for spatial data,

see Cressie (1993), Stein (1999) and Diggle and Ribeiro (2007).

Let {XE(s, t) : s ∈ Et} denote the field of relative wind speeds in the ellipse Et at time

t, where XE(s, t) is marginally Exp(1) distributed over t for each s. Let Dt be the

distribution function of XE(s, t) for all s ∈ Et at time t. We use a probability integral

transform to convert to a Gaussian field, which we denote by XG(s, t), with

XG(s, t) = Φ−1
[
Dt(X

E(s, t))
]
, (6.3.2)

for all s ∈ Et and all t, where Φ denotes the standard Gaussian distribution function.

We make the assumption that {XG(s, t) : s ∈ Et} follows a Gaussian process with zero

mean and unit variance for each t such that

XG(s, t) ∼ GP(0, 1, ρ((s1, s2)JtΨt)),

where ρ(·) denotes an isotropic correlation function, with s1, s2 ∈ Et and

Ψt =

cosψt − sinψt

sinψt cosψt

 Jt =

1 0

0 ζt

 ,
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where ψt is the time-varying anisotropy angle representing the counter-clockwise rota-

tion of the space and ζt > 1 is the time-varying anisotropy ratio, which controls the

degree of stretching along the angle where correlation decays most slowly with increas-

ing distance. Supported by the exploratory analysis in Section 6.2.4, we fix ψt to be

the angle perpendicular to Θt, while empirical evidence suggests that a good choice of

ζt would be the ratio At/Bt.

The correlation function is typically chosen so that the correlation between XG(s1, t)

and XG(s2, t) decreases as the distance |s2−s1| between the sites increases. A common

choice of correlation function is the Matérn family, which has the form

ρ(u) = {2κ−1Γ(κ)}−1
(u/αt)

κKκ(u/αt), (6.3.3)

where κ > 0 is a shape parameter that determines the smoothness of the underlying

process, Kκ denotes a modified Bessel function of the second kind of order κ, and

αt > 0 is a time-varying scale parameter with dimensions of distance. The Matérn

family is a generalisation of other common choices of correlation functions. For ex-

ample, choosing κ = 0.5 gives the exponential correlation function, while as κ → ∞,

the form reduces to a Gaussian correlation function ρ(u) = e−αtu2
. The parameters κ

and αt are highly non-orthogonal, but larger values of κ are typically associated with

smoother fields, while larger values of αt gives fields that are correlated at larger dis-

tances. We fix κ = 0.6, which in practice generates fields of similar smoothness to the

observed fields. We estimate the parameter αt corresponding to each footprint using

variogram methods. We avoid the use of likelihood methods due to the computational

difficulties that arise with large spatial datasets like ours. For more details on inference

for Gaussian processes, see Diggle and Ribeiro (2007). Exploratory analysis suggests

that αt is constrained by the value of ∆t, which is proportional to the area of the

ellipse. We therefore model αt | ∆t using a conditional kernel density, the formula-
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tion of which is outlined in Appendix C.1. At time t, we generate a realisation of αt

conditional on the simulated realisation of ∆t determined by the model in Section 6.3.2.

We require an approach for determining the marginal distribution of relative wind

speeds within the simulated footprint. As discussed in Section 6.2.4, the relative wind

speeds within the ellipse are linked to the vorticity of the track, the size of the event and

the maximum relative wind speed. We construct a weighted nonparametric estimate of

the distribution function Dt, where Dt denotes the distribution function of wind speeds

within the footprint at time t. Using a kernel, we weight observed relative wind speeds

in Et conditional on the corresponding values of Wt, ∆t and Ωt, from which Dt can be

estimated using Monte Carlo methods.

We incorporate information about the physical structure of the footprint in determin-

ing the structure of the Gaussian field {X̃G(s, t) : s ∈ Et} using conditional simulation

(Diggle and Ribeiro, 2007). We impose three conditions on the simulated fields: that

the maximum relative wind speed is simulated at the position determined by RW
t and

ΘW
t ; that the lower limit of Dt occurs on the outer perimeter of the ellipse; and that the

lower limit of Dt occurs everywhere in the region corresponding to the local minimum

of wind speeds (see Section 6.2.4) near the storm centre when a footprint is simulated

in the vicinity of this region. The first and second conditions create a two-dimensional

pseudo-Brownian bridge between the position of maximum and the perimeter of the

footprint. To impose the third condition, we specify a second ellipse centred at the lo-

cal minimum with random dimensions for size; specifically we fix the maximum length

of the semi-major and semi-minor axes of this ellipse to be 40 and 35 units of grid-cell

distance respectively, with random perturbations modelled as Exp(0.05) random vari-

ables. These values were found to replicate well the average behaviour of wind speeds

in the region at which the local minimum occurs.
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After simulation of {X̃G(s, t) : s ∈ Et}, we transform this field to obtain a field of

relative wind speeds conditional on the characteristics of the footprint such that

X̃E(s, t) = D−1
t

(
Φ[X̃G(s, t)]

)
.

An example of this is shown in Figure 6.2.4 (right panel), in which we have simulated a

field of relative wind speeds conditional on the footprint of storm Daria at this particular

time step. Our model captures the correlation structure of the field quite well, with

the weakest winds occurring on the outer perimeter of the ellipse and the large winds

occurring in similar locations to the observed footprint. For this simulated field, the

fine structure in terms of the decay from the maximum relative wind speed being more

isotropic than the observed field. When viewed in an Eulerian framework, this level

of spatial difference is not too important as these footprints move over space with the

cyclone track, so blur out this distinction. Having obtained the simulated relative wind

fields, we can then transform these onto the observed margins, such that for each s ∈ Et

X̃(s, t) = F−1
s (1− e−X̃E(s,t)),

where Fs denotes the marginal model for cell s, as defined in (6.2.1). With this formula-

tion, we are assuming the relative wind fields at consecutive time steps are conditionally

independent given temporally correlated realisations of Wt and αt. While this assump-

tion gives good results in practice, further investigation may be necessary to assess

whether performance could be improved by specifying a spatio-temporal structure in

the correlation function ρ(·).
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Figure 6.4.1: QQ plots, with 95% tolerance intervals, comparing the observed and
simulated marginal distributions of RE

t , Θt, ∆
1/2
t and Wt. Simulated values are based

on footprints relative to 2,944 synthetic tracks from the model of Chapter 5.

6.4 Results

We examine the performance of the windstorm model in terms of simulated footprint

characteristics and then the wind speeds within the footprint. The joint risk from

extreme windstorms at locations in northern England and eastern Germany is then

explored by combining the windstorm model presented here with the track model of

Chapter 5 to produce estimates of joint event probabilities through simulation.



CHAPTER 6. SPATIAL EXTENT AND SEVERITY OF WINDSTORMS 142

6.4.1 Validation of footprint model

We explore first whether the characteristics of windstorm footprints are being captured

through an assessment of the marginal distributions of the individual components and

their dependence structure. QQ plots based on the simulation of footprints using the

model described in Section 6.3.2, applied to 2, 944 synthetic storm tracks, the same

number as in the observed record, were assessed both for the observed tracks and

tracks generated by the model of Chapter 5. Both showed similar positive results, so

we illustrate only the latter (see Figure 6.4.1). They show that the marginal distribu-

tions of radius, bearing, proportional area and relative maximum wind speed are being

captured well by the model. Figure 6.4.2 shows that, when compared with Figure 6.2.6,

the dependence structure of these components is also consistent with the observations.

We can thus conclude that the physical structure of the observed windstorm footprints

is replicated sufficiently by the model.

We examined the components of a windstorm influencing the activation and termina-

tion models that were outlined in Section 6.3.3. In both cases, we investigate multiple

combinations of covariates and compare model fit using AIC. The best fitting activation

model includes functions of vorticity, longitude and latitude. Figure 6.4.3 (left panel)

shows the estimated smooth function βi associated with vorticity, which shows that βi

tends to increase approximately linearly as vorticity increases. This has the effect that

the probability of activation tends to increase as vorticity increases, which reflects our

findings from Section 6.2.4. The best fitting termination model includes functions of

∆
1/2
t and Wt. Figure 6.4.3 (centre and right panels) shows that βi tends to decrease

non-linearly as both ∆
1/2
t and Wt increase, which means that the probability of ter-

mination also tends to decrease. The effect of ∆
1/2
t tends to level off at high values,

though wide confidence intervals suggest that this effect is highly uncertain. This anal-

ysis confirms our belief that weakening events in terms of spatial extent and maximum
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Figure 6.4.2: Boxplots showing dependence structure of some aspects of the simulated
footprints. Simulated values are based on footprints relative to 2,944 synthetic tracks
from the model of Chapter 5.

relative wind speed are consistent with the termination of an active phase of a wind-

storm. Figure 6.2.7 (bottom panel) shows the spatial density of windstorm occurrence

in the simulations. We see that the large-scale spatial variation of windstorms from the

model reflects that of the observations in Figure 6.2.7 (top panel).

6.4.2 Validation of model for wind speeds within a footprint

We check that the model replicates well the physical structure and location of winds

relative to the storm centre. For this task we simulate the wind speeds within the

footprints generated in Section 6.4.1 using the wind model of Section 6.3.4. Figure 6.4.4

shows the mean, 95% quantile, 99% quantile and spatial density of simulated winds
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Figure 6.4.3: The smooth functions βi (with 95% confidence intervals) of the logistic
model showing the effect of Ωt on the probability of windstorm activation (left) and of

∆
1/2
t (centre) and Wt (right) on the probability of termination.

from all simulated footprints relative to the centre of the storm, quantities that were

previously studied for the observed data in Figure 6.2.8. The comparison of observed

and simulated winds is very good; in particular it replicates the feature that the largest

magnitudes tend to be found in the region southwest of the storm centre. The local

minimum that occurs near the storm centre as a result of small pressure gradients is also

captured. The upper quantiles of the spatial distribution are slightly more dispersed

compared to the observed characteristics; however, we are satisfied that the large-scale

features have been captured by the model. Figure 6.4.4 also shows that high magnitude

events can be generated by the model on the outer edges of the domain. These are rare

occurrences, but we believe these to be attributed to the detection of spurious events

in the feature extraction algorithm. Section 6.5 discusses possible improvements to the

algorithm so that the detection of spurious events is minimised.

By simulating windstorms relative to synthetic tracks, our model also allows us to

perform an Eulerian analysis at different locations over the North Atlantic and Europe.
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Figure 6.4.4: The mean, 95% quantile, 99% quantile wind speed and density of within-
footprint winds relative to the storm centre (represented by the cross) over a set of
simulated windstorms.

We assess how our model captures the distribution of extreme winds at a number of

locations to examine whether our approach succeeds in generating physically realistic

synthetic values at these different sites. We compare our simulated values with winds

that are contained within the observed footprints at each site. QQ plots for six locations,

three on land and three at sea, are shown in Figure 6.4.5. The marginal model captures

the contrast in scale between observations on land and at sea, and our windstorm model

largely captures the marginal extremal behaviour of wind speeds at these sites.
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Figure 6.4.5: QQ plots, with 95% tolerance intervals, at six locations comparing the
distribution of wind speeds from the observed and simulated windstorms.

6.4.3 Joint risk from windstorms

We use our approach to estimate quantities related to joint risk, that is, the probability

that multiple locations are affected by extreme wind speeds simultaneously. As our

model captures the spatial extent of these meteorological events, we should therefore

capture the risk of multiple locations experiencing extreme wind speeds from the same

storm. The results are based on 50,000 extratropical cyclone tracks generated using the

track model of Chapter 5. For each track, a windstorm is simulated using the wind-

storm model of Section 6.3. This dataset represents approximately 600 years of data,

under the assumption that there are on average 811 windstorms per year as found in

the observed record.

Figure 6.4.6 (left panel) compares the joint behaviour on common Exp(1) margins

between wind speeds in Lancaster and Manchester, two cities in northern England
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73km apart. The joint correlation structure is largely captured by the model, which

has the added benefit of being able to simulate joint events of magnitudes beyond the

range of the observation record. One way of summarising the joint extremal behaviour

of a process at arbitrary locations s1 and s2 is to estimate the quantity χ(q; s1, s2)

(Coles et al., 1999), defined as

χ(q; s1, s2) = Pr(XE(s2, t) > xq | XE(s1, t) > xq),

where xq is the 100q% quantile of the common Exp(1) distribution. Estimates of the

quantity χ(q; s1, s2) obtained from the observed and simulated data are shown for a

range of xq in Figure 6.4.6 (right panel), where s1 and s2 are chosen to be sites in Lan-

caster and Manchester respectively. Estimates from the data and the large simulated

sample from the model are obtained as conditional proportions. Figure 6.4.6 shows that

extremal dependence tends to decrease as the magnitude of the event increases. Here,

95% binomial confidence intervals are used to assess the uncertainty for the observed

data and the Monte Carlo uncertainty for the simulated data. To obtain these inter-

vals, we use an effective sample size nθ(xq) defined in terms of the sample size n and a

threshold-based extremal index θ(xq) (Ferro and Segers, 2003; Eastoe and Tawn, 2012)

to account for temporal dependence. For the model-based estimates, the confidence

intervals do not represent the uncertainty due to the model parameter estimation. A

fuller assessment of model uncertainty can be obtained using a parametric bootstrap,

which would have the effect of widening the model-based confidence intervals. De-

spite not representing the full uncertainty in the model-based estimates, it is clear that

there is no statistically significant difference between data and model-based estimates

of χ(q; s1, s2) here over q within the range of the observed data. Critically though, this

figure also illustrates how our model allows estimation of χ(q; s1, s2) beyond the range

of the observational record, indicating that χ(q; s1, s2) continues to decay to 0 beyond

the observed data.
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Figure 6.4.6: Scatter plot (left) showing observed (red) and simulated (black) wind
speeds on an Exp(1) scale in Manchester and Lancaster. Estimates of χ(q; s1, s2) mea-
suring extremal dependence between these locations as a function of xq (right) using
the observed (red) and simulated (black) data, with 95% Binomial confidence intervals
using an effective sample size. The vertical line denotes the maximum observed wind
speed on the Exp(1) scale.

Estimating χ(q; s1, s2) at a fixed critical level xq at a set of sites s2 can allow us to ex-

plore the spatial extent of extreme events. Figure 6.4.7 (top panels) shows χ(q; s1, s2)

calculated across a number of locations in northern England, with s1 being Lancaster

in this instance. We explore two cases where xq is chosen to be the 90% quantile and

the 10-year return level at each site. In particular, we see that the probability surface

decays more steeply as |s2−s1| increases for the more extreme events. We also see that

Liverpool, Manchester and Leeds are more likely than not to experience an event on

the 90% quantile simultaneously to Lancaster; however, this scenario is less likely for an

event corresponding to the 10-year return level. Similarly, in Germany, as shown in the

bottom panels in Figure 6.4.7, the probability of experiencing an extreme windstorm

event simultaneously with Berlin decreases as the event becomes more extreme. The

spatial extremal dependence is slightly stronger for Berlin than Lancaster, as might be

expected given Berlin is more inland on a large land mass. In both regions, there is little

evidence of anisotropy in the extremal dependence structure, with perhaps some indi-

cation of stronger dependence in the northwest-southeast direction centred at Berlin.
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The results in Figures 6.4.6 and 6.4.7 illustrate how the spatial extent of an extreme

windstorm event becomes more localised as the magnitude increases. This implies that

in the limit, extreme values at each location tend not to occur simultaneously, which

corresponds to the property of asymptotic independence. Models for asymptotic de-

pendence, that is, when χ(q; s1, s2) → c > 0 as q → 1 for s1 6= s2, lead to extreme

values tending to occur simultaneously, are well-established but tend to over-estimate

the probability of extreme joint events given that the underlying process is asymptot-

ically independent, i.e., when c = 0. Models that capture asymptotic independence

are less well-established; see Ledford and Tawn (1996), Heffernan and Tawn (2004),

Wadsworth and Tawn (2012a) and Winter et al. (2016) for some examples. We have

shown that our model captures the property of asymptotic independence over space,

while accounting for the complex non-stationarity of the extratropical cyclone system.

6.5 Discussion

We have presented a novel approach to modelling windstorms in a Lagrangian frame-

work. We described two models; first, for the evolution and development of the footprint

relative to the storm track, and second, for the spatial distribution of extreme winds

within the footprint. The Lagrangian framework allows us to pool information regard-

ing events over the spatial domain being studied, which allows extrapolation of the

characteristics of windstorms over space. The model provides a mechanism for gener-

ating synthetic windstorm events, the analysis of which allows improved estimation of

joint risk associated with extreme windstorms over Europe.

There are, however, opportunities to improve the performance of the model. While the

feature extraction approach introduced in Section 6.2.3 appears to extract the main

features of a windstorm, steps could be taken to improve the robustness of this proce-
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Figure 6.4.7: Estimates of χ(q; s1, s2) for northern England (top) and eastern Germany
(bottom) conditioning on a critical value xq, where s1 is the cell where Lancaster (top)
and Berlin (bottom) are located. In the left panels, xq is taken to be the 90% quantile,
while xq is taken to be the 10-year return level in the right panels. Both regions are of
equal size.

dure. Firstly, one could conduct a sensitivity study on the choice of threshold v, which

controls the level under which the wind speed fields are masked. Ideally, one should

choose a high enough value of v such that convective events and non-extreme winds

are masked, but small enough so that the localised features of the windstorm aren’t

excluded. “Sting jets”, meteorological phenomena associated with rapidly developing

storms, can produce damaging winds on very small spatial scales (Baker, 2009; Hewson

and Neu, 2015) and therefore it is important that the extraction algorithm should not

exclude such features.

The feature extraction algorithm could also be improved to minimise the detection of
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spurious footprints that may not be generated by the extratropical cyclone. We see

examples of this through high magnitude events occurring on the outer edges of the

domains in Figure 6.2.8. After the spatio-temporal filtering step, our algorithm se-

lects the largest cluster in size to define the footprint. One could alternatively define a

score function that incorporates multiple criteria in a detection strategy, which could

be motivated by physical intuition regarding the structure of a windstorm. For exam-

ple, the score function could give a higher weight to clusters with a bearing relative to

the storm centre closest to southwest, where most footprints seem to occur. To induce

some smoothness between consecutive time steps, one could assign a higher weight to

a cluster such that the Euclidean distance between the position of this cluster and the

selected cluster at the previous time step is minimised. Exploration of different score

functions could add valuable improvements to our feature extraction algorithm, and

ultimately, the model.

Our conditional kernel strategy for modelling {Zt} appears to perform well. However,

we could alternatively model the extremal behaviour of Wt using the approaches de-

scribed in Winter and Tawn (2017) and Chapter 5, whereby a GPD model is defined

above a high threshold and the extremal temporal dependence structure is modelled

using a kth order extremal Markov process. This approach stems from the conditional

multivariate extreme value methodology of Heffernan and Tawn (2004). We did not

implement this approach as part of this study due to the additional complexity involved

and that extrapolation occurred naturally through the features of our model. In addi-

tion, the observed values of Wt correspond to upper tail values of Xi, the distribution

of wind speeds in cell i. Because we have a large dataset of observations in the upper

tail, we felt that standard statistical modelling approaches were sufficient in this case.

However, investigation of the benefits of imposing an extremal temporal dependence

structure on the upper tail of Wt represents an interesting avenue of future research.



Chapter 7

Conclusion

In this chapter, we conclude by reflecting on the contributions made by this thesis.

We also present possible opportunities for building upon the models developed in this

thesis.

7.1 Summary of contributions

This section summarises the main findings of this thesis. In particular, we reflect on

the contributions made to improving inference for existing extreme value methodology,

and also to using these methods to develop a physically-motivated Lagrangian statis-

tical model for European windstorms. The tools presented in this thesis have their

benefits for practitioners interested in answering questions related to more accurate

representations of risk derived from extreme value models, and also for those interested

in quantifying risk associated with extratropical cyclones.

In Chapter 3, we proposed an approach for improving estimation of the Poisson process

model for threshold excesses. Unlike the generalised Pareto distribution, the Poisson

process model parameters are invariant to the choice of extreme value threshold, and

thus offer a more natural parameterisation for covariate modelling. However, the non-

152
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orthogonal dependence structure of the model parameters makes inference difficult.

In this chapter, we proposed a reparameterisation of this model using a tuning pa-

rameter defined in the likelihood, which transforms the parameters so that they are

near-orthogonal. We implemented this in the Bayesian framework, in which the mixing

associated with the Markov Chain Monte Carlo routine was substantially improved.

We presented some theoretical results giving an analytical expression for the optimal

selection of the tuning parameter in the i.i.d. case, based on minimising the asymptotic

posterior correlations of the parameters. In the non-i.i.d. case, we also described an

approach for the selection of the tuning parameter which requires a numerical minimi-

sation of the posterior correlations. We detailed results based on application to both

simulated data and rainfall data in Cumbria, UK, achieving promising results. This

approach increases the possibility that this extreme value modelling framework will be

applied more widely in practice.

Chapter 4 described a Bayesian spatial hierarchical model for threshold excesses using a

generalised Pareto distribution in the data layer, applied to precipitation data in Great

Britain. These models aim to borrow strength across locations to improve estimation

of marginal return levels, and to reduce uncertainty of these estimates. They assume

conditional independence over time and space, thus ignoring the concept that extreme

precipitation events can occur simultaneously across locations. These models are well-

established, but users of this approach often ignore accounting for the dependence in

the data when quantifying return level uncertainty, after the misspecification of condi-

tional independence has been made. In this chapter, we presented an approach, based

on previous studies on max-stable processes, that correctly quantifies the uncertainty in

return level estimates under misspecification of the model. In particular, we described

an adjustment to the likelihood that inflates the asymptotic posterior variance to adjust

for spatial and temporal dependence in the data. Application of this approach to the
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precipitation data showed that model uncertainty increases relative to the approach

where conditional independence is assumed correct. This chapter highlighted the im-

portance of quantifying model uncertainty correctly given a model applied under false

assumptions, which we hope serves as a useful guideline to practitioners when conduct-

ing risk assessments based on these models.

In Chapter 5, we introduced the first component of our Lagrangian model for Euro-

pean windstorms by presenting a stochastic mechanism for modelling the lifecycle and

track of extratropical cyclones. As discussed in Chapter 5, extreme winds are gener-

ated in the wake of a storm track, which is defined as a path of local vorticity maxima.

Motivated by findings from an exploratory data analysis, we developed a model from

which synthetic tracks can be simulated by extracting the features of the track that

determine its movement and intensity. In particular, we simulated initial conditions

of track speed, direction, vorticity and location, before exploiting the temporal depen-

dence structure of these variables to propagate the track forward in time and space. An

extreme value approach is used to model the tail behaviour of vorticity, which allows us

to simulate storms that are more intense than those observed. Monte Carlo simulation

allowed us to estimate the probability of observing extreme events in a region around

the UK, where we showed that the intensity of storm Herta over the UK corresponded

to a return period of 107 years, whereas the return period of observing a storm of this

intensity over parts of the North Atlantic is 10−25 years. Our model serves as a useful

tool for practitioners interested in quantifying risk associated with extratropical storms,

in particular answering questions related to the spatial variability of storm tracks, the

probability of observing extreme storms and where such storms are likely to occur.

In Chapter 6, we developed a model for European windstorms relative to synthetic

extratropical cyclone tracks produced using the model in Chapter 5. We initially stan-
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dardised wind speed fields over Europe and the North Atlantic onto common margins,

which removed features dominated by marginal characteristics, specifically the contrast

in wind speed magnitudes over land and sea. We specified some filtering and clustering

methods for extracting the extreme winds generated by the extratropical cyclone sys-

tem, before using an ellipse structure to summarise the position and spatial extent of

the windstorm relative to the cyclone centre. We used a Markov model to propagate

the characteristics of the ellipse in time, while specifying models for the activation and

termination of a windstorm along the track. We also described a model for simulat-

ing physically realistic wind fields within the ellipse generated by the Markov model.

We concluded with an illustration of how one could assess the joint risk of extreme

windstorm events, with examples in northern England and Germany.

7.2 Further work

In this section, we present three possible ways which methods described in this thesis

could be improved, along with some guidelines regarding how this could potentially be

achieved.

7.2.1 Modelling the effect of climate indices on the track and

intensity of extratropical cyclones

The natural variability of the climate can have a significant impact on weather pat-

terns. This variability often manifests as an oscillation over a spatial domain, where

atmospheric conditions in certain regions of a domain can offset one another. One of

the first recognitions of this phenomenon was made by missionaries in Greenland in the

18th century, who noticed that severe winters there were concurrent with mild winters

in Denmark, and vice-versa. These oscillations in weather patterns can arise from shifts

in the climate system from a variety of sources, including sea-surface temperature and
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sea-level pressure. Today, these modes of climate variability are named and have been

well-studied. The El Nino-Southern Oscillation (ENSO), for example, refers to vari-

ations in the temperature of the surface of the tropical eastern Pacific Ocean and in

air surface pressure in the tropical western Pacific. However, in this analysis, we focus

on what is widely-regarded to be the dominant mode in the North Atlantic region, the

North Atlantic Oscillation (NAO).

The NAO describes the fluctuations in the difference of sea-level pressure between the

Icelandic low and the Azores high. As this difference increases, corresponding to a

positive NAO phase, the pressure gradient increases, leading to increased wind speed

activity in the North Atlantic. Positive NAO indices are also consistent with a north-

eastern shift in storm track activity, with a higher number of storms affecting Northern

Europe than the Mediterranean region. In constrast, a negative NAO index tends

to suppress westerly winds, causing the storm track to shift southwards towards the

Mediterranean and northern Africa, resulting in cold, dry winters in northern Europe.

The NAO can be described on a number of time-scales, with daily and monthly indices

freely available. Figure 7.2.1 shows the difference between the density of tracks corre-

sponding a negative NAO phase and tracks corresponding to a positive NAO phase.

This suggests that the NAO could be a major predictor of extratropical cyclone activ-

ity, and the modelling approach in Chapter 5 could be improved by incorporating this

phenomenon. However, NAO is difficult to forecast on short timescales, though there

have been some studies showing trends in the decadal behaviour of the NAO (Hurrell,

1995).

Figure 7.2.1 clearly shows the effect of NAO on the movement of a storm track, which

motivates an adjustment of our track model in Chapter 5 to incorporate this. A simple

and natural approach would be to simulate a realisation of track speed Vt and direction
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Figure 7.2.1: From analysis of the catalogue of observed storm tracks introduced in
Chapter 5: the difference in track density between the set of storms corresponding to
a negative NAO index and the set of storms corresponding to a positive NAO index.

Θt at time t conditional on the corresponding monthly NAO index. The monthly index

is chosen to best represent the low-frequency variability of extratropical cyclones. Let xj

denotes the location of the storm at time j and ∆j represent the grid cell corresponding

to this location. For all times 1 ≤ j ≤ k, where k is the order of the Markov process

jointly for {(Vt,Θt,Ωt)}, we adapt (5.4.1) and (5.4.2) by first simulating

θj ∼ Θj | Θ0:j−1 = θ0:j−1,xj ∈ ∆j,NAOj

vj ∼ Vj | V0:j−1 = v0:j−1,Θj = θj,xj ∈ ∆j,NAOj.

When j > k, we then simulate

θj ∼ Θj | Θj−k:j−1 = θj−k:j−1,xj ∈ ∆j,NAOj

vj ∼ Vj | Vj−k:j−1 = vj−k:j−1,Θj = θj,xj ∈ ∆j,NAOj.
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Figure 7.2.2 shows evidence of a weakly positive relationship between NAO index and

the maximum vorticity of a storm. This reflects the northward shift of storm tracks

during a positive NAO phase into regions where vorticity is highest (see Figure 5.2.4).

NAO could be incorporated into simulating realisations of vorticity in the same way

as with speed and direction of the track. The Monte Carlo approaches described in

Chapter 5 could be used to estimate the probability of observing an extreme vorticity

event given a specific phase of the NAO. Alternatively, given a long-term forecast, one

could estimate the marginal risk of extreme events by averaging over all events with a

specific NAO forecast.

Another interesting avenue of future work could involve the effect of NAO on the ex-

tremal behaviour of the process, in particular its effect on the marginal parameters of an

extreme value model, or perhaps even the temporal dependence structure of an extreme

vorticity event. One could follow the approach of Winter et al. (2016), who explored

the effect of ENSO on heatwave characteristics, in our study by modelling NAO as a

covariate in the dependence parameters of the conditional extremes approach. This

would be useful in answering questions related to whether the NAO has an effect on

the magnitude or duration of an extreme event.

7.2.2 Improved extraction of windstorm information

We described in Chapter 6 the procedure for extracting windstorm footprints from

fields of wind speeds in the vicinity of the storm centre. In particular, we detailed the

ellipse shape used to define the position and size of the footprint, as well as extracting

other features such as its orientation and magnitude. This approach appears to perform

well in practice, and in most cases the main features of the windstorm are detected.

However, there is evidence to suggest that steps can be taken to increase robustness of

the procedure.
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Figure 7.2.2: A boxplot defined at intervals of NAO of equal length showing the depen-
dence between NAO and the maximum vorticity of a storm

The regions of extreme wind speeds remaining after the spatio-temporal filtering of the

footprints are determined by masking below a pre-specified threshold ν. The choice of

ν isn’t straightforward as there is no intuition regarding what constitutes as ‘extreme’

for spatially filtered data. One should choose a high enough value of ν such that the

convective events and ordinary winds are masked, but small enough so that genuine

localised features of the windstorm aren’t excluded. Sting jets, for example, are intense

winds associated with downward flow originating from rapidly deepening depressions,

which tend to occur on very small spatial scales. They are largely attributed to be the

source of the destruction associated with the Great Storm of 1987 (Hewson and Neu,

2015). Therefore, we advise that a sensitivity study be carried out on the choice of ν

such that the most damaging features of the windstorm be captured appropriately.

Empirical analysis of the extracted ellipses describing the windstorm event shows that,

in some cases, the extracted ellipse does not evolve smoothly with respect to the storm

centre. In some cases, the ellipse appears to ‘jump’ in location between consecutive
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time steps as a consequence of our extraction algorithm detecting another region of

extreme winds. These may be a genuine feature of the windstorm, but in many cases,

the algorithm detects spurious events that are not generated by the cyclone. After the

spatio-temporal filtering of the footprints, the algorithm selects the largest region of

wind speeds remaining, which may be an arguably simplistic criterion to use.

An alternative approach could be to define a score that incorporates multiple criteria

in a detection strategy. These criteria could be defined using empirical observations or

physical intuition regarding the behaviour of a windstorm with respect to the storm

centre. For example, we know that the most extreme winds are generated along cold

fronts, which are usually situated to the southwest of the storm centre. Let ij = 1, . . . , n

be the number of distinct clusters remaining after the spatio-temporal filtering of the

footprints at time j. We could select i∗j ∈ {1, . . . , n}, the most likely cluster to be linked

to a windstorm event, such that

i∗j = arg max
i
Si,j,

where Si,j is a user-specified score function evaluated for cluster i at time j. One

example of such a score function could be

Si,j = ω1Ai,j + ω2Wi,j + ω3 exp{−|Θi,j − π/4|}+ ω4 exp{−|xi,j − xi∗j−1
|},

whereAi,j, Wi,j, represent the area and maximum relative wind speed (both transformed

to Uniform margins) respectively of cluster i and time j. The quantities Θi,j and xi,j

represent the bearing (relative to south) with respect to the centre of the storm and

position respectively, and xi∗j−1
denotes the position of the selected cluster at time j−1.

The quantities ω1, . . . , ω4 are weights defined such that
∑4

k=1 ωk = 1, which are user-

specified. The function Si,j gives high scores corresponding to clusters that have a
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large spatial extent and magnitude, while also giving higher scores to clusters located

southeast relative to the storm centre. This function attempts to overcome the issue of

windstorms ‘jumping’ in space between consecutive time steps by giving higher scores

to clusters that are closer in position to the selected cluster at the previous time step,

which could ensure that the cluster representing the windstorm evolves smoothly with

respect to the storm centre. Figure 7.2.3 shows an example of how this score function

chooses a different cluster compared to the approach we take in Chapter 6. We define

the position in this example to be the centre of each ellipse. We choose w1 = 0.2,

w2 = 0.2, w3 = 0.3 and w4 = 0.3. In this particular instance, the proposed score

function chooses the correct cluster based on a desirable bearing with respect to the

storm centre and the position of the cluster at the previous time step.

Another alternative approach to choosing the best cluster representing the windstorm is

to use a multi-cluster strategy in defining a windstorm, which may offer more physical

realism in representing its structure relative to the storm track. During extraction, one

could specify a fixed maximum number of clusters to extract, or define some criterion

on which to extract. For example, one could only extract the clusters whose size is

greater than a certain threshold. When simulating windstorm events, one could model

the number of clusters to simulate as a Poisson random variable. This would add

additional practical complexity to the model, but is worth exploring as a potential

means of improving the approach.

7.2.3 Developing a multi-hazard model

The work presented in this thesis, specifically in Chapters 5 and 6, could be the first

step to developing a multi-hazard model for extratropical cyclones in Europe. This

thesis has presented an approach for windstorms, the evolution of which we were able

to model using an ellipse structure. Of course, other natural hazards arise as a result of
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Figure 7.2.3: The clusters of relative wind speeds to choose under the feature extraction
algorithm. The cluster containing the triangle was chosen using the approach described
in Chapter 6, by taking the cluster of largest size. The cluster containing this circle was
chosen under our proposed improved score function. The cross represents the centre of
the storm.

extratropical cyclones, including precipitation and wave extremes, which pose similar

infrastructural and societal risks. It represents a wise course of action to explore, in our

proposed Lagrangian framework, how the spatial distribution of extreme precipitation

and wave height evolves with respect to the storm centre.

We have discussed several times in this thesis how extratropical cyclones are commonly

associated with the scenario when warm and cold air masses meet. The convergence

of airmasses tends to result in an uplift in air, which can lead to precipitation events.

The warm conveyor belt of the cyclone represents the main source of warm, moist air

that feeds the cyclone. It originates in the warm sector of the cyclone and flows pole-

ward parallel to the cold front east of the storm centre. It is typically associated with
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a large band of cloud, which produces extreme precipitation depending on the mois-

ture circulation in the atmosphere. Rudeva and Gulev (2011) present empirical results

showing that precipitation typically manifests east of the storm centre, and also that

the magnitude of an extreme precipitation event increases as the intensity of the storm

increases. This structure motivates the application of our Lagrangian statistical model

to precipitation extremes relative to the centre of a storm.

One of the biggest risks to infrastructure is the threat of flooding from compound

events, for example, extreme wind and rain events that occur simultaneously. Once an

approach is developed for modelling extreme precipitation arising from extratropical

cyclones, a natural area of further work would be to analyse some measures of joint

risk. In this thesis, we have analysed the probability of multiple sites experiencing the

same extreme windstorm event. Further work could aim to answer questions related

to the probability of one site experiencing extreme winds and another experiencing

extreme rain. For example, if location A upstream experienced high levels of rainfall

and location B downstream saw strong winds, flood defences at location B could be

threatened while a large volume of water is about to come downstream. The physical

structure of the meteorological event is key to answering these types of questions, and

it is wise to consider this information in the development of a statistical model. A

model with a similar structure as in Chapter 6 could give physical basis coupled with

statistical extrapolation to not only model multiple hazards simultaneously, but also

the progression of the event generating these hazards in space and time.



Appendix A

Supplementary Material for

Chapter 3

A.1 Proof: µ̂r = u when m = r

We can write the full likelihood for parameters θr given a series of excesses {xi} above

a threshold u as:

L(θr) = L1 × L2,

where L1 is the Poisson probability of r exceedances of u and L2 is the joint density of

these r exceedances, so that:

L1 =
1

r!

{
r

[
1 + ξ

(
u− µr
σr

)]−1/ξ

+

}r

exp

{
−r
[
1 + ξ

(
u− µr
σr

)]−1/ξ

+

}
,

L2 =
r∏
i−1

1

σr

[
1 + ξ

(
xi − µr
σr

)]−1/ξ−1

+

[
1 + ξ

(
u− µr
σr

)]1/ξ

+

.

164



APPENDIX A. SUPPLEMENTARY MATERIAL FOR CHAPTER 3 165

By defining Λ =
[
1 + ξ

(
u−µr
σr

)]−1/ξ

+
and ψu = σr + ξ(u−µr) we can reparameterise the

likelihood in terms of θ∗ = (Λ, ψu, ξ) to give:

L(θ∗) ∝ Λr exp {−rΛ}
r∏
i=1

1

ψu − ξ(u− µr)

[
ψu + ξ(xi − u)

ψu − ξ(u− µr)

]−1/ξ−1

+

[
ψu

ψu − ξ(u− µr)

]1/ξ

+

= Λr exp {−rΛ}
r∏
i=1

1

ψu

[
1 + ξ

(
xi − u
ψu

)]−1/ξ−1

+

.

Taking the log-likelihood and maximising with respect to Λ, we get:

l(θ∗) := logL(θ∗) = r log Λ̂− rΛ̂− r logψu −
(

1

ξ
+ 1

) r∑
i=1

log

[
1 + ξ

(
xi − u
ψu

)]
+

∂l

∂Λ
=

r

Λ̂
− r = 0,

which gives Λ̂ = 1. Then, by the invariance property of maximum likelihood estimators,

µ̂r = u, and using the identity for ψu, we get σ̂r = ψ̂u. Because the ξ-dependent term

in the log-likelihood is identical to that in a GP log-likelihood, the maximum likelihood

estimators of the two models coincide.

A.2 Derivation of prior for inference on θm

We define a joint prior on the parameterisation of interest θk. However, as we are

making inference for the ‘optimal’ parameterisation θm, we must derive the prior for

θm. We can calculate the prior density of θm by using the density method for one-

to-one bivariate transformations. Inverting (3.1.5) to get expressions for µm and σm,

i.e.

µm = µk −
σk
ξ

(
1−

(m
k

)−ξ)
= g1(µk, σk)

σm = σk

(m
k

)−ξ
= g2(µk, σk),
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we can use this transformation to calculate the prior for θm.

π(θm) = π(µm, σm, ξ)

= π(µk, σk, ξ)| det J |µk=g−1
1 (µm,σm),σk=g−1

2 (µm,σm),ξ=ξ,

where

det J =

∣∣∣∣∣∣∣∣∣∣
∂µm
∂µk

∂µm
∂σk

∂µm
∂ξ

∂σm
∂µk

∂σm
∂σk

∂σm
∂ξ

∂ξ
∂µk

∂ξ
∂σk

∂ξ
∂ξ

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
∂µm
∂µk

∂µm
∂σk

∂µm
∂ξ

0 ∂σm
∂σk

∂σm
∂ξ

0 0 ∂ξ
∂ξ

∣∣∣∣∣∣∣∣∣∣
=
∂σm
∂σk

∂ξ

∂ξ

=
(m
k

)−ξ
.

Therefore, π(θm) =
(
m
k

)−ξ
π(θk).

A.3 Fisher information matrix calculations for i.i.d

random variables

The log-likelihood of the Poisson process model with parameterisation θm = (µm, σm, ξ)

can be expressed as

l(θm) = −m
[
1 + ξ

(
u− µm
σm

)]−1/ξ

+

− r log σm−
(

1

ξ
+ 1

) r∑
j=1

log

[
1 + ξ

(
xj − µm
σm

)]
+

,
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where r is the number of exceedances ofX above the threshold u. For simplicity, we drop

the [·]+ subscript in subsequent calculations. In order to produce analytic expressions

for the asymptotic covariance matrix, we must evaluate the observed information matrix

Î(θm). For simplicity, we define vm = u−µm
σm

and zj,m =
xj−µm
σm

.

∂2l

∂µ2
m

= −m(ξ + 1)

σ2
m

[1 + ξvm]−1/ξ−2 +
ξ(ξ + 1)

σ2
m

r∑
j=1

[1 + ξzj,m]−2 ,

∂2l

∂σ2
m

=
2m

σ2
m

[1 + ξvm]−1/ξ−1vm −
m(ξ + 1)

σ2
m

[1 + ξvm]−1/ξ−2v2
m +

r

σ2
m

−

2(ξ + 1)

σ2
m

r∑
j=1

[1 + ξzj,m]−1 zj,m +
ξ(ξ + 1)

σ2
m

r∑
j=1

z2
j,m [1 + ξzj,m]−2 ,

∂2l

∂ξ2
= −m[1 + ξvm]−1/ξ

[
1

ξ
v2
m[1 + ξvm]−2 − 2

ξ3
log [1 + ξvm]

+
2

ξ2
[1 + ξvm]−1vm +

(
1

ξ2
log [1 + ξvm]− 1

ξ
[1 + ξvm]−1vm

)2
]

− 2

ξ3

r∑
j=1

log [1 + ξzj,m] +
2

ξ2

r∑
j=1

[1 + ξzj,m]−1 zj,m +

ξ + 1

ξ

r∑
j=1

[1 + ξzj,m]−2 z2
j,m,

∂2l

∂µm∂σm
=

m

σ2
m

[1 + ξvm]−1/ξ−1 − m(ξ + 1)

σ2
m

[1 + ξvm]−1/ξ−2vm

−ξ + 1

σ2
m

r∑
j=1

[1 + ξzj,m]−1 +
ξ(ξ + 1)

σ2
m

r∑
j=1

[1 + ξzj,m]−2 zj,m,

∂2l

∂µm∂ξ
= − m

σm

[
1

ξ2
[1 + ξvm]−1/ξ−1 log [1 + ξvm]− ξ + 1

ξ
[1 + ξvm]−1/ξ−2vm

]
+

1

σm

r∑
j=1

[1 + ξzj,m]−1 − ξ + 1

σm

r∑
j=1

[1 + ξzj,m]−2 zj,m,

∂2l

∂σm∂ξ
= − m

σm
vm

[
1

ξ2
[1 + ξvm]−1/ξ−1 log [1 + ξvm]− ξ + 1

ξ
[1 + ξvm]−1/ξ−2vm

]
+

1

σm

r∑
j=1

[1 + ξzj,m]−1 zj,m −
ξ + 1

σm

r∑
j=1

[1 + ξzj,m]−2 z2
j,m
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To obtain the Fisher information matrix, we take the expected value of each term in

the observed information with respect to the probability density of points of a Poisson

process. Let Z = X−µm
σm

, and R be a random variable denoting the number of excesses

of X above u. The density of points in the set Au can de defined by

f(x) =
λ(x)

Λ(Au)
=

[1 + ξz]−1/ξ−1

[1 + ξvm]−1/ξ
,

where λ is a function denoting the rate of exceedance. Then, for example,

EZ,R

{
R∑
j=1

[1 + ξzj,m]−2

}
= EREZ|R

{
R∑
j=1

[1 + ξzj,m]−2

}
= ER

{
REZ

{
[1 + ξZ]−2}}

= ER
{
R[1 + ξvm]1/ξ

∫ ∞
vm

[1 + ξz]−1/ξ−3 dz

}
=

m

2ξ + 1
[1 + ξvm]−1/ξ−2

Following this process, we can write the Fisher information matrix I(θm) as:

E
{
− ∂2l

∂µ2
m

}
=

m(ξ + 1)

σ2
m

[1 + ξvm]−1/ξ−2 − mξ(ξ + 1)

(2ξ + 1)σ2
m

[1 + ξvm]−1/ξ−2,

E
{
− ∂2l

∂σ2
m

}
= −2m

σ2
m

[1 + ξvm]−1/ξ−1vm +
m(ξ + 1)

σ2
m

[1 + ξvm]−1/ξ−2v2
m −

r

σ2
m

+

2m

σ2
m

[1 + ξvm]−1/ξ−1 [1 + (ξ + 1)vm]−

mξ

(2ξ + 1)σ2
m

[1 + ξvm]−1/ξ−2 [(2ξ2 + 3ξ + 1)v2
m + (4ξ + 2)vm + 2

]
,

E
{
− ∂

2l

∂ξ2

}
= m[1 + ξvm]−1/ξ

[
1

ξ
v2
m[1 + ξvm]−2 − 2

ξ3
log [1 + ξvm]+

2

ξ2
[1 + ξvm]−1vm +

(
1

ξ2
log [1 + ξvm]− 1

ξ
[1 + ξvm]−1vm

)2
]

+

2

ξ3
[1 + ξvm]−1/ξ [ξ + log [1 + ξvm]]−

2m

(ξ + 1)ξ2
[1 + ξvm]−1/ξ−1 [1 + (ξ + 1)vm]−
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m

ξ(2ξ + 1)
[1 + ξvm]−1/ξ−2 [(2ξ2 + 3ξ + 1)v2

m + (4ξ + 2)vm + 2
]
,

E
{
− ∂2l

∂µm∂σm

}
=

m(ξ + 1)

σ2
m

[1 + ξvm]−1/ξ−2vm −

mξ

(2ξ + 1)σ2
m

[1 + ξvm]−1/ξ−2 [1 + (2ξ + 1)vm] ,

E
{
− ∂2l

∂µm∂ξ

}
=

m

σm

[
1

ξ2
[1 + ξvm]−1/ξ−1 log [1 + ξvm]− ξ + 1

ξ
[1 + ξvm]−1/ξ−2vm

]
−

m

σm(ξ + 1)
[1 + ξvm]−1/ξ−1 +

m

σm(2ξ + 1)
[1 + ξvm]−1/ξ−2 [1 + (2ξ + 1)vm] ,

E
{
− ∂2l

∂σm∂ξ

}
=

m

σm
vm

[
1

ξ2
[1 + ξvm]−1/ξ−1 log [1 + ξvm] +

ξ + 1

ξ
[1 + ξvm]−1/ξ−2vm

]
−

m

σm(ξ + 1)
[1 + ξvm]−1/ξ−1 [1 + (ξ + 1)vm] +

m

σm(2ξ + 1)
[1 + ξvm]−1/ξ−2 [(2ξ2 + 3ξ + 1)v2

m + (4ξ + 2)vm + 2
]
.

By inverting the Fisher information matrix using a technical computing tool like Wol-

fram Mathematica, making the substitution r = m[1 + ξvm]−1/ξ, the expected number

of exceedances, and using the mapping in (3.1.5), we can get expressions for asymptotic

posterior covariances.

ACov(µm, ξ) =
1

ξ2r
(ξ + 1)σm

( r
m

)−ξ (
ξ(ξ + 1)

( r
m

)ξ
log
( r
m

)
− (2ξ + 1)

(( r
m

)ξ
− 1

))
ACov(µm, σm) =

1

ξ2r
σ2
m

( r
m

)−ξ (( r
m

)ξ (
(ξ + 1) log

( r
m

)(
(ξ + 1)ξ log

( r
m

)
− 3ξ − 1

)
+

ξ(ξ(ξ + 2) + 3) + 1
)

+ (ξ + 1)(2ξ + 1)
(

log
( r
m

)
− 1
))

ACov(σm, ξ) =
1

r
(ξ + 1)σm

(
(ξ + 1) log

( r
m

)
− 1
)

When m = r, ACov(µm, ξ) = 0. In addition, the m for which ACov(µm, σm) = 0

coincides with the value of m that minimises ρθm as defined in (3.3.1). This root can

easily be found numerically, but an analytical approximation can be calculated using a
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one-step Halley’s method. By using m = r as the initial seed, and using the formula:

xn+1 = xn −
f(xn)

f ′(xn)− f(xn)f ′′(xn)
2f ′(xn)

we get the expression (3.3.6) for m̂2 after one step. The quantity for m̂1, given by

expression (3.3.5) requires two iterations of this method.

A.4 Fisher information matrix calculations corre-

sponding to a linear trend in the location pa-

rameter

We allow for a linear covariate z in the location parameter such that µm(z) = µ
(0)
m +µ

(1)
m z.

As the integrated intensity requires integrating over the probability density function g

of the covariate space, which is unknown, the log-likelihood of the non-stationary model

becomes

l = −m
∫
z

[
1 + ξ

(
u− µm(z)

σm

)]−1/ξ

g(z)dz−r log σm−
(

1

ξ
− 1

) r∑
j=1

log

[
1 + ξ

(
xj − µm(z)

σm

)]
.

Making the substitutions vm,z = u−µm(z)
σm

and wj,m,z =
xj−µm(z)

σm
, components of the

observed information matrix Î(µ
(0)
m , µ

(1)
m , σm, ξ) can be expressed as

∂2l

∂µ
(0)
m

2 = −m(ξ + 1)

σ2
m

∫
z

[1 + ξvm,z]
−1/ξ−2g(z)dz +

ξ(ξ + 1)

σ2
m

r∑
j=1

[1 + ξwj,m,z]
−2 ,

∂2l

∂µ
(1)
m

2 = −m(ξ + 1)

σ2
m

∫
z

[1 + ξvm,z]
−1/ξ−2z2g(z)dz+

ξ(ξ + 1)

σ2
m

r∑
j=1

xj
2 [1 + ξwj,m,z]

−2 ,

∂2l

∂σ2
m

=
2m

σ2
m

∫
z

[1 + ξvm,z]
−1/ξ−1vm,zg(z)dz − m(ξ + 1)

σ2
m

∫
z

[1 + ξvm,z]
−1/ξ−2v2

m,zg(z)dz+
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r

σ2
m

− 2(ξ + 1)

σ2
m

r∑
j=1

[1 + ξwj,m,z]
−1wj,m,z+

ξ(ξ + 1)

σ2
m

r∑
j=1

w2
j,m,z [1 + ξwj,m,z]

−2 ,

∂2l

∂ξ2
= −m

∫
z

{
[1 + ξvm,z]

−1/ξ

[
1

ξ
v2
m,z[1 + ξvm,z]

−2 − 2

ξ3
log [1 + ξvm,z]

+
2

ξ2
[1 + ξvm,z]

−1vm,z +

(
1

ξ2
log [1 + ξvm,z]−

1

ξ
[1 + ξvm,z]

−1vm,z

)2
]}

g(z)dz

− 2

ξ3

r∑
j=1

log [1 + ξwj,m,z] +
2

ξ2

r∑
j=1

[1 + ξwj,m,z]
−1wj,m,z+

ξ + 1

ξ

r∑
j=1

[1 + ξwj,m,z]
−2w2

j,m,z,

∂2l

∂µ
(0)
m ∂µ

(1)
m

= −m(ξ + 1)

σ2
m

∫
z

[1 + ξvm,z]
−1/ξ−2zg(z)dz+

ξ(ξ + 1)

σ2
m

r∑
j=1

xj [1 + ξwj,m,z]
−2 ,

∂2l

∂µ
(0)
m ∂σm

=
m

σ2
m

∫
z

[1 + ξvm,z]
−1/ξ−1g(z)dz − m(ξ + 1)

σ2
m

∫
z

[1 + ξvm,z]
−1/ξ−2vm,zg(z)dz

− ξ + 1

σ2
m

r∑
j=1

[1 + ξwj,m,z]
−1 +

ξ(ξ + 1)

σ2
m

r∑
j=1

[1 + ξwj,m,z]
−2wj,m,z,

∂2l

∂µ
(1)
m ∂σm

=
m

σ2
m

∫
z

[1 + ξvm,z]
−1/ξ−1zg(z)dz − m(ξ + 1)

σ2
m

∫
z

[1 + ξvm,z]
−1/ξ−2vm,zzg(z)dz

− ξ + 1

σ2
m

r∑
j=1

xj [1 + ξwj,m,z]
−1 +

ξ(ξ + 1)

σ2
m

r∑
j=1

xj [1 + ξwj,m,z]
−2wj,m,z,

∂2l

∂µ
(0)
m ∂ξ

= − m

σm

[
1

ξ2

∫
z

[1 + ξvm,z]
−1/ξ−1 log [1 + ξvm,z]g(z)dz−

ξ + 1

ξ

∫
z

[1 + ξvm,z]
−1/ξ−2vm,zg(z)dz

]
+

1

σm
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[1 + ξwj,m,z]
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σm
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∂2l

∂µ
(1)
m ∂ξ

= − m

σm

[
1

ξ2

∫
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[1 + ξvm,z]
−1/ξ−1 log [1 + ξvm,z]zg(z)dz−

ξ + 1

ξ

∫
z

[1 + ξvm,z]
−1/ξ−2vm,zg(z)zdz

]
+

1

σm

r∑
j=1

xj [1 + ξwj,m,z]
−1−
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ξ + 1

σm

r∑
j=1

xj [1 + ξwj,m,z]
−2wj,m,z,

∂2l

∂σm∂ξ
= − m

σm

∫
z

{
vm,z

[
1

ξ2
[1 + ξvm,z]

−1/ξ−1 log [1 + ξvm,z]−

ξ + 1

ξ
[1 + ξvm,z]

−1/ξ−2vm,z

]}
g(z)dz +

1

σm

r∑
j=1

[1 + ξwj,m,z]
−1wj,m,z−

ξ + 1

σm

r∑
j=1

[1 + ξwj,m,z]
−2w2

j,m,z

Following the same procedure as for the i.i.d. model, we can express the components of

the expected information matrix as

E

{
− ∂2l

∂µ
(0)
m

2

}
=
m(ξ + 1)

σ2
m

∫
z

[1 + ξvm,z]
−1/ξ−2g(z)dz−

mξ(ξ + 1)

(2ξ + 1)σ2
m

∫
z

[1 + ξvm,z]
−1/ξ−2g(z)dz,

E

{
− ∂2l

∂µ
(1)
m

2

}
=
m(ξ + 1)

σ2
m

∫
z

[1 + ξvm,z]
−1/ξ−2zg(z)dz−

mξ(ξ + 1)

(2ξ + 1)σ2
m

∫
z

[1 + ξvm,z]
−1/ξ−2zg(z)dz,

E
{
− ∂2l

∂σ2
m

}
= −2m

σ2
m

∫
z

[1 + ξvm,z]
−1/ξ−1vm,zg(z)dz+

m(ξ + 1)

σ2
m

∫
z

[1 + ξvm,z]
−1/ξ−2v2

m,zg(z)dz − r

σ2
m

+
2m

σ2
m

∫
z

[1 + ξvm,z]
−1/ξ−1 [1 + (ξ + 1)vm,z] g(z)dz

− mξ

(2ξ + 1)σ2
m

∫
z

[1 + ξvm,z]
−1/ξ−2×[

(2ξ2 + 3ξ + 1)v2
m,z + (4ξ + 2)vm,z + 2

]
g(z)dz,

E
{
− ∂

2l

∂ξ2

}
= m

∫
z

{
[1 + ξvm,z]

−1/ξ

[
1

ξ
v2
m,z[1 + ξvm,z]

−2 − 2

ξ3
log [1 + ξvm,z]

+
2

ξ2
[1 + ξvm,z]

−1vm,z+(
1

ξ2
log [1 + ξvm,z]−

1

ξ
[1 + ξvm,z]

−1vm,z

)2
]}

g(z)dz
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+
2

ξ3

∫
z

[1 + ξvm,z]
−1/ξ [ξ + log [1 + ξvm,z]] g(z)dz

− 2m

(ξ + 1)ξ2

∫
z

[1 + ξvm,z]
−1/ξ−1 [1 + (ξ + 1)vm,z] g(z)dz−

m

ξ(2ξ + 1)

∫
z

[1 + ξvm,z]
−1/ξ−2×[

(2ξ2 + 3ξ + 1)v2
m,z + (4ξ + 2)vm,z + 2

]
g(z)dz,

E

{
− ∂2l

∂µ
(0)
m ∂µ

(1)
m

}
=
m(ξ + 1)

σ2
m

∫
z

[1 + ξvm,z]
−1/ξ−2zg(z)dz−

ξ(ξ + 1)

(2ξ + 1)σ2
m

∫
z

[1 + ξvm,z]
−1/ξ−2zg(z)dz,

E

{
− ∂2l

∂µ
(0)
m ∂σm

}
=
m(ξ + 1)

σ2
m

∫
z

[1 + ξvm,z]
−1/ξ−2vm,zg(z)dz−

mξ

(2ξ + 1)σ2

∫
z

[1 + ξvm,z]
−1/ξ−2 [1 + (2ξ + 1)vm,z] g(z)dz,

E

{
− ∂2l

∂µ
(1)
m ∂σm

}
=
m(ξ + 1)

σ2
m

∫
z

[1 + ξvm,z]
−1/ξ−2vm,zzg(z)dz−

mξ

(2ξ + 1)σ2
m

∫
z

[1 + ξvm,z]
−1/ξ−2 [1 + (2ξ + 1)vm,z] zg(z)dz,

E

{
− ∂2l

∂µ
(0)
m ∂ξ

}
=

m

σm

∫
z

[
1

ξ2
[1 + ξvm,z]

−1/ξ−1 log [1 + ξvm,z]−

ξ + 1

ξ
[1 + ξvm,z]

−1/ξ−2vm,z

]
g(z)dz−

m

σm(ξ + 1)

∫
z

[1 + ξvm,z]
−1/ξ−1g(z)dz+

m

σm(2ξ + 1)

∫
x

[1 + ξvm,z]
−1/ξ−2 [1 + (2ξ + 1)vm,z] g(z)dz,

E

{
− ∂2l

∂µ
(1)
m ∂ξ

}
=

m

σm

∫
z

[
1

ξ2
[1 + ξvm,z]

−1/ξ−1 log [1 + ξvm,z]−

ξ + 1

ξ
[1 + ξvm,z]

−1/ξ−2vm,z

]
zg(z)dz−

m

σm(ξ + 1)

∫
z

[1 + ξvm,z]
−1/ξ−1zg(z)dz+

m

σm(2ξ + 1)

∫
z

[1 + ξvm,z]
−1/ξ−2 [1 + (2ξ + 1)vm,z] zg(z)dz,

E
{
− ∂2l

∂σm∂ξ

}
=

m

σm

∫
z

vm,z

[
1

ξ2
[1 + ξvm,z]

−1/ξ−1 log [1 + ξvm,z]+
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ξ + 1

ξ
[1 + ξvm,z]

−1/ξ−2vm,z

]
g(z)dz−

m

σm(ξ + 1)

∫
z

[1 + ξvm,z]
−1/ξ−1 [1 + (ξ + 1)vm,z] g(z)dz+

m

σm(2ξ + 1)

∫
z

[1 + ξvm,z]
−1/ξ−2×[

(2ξ2 + 3ξ + 1)v2
m,z + (4ξ + 2)vm,z + 2

]
g(z)dz.

Like in the i.i.d. case, we invert the expected Fisher information matrix to obtain

expressions for the asymptotic posterior covariances. Because of the integral term,

there exists no analytical solution for the value of m that minimises the asymptotic

posterior covariance between two given parameters. Therefore, we use a numerical

solver to obtain an estimate of m that produces a near-orthogonal representation of the

parameters.
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Chapter 4

B.1 Parameters of spatial model
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Figure B.1.1: The mean of the estimated random effect term φ corresponding to the
scale (left) and shape (right) parameters at each site.
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Figure B.1.2: The estimated 95% posterior credible intervals of the scale (left) and
shape (right) parameters under the spatial model.



Appendix C

Supplementary material for

Chapters 5 and 6

C.1 Conditional kernel density estimation

Consider an arbitrary d-dimensional random vector Z = (Z1, Z2, . . . , Zd), which is

observed n times z(1), z(2), . . . ,z(n). As a way of estimating f(z), the joint probability

density of Z, we define the multivariate kernel density estimator as

f̂(z) =
1

n

n∑
i=1

KH

(
z − z(i)

)
, (C.1.1)

where KH is the kernel function and H denotes the bandwidth matrix which is sym-

metric and positive-definite. For our purposes, we choose KH to be the multivariate

Gaussian density function

KH(z) = (2π)−d/2|H|−1/2 exp

{
−1

2
zTH−1z

}
(C.1.2)

and the bandwidth matrix H chosen to be proportional to the rule-of-thumb selection

of Scott (1992). The bandwidth matrix H can be chosen to be diagonal or oriented.
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To simulate from the kernel density, we first sample uniformly a tuple z(i), where

i ∈ {1, . . . , n}. We then simulate a vector z̃, say, such that z̃ ∼ MVN(z(i), H).

Let Z be decomposed such that Z = (Z−m,Zm). Consider the case when values

Z−m = z−m have been observed and we wish to estimate the conditional density of Zm

given these values. We can then define the conditional kernel density estimator as

f̂(zm|z−m) =
n∑
i=1

wi(z−m)KH

(
zm − z(i)

m

∣∣∣z−m − z(i)
−m

)
, (C.1.3)

where

wi(z−m) =
KH

(
z−m − z(i)

−m

)
∑n

j=1KH

(
z−m − z(j)

−m

) ,
where KH(·) is the multivariate Gaussian kernel function and KH(· | ·) is the conditional

Gaussian kernel function with bandwidth matrix H as defined in equation (C.1.2). Let

H be partitioned such that

H =

 Hm,m Hm,−m

H−m,m H−m,−m

 .
Conditional on having observed z−m, we choose a tuple z(i) with probability wi(z−m).

Then we simulate

Zm|(Z−m = z−m) ∼ N (µ̄, Σ̄), (C.1.4)

where µ̄ = z
(i)
m +Hm,−mH

−1
−m,−m(z−m − z(i)

−m) and Σ̄ = Hm,m −Hm,−mH
−1
−m,−mH−m,m.
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