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Abstract

Adapting classification models to changes is one of the main challenges associated with

learning from data in dynamic environments. In particular, the description of the

target concept is not static and may change over time under the influence of varying

environmental conditions (i.e. varying context). Although many adaptive learning

approaches have been proposed in the literature to address such changes, these are

limited in terms of the extent to which the contextual aspects are explicitly identified

and utilised. Instead, existing approaches mostly rely on monitoring the effects of drift

(in terms of the degradation of the classifier’s performance). Given this, to achieve more

effective concept drift management, we propose incorporating context awareness when

adapting the classification model to changes. Explicit identification and monitoring

of the contextual aspects enable capturing the causes of drift, and hence facilitating

more proactive adaptation. In particular, we propose an information-theoretic-based

approach for systematic context identification, aiming to learn from data the contextual

characteristics of the domain of interest by identifying the context variables contributing

to concept changes. Such characteristics are then utilised as important clues guiding

the adaptation process of the classification model. Specifically, knowledge of contextual

variables are exploited to select the most relevant data for retraining the model via a

data weighting model, and to signal the need for data re-selection via a change detection

model. The experimental analyses on simulated, benchmark, and real-world datasets,

show that such explicit identification and utilisation of contextual information result

in a more effective data selection and drift detection strategies, and enable to produce

more accurate predictions.
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Chapter 1

Introduction

1.1 Introduction

In supervised classification problems, available historical labeled examples (input-output

pairs) are normally utilised in order to learn a target concept, which refers to the un-

derlying function between the variable to be predicted and the respective input data.

The continuous flow of information in many domains requires the ability of the clas-

sification model to incorporate new data so that it can update its concept description

and make more accurate predictions. In a static environment, where the target concept

does not change, all available data observations can be incorporated into the classifica-

tion model to improve its performance. However, in the real world, the target concept

is not static and may change over time under the influence of varying conditions, a

phenomenon referred to as concept drift. In the presence of such a drift, the previously

seen data examples may not remain relevant. Hence, to be able to adapt to drift, it

is essential for the classification model not only to accommodate new information, but

also to have some data selection mechanism to assess which data are relevant to be

incorporated when adapting the classifier. This task, however, is far from trivial since

1
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drift can occur at any time, and its type (gradual, abrupt, etc.) cannot be known

in advance. This poses a challenge on how to select relevant and sufficient training

data to adapt the model, which is a vital issue since the ability of the classification

model to make accurate decisions is highly dependent on the data used for the learning

process. In particular, one of the most important challenges that many researchers

try to solve when building a classifier in drifting environments is identifying the ap-

propriate training data size (window size). This requires dealing with two conflicting

properties: stability and plasticity [62]. More precisely, a small window will be able to

capture changes (plasticity), but will make the model more responsive to randomness

and will not contain a sufficient number of examples (data observations) for a stable

concept description [21]. A large window, on the other hand, will ensure more stable

concept description and will be less responsive to randomness (stability). However,

it will decrease the classifier’s ability to react to concept drift, especially for abrupt

changes [21].

Existing approaches for handling concept drift can be mainly classified into two types

of approaches [17], continuous and based on change detection. In the first type, a

continuous drift is assumed, constantly applying some criteria to discriminate between

data samples, without attempting to identify when the drift actually occurs (e.g. [10,

12, 13, 14, 15]). In the second type, a concept drift is detected, typically based on

monitoring the performance of the classifier (e.g. [3, 6, 7, 21, 100]), and relevant data

are identified accordingly.

These existing approaches suffer from a number of limitations as detailed in the follow-

ing section. Most importantly, these approaches ignore important clues when handling

concept drift. In particular, it is generally agreed in the literature that contextual

changes (i.e. changes in environmental conditions) are usually the main reason behind

concept drift [21, 89, 19]. Such contextual changes, for example, may correspond to
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changes in economic conditions for financial prediction, the time of the year for weather

prediction, season and time of the week for electricity price prediction, etc. However,

the majority of existing approaches do not consider such contextual factors despite their

importance in providing useful and relevant information for the purpose of adaptation.

The rest of the chapter is organised as follows. Section 1.2 discusses the limitations in

existing work that the thesis aims to address. The research aims and contributions are

provided in Section 1.3. Finally, an outline of the reminder of the thesis is presented

in Section 1.4.

1.2 Limitations in Existing Work

The main limitations of adaptive learning approaches existing in the literature can be

summarised with respect to data selection and how the change is detected as presented

below.

1.2.1 Data Selection

One of the main challenges associated with learning in the presence of drift is having an

appropriate data selection mechanism that will enable the classification model to adapt

to changes (choose the right data examples for adjusting its concept description either

once a change is detected or on a continuous basis). The main assumption in most

approaches that have been developed to address concept drift is that the importance of

the examples decreases with age, i.e. recent examples are the most relevant while older

examples should be forgotten eventually. This assumption, however, is not necessarily

true. This is because, changes in concept usually occur due to contextual changes,

which could reappear over the course of time triggering the reappearance of the same

concept so that older examples become relevant again.
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Moreover, in the case of insufficient number of data examples coming after the change,

considering only the most recent data will result in including examples coming before

and after the change. Such incorporation of the most recent prior to the change data

leads to inaccurate classification decisions. This is because the classification rules will

be influenced by past irrelevant data, and thus will not be able to capture sufficiently the

current state of the target concept. On the other hand, data in the past could be more

relevant compared to the most recent data, especially in the case of recurring concepts.

Given this, decisions as to which examples to include should be based not only on time,

but other criteria have to be taken into account as we explain in Section 1.3.

1.2.2 Drift Detection

Given that drift detection is one of the main steps towards handling concept drift,

several approaches have been proposed for this purpose. However, existing approaches

mainly focus on monitoring the performance accuracy of the classification model to

identify the point where the drift has occurred, which is a costly process in terms of

performance degradation. This is because it usually requires a sufficient number of

misclassified instances before drift can be confirmed. Specifically, whenever a misclas-

sification occurs, three different possibilities regarding the source of this error have to

be considered: first, it is a random noise (unpredictable fluctuations in the concept

of interest) and should be ignored; second, it signals a concept drift, and hence the

training data must be revised to adapt the classifier to the new concept; and finally, it

is another representative example of the same underlying concept, and thus should be

added to the existing knowledge of the classifier (old data is still relevant to the current

concept). The latter case is referred to in literature as virtual drift [67].

Based on this, there is a need for a better drift detection approach that allows a faster

(less costly) and more reliable method to recognise drift.
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1.3 Research Aims and Contributions

To address the above issues of concept drift adaptation, we propose incorporating

context awareness when adapting the classification model to changes driven by the fact

that context changes are usually considered the main reason behind concept drift [9,

19, 21].

In the thesis, we focus on explicitly identifying context (i.e. context is defined by a

set of variables) for the adaptation process. That is, we assume that knowledge about

potential contextual information (derived from the background knowledge about the

domain) can be characterised as certain variable(s). Given such information, our goal

is to deduce contextual variables that actually affect the concept of interest from the

set of candidate ones. Such an approach, however, may not be applicable in some

domains, where context cannot be explicitly represented as certain variables due to the

absence of background knowledge or inability to quantify context. In such domains,

context may be captured implicitly, by monitoring its effects (mostly based on the

predictive accuracy of the classifier), and trying to group data samples accordingly,

with no actual access to the contextual information. Existing approaches for doing so

include monitoring the predictive ability of the input variables [32], data clustering [9,

77, 80, 94], and utilising the frequency of attribute values occurrence [78, 79]. A detailed

discussion of these approaches is provided in Section 2.4.2.2, page 30. Whilst implicit

context modelling offers some flexibility in terms of selecting more relevant training

examples (rather than simply relying on the training example’s age) and dealing with

recurrent concepts, the possibilities of its utilisation for the adaptation process remain

limited. On the other hand, explicit context modelling (the focus of this thesis) offers

a more proactive and prompt approach to respond to changes, without the delays

associated with monitoring classification performance. In particular, concept changes

can be signalled promptly by monitoring changes in context variables, and the classifier
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can be promptly adapted with the most relevant data by relying on explicit evidence

(explicit similarity among context variables).

It is worth mentioning that perfect contextual knowledge is not assumed in the thesis.

Rather, our experimental analysis shows that the ability to identify and utilise even

imperfect contextual knowledge contributes to better adaptation to drift (improves the

performance of the classifier) in comparison to context independent approaches.

We first propose a context learning model that aims to explicitly identify the variables

that actually represent contextual information for the concept of interest. The con-

text variables identified are then utilised in adapting the classification model for data

selection (via a context-based data weighting approach) and for concept change detec-

tion (via an adaptive context-based multi-model learning algorithm). More details are

provided below.

1.3.1 Context Identification Model

Recently, learning with respect to context started to receive increasing attention [9, 32,

94]. Yet, these approaches mostly rely either on monitoring the implicit context, or the

contextual variables are assumed to be known a priori, with no identification method

being suggested. In response, we propose a systematic approach for explicit context

identification by identifying the context variables contributing to concept changes. The

contextual properties of a candidate variable is measured based on its ability to discrim-

inate between occurring concepts. For this purpose, the concepts of uncertainty and

information content from Shannon’s Information Theory [24] are utilised. A computa-

tional solution for these measures based on k-nearest neighbour estimator [29] is also

presented. Moreover, to account for any possible correlations among context variables,

a context selection algorithm based on the proposed context identification criteria is

provided, along with a solution for high dimensionality problems.
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Part of this work has been published as [1]:

L. Barakat. Context Identification and Exploitation in Dynamic Data Mining: an

Application to Classifying Electricity Price Changes. In: Bouchachia A. (eds) Adaptive

and Intelligent Systems. Lecture Notes in Computer Science, vol. 8779, pages 80-89,

Springer, Heidelberg, 2014.

In this thesis, the identification and selection of contextual information are performed

prior to classification, assuming the availability of pre-existing training data from which

context can be deduced. This imposes restrictions on the applicability of the proposed

approach in domains where training data becomes available only gradually, calling for

an incremental learning approach. Whilst incremental context learning is out of the

scope of this thesis, the information theoretic measures proposed can be extended to

enable such learning [83, 123, 124, 125].

1.3.2 Context Exploitation Model - Example Weighting

As stated earlier, most approaches proposed for addressing concept drift limit the space

of the candidate examples for adjusting the classification model to those that fall within

the window of the most recent data, thus neglecting many older possibly relevant

examples. To overcome this, we propose utilising knowledge of relevant contextual

information to facilitate the selection of more relevant training data for the classification

model. Specifically, we propose to weight the training examples according to how

similar their context is to the current context, thus controlling the contribution of each

example in estimating the classification model parameters according to its relevance

for the current situation.

To measure the contextual similarity, two approaches are distinguished. In the first

approach, we present a simple context-based example weighting function, where the
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distance between context variable values is measured based on the numerical differ-

ences in values. In the second approach, an improved context-based example weighting

function is provided, where the similarity between context variable values is determined

based on their conceptual similarity (whether the values belong to the same concept or

not).

Part of this work has been published as [2]:

L. Barakat. A Context-Driven Data Weighting Approach for Handling Concept Drift

in Classification. In Proceedings of the 9th International Conference on Computer

Recognition Systems CORES 2015, Springer, Wroclaw, pages 383-393, 2015.

1.3.3 Context Exploitation Model - Drift Detection

In this part, we propose an adaptive learning model equipped with a drift detection

strategy that relies on monitoring the factors causing the drift (i.e. monitoring changes

in relevant contextual variables) rather than monitoring its consequences (as in exist-

ing approaches). Such utilisation of contextual information will enable a faster (less

costly in terms of performance degradation) and more reliable method to recognise

drift. Moreover, we propose to utilise contextual knowledge for exploiting the possibil-

ity of concept recurrence during the learning process by reusing a previously learned

classification model. The ability to exploit concept recurrence will enable a faster adap-

tation after a change point (as opposed to re-learning the predictive model from new

examples), and consequently improves the predictive accuracy. Two realisations of the

adaptive learning model are proposed: a purely contextual model and a hybrid model.

In the former version, drift detection and the recognition of concept recurrence are

only based on the utilisation of contextual information. That is, change detection is

based on monitoring any deviations in the values of the context variables. Similarly,



Chapter 1 Introduction 9

the value(s) of the context variable(s) are utilised for recognising the recurrence of a

previously observed concept, and the selection of the appropriate classifier (in terms of

context similarity). In the hybrid model, on the other hand, drift detection strategy and

concept recurrence are combined with additional measures to boost the performance

of the purely contextual model in cases where perfect contextual knowledge may not

be available.

One might argue that instead of utilising context for data selection and change detec-

tion, context variables could alternatively be incorporated as additional input variables

into the classification model. This, however, may unnecessarily increase the problem

dimensionality, and achieve lower prediction accuracy compared to the external utili-

sation proposed (as demonstrated by our results), especially that context variables are

not relevant for prediction during periods of concept stability (potentially long periods).

1.4 Thesis Outline

This thesis is organised as follows. Chapters 2 and 3 present a detailed review of the

related work and the experimental design utilised throughout the thesis, respectively.

The proposed context identification model is presented in Chapter 4. Context ex-

ploitation model with example weighting is explained in Chapter 5. Chapter 6 details

the proposed approach for context-aware adaptation based on drift detection. Finally

Chapter 7 concludes the thesis along with outlining future research directions.



Chapter 2

Literature Review

Having set the research goals in Chapter 1, we provide in this chapter a review of

adaptive learning approaches that have been proposed in the literature for addressing

concept drift in classification. We start with a brief overview of the phenomenon of

concept drift in Section 2.1, followed by a review of different concept change types

in Section 2.2. The application domains with concept drift problem are presented in

Section 2.3. A general review of existing approaches is given in Section 2.4. Finally,

Section 2.5 concludes this chapter.

2.1 The Notion of Concept Drift

To build a classification model, which is able to predict the class membership using the

values of given input variables, a data sample with known target classes is required for

training this model. This data (the training set) consists of a set of input variables

(attributes) with the corresponding class labels (the outputs). The rules induced by

the classification model depend on the existing relationship between the class labels

and attribute values provided in the training set. However, the relation between the

10
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input and output variables discovered in the training data may not match that in

the application data (data unseen previously to which the classification model will be

applied). This difference can occur due to the dynamic environment under which the

data of interest is generated, which leads to the problem of concept drift. Concept

drift has received increasing attention from researchers in different fields and has been

studied under various names, e.g. population drift, non stationarity, covariate shift,

temporal evolution [65, 64, 15]. The phenomenon of concept drift can be illustrated

using Bayes’ theorem for posterior probability. Let’s assume that X represents a vector

of input variables, and Y is the target class. The decision of classifying X to Y will

depend on the class posterior probability, which is given as follows [63]:

P (Y |X) = P (Y )P (X|Y )
P (X) (2.1)

where P (Y |X) is the probability of Y given input vector X, P (X|Y ) is the class

conditional distribution of the input variables X, P (Y ) is the class prior probability,

and P (X) is the probability of observing attribute vector X (this is the same for all

classes y ∈ Y , and thus could be omitted).

In the presence of concept drift, the posterior probability P (Y |X) varies over time,

i.e. Pt(Y |X) may not be equal to Pt+1(Y |X). In other words, drift causes changes in

the decision boundaries of the classifier over time. For example, considering a binary

classification problem with two dimensional input vector, Figure 2.1 illustrates a change

in the distribution of the attributes with respect to the two classes, resulting in a change

in the classification rules for the discrimination between these two classes (i.e. a change

in decision boundary). Such changes in P (Y |X) can occur because of the changes in

the prior probability P (Y ) and/or changes in the class conditional distributions of the

input variables P (X|Y ) (see Equation 2.1).
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Figure 2.1: Graphical representation of concept drift.

2.2 Types of Concept Changes

Two types of concept changes are normally distinguished in the literature [5]: real and

virtual (see Figure 2.2). In real concept drift, changes occur in the class conditional

distribution (i.e. changes in P (Y |X)). Such changes cause the decision boundery of

the classifier to change (see Figure 2.2). In virtual concept drift, on the other hand,

changes occur in the distribution of the input variables (i.e. changes in P (X)) with

no associated changes in P (Y |X). Some authors regard virtual drift as changes that

only occur at the classifier level due to imperfect representation of the real world (i.e.

there is no change in reality) [67]. In general, both real and virtual changes occur

together [5].

In this thesis, we focus on real concept changes, which are not visible form changes in

the data distribution of the input variables. Note that, the adaptation necessary to

address real drift can also be applied to address virtual drift but not the other way

around [5].
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Figure 2.2: Types of concept changes: real and virtual.

Concept changes can further be divided in terms of the magnitude of the change into

two types [99]: global and local. With global concept drift, changes occur in the whole

space of the input variables, while in local drift, only certain regions of the input variable

exhibit changes. Local concept changes usually take longer time to be detected due

to the scarcity of the number of examples belonging to the new concept [96]. In the

thesis, the focus is on addressing global concept drift, and hence the literature review

is also tailored to global changes.

Furthermore, taking into consideration the pattern of the concept change, three types

are normally distinguished (see Figure 2.3) [5]: abrupt (sudden), gradual and recurrent.

In abrupt changes, the drift occurs immediately with one concept replacing the previous

one (see Figure 2.3(a)). For example, assuming that we have a news recommender sys-

tem, the person sudden interest in house prices is considered as an abrupt change [100].

In this type of drift, changes occur at certain time steps with static distribution between

consecutive changes.

In gradual changes, the drift occurs at each time step at a certain rate (depending on

the speed of drift) [15] (see Figure 2.3(b)). This type of drift is usually more difficult to
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detect compared to abrupt changes. This is because the changes between time steps are

normally very small such that the drift is only observed over a long period of time [100].

Another type of gradual drift that is usually referred to in the literature is probabilistic

drift. In this type of drift, more than one concept is active at the same time: the

current concept and the new one but with different sampling probabilities. That is, at

the beginning of the change, the probability of sampling from the new concept is low,

while the probability of sampling from the current concept is high. As time passes,

the probability of sampling from the new concept increases (see Figure 2.3(c)). In the

example with the news recommender system, a gradual drift is a growing interest in

the real estate news as the user increases its interest in buying a flat.

Finally, recurrent concept drift refers to the change that reappears (either abruptly or

gradually) after some time interval (see Figure 2.3(d)). Such type of drift is different

from seasonality as it is not necessarily periodic, and it is not known when it would

reappear [100].

It is worth mentioning that the above categorisation of change types is not exhaustive.

For example, in some surveys [102, 97, 96] concept changes are further categorised

according to predictability and some other factors.

Each type of change may require a different adaptation strategy. For example, single

models are utilised when abrupt concept changes are expected. This is because, the

old model becomes instantly irrelevant for the new concept. On the other hand, in the

case of gradual and recurrent changes, the most common adaptive strategy is to keep

multiple models [65]. Hence, the proposed approaches for handling concept drift in the

literature usually assume certain change types and adapt the learning models towards

these changes (these assumptions may not always be stated explicitly). Based on this,

the effectiveness of the proposed approaches are normally tested on simulated data or

on real dataset with simulated drift for which the adaptive approach is proposed.
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(a) Abrupt(sudden) (b) Gradual(Incremental)

(c) Gradual(Probabilistic) (d) Recurrent

Figure 2.3: Patterns of concept changes assuming one dimensional dataset (changes

occur in the mean of the dataset).

2.3 Applications

Adaptive learning models attempting to tackle concept drift have been applied in a

variety of domains, examples of which include flight simulation [9], information filter-

ing [80], vowel recognition [32], changes in electricity price prediction [6], consumer

credit classification [66, 15], medical diagnosis [103], etc.

Different change types exist in different application domains. Hence, one solution for

handling concept drift that is suitable for all applications is not feasible. Moreover,

each application has certain properties that require corresponding characteristics from
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the adaptive learning model [104]. More details about these properties are provided

below.

Some application properties are related to the data under consideration. This includes

the data type (binary, numerical, categorical, etc.), the presence of missing values, the

level of dimensionality, the presence of noise, how the data is organised (e.g. sequential,

time series), the shape of the incoming data (e.g. stream, batches), and the availability

and accessibility of the data (only single access to the data, or the ability to re-access

the data). Moreover, there are properties that characterise the environment in which

the adaptive model will operate. This includes the assumptions with regard to the

type of change (e.g. abrupt, gradual, recurrent), and how predictable the change

is (unpredictable, somewhat predictable, predictable). Other important application-

specific properties are related to the operational settings of the learning task of interest.

With this regard, four factors are normally considered. The first factor is the label

availability. In some applications, the label becomes available in the next time step (e.g.

in food sales predictions) or on demand (e.g. user preferences). On the other hand, in

applications such as credit scoring, the outcome of the decision may become available

years after the decision of granting the credit is made. The second factor is the speed

of the decision making. In some applications, the decision has to be made immediately

(e.g. in fraud detection), while other applications have more flexibility (e.g. in credit

scoring). The Third setting is the cost of making false prediction, which is important

in choosing the evaluation metrics of the adaptive model. In some applications, only

the prediction accuracy of the model is important (e.g. in online mass flow prediction).

Other applications, in addition to the prediction accuracy, require timely and accurate

change identification (e.g. in food sale prediction). The last factor is related to the

ground truth label (it may be defined based on objective rules, it may be defined based

on personal opinion, or it may not be defined at all or too costly to define).
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In [5], the applications with concept drift problems are grouped into four categories:

monitoring and control, personal assistance and information, management and strate-

gic planning and ubiquitous environment applications. Monitoring and control appli-

cations focus on monitoring certain automated processes. Two application tasks are

distinguished: prevention and detection tasks and monitoring for management tasks.

The main source of drift are adversary activities, which usually occur abruptly. Exam-

ples of these applications include intrusion detection in computer security [105], fraud

detection in finance [106], industrial monitoring [107], and service monitoring [108].

The input data usually come as a stream in large volumes, and the decision needs to

be made immediately.

The second application area is personal assistance and information. The tasks here

are divided into three categories [104]: individual assistance for personal use (such as

news classification [109] and document classification [110]), business assistance (such as

customer profiling for marketing [111]) and assistance for specified information (such

as recommender system for project management [112]). The main source of drift in

these applications is changes in user preferences over time. The cost of false prediction

is lower compared to other applications.

The third category of applications is management and strategic planning. The tasks

here are predictive analytical such as evaluation of credit worthiness [113], diagnostics

in medical research (e.g. [114]), and biometric authentication (e.g. [115]). The source

of drift in these applications are usually changes in the environment (e.g. economic

conditions,). Here the amount of available data is limited, and the true labels are

normally available (labels may be delayed with certain application tasks). The decision

speed is lower compared to other application as the prediction accuracy is the main

focus in these applications since the cost of false prediction is high.
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Finally, ubiquitous environment application tasks include moving and stationary sys-

tems, which interacts with changing environments. Examples include robot vehi-

cles [116], smart household appliances [117], and computer games [119]. The complex

environment is considered as a source of drift in this application area.

In Figure 2.4, we provide a summary of the main properties of the above application

tasks [118].

Properties Monitoring and 
Control 

Personal Assistance 
and Information 

Management and 
Strategic Planning 

Ubiquitous 
Environment  

Data Volume High Medium Medium High 

Incoming Data Stream Batches Stream Stream 

Drift Type Abrupt Gradual Abrupt/Gradual Abrupt/Gradual 

Label Availability Fixed lag On demand Real time Fixed lag 

Decision Speed High Medium Low  High 

Cost of False Prediction Medium Low High High 

Accuracy Approximate Approximate High High 

Past Data Access Yes/No Yes Yes No 

Figure 2.4: Applications Properties.

In this thesis, we contribute mainly to the management and strategic planning ap-

plications, where the source of drift is changes in the environment of the task under

consideration. As we will see in Chapter 5, the proposed approach assumes the avail-

ability of time for decision making given that computationally expensive models (to

achieve high prediction accuracy) are acceptable in this domain [65].

2.4 Classifier Adaptation in Response to Concept Drift

Existing adaptive learning approaches for handling concept drift can be mainly classi-

fied (in terms of how adaptation is achieved) into continuous adaptation and change

detection based adaptation [17]. The former assumes continuous drift, and updates the
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classification model on data arrival without attempting to identify when drift occurs.

The latter approach, on the other hand, involves detecting changes in the target con-

cept, and then adapting the classification model in response to it. These approaches

are discussed next.

Note that, as indicated previously, the presented work and literature review are focused

on addressing real global concept drift, and hence the techniques presented may not be

suited for other types of changes such as local drifts. For example, the majority of the

approaches apply certain types of windowing, which assume the drift affects the whole

input variables space. Such approaches are not suitable for detecting local concept

drift, where changes affect only part of the example space. Moreover, as we will see

in the following sections, addressing real drift depends on the performance accuracy of

the classification model. On the other hand, such feedback about the performance of

the classifier is not necessary for addressing virtual drift [5], which is also out of the

scope of this thesis.

The main characteristics of the papers presented in this thesis with respect to the change

addressed and the application domain are summarised in Figure 2.5. The last column

in Figure 2.5 also explains how each paper is validated. It is worth mentioning that

evaluating the performance of the learning models under concept drift is still an open

issue [49]. One of the main challenges is that models continuously evolve over time [49].

Unlike static environments with fixed sample sizes and stationary distributions, the data

in dynamic environments arrives continuously and is generated from non-stationary

distributions. Given this, standard evaluation methods such as cross-validation, leave-

one-out and bootstrap are not applicable in such settings [49]. Hence, in the presence

of concept drift, classification models are normally evaluated using two procedures:

holdout an independent test set and prequential analysis [49]. More details about

these procedures and the evaluation metrics are explained in Chapter 3 (Section 3.3).
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Papers Implementation 
Domain 

Change 
Addressed 

Recurrency 
Addressed  Validation 

[12] 
Personal 

Assistance and 
Information 

Gradual No 

- Benchmark and real datasets; 
- Evaluation metric: a time plot of the predictive accuracy computed 
utilising holdout an independent test set;  
- The results are averaged over 10 runs. 

 [15][66] Management and 
Strategic Planning 

Abrupt and 
gradual No 

- Artificial and real datasets; 
- Evaluation metrics: time plots of H-measure and application-specific 
measure. Both measures are computed utilising holdout an 
independent test set;  
- The results are averaged over 100 runs; 
- The significance of the results are tested utilising piared t-test with 
0.01 significance level. 

[77] 
Personal 

Assistance and 
Information 

Abrupt Yes 

- Real dataset; 
- Evaluation metric: a time plot of the predictive accuracy computed 
utilising prequential analysis with a sliding window;  
- The significance of the results are tested utilising t-test with 0.01 
significance level. 

[80] 
Personal 

Assistance and 
Information 

Abrupt and 
gradual No 

- Real dataset with simulated drift; 
- Evaluation metrics: a time plot of the predictive accuracy computed 
utilising prequential analysis with a sliding window. Overall recall and 
precision measures are alse presented; 
- The results are averaged over 4 runs. 

[21] No real dataset 
utilised 

Abrupt and 
gradual Yes 

- Benchmark and artificial datasets; 
- Evaluation metric: a time plot of the predictive accuracy computed 
utilising holdout an independent test set;  
- The results are averaged over 10 runs. 

[6][7] Management and 
Strategic Planning Abrupt No 

- Benchmark and real datasets; 
- Evaluation metric: a time plot of the error rate computed utilising 
prequential analysis with a sliding window. 

[3] Management and 
Strategic Planning 

Abrupt and 
gradual No 

- Benchmark and real datasets; 
- Evaluation metrics: a time plot the predictive accuracy computed 
utilising prequential analysis with a sliding window. The following 
overall measures are also presented: recall, precision, false positive 
rate, false negatve rate, mean delay in change detection and runtime. 

[32] 

Personal 
Assistance and 

Information/Mana
gement and 

Strategic Planning 

Abrupt and 
gradual Yes 

- Benchmark and real datasets; 
- Evaluation metric: a time plot of the predictive accuracy computed 
utilising prequential analysis with a sliding window; 
- The results are averaged over 10 runs. 

 [68] 

Monitoring and 
Control/Managem
ent and Strategic 

Planning 

Abrupt and 
gradual No 

- Benchmark  and real datasets; 
- Evaluation metrics: a time plot of the predictive accuracy computed 
utilising holdout an independent test set (with 0.95 confidence 
intervals). The overall average area under the curve (AUC) measure is 
alse presented; 
The results are averaged over 50 runs. 

 [82] No real dataset 
utilised 

Abrupt and 
gradual No 

- Benchmark datasets; 
- Evaluation metric: a time plot of the predictive accuracy computed 
utilising holdout an independent test set;  
- The results are averaged over 500 runs. 

[84] 

Monitoring and 
Control / 

Management and 
Strategic Planning 

Abrupt and 
gradual Yes 

- Benchmark and real datasets; 
- Evaluation metrics: time plots of the error rate and Q-statistic[49]. 
Both measures are computed utilising prequential analysis with a 
sliding window.  

[69] Management and 
Strategic Planning Abrupt No 

- Artificial, benchmark and real datasets; 
- Evaluation metrics: the average overall distance between the true 
probability (that generates the data) and the estimation, the overall 
predictive accuracy and the following change detection specific 
measures: the rate of false positives, the rate of changes detected and 
the mean time until change detection. 

[70] 
Personal 

Assistance and 
Information 

Abrupt and 
gradual No 

- Real datasets with simulated drift; 
- Evaluation metrics: a time plot of the predictive accuracy computed 
utilising prequential analysis with a sliding window. Overall recall and 
precision measures are alse presented; 
- The results are averaged over 10 runs. 

[78] 
Personal 

Assistance and 
Information 

Abrupt and 
gradual Yes 

- Benchmarkk and real datasets ; 
- Evaluation metrics: a time plot of the predictive accuracy computed 
utilising prequential analysis with a sliding window. 

[83] Monitoring and 
Control Abrupt No 

- Artificial and real datasets; 
- Evaluation metrics: the overall predictive accuracy and 
computational complexity.  

[17] Monitoring and 
Control Abrupt No 

- Artificial and real datasets; 
- Evaluation metrics: oveall values for the following change detection 
specific measures: the rate of false positives, the rate of true positives, 
recall,  presicion, and the number of examples required for change 
detection. 

[67] No real dataset 
utilised Abrupt Yes 

- Benchmark and artificial datasets; 
- Evaluation metric: a time plot of the predictive accuracy computed 
utilising holdout an independent test set;  
- The results are averaged over 10 runs. 

[28] Management and 
Strategic Planning 

Abrupt and 
gradual Yes 

- Benchmark and real datasets; 
- Evaluation metric: a time plot of the predictive accuracy computed 
utilising prequential analysis with a sliding window. 

 [9] Ubiquitous 
Environment 

Abrupt and 
gradual Yes 

- Benchmark and real datasets; 
- Evaluation metric: a time plot reflecting the number of times each 
test example was correctly classified; 
- The results are averaged over 100 runs. 

 [77] 
Personal 

Assistance and 
Information 

Gradual Yes 

- Artificial dataset; 
- Evaluation metric: a time plot of the predictive accuracy computed 
utilising prequential analysis with a sliding window; 
- The significance of the results are tested utilising t-test with 0.01 
significance level. 

 [94] Management and 
Strategic Planning Gradual Yes 

- Real datasets and  real datasets with artifiial  context; 
- Evaluation metrics: an overall predictive accuracy and the 
computational complexity. 
- The significance of the results are tested utilising McNemar paired 
test with 0.01 significance level. 

 [89] No real dataset 
utilised 

Abrupt and 
gradual No 

- Artificial and benchmark  datasets; 
- Evaluation metric: a time plot of the predictive accuracy computed 
utilising holdout an independent test set; 
- The results are averaged over 10 runs. 

[93] No real dataset 
utilised 

Abrupt and 
gradual No 

- Benchmark  and real dataset with simulated drift; 
- Evaluation metric: a time plot of the predictive accuracy computed 
utilising prequential analysis with a sliding window. 
 

 
 

Figure 2.5: Summary of reviewed papers.
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2.4.1 Continuous Adaptation

The classifier in these approaches is continuously (re-)estimated using either a window

of the latest observed examples or a time-based example weighting function [13, 12, 77,

80, 66, 15]. Both approaches are presented below.

In the windowing approach, the simplest implementation is to fix the size of the win-

dow, and delete the oldest example whenever a new example arrives (utilising a sliding

window of a fixed size) [13]. However, choosing the size of the window requires knowl-

edge of temporal occurrence of drift (the point in time when drift occurs) and its

type (abrupt or gradual), both of which are difficult to determine in advance. For

instance, when data exhibit abrupt changes, a small window is required to follow these

changes [21], while with gradual changes, a larger window could be more appropriate

since smaller number of past data become irrelevant [100]. Existing approaches with

adaptive window size are based on change detection and are discussed in Section 2.4.2.

The second proposed approach in continuous adaptation is giving weights to each ex-

ample in the training data set so that the oldest example gets the lowest weight, and the

most recent example gets the highest weight. In other words, the impact of past data

is continuously removed according to the time when each example was observed. To

achieve this, a time varying parameter is incorporated into the classification model to

control the contribution of each example in adjusting the model parameters. Examples

of this approach can be found in [12, 77, 80, 66, 15].

In continuous adaptation approaches, concept change is assumed to be present at any

time step, and hence no change detection mechanism is required. Consequently, there

is no period of performance degradation as with the change detection based approaches

(which are discussed in the next section). Despite this advantage, the assumption of

continuous changes could result in forgetting data continuously even in the absence
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of drift. Moreover, the relevance of training data is assumed to decrease with time,

neglecting older possibly relevant examples, especially in the case of recurring concepts.

2.4.2 Change Detection based Adaptation

Various change detection methods for handling concept drift are proposed in the liter-

ature. Unlike continuous adaptation, where the main proposed adaptive strategies are

context independent (a formal definition of context is provided in Section 2.4.2.2), these

approaches can be classified into: context independent learning and context dependent

learning. More details are presented next.

2.4.2.1 Context Independent Learning

Of the most well-known algorithms to handle concept drift is FLORA2 by Widmer

and Kubat [21]. The classification rules in this algorithm are built with respect to a

fixed-size window of the latest examples. These rules are updated on the arrival of new

examples and on drift detection. The drift is detected by monitoring the prediction

accuracy of the classifier, and the rate at which new classification rules are formulated.

Whenever the drift is detected, the size of the current window is decreased by delet-

ing the oldest 20% examples. To address concept recurrency, an extended version of

FLORA2 is presented that considers the possibility of reusing existing classification

rules. The basic idea is to store stable classification rules for future use. Hence, when-

ever a change is suspected and the window is decreased in size, all stored classification

rules are retrieved and compared. Previous classification rules are reused again if they

appear to match labelled examples from the current window more accurately than that

of the current classification rules.
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Other drift detection approaches proposed in the literature mainly depend on monitor-

ing the performance of the classification model and on detecting changes in the data

distribution. Examples of these approaches are presented below.

The drift detection algorithm (DDM) proposed by Gama et al. [6] is one of the most

widely used methods for change detection. The main idea behind this approach is that

if the distribution of the incoming examples is stationary, the probability of making an

error will decrease or at least stabilize as more examples become available (assuming

the classifier is constantly updated with these new examples). A significant increase in

this probability indicates that the distribution generating the examples has changed,

signalling a drift. In particular, it is assumed that the error of each incoming example

represents a random variable from Bernoulli trials, and that the number of misclassified

examples, denoted as E, follows a Binomial distribution. Given this, the probability

of making an error, denoted as pi, and the associated standard deviation, denoted as

si, are computed incrementally for each incoming example according to the following

formulas: pi = E
i , si =

√
pi(1−pi)

i . The learner’s performance at example i corresponds

to pi + si, which is compared against two registers: a warning threshold computed as

pmin+ 2∗ smin, and a drift threshold computed as pmin+ 3∗ smin. Here, pmin and smin

are the minimum error probability and minimum standard divination, respectively,

among the examples observed so far, obtained in the sequence of calculating pi and si

for the incoming examples. Based on this, if pi + si < pmin + 2 ∗ smin the classifier is

in the normal state, while if pi + si ≥ pmin + 3 ∗ smin the classifier is in the drift state.

If pi + si is in between the above levels, a warning state is reached that requires more

examples to either confirm the drift (the error rate increases to the drift level) or return

to the normal state (the error rate decreases to the normal level). The ability of DDM

approach to signal warning and drift states during the model operation is an important

property for data selection when adapting the classification model to changes. This is

because once the drift is confirmed, all the examples between warning and drift states
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are used for adapting the model, facilitating data selection task. DDM is utilised in

our analysis for the proposed hybrid learner as will be explained in Chapter 6.

A similar but gradual drift oriented detection approach is the early drift detection

method (EDDM) presented by Garcia et al. [7]. Instead of monitoring the error rate

of the classifier to detect drift, EDDM depends on monitoring the distance between

two classification errors (i.e. the number of correctly classified examples between two

consecutive classification errors). This is based on the idea that if the distribution is

stationary, the predictions of the learning algorithm will improve during learning, and

the distance between subsequent errors will increase. The average distance between

two consecutive classification errors (ṕi) and its standard deviation (śi) are computed

for each misclassified example and compared to the maximum distance and standard

deviations (ṕmax and śmax) registered so far during the learning process. The warning

and drift states are defined (when at least 30 errors have occurred) in terms of the

following equations: ṕi+2śi
ṕmax+2śmax < α for the warning state, and ṕi+2śi

ṕmax+2śmax < β for the

drift state. Both α and β are predefined thresholds.

Another accuracy-based approach is presented in [3], which depends on monitoring the

number of misclassified examples for the currently active classifier. For this purpose,

a binary variable is introduced with values 0 and 1, where 0 represents a correctly

classified example, while 1 represents an incorrect classification. The values of this

variable is monitored over time with respect to a sliding window by applying Shannon’s

entropy [24]. The entropy measure is computed incrementally and compared to its

maximum theoretical possible value (in this case 1). Whenever it reaches this value,

the drift is signalled.

Other approaches for change detection depend on comparing the accuracy of two clas-

sifiers with respect to two different windows: a sliding window with the most recent
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examples and a reference window with older examples. For instance, Bach and Mal-

oof [68] propose a learning algorithm that combines two classifiers: one classifier is

continuously updated on data arrival since the last drift detection point (referred to as

a stable learner), and the second classifier (referred to as a reactive learner) is trained

using a sliding window of a fixed size. The former classifier is used to perform the

classification task, while the latter to signal a change in the target concept. On arrival

of each new example, both classifiers are used to predict its class and then compared in

terms of the frequency at when the stable learner misclassifies the examples correctly

classified by the reactive learner. If this frequency exceeds a predefined threshold, the

drift is detected and the stable learner is replaced by the reactive learner for performing

classification. Other examples utilising the accuracy of two classifiers to detect changes

can be found in [82, 100].

Moreover, rather than monitoring the classifier accuracy, some detection methods rely

on identifying changes in probability distributions. To detect such changes, various ap-

proaches are utilised. For example, in [100], the change point is detected by examining

each time step for a possible change using Hotelling multivariate T 2-test. This test

compares the mean of each class sample before and after the potential change point

(the examined time step), and the returned p-value of the test (which corresponds to

the probability that no change have occurred) is used to compute the probability of

a change at that point, assuming that the mean of each target class changes indepen-

dently. Another commonly used test for concept change detection is the Page-Hinkley

test (PHT) [81]. According to this test, a cumulative variable, denoted as mT , is com-

puted at each time step by taking the difference between the observed values and their

mean. In particular, at time step T , mT is computed as follows:

mT =
T∑
t=1

(xt − x̄T − σ)
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where x̄T = 1
T

∑T
t=1 xt, and σ is the magnitude of allowed changes. The value of the test

is computed as PHT = mT −MT , where MT = min(mt, t = 1...T ). If this difference

exceeds a predefined threshold, a change in the distribution is detected.

In the adaptive windowing algorithm (ADWIN) proposed in [69], changes in the dis-

tribution are detected based on comparing the difference in means of the classification

errors between all possible sub-windows of a fixed size sliding window with recent exam-

ples. Whenever two large enough sub-windows have distinct enough means (determined

according to Hoeffding bound), the change is detected, and the older sub-window is

deleted from the window. A similar idea to ADWIN, but more expensive in terms of

time and memory, is introduced in [70], when data is assumed to arrive in batches of

examples. Their window resizing approach depends on training the classifier on all

possible window sizes, starting from the most recent batch of data and increasing the

window size by one batch, so that the largest possible window contains all available

historical data. The optimal window size is chosen by estimating the generalization

error (classifier specific leave-one-out estimator of the error rate) of each window on

the last batch of data, so that the window size that achieves the minimum error is used

to classify the next batch of incoming examples.

In some detection approaches, changes in the distributions are measured with respect

to two different windows: a window with recent data examples and a window with

older examples. To measure the difference, a number of methods are utilised such

as Kullback-Leibler divergence [17] and entropy [83]. If the values of these measures

exceeds a predefined threshold, the drift is detected.

The main advantage of the above proposed approaches is eliminating the need for un-

necessary reassessment of data relevance (e.g continuously re-weighting data examples

even if a drift did not actually occur). Moreover, identifying the change point, even

approximately, provides a better indication of the most relevant data for adjusting the
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classifier. For example, if an abrupt change occurs, the only data that should be con-

sidered is that which come after the change point, since all previous data (before the

change) will become not relevant. However, the proposed approaches mainly depend

on measuring the performance accuracy of the current classifier to detect changes, and

hence suffer from performance degradation. Moreover, as with continuous adaptation

approaches, newer data is favoured in adapting to changes, while older data is eventu-

ally forgotten without accounting for recurrency in concepts. The contextual conditions

under which the data observations were collected are also not considered, which could

vary the importance of the example to the current concept. The current efforts towards

incorporating such contextual information during the adaptation process are presented

next.

2.4.2.2 Context Dependent Learning

A relatively new trend that has emerged in the literature to address concept drift is

learning with respect to context changes. Generally, there are many definitions of

the term context. A commonly used definition is the one provided by Dey [26] that

defines context as "any information that can be used to characterize the situation of

an entity". Here, by context we refer to the situation and the environment of the

target concept [25]. Usually, the context is domain dependent. For instance, the

time of the year is the context for weather prediction rules, while location and day

of the week constitute context for identifying user preferences. From the view point

of concept learning, context can be seen as the information that explains changes in

the target concept. For example, what is meant by a "nice weather" changes with

different seasons [67]. The main attempts that exist in the literature to use contextual

information in addressing the problem of concept drift can be categorized into explicit

context dependent learning (i.e. context is determined by a set of variables) and hidden
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(missing) context dependent learning. A summary of these approaches is presented

below.

Explicit Context Dependent Learning

A formal definition of context and context dependent variables are given by Turney

in [31], who was among the first to recognise the problem of context in supervised

learning, motivated by the possible difference in context condition between training

and application data [32]. According to this definition, a variable C is considered

contextual if it is not in itself predictive, but affects the discrimination ability of some

input variable(s) X, i.e. P (Y |C) = P (Y ) and P (Y |C,X) 6= P (Y |X).

In [75], Turney provided a review of different strategies for managing explicit context

information to improve the accuracy of classification models. Four heuristic strategies

are identified: contextual normalisation, contextual expansion, contextual weighting,

and contextual classifier selection. The contextual normalisation approach depends on

scaling input variable values in the training and testing sets to reduce the variations

in variables that are due to different context conditions (i.e. reduce the sensitivity to

context). This is done by subtracting the mean and dividing by the standard deviation

which are computed from observations with the most similar context (i.e. observations

with similar values in contextual variables) [74]. In contextual expansion, contextual

variables are included as additional input variables to the classification model [72, 73].

In contextual weighting, each input variable is given a weight based on its relevance

to the classification task (the relevance is identified by context similarity) [72, 73]. In

contextual classifier selection, contextual variables are used to train a classifier to select

a relevant classifier from previously trained classifiers.

Although Turney’s strategies present an attempt towards explicitly taking contextual

information into consideration, the utilisation of these strategies is still limited and
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not focused on adapting the classifier to concept drift. For example, the data pre-

processing strategies of contextual weighting and contextual normalization in [72, 73,

74] are effective for some classification algorithms (e.g. for instance-based learning),

and ineffective for others (e.g. discriminant analysis) [73]. In addition, the weighting

strategy in [72, 73] does not consider varying weights with respect to the current context

even though changes in context values may affect the discriminant ability of the input

variables [76], and consequently their weights.

Explicit utilisation of contextual information in adapting the classifier to concept drift

is exploited in the adaptive learning model Mining Recurring Concepts (MReC) pro-

posed by Gomes et al. [28]. In this model, context is utilised for classifier selection

from a pool of previously trained classifiers (a model repository) in the case of recurrent

concepts. In particular, the proposed learning model consists of a base-level learner

that is used for performing the classification task, and a meta-level learner that is used

for context utilisation by learning the relation between trained classifiers and context

(the context is represented by one variable or a vector of variables). Concept drift is

detected based on DDM approach. Given this, a new classifier is trained continuously

whenever a warning level is reached. If the drift is confirmed (by reaching the drift

level), each previously trained classifier in the model repository is compared to the new

classifier in terms of similarity of their classification decisions on the data examples

arrived between the recorded warning and drift levels. Such similarity is specified by

taking the average of the number of times both classifiers agreed on their decisions. If

the similarity measure for any of the stored classifiers is above a predefined threshold,

the recurring concept is confirmed, and the new classifier is discarded. On the other

hand, if no recurring concept is detected (the similarity below the threshold for all ex-

isting classifiers), the new classifier is stored and used for performing the classification

task. If a recurrent concept is confirmed, each stored classifier is assigned a score that

is partially determined based on its context similarity with the most recent context,



Chapter 2 Literature Review 30

and the classifier with the highest score is selected as a base learner. In particular,

the context similarity is specified by a weighting factor that is proportional to the

probability that the classifier of interest represents the current concept given particular

context. To compute this probability, the meta-level classifier, utilising Naive Bayes,

is trained using records consisting of context information as input variable(s) with the

corresponding classifier in use as a target variable (utilising an appropriate identifier for

the classifier). The context of each classifier is defined as the most frequently observed

values for context during classifier’s training period and utilisation. Despite the fact

that MReC algorithm explicitely utilises context in the adaptation process, the contex-

tual variables are assumed to be known a priori, with no identification method being

suggested. Moreover, contextual exploitation in this approach is limited to classifier se-

lection, without utilising context in concept change detection or in concept recurrency

detection as will be presented in this thesis.

Implicit Context Dependent Learning

The main approaches that have been developed when information about context is not

available can be summarised as follows: monitoring the predictive ability of the input

variables [32], data clustering [9, 77, 80, 94], and utilising the frequency of attribute

values occurrence [78, 79]. A summary of these approaches is presented below.

In the approach proposed in [32], it is assumed that context is hidden in the dataset,

and can be defined by identifying some indicator variables. In particular, the proposed

classification model consists of a base-level learner that is used for the classification task,

and a meta-level learner that is used to focus the base learner on the relevant examples

from the training dataset that match the current context. The context is recognised on

the meta-learning level by trying to identify those attributes which characterise par-

ticular contexts when taking certain values (contextual clues). Identifying these clues
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depends on detecting a significant correlation between co-occurrence of some attribute

values and the predictive ability of others. Predictive attributes are determined using

the chi-square test of independence with respect to a sliding window of a fixed size

which is used by the base learner to perform the classification task. Similarly, contex-

tual attributes are identified using the chi-square test of independence but with respect

to the entire dataset (since the beginning of the learning process). Two algorithms with

different base learners are proposed: METAL (B) with a Bayesian classifier as a base

learner, and METAL (IB) with an instance-based learning algorithm (single nearest

neighbour model). In METAL (B), when a new example arrives, and the meta-learner

detects contextual attribute(s), a selective strategy is applied to the current window

by selecting examples having the same values for contextual attribute(s) as of the new

example. If no contextual attribute(s) could be detected, all data in the window is

used for classification. On the other hand, in METAL (IB) algorithm, two weighting

strategies are proposed. The first strategy is giving weights to the examples according

to the degree of similarity (using Euclidean distance) between the new example and the

examples in the current window with respect to contextual attributes. In the second

strategy, the weights are given to the attributes that are predictive during the current

context (attribute weighting). In the feature weighting strategy, the meta-learner uses

Bayes’ rule to predict the probability for each attribute being predictive given a par-

ticular context (the values of contextual attributes in the incoming example), and uses

these probabilities to assign weights.

In the second attempt for dealing with a hidden context, Harries et al. [9] propose an

algorithm to partition the historical training data into data intervals that share similar

contexts. Context similarity is determined by the degree to which the same classifica-

tion rule induced from one data interval can be applied accurately into other intervals.

The data intervals are iteratively modified through a process called contextual cluster-

ing. In contextual clustering, similar intervals (from adjacent or disjoint data intervals)
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are combined into one contextual cluster that corresponds to one stable concept. In

particular, the training data is ordered with respect to time, and divided into initial

intervals that correspond to some probable change in context. The division is done

either randomly, or based on prior knowledge about the domain. These intervals are

then used for building temporary classification rules (interim concept) from each inter-

val. Specifically, each learned concept is used in classifying all available examples in the

training dataset, and a score (the number of correct classifications) for each concept-

example combination is computed with respect to a fixed size window surrounding each

example. New contextual clusters are formulated by allocating each example to the

contextual cluster that gets the highest score with its interim concept for that example,

and new classification rules (concepts) are learned from the new clusters. The process

iterates either for a fixed number of repetitions or when the same concepts result after

each iteration. The resulting stable concepts are used in classifying new examples using

a voting method, so that the concept that achieves the highest accuracy in classifying

the last several examples is used for making next classification decision.

Utilising classification accuracy and applying it to group data under similar hidden con-

text is also exploited in [77]. In this approach, a meta-level learning classifier is trained

on a fixed size sliding window of the most recent data (which is assumed to represent

the latest context). This classifier is used to select examples from past observations

that are relevant to the current context. The relevance is determined by the degree

to which this classifier correctly classifies previous examples in the training set. The

accuracy for classifying each example is specified by the average accuracy the classifier

achieves for a fixed number of its surrounding examples. Hence, all examples that have

prediction accuracy above a particular threshold are included in the training data set

of the base learner. A similar approach, but for data arriving in a batch form, is intro-

duced in [80], which also uses a classifier trained on the most recent batch of data for

weighting and selecting the most relevant (well classified) batches. However, the main
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criteria for selecting the training data (the relevant batches) is based on minimising

the estimated performance error of the classifier with regard to the most recent batch

of data. The estimated error is determined using a special form of classifier specific

leave-one-out error estimate. More precisely, the error rate of the classifier on every

batch is compared to its error on the most recent batch. This error is used to exclude

batches that get a significantly higher estimation error than the most recent batch, or

alternatively, assign weights with respect to this error (i.e., batches with the highest

error get the lowest weight and batches with the lowest error get the highest weights).

In [84], a two layer model is proposed: a base model for performing classifications, and

a meta-model that is used to select the most relevant model for the current concept.

To detect drift, the DDM approach is utilised. Detecting implicit context (and concept

recurrency) is conducted with the help of the meta-classifier that is trained on the input

variables similarly to the base classifier. However, the target label for this classifier is

either true or false. If an example is correctly classified by the associated base classifier,

the label is true. If the example is incorrectly classified by the base classifier, the label is

false. Each previously trained classifier is stored with its corresponding meta-classifier.

The relevance of each classifier is determined based on the meta learner that predicts

the error rate of its corresponding classifier (with respect to a sliding window), such

that the classifier with the lowest estimated error is selected.

In addition, different class independent clustering methods for the implicit context

are provided in [94]. The main idea behind these methods is that data in the same

cluster tend to have the same context, so that clustering data enables training a certain

classifier for each cluster.

The last approach for capturing the effect of a hidden context utilises the order in which

input variables take certain values. This idea is presented by Mandl et al. [78] and in a

subsequent work in [79]. It is assumed that the order in which examples are presented
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to the learning system is not random, but in some domain order [79], and therefore

could be used to reveal the hidden context. Three windows are used for each example

in the training set to identify potential change points in context as follows. The first

window contains the sequence of training examples since the last discovered context

change. The second window contains a fixed number of the most recent examples. The

third window contains the latest, non-overlapping with the second window, examples

that are used to test classifiers trained on both windows. If the classifier that is trained

on the smaller window achieves more accurate results, a new context is detected.

Overall, the proposed approaches in learning with unobserved context provide more

flexibility in selecting the training data based on its relevance to the approximated

context and less on its age, especially in the presence of recurring concepts. However,

these approaches provide only approximate ways in identifying context, mainly depen-

dent on the predictive accuracy of the classifier for determining context similarity (for

example in [9, 77, 80, 78]). Moreover, most approaches use a window of a fixed size

to define the most recent context, which poses the same problems mentioned earlier

(fixing the window size requires assuming certain type and speed of drift, and dealing

with the stability-plasticity problem). For example, in [32] the window should be

large enough to increase the accuracy of the classification system, and small enough to

exclude instances from different concepts in order to enable the meta-leaner to identify

predictive attributes and consequently contextual clues.

Note that, in the above presented approaches for handling concept drift, only a single

classifier is utilised at a certain time step to classify incoming examples. This is the

main focus of this thesis. On the other hand, in some approaches, multiple classifiers

are combined at the same time to classify new examples (usually by voting) [49]. This

approach, which is normally referred to as ensemble learning, depends on keeping mul-

tiple classifiers trained on similar concepts. The main adaptation strategy with this
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regard is by assigning weights to the output of individual classifiers to achieve the final

classification decision (either combined or selected), and determining the number of

classifiers within the ensemble. The weights usually depend on the performance accu-

racy of each classifier within the ensemble on the most recent data. Examples of these

approaches can be found in [71, 20, 85, 70]

Moreover, in some approaches instead of using a window of consecutive examples, a cri-

terion for training data selection inside the window is applied to measure the usefulness

of the example for the current concept. This is usually referred to as instance-based

approach. The advantage of such approach in comparison to consecutive windowing is

the ability to exclude irrelevant observations inside the window such as noisy examples

and examples from different concepts (e.g. the examples that arrive during the tran-

sient period between the old and new concepts in the case of gradual concept changes).

The criteria utilised for measuring the usefulness of each examples mainly depend on

time (i.e. the most recent examples are considered the most relevant) and on space (i.e.

the position of the example in the examples space) [95, 89, 93, 101, 94]. For example,

in [94], the proposed data selection approach utilises both the recency of the example

and its distance with respect to the example to be classified to identify the relevance of

the example for the current concept. That is, the training set consists of the examples

with the smallest distances, which allows addressing recurrency in concepts. Similar

approaches are proposed in [89] and [93]. However, in these approaches the distance

metric is also utilised to eliminate redundant examples (examples that are positioned

close to each other in the neighbourhood are considered as redundant). In addition,

any example in the window with a label different from the labels in its neighbourhood

is removed. Hence, in both approaches recurrency in concepts is not considered. Al-

though utilising such approaches for data selection provides more flexibility compared

to the standard windowing approaches, these approaches are still limited to selecting

from the most recent examples, with no utilisation of context in the analysis.
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2.5 Conclusion

Adapting classification models to concept changes is one of the main challenges as-

sociated with learning in dynamic environments, where the definition of the target

concept may change over time under the influence of various context. The state-of-the-

art adaptive learning approaches that have been proposed in the literature to address

concept drift can be generally categorised into context independent learning and con-

text dependent learning. In the former approach, time is considered as a measure for

training example relevance, with recent examples being considered the most relevant,

while older ones being forgotten eventually. Moreover, these approaches mostly rely

on monitoring the effects of drift to recognise changes (in terms of the degradation of

the classifier’s performance over time and changes in the data distributions), without

taking into consideration the contextual factors under which training examples are ob-

served. As a result, they neglect important evidence for detecting the occurrence of a

change (essential to ensure that only relevant data is captured in the learning process),

and ignore situations where old observations may become relevant again (i.e. when

a previously encountered concept reappears). On the other hand, the approaches to

context-dependent learning, which have started to receive increasing attention, facili-

tate more effective adaptation. The main research efforts with this regard are tailored to

keeping multiple classifiers associated with certain contexts. However, these approaches

mostly rely on monitoring approximated implicit context, and remain limited in terms

of the extent to which the contextual aspects are explicitly identified and utilised. In

this thesis, we propose enriching classification under concept drift with explicit con-

textual information, and exploiting such information during the learning process to

facilitate drift detection and selection of more relevant training data as introduced in

the following chapters.



Chapter 3

Experimental Design

In this chapter, we present the datasets utilised throughout the thesis, along with a

general framework for context simulation. The evaluation metrics and classification

models used for the experiments are also presented.

3.1 Datasets

Generating data under concept drift is not a straightforward task. This is because

changes can be simulated in an infinite number of ways, where it is difficult to determine

the most useful and realistic settings [52].

Throughout the thesis, a number of artificial datasets are utilised with different types of

changing environments. Moreover, two publicly available real-world datasets are also

utilised, which have been widely used for evaluating concept drift handling systems

(both exhibit concept drift and contextual characteristics, which make them suitable

for the purpose of our evaluation). A summary of the main characteristics of these

datasets are provided in Tables 3.1 and 3.2. The visualisation of some of these datasets

37
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is presented in Figure 3.1. Note that, for illustration purposes, only the most predictive

variable (chosen experimentally) that best illustrates the pattern present in the dataset

is depicted. More details about the datasets are provided in the following sections.

Table 3.1: Characteristics of the real and benchmark datasets utilised.
Name Dimension Size Balance Drift Type Severity New Concepts Recurrent Concepts Noise
Email 99 1500 0.53:0.47 Abrupt Global 2 Yes Noise-Free

Electricity 4 2265 0.57:0.43 Gradual Local/Global Not known Yes Not known
Sine1 2 2000 0.49:0.51 Abrupt Global 2 Yes Noise-Free
Gauss 2 2000 0.51:0.49 Abrupt Global 2 Yes Noisy Examples
Stagger 3 Changing 0.45:0.55 Abrupt Global 3 Yes Added Noise

Hyperplane 3 1200 0.5:0.5 Gradual Local 3 Yes Noisy Examples
Circles 2 2000 0.81:0.19 Gradual Local/Global 4 - Noise-Free

Table 3.2: Characteristics of the artificial datasets utilised.
Name Dimension Size Balance Drift Type New Concepts Recurrent Concepts

Dataset1 5 Changing 0.5:0.5 Abrupt 4 No

Dataset2 5 2000 0.5:0.5 Gradual 4 No

Dataset3 Changing 2000 0.5:0.5 Abrupt 4 No

Dataset4 5 3000 0.5:0.5 Abrupt 5 Yes

Static 5 2000 0.5:0.5 No drift - -

3.1.1 Artificial Datasets

3.1.1.1 Simulated Framework

In this section, we introduce artificial datasets generated according to the framework

proposed by Narasimhamurthy and Kuncheva [52]. The idea is to assume that data

is generated according to a number of distributions. Each distribution is represented

in terms of class prior probabilities P (Y ) and class conditional probabilities P (X|Y ).

Here, Y is the target class label, and X is a vector of input variables. In partic-

ular, for each data generating distribution, we assume equal prior probabilities (i.e.

P (Y = y) = 0.5, for y ∈ {0, 1}), while setting the class conditional probabilities to
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.1: Visualisation of the used datasets.
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be normally distributed: X|Y ∼ N (µy,Σy), where µy is the mean vector for the in-

put variables given each class, and Σy is the associated covariance matrix. Assuming

that the covariance matrices Σy remain the same, changes between concepts are gen-

erated by shifting the mean vectors µy of the input variables for each class such that:

µty = µ
(t−1)
y + ω. Here, ω is a deterministic quantity by which the mean vectors are

changing. The values of these parameters are dependent on the type of change assumed

between concepts. Specifically, according to these settings, we define the following

datasets:

Static dataset. Here, the data generating distribution does not change over time,

i.e. µty = µ
(t−1)
y at each time step. Specifically, one data generating distribution is

assumed, where the values of the mean vectors for each class are initialised as follows:

µ1 ∈ [−2, 0]m, and µ0 ∈ [0, 2]m, where m is the input dimensionality that would be

varied in our experiments.

Abrupt-change dataset. Here, µy is made to change by an abrupt quantity ∆ every

p time steps. Datasets with different speeds of drift (concept duration) are generated

by varying the value of parameter p as we will see in the next chapters.

Gradual-change dataset. Here, changes in µy occur continuously at each time step,

i.e. p = 1, but with smaller (more gradual) magnitude of changes δ. That is, δ = ∆
D ,

where D represents the duration between two abrupt concept changes, and ∆ is the

magnitude of an abrupt change. Datasets with different speeds of drift are generated

here by changing the parameter δ.

Note that, the incremental drift generated in our experiments assumes continuous drift

at each time step. That is, there is no period of concept stability between the old

and new concepts as the concept is continuously changing. This means that there is

no transient period (the time steps between the old and new concepts) that needs to
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be eliminated. Another scenario of incremental concept changes is when the new con-

cept appears after a transient period. One of the main challenges in such scenario is

to eliminate the examples that belong to the transient period once the new concept

starts. This requires determining the time when the new concept has started following

the transient period. It is worth noting that in our context-aware approach, the ex-

amples arriving during the transient period will not be taken into account as they will

have different contextual conditions. Such examples might only be considered at the

beginning of the change when the concept is new and there is no sufficient number of

examples.

3.1.1.2 Benchmark Datasets

In this section, we introduce a number of artificial benchmark datasets that are com-

monly used in the literature for testing adaptive learning models.

STAGGER Concepts [18]. This dataset exhibits abrupt concept drift, and is defined

by three categorical input variables: size, colour, and shape. Each variable has three

possible values: size ∈ {small,medium, large}, colour ∈ {red, green, blue}, and shape ∈

{square, circular, triangular}. The target concept switches between a sequence of the

following three descriptions: Concept 1 (size = small ∧ colour = red); Concept 2

(colour = green ∧ shape = circular); and Concept 3 (size = medium ∨ large).

Sine1 dataset [88]. This dataset is defined in terms of two uniformly distributed input

variables in the range [0, 1], and a binary class label. Positive and negative examples

are defined by equation y = sin(x). Specifically, examples lying below the curve sin(x)

are labeled as positive, and as negative otherwise. The drift is generated by reversing

the labeling of the examples during each concept.
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Gauss [88]. This dataset is defined in terms of two normally distributed variables,

where the mean for positive examples is equal to [0, 0] with standard deviation of 1,

and the mean for negative examples is equal to [2, 0] with standard deviation of 4. The

drift is generated by reversing the labelling of the examples during each concept.

Rotating Hyperplane [20]. This dataset exhibits gradual concept drift, and is defined

by equation:
∑m
k=1 akxk = a0, where ak and xk are the weight and value of input

variable Xk, respectively, m is the input vector dimensionality, and a0 is a threshold

value distinguishing two classes for a given concept. The value of a0 is determined such

that a0 = 1
2

∑m
k=1 ak. That is, the hyperplane divides the space of the examples into

two parts, where examples satisfying
∑m
k=1 akxk ≤ a0 could be labelled as positive, and

as negative otherwise. The drift is generated by continuously changing the weights ak of

the input variables during each concept. Specifically, at each time step, ak is updated

by quantity ∆a
D , where ∆a is the magnitude of change for ak during each concept,

and D is the duration of the concept. In our experiments, we generate 3 uniformly

distributed input variables over the range xk ∈ [0, 1], k = 1 : m. The weights, ak, are

randomly initialised between 0 and 1, i.e. ak ∈ [0, 1], and then made to change during

each concept by ∆a = 1.5.

Circles [88]. Similarly to Sine1, this dataset is defined in terms of two independent and

uniformly distributed input variables, xk ∈ [0, 1], k = 1 : 2, and a binary class label.

Positive and negative examples are determined according to their location with respect

to a particular circle. Specifically, examples lying outside the circle are labeled as

positive, and as negative otherwise. Four different concepts are defined corresponding

to the following four circles:

Center [0.2, 0.5] [0.4, 0.5] [0.6, 0.5] [0.8, 0.5]

Radius 0.15 0.2 0.25 0.3
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3.1.2 Real-World Datasets

Electricity Market Dataset. Electricity Market dataset (or Elec) [8] consists of

45312 records concerning electricity price changes, obtained from the Australian New

South Wales Electricity Market, between May 1996 and December 1998. Each record

represents a period of 30 minutes, with a binary class label and four categorical inputs

variables. The class label refers to the price change (up/down) with respect to a moving

average of the last 24 hours. This dataset exhibits drifts due to changes in consumption

habits corresponding to various candidate contextual characteristics such as season and

time of the week [28, 8]. Furthermore, due to the dependencies among the labels in this

dataset [23] (which cause even the simplest classifier predicting the next label based

only on the previously seen label to achieve very high accuracy), we subsample the

data to break such dependencies [100]. Specifically, we take every 20th observation at

regular intervals, resulting in a total of 2265 records utilised for classifier evaluation.

Emailing List Dataset. The emailing list dataset (or Elist) [11] contains 1500 ex-

amples on how to filter email messages into either interesting or junk according to user

preferences. Each record consists of 913 Boolean input variables representing words fre-

quently appearing in the body of the message, with a binary class label. Two recurring

concepts are exhibited: Concept 1 (the user is only interested in medical messages),

and Concept 2 (the user changes their interest to space and baseball). Such interest

change is associated with the context variable Location. Changes in concept are made

to occur every 300 examples.
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3.2 Contextual Data

3.2.1 Context for Artificial Datasets

To facilitate a comprehensive set of experiments, a general framework for generating

contextual data is provided. It allows varying the dimensionality of context data and

introducing contextual attributes of various importance.

We consider both discrete and continuous context variables. To introduce relevant

context variables, we follow the intuitive notion for context, and make these variables

to have certain values (in the case of discrete variables) or certain distributions (in

the case of continuos variables) whenever a particular concept is in effect, such that a

change in these values will indicate a change in the underlying concept. More details

on the framework are provided below.

3.2.1.1 Perfect Context Variables

We generate a perfect context variable as follows. In the case of a continuous context

variable, its values are made to follow a specific normal distribution for each concept.

Specifically, the mean of the context variable’s distribution, µc, is made to shift over

time, either abruptly by a significant quantity ∆c, every p time steps in the case of

abrupt changes, or gradually by a slight quantity δc, each time step in the case of a

gradual change. That is,

µ(t+p)
c = µtc + ∆c (for abrupt changes)

µ(t+1)
c = µtc + δc (for gradual changes)

where δc = ∆c
D , and D is the duration between two abrupt concept changes.
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The case of a discrete context variable is more suitable for abrupt changes. For this

case, given n concepts, we introduce a context variable Cj with values v1, v2, ..., vn, such

that Cj = v1 under Concept 1, Cj = v2 under Concept 2,..., Cj = vn under Concept n.

3.2.1.2 Context Variables of Varying Importance

A possible way to generate a context variable of a particular importance is to make the

importance of the variable (on a scale between 0 and 1) corresponds to the number of

concepts the variable is able to distinguish. That is, a contextual importance of 0.75

means that the value of the context variable (or the value of its distribution mean in

the case of continuous context) changes only in 75% of concept change points. For

example, given 5 concepts, a 75% importance indicates that only in 3 out of 4 concept

change points the context variable changes its value (or the value of its distribution

mean). Similarly, an importances of 0.5 indicates that only in 2 out of 4 concept change

points the context variable changes its value (or the value of its mean), etc.

3.2.1.3 Correlation-based Context Variables

Another possible way to generate context variables of varying importance is to make

these variables have varying correlation degrees with a perfect context variable, cor-

responding to the importance of the variables. This is achieved by controlling the

covariance matrix Σ according to which the variables are generated. Specifically, we

generate a normally distributed perfectly contextual variable as described above, de-

noted Z. Now, to generate a context variable Cj with a specific correlation degree with

variable Z, we first sample variable Cj from a normal distribution (with a zero-mean

and unit-variance), define a covariance matrix Σ for Z and Cj with the required cor-

relation degree, and then transform the data utilising Cholesky decomposition B of
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the required covariance matrix Σ, where BBT = Σ (with BT denoting the transpose

of matrix B). The latter transformation step is achieved by multiplying the Cholesky

decomposition B by the data matrix (of variables Z and Cj), resulting in a transformed

data matrix with the specified correlation from which the context variable is extracted.

Generally, we divide n candidate context variables into n1 relevant variables (of varying

importance), n2 redundant variables, and n3 irrelevant variables (n1 + n2 + n3 = n).

Each relevant variable is made to be correlated with the perfect variable with correlation

degrees ranging from 1 to 0.1 with a step size of 0.1. In generating redundant context

variables, each variable is set to be perfectly correlated with another relevant context

variable. Finally, the irrelevant context variables are generated to have zero correlation

with the perfect variable.

3.2.2 Context for Real-World Datasets

The contextual properties for the considered real-world datasets are defined as fol-

lows. In the electricity dataset, we regard the following variables as candidate context

variables: day of the week (previously used by other researchers as a contextual vari-

able [8]; [28]) and season (this variable is derived with the help of dates provided for each

data instance). The value domain for each of these variables is given in Table 3.3. In

the email dataset, interest change is associated with the context attribute Location [11],

which takes two possible values: Location∈ {work, home}.

Table 3.3: Candidate context variables for electricity dataset.

Variable Value Domain

Day of the Week ∈ {Mon, Tue,Wed, Thu, Fri, Sat, Sun}

Season ∈ {Winter, Spring, Summer,Autumn}
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3.3 Evaluation Metrics

In the evaluation of the proposed adaptive learning models, we assume an incremental

(stream) learning scenario where the classification model is (re-)estimated on the arrival

of each new example (consisting of the input value vector, the target class label, and the

associated context). In particular, whenever a new example arrives, the classification

model makes a prediction, after which the real class label of this example becomes

available. The example is then used to update the model.

Assessing the performance of learning models requires determining the records that

are used for training the model, and the records that are used for testing it. In the

considered stream learning scenario, the temporal order of data is important since the

model is continuously updated during operation, and the incoming data may belong to

different concepts. Two approaches are normally utilised in the literature for assessing

the performance of learning algorithms in such settings [49]: holdout an independent

test set and prequential analysis. The former depends on regular application of the

classification model of interest to an independent test set, while the latter utilises

each data example for testing the model and then for training it. In our analysis, we

utilise the prequential approach as with this approach, all the available data is used

for training the model, without the need to keep an independent test set. Moreover,

applying the holdout estimate in the presence of concept drift may be problematic given

the uncertainty regarding the examples that belong to the currently active concept.

In the presence of concept drift, monitoring the predictive accuracy of the adaptive

learning model over time is a major goal. This is because it allows monitoring the

behaviour of the learning model (the classifier may perform well only on some parts

of the data, and deteriorates in performance on other parts) and its ability to adapt

to concept changes. In our experiments, an average accuracy (a ratio between the
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number of correctly classified examples and the total number of classified examples)

is computed on the arrival of each new example with respect to a moving window of

the most recent data. Utilising a moving window is one of the most frequently used

forgetting strategies in prequential analysis [49].

In addition to the predictive accuracy, we consider the following evaluation metrics

that are widely used in the literature.

Kappa Statistic (KS) [50]. This measure compares the performance of the classifier

of interest with a random classifier, computed according to the following formula: a−ar
1−ar ,

where a is the accuracy rate of the classifier of interest, and ar is the accuracy rate of

a random classifier, which assigns the same number of examples for each class as the

classifier of interest. The values of KS range between -1 and 1, where 0 indicates that

the performance of the classifier matches that of the random classifier (i.e. the resulting

accuracy is random). On the other hand, the higher the value of KS, the better the

performance of the classifier.

The Area Under the ROC Curve (AUC). This measure is one of the most widely

used measures for comparing the performance of multiple classifiers. Its values range

between 0.5 and 1, where a value of 1 indicates a classifier with a perfect discrimination

ability [59]. This measure, however, uses different misclassification costs for each clas-

sifier, which corresponds to utilising different performance evaluation metric for each

classifier [61]. To overcome this, we use another metric, namely the H-measure, that is

described below.

H-measure [61]. This is an alternative measure to AUC. However, unlike AUC, the

H-measure assigns an equal misclassification cost distributions to all classifiers, which

is an important property when comparing models that evolve over time. As with the

above measures, higher values of the H-measure indicate better performance.
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Moreover, to evaluate the statistical significance of the difference in performance be-

tween the proposed adaptive learning models against other approaches under compar-

ison, we utilise the non-parametric McNemar’s test that is normally utilised in the

literature for stream learning settings [5]. The advantage of this test is that with algo-

rithms that can be executed only once (the case of stream learning), McNemar’s test

achieves the smallest Type I error (the probability of incorrectly detecting a difference

when no difference exists), with a value less than 5% [51].

3.4 Classification Models

The main classification model adopted in our experiments is the Naive Bayes classifier.

This is due to its computational efficiency, ability to handle discrete and continuous

variables, robustness to noise, and ability to produce accurate results compared to

more complex models [86]. However, since the contributions presented in this thesis

are not specific to any particular classification model, experimental results with other

two widely used classification models, namely logistic regression and perceptron, are

also presented.

More details on the above classification models are presented next.

3.4.1 Naive Bayes Classifier

Bayes classifier is a probabilistic classifier that uses Bayes theorem (see Equation 3.1)

to predict the most probable classification outcome.

P (Y |X) = P (Y )P (X|Y )
P (X) (3.1)
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Let’s assume that x = (x1, x2, ..., xm) represents a value vector of input variables, and

y ∈ {0, 1} is the target class label. The decision of assigning label y to vector x is

performed as follows.

Compute the probability of each class given vector x:

P (Y = 1|x) = P (Y = 1)P (x|Y = 1)
P (Y = 1)P (x|Y = 1) + P (Y = 0)P (x|Y = 0)

P (Y = 0|x) = P (Y = 0)P (x|Y = 0)
P (Y = 1)P (x|Y = 1) + P (Y = 0)P (x|Y = 0)

Assign x to the class with the largest probability. That is, ŷ = 1 if P (Y = 1|x) >

P (Y = 0|x), and ŷ = 0 otherwise.

Given a limited sample size, it is difficult to achieve meaningful estimates for P (x|Y =

y). Therefore, these estimates are normally simplified by assuming class conditional

independence among input variables. Thus, the term P (x|Y = y) is computed as

follows:

P (x|Y = y) =
m∏
j=1

P (xj |Y = y) (3.2)

Based on the above, Naive Bayes makes its predictions according to the following

equation:

ŷ = argmaxy[P (Y = y)
m∏
j=1

P (xj |Y = y)] (3.3)

Note that P (X) is omitted form Equation 3.3 since it is constant among the classes,

and hence its computation is not required for class prediction. Given the set {u(i)}t−1
i=1

of the observed labelled examples up to time t, where u(i) = (x(i), y(i)) is the example

observed at time step i, all probabilities are estimated based on this set using the

relative frequencies.
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In the case of continuous input data, it is usually assumed that input variables in each

class are normally distributed [87], and P (x|Y = y) in Equation 3.3 is computed as:

P (xj |Y = y) = 1√
2πσ2

exp(−(xj − µ)2

2σ2 ) (3.4)

where µ and σ are the mean and standard deviation, respectively, of the input variable

xj in the training data under Y = y.

Despite the simplicity of the NB assumption with regard to the independence among

input variables, it is still able to achieve good results even with data where this as-

sumption does not hold. This is because although the independence assumption may

result in inaccurate posterior probability estimates, the classification remain correct as

the maximum probability is often assigned to the correct class [86].

3.4.2 Logistic Regression

In logistic regression classifier, given value vector of input variables x = (x1, x2, ..., xm),

and the target class label Y , the prediction is generated according to the following

equation:

P (Y = 1|x) = g(βT z) (3.5)

where, g(.) is the logistic function such that Equation 3.5 is equivalent to:

P (Y = 1|x) = eβ
T z

1 + eβT z
(3.6)

where z = (x0, x1, x2, ..., xm) denotes the vector of input variables, and β = (β0, β1, ..., βm)

represents the vector of regression parameters that need to be estimated. Note that,

β0 represents a bias term that is independent of input data, with x0 = 1.



Chapter 3 Experimental Design 52

Given the set {u(i)}t−1
i=1 of the observed labelled examples up to time t, parameters β

can be estimated by maximising the following log-likelihood function.

LogLik =
t−1∑
i=1

ϕ(β|u(i)) (3.7)

where, ϕ(β|u(i)) is the log-likelihood of the ith observation, and is given as follows:

ϕ(β|u(i)) = y(i)log( eβ
T z(i)

1 + eβT z(i)
) + (1− y(i))log(1− eβ

T z(i)

1 + eβT z(i)
) (3.8)

The logistic regression classifier can be applicable for both discrete and continuous vari-

ables, can handle cases with high dimensionality, and support learning from weighted

training data as we will see in Chapter 5.

3.4.3 Perceptron

In this classification method, the predicted class label, ŷ, is generated based on comput-

ing a weighted sum of the input variables, and then checking the sign of the outcome.

That is:

ŷ = sign(x0w0 + x1w1 + x2w2 + ...+ xmwm) (3.9)

where x = (x1, x2, ..., xm) is the set of input variables, w = (w1, w2, ..., wm) represents

the parameters (also referred to as weights) associated to each input variable, and w0

is the bias term with x0 = 1. The sign function outputs either a value of 1 or 0. That

is, ŷ = 1 if the weighted sum is positive, and ŷ = 0 if the weighted sum is negative.

At each time step, the parameters w are updated according to the following rule, with

λ representing the perceptron learning rate:

wt = wt−1 + λ(y − ŷ)x (3.10)
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That is, perceptron learns in an online mode (i.e. it does not have to iterate over the

whole data at each time step). Moreover, the parameters of input variables are corrected

only if the current classification is incorrect. These properties allows efficient utilisation

of perceptron for incremental learning settings. On the other hand, perceptron will only

work properly if the data is linearly separable.



Chapter 4

Context Identification Model

4.1 Introduction

The first step in context-aware adaptation involves answering the following question:

How to identify context? In other words, how to recognise the variables that represent-

contextual information for the underlying concept.

In general, context variables can be derived from the background knowledge about the

domain. For example, when dealing with users purchasing habits, time and location

can be easily identified as contextual variables, since both usually have an effect on

the user preferences: a user has different preferences when at work or at home, during

weekdays or weekends. However, in many cases, domain knowledge alone might not be

sufficient to characterise the context for the situation at hand, especially in the presence

of a large number of potential contextual variables, but which might not all affect the

concept of interest. Hence, in such domains with many candidates for context, or where

it is difficult to distinguish contextual variables from non-contextual ones, we propose

to utilise historical data to deduce contextual variables that actually affect the concept

54
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of interest from a set of candidate variables. Such explicit identification of context, as

we will illustrate in Chapters 5 and 6, enables capturing the causes of drift, and hence

facilitating more effective adaptation.

The remaining of this chapter is organised as follows. Section 4.2 introduces the prob-

lem of context identification. Section 4.3 presents the proposed context learning solu-

tion. Experimental setup and results are presented in Section 4.4. Finally, Section 4.5

concludes this chapter.

4.2 Problem Formulation

The context knowledge for an application domain of interest can be represented as a

tuple (C, rl), where:

• C = {C1, C2, ..., Cp} is the initial set of candidate context variables that could

possibly affect the concept of interest, with cj(t) being the value of candidate

context variable Cj at time step t. For example, in the domain of electricity price

prediction, a potential value for candidate context variable Day of the Week at

time step t could be the value Monday.

• Function rl(Cj) ∈ [0, 1] returns the relevance degree of candidate context variable

Cj . This relevance corresponds to the importance of the context variable in

distinguishing concept changes.

Since the set of candidate context variables C can be usually derived from the back-

ground knowledge about the domain, and assuming the ability to access their values,

our problem of context identification reduces to that of assessing relevance rl. We pro-

pose to learn such relevance from the historical data available on the concept of interest



Chapter 4 Context Identification Model 56

based on information theoretic measures, namely Conditional Mutual Information and

Conditional Entropy (as detailed next). Whilst these are not novel measures in them-

selves, their utilisation for the purpose of identifying relevant context variables is a

novel application.

4.3 Context Learning

The identification of relevant context variables requires testing the existence of the

dependency between a candidate context variable and the ability to predict the target

variable. Before proceeding with context variables identification, we need to distinguish

between three types of variables [31]: input variables, context variables, and irrelevant

variables. Input variables are relevant for predicting the target variable of interest,

either when are taken individually or in combination with other variables. Context

variables, on the other hand, are relevant for predicting the target variable only when

are taken in combination with other variables. Finally, irrelevant variables are not

predictive neither when are taken individually nor in combination with other variables.

Our approach for the actual context recognition is inspired by the definition of context

variables proposed by Turney [31]. According to this definition (as introduced in Chap-

ter 2), the dependency between the candidate context variable and the target variable

cannot be tested independently, but only in the presence of the input variables. Specif-

ically, an actual contextual variable Cj affects the discrimination ability of the input

variables, i.e. P (Y |X,Cj) 6= P (Y |X). We extend this definition to allow measuring

the influence degree that Cj has on X (and consequently facilitating the calculation of

relevance rl), as follows: the degree of influence of a candidate context variable Cj ∈ C

on the discrimination ability of the input variables X, is proportional to the difference

between the conditional probabilities P (Y |X,Cj) and P (Y |X).
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Given the above definition, measuring the dependency between Cj and Y can be inter-

preted as measuring the additional information that Cj has about Y , and that is not

already provided by X. In other words, we are interested in measuring the degree to

which knowledge of the candidate context variable reduces the uncertainty in the target

variable, given the input variables. Shannon’s Information Theory [30], which measures

uncertainty and information content (the quantities of interest), thus provides a good

formalisation for this purpose. It is introduced next, followed by the respective context

identification approach, and a corresponding computational realisation.

4.3.1 Information Theoretic Measures

The measures of Information Theory of interest for our model, as we will see in Sec-

tion 4.3.2, are Conditional Mutual Information and Conditional Entropy. In the follow-

ing, we provide formal definitions for these measures, along with a number of related

key information theoretic measures utilised in our analysis, and summarise some of

their properties that form the basis of our work presented next.

4.3.1.1 Entropy

The concept of entropy relevant for our model building is the entropy of a discrete ran-

dom variable. It is defined as a measure of the degree of uncertainty in a given random

variable [24]. The uncertainty quantified by entropy depends on the probabilities of

the possible values the variable of interest can take. Specifically, high values of entropy

indicate that each state (outcome) of a variable has similar probability of occurrence,

i.e. the variable is highly random. For example, when tossing a fair coin, the entropy

is equal to its maximum value [24]. On the other hand, low values of entropy mean the

states of a variable have different probabilities of occurrence, i.e. the variable is less

random.
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Given a discrete random variable Y , with a probability mass function p(y), the entropy

associated with this variable, H(Y ), is given by [24].

H(Y ) = −
∑
y

p(y) log p(y) (4.1)

with the convention that 0 log 0 = 0. Here, the base of the logarithm determines the

units in which the entropy is measured. Specifically, when the base of the logarithm

is 2, entropy is measured in bits, and when the base of the logarithm is e, entropy

is measured in nats. In all experiments, we will use the natural logarithm in entropy

calculations.

In the case of two random variables, Y and X, the entropy between them is measured

by the joint entropy, H(Y,X), which is given as follows [24]

H(Y,X) = −
∑
y

∑
x

p(y, x) log p(y, x) (4.2)

where p(x, y) is the joint probability distribution.

Joint entropy can also be expressed in terms of the entropy of one of the variables and

the conditional entropy of the other variable as given below (this is usually referred to

as chain rule property):

H(Y,X) = H(X) +H(Y |X) (4.3)

H(Y,X) = H(Y ) +H(X|Y ) (4.4)

where H(.|.) refer to the conditional entropy, which allows quantifying the amount of

uncertainty regarding one random variable given knowledge of another random vari-

able(s), computed as follows:

H(Y |X) = −
∑
y

∑
x

p(y, x) log p(y|x) (4.5)
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According to Equations 4.3 and 4.4, conditional entropy can also be computed in terms

of entropy and joint entropy.

Note that, the value of entropy for discrete variables is always non-negative (H(Y ) ≥ 0)

as opposed to the entropy of continuous variables that can take negative values, but

this is out of the scope of this thesis.

Based on the above, the goal of any prediction task can be formalised as minimising

the entropy (uncertainly) of the variable we are trying to predict (i.e. minimising

the entropy of the class label H(Y )). Hence, any candidate variable minimising this

uncertainty is regarded as a predictive variable. Similarly, in the presence of concept

changes, this goal can be expressed as minimising the conditional entropy of the target

variable given knowledge of input variable(s). Hence, this measure is utilised in our

analysis to assess the relevance of each candidate context variable as we will see in

Section 4.3.2.

4.3.1.2 Mutual Information

Mutual information has been widely used in pattern recognition and data mining ap-

plications. The main advantage of mutual information is the ability to identify the

existence of the dependencies between variables regardless of the functional relation-

ships between these variables [45]. A diminishing value of the mutual information

does indicate that the variables under consideration are independent, and therefore

it is considered as a general measure of the statistical dependency between variables.

This is in contrast to the commonly used methods such as Pearson correlation, which

only captures linear relations among variables, and hence cannot be used to indicate

independence between variables.
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Formally, mutual information is defined as a measure of the amount of information that

one random variable provides about another random variable [24]. In other words, it

quantifies the reduction in uncertainty about one random variable with respect to an-

other random variable. To accommodate our definition of context variables, however,

the mutual information concept should be extended to conditional mutual information.

Similarly to mutual information, conditional mutual information facilitates measuring

the reduction in the uncertainty in one random variable given the knowledge of another

random variable, but in the presence of a third random variable [24]. With reference to

our problem, it facilitates measuring the reduction in uncertainty in the target variable

with respect to the context variable, while taking into consideration the knowledge al-

ready provided by the input variables. Formal definitions of both measures are provided

below.

Mutual information between two random variables X and Y with a joint probability

mass function p(x, y) and marginal probability mass functions p(x) and p(y) is com-

puted as follows [24].

I(Y,X) =
∑
x

∑
y

p(x, y) log p(x, y)
p(x)p(y) (4.6)

with the conventions that 0 log 0
0 = 0, p log p

0 = ∞, and 0 log 0
q = 0. For continuous

random variables, the summation in Equation 4.6 is replaced by the integral, and the

mutual information becomes

I(Y,X) =
∫ ∫

p(x, y) log p(x, y)
p(x)p(y)dxdy (4.7)

Mutual information can also be defined in terms of the reduction in the uncertainty in

one random variable given the knowledge of another random variable, i.e. the difference

between the entropy of one random variable and its conditional entropy (remaining
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Figure 4.1: Venn diagram illustrating the relationship between entropy and mutual
information [24].

uncertainty) in the presence of another random variable. Specifically, given two random

variables X,Y , the mutual information between these variables can be expressed in

terms of their entropies as follows [24].

I(X,Y ) = H(X) +H(Y )−H(X,Y ) (4.8)

I(X,Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) (4.9)

The relation between mutual information and entropy given in Equations 4.8 and 4.9

is illustrated in Figure 4.1 using Venn diagram.

Conditional mutual information between two random variables Cj and Y given a third

random variable X, I(Cj , Y |X), is computed as follows [24].

I(Cj , Y |X) =
∑
x

∑
cj

∑
y

p(cj , y, x) log p(cj , y|x)
p(cj |x)p(y|x) (4.10)



Chapter 4 Context Identification Model 62

In the case of continuous random variables, the conditional mutual information is de-

fined by:

I(Cj , Y |X) =
∫ ∫ ∫

p(cj , y, x) log p(cj , y|x)
p(cj |x)p(y|x)dxdcdy (4.11)

Similarly to mutual information, conditional mutual information can be defined in

terms of entropies as follows [24].

I(Cj , Y |X) = H(Cj |X)−H(Cj |Y,X) (4.12)

I(Cj , Y |X) = H(Cj , X) +H(Y,X)−H(X)−H(Cj , Y,X) (4.13)

Conditional mutual information (or shortly CMI), satisfies three properties [24]: non-

negativity, i.e. I(Cj , Y |X) ≥ 0; measure of independence, where CMI equals zero if and

only if the two variables are independent, i.e. I(Cj , Y |X) = 0 ⇐⇒ P (Y |Cj , X) =

P (Y |X); and boundedness, where the maximum value of CMI is bounded by the min-

imum of the conditional entropies of the variables of interest, i.e. 0 ≤ I(Cj , Y |X) ≤

min{H(Cj |X), H(Y |X)}. In other words, the maximum value of the conditional mu-

tual information is achieved when one variable can perfectly predict the value of the

other variable.

Having defined the measures of information theory of interest, we next present how

these measures are utilised in the proposed context identification approach.

4.3.2 Context Relevance Function

In the proposed context identification model, relevance function rl focuses on asso-

ciating each contextual variable with a weighting factor reflecting its importance (its



Chapter 4 Context Identification Model 63

contextual knowledge). For example, when rl(Cj) = 0 it indicates that candidate con-

text variable Cj has no effect regarding concept drift (i.e. it is not a contextual variable

for the concept of interest).

Utilising the information theoretic measures introduced in the previous section (Sec-

tion 4.3.1), a candidate context variable Cj ∈ C is considered to be actually con-

textual if there is a dependency between that variable and the target variable Y , i.e.

I(Cj , Y |X) 6= 0, indicating that Cj reduces uncertainty about Y . The relevance of vari-

able Cj is calculated according to its corresponding degree of uncertainty reduction, as

follows:

rl(Cj) =


I(Cj ,Y |X)

H(Y |X) if I(Cj , Y |X) 6= 0

0 Otherwise
(4.14)

Based on the above, assessing the relevance among candidate context variables involves

considering three different variables: context variable, target variable, and input vari-

ables. Both context and input variables can belong to different spaces (e.g. discrete or

continuous), which poses a challenge on the estimation of conditional mutual informa-

tion as well as the respective conditional entropy. Hence, in the following, we discuss

how to estimate these measures, considering discrete and continuous settings.

4.3.3 Estimation of Conditional Mutual Information and Conditional

Entropy

In discrete systems, the probability mass functions for estimating (conditional) mutual

information can be computed using the relative frequencies from the observed examples

(see Equations 4.6 and 4.10). However, computing (conditional) mutual information for

continuous variables requires estimating probability density functions (pdf) from the

available data samples (see Equations 4.7 and 4.11), which is not a straightforward task,

and in fact, considered as one of the main problems associated with applying mutual
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information measure. With this regard, different possible non-parametric approaches

exist in the literature for estimating mutual information, the most common of which

are histogram-based approaches (e.g. [36]), kernel-based density estimations (e.g.

[41]), and a recent entropy based k-nearest neighbour estimator (e.g. [44]; [46]).

Given that the estimator of the mutual information for context variables must be

able to work well with higher dimensions, histogram and kernel density estimators are

not appropriate since both suffer from the curse of dimensionality, i.e. the number

of examples required for estimating the pdf increases exponentially with the number

of variables [44]. Unlike many other approaches, the k-nearest neighbour estimator

proposed by Kraskov et al. [29] allows accommodating high variable dimensionality,

and produces more accurate results when compared to other approaches ( [39]; [42]).

Based on the above, for the purpose of our analysis, we utilise Kraskov’s nearest neigh-

bour approach in estimating conditional mutual information. More details on this

approach are presented below.

4.3.3.1 k Nearest Neighbour Estimator

The utilisation of k-nearest neighbour statistics has been widely used for entropy esti-

mation, but the extension of this estimator to mutual information was only proposed

by Kraskov et al. [29]. In the following, we present Kraskov’s method for estimating

mutual information between two variables, and show its corresponding derivation for

the conditional case ([37]; [48]).

The estimator of the mutual information proposed by Kraskov is based on the expres-

sion of mutual information in terms of entropy given in Equation 4.8. The entropies in

this equation are estimated using k-nearest neighbour distances as detailed below.
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First, given two random variables C, Y of dimensions dc, dy, respectively, the joint

entropy H(C, Y ) is calculated using Kozachenko and Leonenko [40] based estimator

given by:

Ĥ(C, Y ) = −ψ(k) + ψ(N) + log cdccdy + dc + dy
N

N∑
i=1

log ε(i) (4.15)

where:

ψ(k) is the digamma function, which is given for an integer k by:

ψ(k) = d
dk

ln(k − 1)!; N is the number of examples; cd is the volume of d-dimensional

unit ball (which is equal to 1 in this analysis); ε(i) is twice the distance from ith sample

point in the joint space (C, Y ) to its kth nearest neighbour.

The distance measure utilised in the above equation is maximum norm, i.e. given two

vector variables Z = (C, Y ), Z ′ = (C ′, Y ′), the distance between them is computed

as [29]:

||z − z′|| = max{||c− c′||, ||y − y′||} (4.16)

where to compute the norms ||c− c′|| and ||y− y′|| any distance metric can be utilised.

In the second step, the projection from the joint space of (C, Y ) is made to the spaces

of variables C and Y , so that the entropies H(C), H(Y ) are computed as follows:

Ĥ(C) = − 1
N

N∑
i=1

ψ[nc(i) + 1] + ψ(N) + log cdc + dc
N

N∑
i=1

log ε(i) (4.17)

Ĥ(Y ) = − 1
N

N∑
i=1

ψ[ny(i) + 1] + ψ(N) + log cdy + dy
N

N∑
i=1

log ε(i) (4.18)

where nc(i), ny(i) denote the number of data points whose distances from the ith point

of C, and Y , respectively, are less than ε(i)
2 . By substituting Equations 4.15, 4.17
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and 4.18 in Equation 4.8, we get the estimate of mutual information, Î(C, Y ), given in

Equation 4.19 [29]:

Î(C, Y ) = ψ(k) + ψ(N)− 〈ψ[nc(i) + 1] + ψ[ny(i) + 1]〉 (4.19)

where C, Y can be of any dimension, and 〈...〉 refers to the average over all points i.

Now, in a similar way, the estimate of conditional mutual information is given in

Equation 4.20 [48].

Î(C, Y |X) = ψ(k)− 〈ψ[ncx(i)] + ψ[nyx(i)]− ψ[nx(i)]〉 (4.20)

where, ncx(i), nyx(i), denote the number of data points whose distances from the ith

point of the joint spaces (C,X) and (Y,X), respectively, are less than the distances to

the kth nearest neighbour from the corresponding ith point in the joint space (C, Y,X).

Kraskov’s estimate assumes that all variables are continuous, including the target vari-

able. However, in classification problems, with discrete target variables (the class labels

of the examples), the general efficiency of the estimator will decrease [38]. This is be-

cause the accuracy of the nearest neighbour search, upon which the estimation is based,

in the (joint) space involving a discrete variable will be influenced by having data points

that share the same values for this variable. Specifically, when, for example, Y is dis-

crete, and has a larger distance to its kth neighbour than that of C and X (we use

maximum norm as a distance metric), the data points that share the same value of Y

with the kth nearest neighbour will not be considered in calculating nyx(i), which can

reduce the accuracy of the estimator [46]. To overcome this problem, an updated ver-

sion of Kraskov’s estimator to estimate mutual information for classification problems

is proposed by Gomez-Verdejo et al. [38], where the probability mass function of the
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class label is calculated separately using relative frequencies from the available data

samples as detailed in the following section.

4.3.3.2 Classification-Oriented Estimation

In this section, we summarise the extension of Kraskov’s mutual information estima-

tor for classification problems as proposed by Gomez-Verdejo et al., followed by its

derivation for conditional mutual information proposed for our analysis.

In Gomez’s approach, the proposed estimator of mutual information is derived from

Equation 4.9. In particular, let us assume that C, Y , are two random variables, where

Y represents the categorical class label. Given that Y is discrete, Equation 4.9 becomes:

I(C, Y ) = H(C)−
∑
y

p(Y = y)H(C|Y = y) (4.21)

Similarly to Kraskov’s estimator, the entropies H(C), H(C|Y ) in Equation 4.21 are

estimated using the following formula:

Ĥ(C) = −ψ(k) + ψ(N) + log cdc + d

N

∑
i∈N

log ε(i) (4.22)

where ε(i) is twice the distance from ith sample point in the space of C to its kth

nearest neighbour.

By substituting Equation 4.22 in 4.21 we get the following estimator [38]:

Î(C, Y ) = ψ(N)− 1
N

∑
y

Nyψ(Ny) + d

N
[
∑
i∈N

log ε(i)−
∑
y

∑
i∈N

ε(iy)] (4.23)

where Ny denotes the number of data samples belonging to class y, and ε(iy) is twice the

distance from ith sample point in the space of C to its kth nearest neighbour obtained
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from the data samples belonging to class y. This is in contrast to ε(i) which is obtained

from all available data samples.

Based on the above, we now present our estimator for conditional mutual information

similar to that given in Equation 4.23 as detailed below.

In order to get an estimator for conditional mutual information, we use the following

chain rule [24]:

I(C, Y |X) = I(Y, {C,X})− I(Y,X) (4.24)

By substituting Equation 4.9 in 4.24 we get:

I(C, Y |X) = H(C,X)−H(C,X|Y )−H(X) +H(X|Y ) (4.25)

Now, to compute I(C, Y |X) according to Equation 4.25, we first compute the joint

entropy H(C,X) using formula similar to that of Equation 4.15, i.e.

Ĥ(C,X) = −ψ(k) + ψ(N) + log cdccdx + dc + dx
N

∑
i∈N

log ε(i) (4.26)

where ε(i) is twice the distance from ith sample point in the joint space of (C,X) to

its kth nearest neighbour considering all examples available. The conditional entropy

H(C,X|Y ) is computed similarly but here only the data samples belonging to a certain

class are considered when searching for neighbours as illustrated in Equation 4.27.

Ĥ(C,X|Y ) =
∑
y

p(y)[−ψ(k) + ψ(Ny) + log cdccdx + dc + dx
Ny

∑
iy∈Ny

log ε(iy) (4.27)

Here, ε(iy) is twice the distance from ith sample point in the joint space of (C,X) to

its kth nearest neighbour obtained from the data samples belonging to class y.
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Now, the entropy H(X) is not estimated independently (i.e. according to Equa-

tion 4.22) but by projecting from the space of (C,X) into the space of X using the

following formula [29]:

Ĥ(X) = − 1
N

∑
i∈N

ψ[nx(i) + 1] + ψ(N) + log cdx + dx
N

∑
i∈N

log ε(i) (4.28)

where nx(i) denotes the number of data points whose distances from the ith point of X

are less than ε(i)
2 , where ε(i) is obtained according to Equation 4.26 using all available

data samples.

In a similar way, H(X|Y ) is computed by

Ĥ(X|Y ) =
∑
y

p(y)[− 1
Ny

∑
i∈Ny

ψ[nx(iy)+1]+ψ(Ny)+log cdx+ dx
Ny

∑
iy∈Ny

log ε(iy)] (4.29)

where nx(iy) denotes the number of data points in the examples belonging to class y,

whose distances from the ith point of X are less than ε(iy)
2 , where ε(iy) is obtained

according to Equation 4.27.

Now, having estimated conditional mutual information for continuous context variables,

we now show how these estimates can be extended to the case with discrete context

variables. First, in the case where X is continuous, I(Cj , Y |X) can be computed as

follows:

I(Cj , Y |X) = I(Cj , {Y,X})− I(Cj , X) (4.30)

which is equivalent to:

I(Cj , Y |X) = H(Cj , X) +H(Y,X)−H(X)−H(Cj , Y,X) (4.31)
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By substituting Equation 4.4 in Equation 4.31, we get the following expression:

I(Cj , Y |X) = H(Cj) +H(X|Cj) +H(Y ) +H(X|Y )−H(X)−H(Cj , Y )−H(X|Cj , Y )

(4.32)

This allows estimating I(Cj , Y |X) following the same steps explained for Equation 4.25.

In the case where X is discrete, I(Cj , Y |X) can be estimated according to Equa-

tion 4.10. It is worth mentioning, however, that although the case of estimating con-

ditional mutual information with discrete X does not pose a challenge unlike the case

with continuous X (as indicated previously), such estimations require a relatively large

sample size, depending on the dimensionality of X and the number of possible states

for each variable in X. Otherwise, the joint conditional probabilities, and consequently

conditional mutual information (see Equation 4.10), will not be estimated correctly.

Before proceeding with the evaluation of the proposed criterion for the identification of

relevant context variables, we first show how it can be utilised to address any possible

redundancy among context variables. More details are outlined next.

4.3.4 Addressing Correlation Among Context Variables

Mutual information has been widely used as a powerful selection criterion for assess-

ing both relevance and redundancy between variables in the input variable selection

literature (e.g. [34]; [43]; [35]). In the following, we provide a brief overview on its utili-

sation in variable selection, illustrate the required modifications for its implementation

in selecting context variables, and present the corresponding solution.

Formally, the problem of variable selection under the framework of mutual information

can be formalised as follows [34]: given an initial set of variables, C = {C1, C2, ..., Cp},

we need to select the subset S ⊆ C that jointly has the largest mutual information
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with the target variable, Y . Specifically, we need to find the subset S that maximises

the following term (also referred to as the max-dependency criterion) [43]:

argmaxS⊆CI(S, Y ) (4.33)

For the purpose of our analysis, we modify the above formulation for context variable

selection as follows: given an initial set of variables, we need to select a subset of

variables that will best characterise the current context (contain maximum information

what concerns the ability to discriminate between concepts). That is, we need to select

the subset S ⊆ C that jointly has the largest mutual information with the target

variable, Y , in the context of the input variables, X. Specifically, we need to find the

subset S that maximises the following term:

argmaxS⊆CI(S, Y |X) (4.34)

Since the number of possible combinations for achieving the optimal subset is exponen-

tial, the time to solve the variable selection problem is also exponential. For example,

given p = 10, the number of possible combinations is 2p = 1024. Consequently, re-

ducing the search space is essential to reduce the computational cost of selection. To

achieve this, sequential-based search strategies are usually utilised to select the can-

didate sets, where one feature is selected (or removed) at each time step.The most

common search strategies for variable selection are sequential forward selection and se-

quential backward elimination [47]. The forward search strategy starts with an empty

set, and at each time step, the variable that maximizes the joint mutual information is

added to the set. On the other hand, the backward search strategy starts with the set

S that contains all variables, and then at each time step, the variable that maximizes

the joint mutual information by its removal is excluded from the set. Because backward
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search strategy is more computationally expensive, most search strategies are based on

forward selection [47]. For a similar reason, we base the proposed selection algorithm

on forward selection, and detail its stages below along with the challenges involved.

It is worth noting that forward selection suffers from two limitations [47]. In particular,

unlike backward selection strategy, it limits measuring the relevance of each candidate

variable only to those variables that have already been selected. In addition, once

the variable is selected it cannot be removed (this limitation applies to the backward

selection as well). Some attempts exist to overcome these two limitations [122], but

this is out of the scope of this thesis.

4.3.4.1 Context Selection Algorithm

Given an initial set of variables C = {C1, C2, ..., Cp}, target variable Y , and input

variables X, we start with an empty set S, where the first variable Cj ∈ C to be

selected is the one that has the highest value for the conditional mutual information,

i.e.

argmaxCj∈CI(Cj , Y |X) (4.35)

For selecting the following variables, given already selected variables S, the next variable

to be selected, Cj ∈ C \ S, should maximise:

argmaxCj∈C\SI({S,Cj}, Y |X) (4.36)

Given that the term I({S,Cj}, Y |X) satisfies the following chain rule (see Equation 4.24):

I({S,Cj}, Y |X) = I(Y, S|X) + I(Y,Cj |{S,X}) (4.37)
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and since I(Y, S|X) is constant for a given feature subset S, so maximising Equa-

tion 4.36 is equivalent to maximising the term I(Y,Cj |{S,X}).

The utilisation of I(Y,Cj |{S,X}) as a selection criterion addresses both relevance and

redundancy between variables. This is because I(Y,Cj |{S,X}) can be expressed as:

I(Y,Cj |{S,X}) = I(Cj , {Y, S,X})− I(Cj , S) (4.38)

Consequently, in order for the variable to be selected, it has to provide the largest

information with regard to the target variable, i.e. addressing relevance measured by

I(Cj , {Y, S,X}), that is not already given by variables in S, i.e. addressing redundancy

between variables measured by I(Cj , S). The detailed steps of the corresponding pro-

posed selection algorithm are provided in Algorithm 1.

Algorithm 1 CMI-based Context Selection Algorithm
1: S ← ∅, C = {C1, C2, ..., Cp}

2: Compute I(Y,Cj |X) for each variable Cj ∈ C

3: Select the variable C∗ with the largest I(Y,Cj |X):

C∗ ← argmaxCj∈C{I(Y,Cj |X)}

4: Add the selected variable to S: S ← {C∗}

5: Exclude the selected variable from C: C ← C \ C∗

6: while C 6= ∅ do

7: For all Cj ∈ C compute I(Y,Cj |{X,S})

8: Select the variable C∗ that maximises the following criterion:

C∗ ← argmaxCj∈C{I(Y,Cj |{X,S})}

9: S ∪ {C∗}

10: C ← C \ C∗
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Note that, the variables with the highest values for the CMI are included in the anal-

ysis. As a termination criterion for the context selection algorithm, we specified the

maximum number of variables that can be selected. Alternatively, it is possible to

introduce a threshold such that any variable with a CMI less than a certain value is

excluded from the set of contextual variables.

Despite the advantages of applying I(Y,Cj |{S,X}) as a selection criterion, the main

challenge associated with it is that it requires estimating conditional mutual information

between high-dimensional variables as it involves conditioning on the input variables.

To overcome this, it is possible to utilise one of the approximation criteria that have

been proposed in the literature on input variable selection as detailed below.

4.3.4.2 Context Selection Algorithm: Heuristic-based Computation

Various approximation methods in the input variable selection literature are proposed

for computing the selection criterion in Equation 4.33. The most popular approxi-

mation method is based on the heuristic criterion proposed by Battiti [34] in mutual

information-based feature selection algorithm (MIFS). Specifically, the term I(Y, S) is

approximated by taking the difference between the relevance of the individual candi-

date variable Cj with the target variable approximated by I(Y,Cj), and its redundancy.

The latter is approximated by the weighted sum of the mutual information between

the candidate variable and formerly selected variables in S. That is, Equation 4.33 is

approximated as:

I(Y,Cj |S) ∼= I(Y,Cj)− β
∑
Ci∈S

I(Ci, Cj) (4.39)

where β ∈ [0, 1] is a redundancy weighting parameter.

Given the difficulty to specify the value of parameter β, the most popular implemen-

tation of Battiti’s approach is the min-redundancy max-relevance (mRMR) criterion
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proposed by Peng et al. [43], where the parameter β in Equation 4.39 is replaced by

the average of I(Ci, Cj), i.e.

I(Y,Cj |S) ∼= I(Y,Cj)−
1
|S|

∑
Ci∈S

I(Ci, Cj) (4.40)

where |S| is the cardinality of S.

In the case of context variables, the selection criterion I(Y,Cj |{S,X}) with mRMR

algorithm becomes as follow:

I(Y,Cj |{S,X}) ∼= I(Y,Cj |X)− 1
|S|

∑
Ci∈S

I(Ci, Cj) (4.41)

The detailed steps of MIFS and mRMR approaches are presented in Algorithms 2

and 3, respectively, after appropriate adaptation to match our problem of context

variable selection. Both algorithms will be tested in our experimental analysis.

Algorithm 2 MIFS for Context Variables Selection
1: S ← ∅, C = {C1, C2, ..., Cp}

2: Compute I(Y,Cj |X) for each variable Cj ∈ C

3: Select the variable C∗ with the largest I(Y,Cj |X):

C∗ ← argmaxCj∈C{I(Cj , Y |X)}

4: S ← {C∗}

5: C ← C \ C∗

6: while |S| < r do

7: Select the variable C∗ that maximises the following criterion:

C∗ ← argmaxCj∈C{I(Y,Cj |X)− β
∑
Ci∈S I(Ci, Cj)}

8: S ∪ {C∗}

9: C ← C \ C∗



Chapter 4 Context Identification Model 76

Algorithm 3 mRMR for Context Variables Selection
1: S ← ∅, C = {C1, C2, ..., Cp}

2: Compute I(Y,Cj |X) for each variable Cj ∈ C

3: Select the variable C∗ with the largest I(Y,Cj |X):

C∗ ← argmaxCj∈C{I(Cj , Y |X)}

4: S ← {C∗}

5: C ← C \ C∗

6: while |S| < r do

7: Select the variable C∗ that maximises the following criterion:

C∗ ← argmaxCj∈C{I(Y,Cj |X)− 1
|S|

∑
Ci∈S I(Ci, Cj)}

8: S ∪ {C∗}

9: C ← C \ C∗

Other two popular approximation algorithms existing in the literature are normalised

mutual information based feature selection (NMIFS) [36], and conditional mutual in-

formation based feature selection (CMIFS) [35]. Both algorithms are also based on

Battiti’s approximation criteria. In NMIFS, I(Y,Cj |S) is approximated as:

I(Y,Cj |S) ∼= I(Y,Cj)−
1
|S|

∑
Ci∈S

I(Ci, Cj)
min{H(Ci), H(Cj)}

(4.42)

which is modified as follows for the case of context variable

I(Y,Cj |{S,X}) ∼= I(Y,Cj |X)− 1
|S|

∑
Ci∈S

I(Ci, Cj)
min{H(Ci), H(Cj)}

(4.43)

In CMIFS, the relevance and redundancy are approximated by utilising two previously

selected variables through the following expression:

I(Y,Cj |S) ∼= I(Y,Cj |C1)− I(Cj , Cl|C1) + I(Cj , Cl|Y ) (4.44)
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where C1, Cl are the first and last selected variables, respectively. In the case of context

variables, this becomes:

I(Y,Cj |{S,X}) ∼= I(Y,Cj |{C1, X})− I(Cj , Cl|C1) + I(Cj , Cl|Y ) (4.45)

The detailed steps of NMIFS and CMIFS algorithms (after accounting for the case of

context variables) are detailed in Algorithms 4 and 5, respectively.

Algorithm 4 NMIFS for Context Variables Selection
1: S ← ∅, C = {C1, C2, ..., Cp}

2: Compute I(Y,Cj |X) for each variable Cj ∈ C

3: Select the variable C∗ with the largest I(Cj , Y |X):

C∗ ← argmaxCj∈C{I(Cj , Y |X)}

4: S ← {C∗}

5: C ← C \ C∗

6: while |S| < r do

7: Select the variable C∗ that maximises the following criterion:

C∗ ← argmaxCj∈C{I(Y,Cj |X)− 1
|S|

∑
Ci∈S

I(Ci,Cj)
min{H(Ci),H(Cj)}}

8: S ∪ {C∗}

9: C ← C \ C∗

All presented algorithms order the variables according to their importance, and termi-

nate whenever the number of selected variables reaches the required number of variables

to be selected (determined by a user-defined parameter r).
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Algorithm 5 CMIFS for Context Variables Selection
1: S ← ∅, C = {C1, C2, ..., Cp}

2: Compute I(Cj , Y |X) for each feature Cj ∈ C

3: Select the variable C∗ with the largest I(Cj , Y |X):

C∗ ← argmaxCj∈C{I(Cj , Y |X)}

4: S ← {C∗}

5: C ← C \ C∗

6: C1 ← C∗ and Cl ← C∗

7: Select the variable C∗ with the largest I(Cj , Y |C1):

C∗ ← argmaxCj∈C{I(Cj , Y |C1)}

8: S ∪ {C∗}

9: C ← C \ C∗

10: Cl ← C∗

11: while C 6= ∅ do

12: for Cj ∈ C do

13: If I(Cj , Y |X) > 0 and I(Cj ,Y |{Cl,X})
I(Cj ,Y |X) ≤ θ, where θ ∈ [0, 1]

14: Remove Cj from the candidate set of context variables: C ← C \ Cj

15: Select the variable C∗ that maximises the following criterion:

C∗ ← argmaxCj∈C{I(Y,Cj |{C1, X})− I(Cj , Cl|C1) + I(Cj , Cl|Y )}

16: S ∪ {C∗}

17: C ← C \ C∗

18: Cl ← C∗

4.4 Evaluation

In this section, we conduct an empirical evaluation of the proposed context identifica-

tion model, and study the influence of various factors affecting its behaviour. We also
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illustrate the advantage of the proposed approach over other approaches existing in the

literature. Further details are presented next.

4.4.1 Objectives

The main objectives of our empirical analysis can be summarised as follows.

Objective 1. Test the ability of the proposed approach to correctly identify the

actual contextual characteristics of the domain, and to rank these according to their

importance.

Objective 2. Test the behaviour of the proposed approach under varying factors,

including type of concept change (abrupt or gradual), speed of change, presence of

noise and problem dimensionality (for both input and context variables).

Objective 3. Test the behaviour of the proposed approach in a static environment

(i.e. in settings with no concept drift).

Objective 4. Compare the performance of the proposed approach against other ap-

proaches that could be utilised in recognising the relevance of context variables.

Objective 5. Test the ability of the proposed approach to address redundancy among

context variables.

The corresponding experimental setup and results are discussed in what follows. All

presented experimental results are averaged over multiple runs.

4.4.2 Experimental Design

Datasets. To allow us to control the actual contextual properties of the domain and

to evaluate in different settings (as indicated in the above objectives), we base our



Chapter 4 Context Identification Model 80

evaluation on artificial datasets generated according to the data generation framework

introduced in Chapter 3. As context, we introduce 10 candidate context variables with

decreasing order of importance, ranging the correlation levels from 1 to 0.1 with a

step size of 0.1 (the description of this context simulation framework is provided in

Chapter 3). Other datasets utilised in the analysis include Sine1, Gauss, and Circles.

Context for these datasets is simulated as indicated above. Moreover, we utilise the

electricity market Elec and email Elist datasets as test cases with real candidate con-

textual characteristics: day of the week and season for Elec dataset and location for

Elist dataset (see Chapter 3 for the description of these datasets). In all experiments,

the value of the parameter k (for k nearest neighbour estimator utilised in estimat-

ing conditional mutual information) is set to 6 (see Appendix A for the evaluation of

different k values).

Performance Measures. For the artificial datasets, we compare the weights identified

for candidate context variables against their ranking preferences being according to

the correlation degrees stated above (the weights for the contextual variables range

between 0 and 1, where 1 indicates a perfectly contextual variable, while 0 indicates a

non-contextual variable). For the real datasets (electricity and email datasets), since

the actual contextual characteristics are not known in advance, the significance of the

obtained results is tested based on a non-parametric permutation test [27]. The idea

of this test is as follows: randomly shuffle (reorder) the data to generate independent

series and then compare the estimated value of the test statistic (here CMI) from

the original data with the distribution of this value from the permuted data. We

perform 1000 such permutations, and report the corresponding p-value, obtained by

counting the number of times the value of CMI in the permuted data is at least as

extreme as that of the observed value in the actual data, divided by the number of

permutations. Note that, the effectiveness of the approach is also evaluated in terms
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of improving classification performance when the identified contextual information is

exploited during classification as will be illustrated in Chapter 5.

Related Approaches. Looking at the input variable selection literature, existing ap-

proaches are usually grouped into two main categories [53]: filters and wrappers. Wrap-

per methods usually assess the worth of input variables by selecting the combination

that achieves the best performance of the target classification model. On the other

hand, filter methods assess the worth of input variables independently of the classifi-

cation model utilising criteria based on general characteristics of the data. Given that

we evaluate and utilise context variables at a meta-level independently of the classi-

fication model, filter methods are more relevant and applicable for our case. Besides

the presented and commonly used mutual information, there are other filter measures

in the literature that could be utilised for the purpose of context identification. This

includes classical statistical approaches such as t-Statistics [55], Chi-square test, and

symmetrical Uncertainty [54]. These approaches are compared against our approach

in Section 4.4.7.

4.4.3 Effect of Speed of Changes

In this section, we test how the proposed context identification approach is affected

by different types of concept changes (abrupt or gradual), considering varying speed of

changes. For this purpose, utilising the above mentioned data generation framework,

we generate 4 concepts with 5 normally distributed input variables. In the case of

abrupt changes, we vary the value of parameter p as follows: 10, 50, 100, 200, 500 and

1000. In the case of gradual changes, we fix the duration of each concept to 500 and

vary the parameter ω with values: 1α
500 ,

5α
500 ,

10α
500 ,

20α
500 . For example, with a step size of

5, µy increases by 5α
500 after 5 examples are generated. In a similar way, the perfectly

contextual variable, based on which correlated context variables are generated (see
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Chapter 3), is also made to change gradually at different time steps as indicated above.

Figures 4.2 and 4.3 report the corresponding results of the considered speed of changes

for the two cases of abrupt and gradual concept changes.

In Figure 4.2, it can be seen that starting from 50 examples per concept change, the

proposed approach is able to recognise the relative importance among candidate con-

text variables. Specifically, contextual variables with the highest importance (largest

correlations in this case) get the largest weights, followed by the less important vari-

ables that get smaller weights. We can also observe that reducing the speed of change

(i.e. increasing the sample size per concept) results in a better recognition of the actual

importance of context variables. For example, variable C10, which has no importance

in distinguishing between concepts (with true correlation of 0.1), gets a weight around

0.10 with concept duration of 50, while it gets a weight around 0 when the concept

duration is 1000. Similarly, variable C1 (the perfectly contextual one with true correla-

tion of 1), gets a weight around 0.7 when the concept duration is 1000, while it reaches

only 0.5 with a concept duration of 50.

Now in the case of gradual concept changes, the results in Figure 4.3 show that the

relative importance between variables is also recognised for all step sizes (the variables

are correctly ranked according to their importance). On the other hand, we can see

that the learned weights are less sensitive to gradually drifting concepts as they behave

similarly across different speeds of changes (i.e. across all step sizes). The reason for

that is the non-incremental learning scenario assumed in the experimental analysis.
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(a) 10 examples per concept
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(b) 50 examples per concept

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

W
ei

gh
t 

Context Variable ID 

(c) 100 examples per concept
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(d) 200 examples per concept
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(e) 500 examples per concept
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(f) 1000 examples per concept

Figure 4.2: Evaluation of context identification strategy given various speed of

changes: abrupt concept changes. The error bars denote a 95% confidence intervals.
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(a) At each time step

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

W
ei

gh
t 

Context Variable ID 

(b) Every 5 time steps
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(c) Every 10 time steps
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(d) Every 20 time steps

Figure 4.3: Evaluation of context identification strategy given various speed of

changes: gradual concept changes. The error bars denote a 95% confidence inter-

vals.

Based on the above, although the approach performs reasonably well with various

abrupt concept durations, the experiments show that reducing the sample size worsens

the accuracy of the learned relevance. Moreover, in the case of gradual changes, the

approach is less sensitive to the speed of changes.
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4.4.4 Effect of Dimensionality

Our aim in this section is twofold. First, to study the effect of the input dimension-

ality of the dataset on the accuracy of the proposed approach. Second, to study the

behaviour of the proposed approach under varying context dimensionality. For this

purpose, we utilise the same experimental setup described in Section 4.4.3 with regard

to concept change settings. However, here we fix the duration of each concept to 500,

and vary the dimensionality of the dataset as described below.

First, we vary the dimension of X from 5 to 30 as illustrated in Figure 4.4. As can be

seen, increasing the dimensionality of the dataset affects the accuracy of the approach

to identify the actual importance of each variable. However, the relative importance

among variables is preserved in all cases. In the second experiment, we fix the dimension

of X to 5 and increase the context dimensionality from 10 to 30. To do this, we generate

10 relevant variables (1-10), 10 redundant variables (11-20), and 10 irrelevant variables

(21-30). The results presented in Figure 4.5 shows the robustness of the approach

to the increased dimension. This is because, both relevant and redundant variables

achieve similar results, while the weights of the irrelevant variables fluctuates around

zero. Note that, in this experiment, the redundancy among variables is not addressed,

and hence relevant and redundant variables get similar weights. Handling redundancy

will be tested in Section 4.4.10.
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(a) 5 input variables
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(b) 10 input variables
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(c) 15 input variables
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(d) 20 input variables
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(e) 25 input variables
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(f) 30 input variables

Figure 4.4: Evaluation of context identification strategy given various input dimen-

sionality.
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Figure 4.5: Evaluation of context identification strategy with higher context dimen-

sion: 1-10 relevant variables, 11-20 redundant variables, 21-30 irrelevant variables.

4.4.5 Effect of Noise

In this section, we study the influence the noise level has on the context identification

accuracy. Two types of noise are distinguished in the analysis: label noise and context

noise. In the former case, we study the influence of label noise (noise in the target

variable). In the latter case, we study the influence of context noise (various levels of

overlapping distributions in context variable values among concepts). We utilise the

same experimental setup described in the previous section, but this time fixing the

input dimension and context dimension to 5 and 10, respectively.

First, to test the influence of the label noise, we vary the level of noise introduced to

each concept from 0 to 5%. For example, a 5% noise means that 5% of the examples

have incorrect class labels. The results are presented in Figure 4.6.
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Figure 4.6: Evaluation of context identification strategy with varying label noise

levels.

As can be seen, although the relative importance between variables is preserved across

all noise levels, increasing the noise level decreases the learned contextual importance

of the context variables. It is worth mentioning, however, that the dataset utilised in

the analysis is not a noise free dataset (given the experimental setups), and hence the

introduced label noise add to the already existing noise in the dataset.

Now, we test how the proposed context identification method will perform in settings

with noisy context variables. To model such settings, we introduce various levels of an

overlap in the distributions of the context variable values. Specifically, the mean of the

context variable values is made to change by the following values: 2 (a large overlap

between value distributions), 3, 4 and 8 (no overlap between value distributions). The

results are presented in Figure 4.7. As expected, when the overlap in the distribution of

the context variable values increases, the importance of the context variables decreases.

This is because the higher the overlap, the higher the probability that the variable will

take similar values across different concepts (i.e. not perfectly contextual variable). As

a result, the weight assigned to that variable will decrease.
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(a) Case δ=2
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(b) Case δ=3
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(c) Case δ=4
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(d) Case δ=8

Figure 4.7: Evaluation of context identification strategy with an overlap in context

distributions among concepts.

4.4.6 Static Dataset

In this section, unlike previous experiments, we study how the proposed context identi-

fication method will perform in settings with no concept drift. As mentioned previously,

in a static environment (or within the same concept), context variables have no predic-

tive ability, and hence should be identified as irrelevant. For this purpose, we generate

2000 examples fixing the data generating distribution to be the same among all four

concepts, i.e. µty = µ
(t−1)
y at each time step. Note that this dataset exhibits noise
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due to the overlap of the class conditional distributions. The results in Figure 4.8

demonstrate the effectiveness of the proposed approach as no variable is identified as

contextual (all variables get weights close to zero). Moreover, as stated earlier, the

robustness of the approach to correctly identify context in the presence of noise is also

illustrated.
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Figure 4.8: Evaluation of context identification strategy in a static environment.

4.4.7 Comparative Analysis

In this section, we are comparing the measure we adopted (conditional mutual infor-

mation) for assessing the importance score of context variables (and hence for their

selection), against other popular measures that could alternatively be utilised for this

purpose. We generate 2000 examples utilising the same experimental setup introduced

in the previous sections for both abrupt and gradual concept changes. In utilising the

other variable selection methods, the importance score is computed for each variable

based on these measures. In particular, the score for t-statistics is computed according

to the following formula [55]: |µ1
j−µ

0
j |√

(σ1
j

)2

n1
+

(σ0
j

)2

n0

, where µ1
j , σ

1
j are the mean and standard

deviation, respectively, of variable Cj in examples with class 1, µ0
j , σ

0
j are the mean and

standard deviation, respectively, of variable Cj in examples with class 0, n1 and n0 are
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the number of examples in each class. The score for symmetrical uncertainty is defined

as [54]: 2∗ H(Cj)+H(Y )−H(Cj ,Y )
H(Cj)+H(Y ) , where Cj is the variable of interest, and Y is the target

class label. The chi-squared statistic is defined by: ΣyΣcj

(Aycj−Eycj )2

Eycj
, where Aycj is

the number of examples with class Y = y and Cj = cj , Eycj is given as Rcj ∗Vy
n with n

is the number of examples available, Rcj is the number of examples with Cj = cj , Vy is

the number of examples with Y = y. The results are depicted in Figures 4.9 and 4.10

for abrupt and gradual changes, respectively.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

W
ei

gh
t 

Context Variable ID 

Conditional Mutual Information 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

W
ei

gh
t 

Context Variable ID 

Chi-Square Test 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

W
ei

gh
t 

Context Variable ID 

T-Statistics 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

W
ei

gh
t 

Context Variable ID 

Symmetrical Uncertainty 

Figure 4.9: Comparison of context identification strategies: abrupt changes.

We can see that the conditional mutual information measure outperforms the other

approaches in all cases. This is because, as mentioned previously, identifying the ac-

tual importance of the context variables requires taking into consideration the input
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variables, rather than measuring the direct influence it has on the target variable (the

case of the other measures).
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Figure 4.10: Comparison of context identification strategies: gradual changes.

4.4.8 Additional Benchmark Datasets

In this section, we apply the proposed context identification method with other datasets

that are commonly used in the literature. As with the above experiments, we generate

10 candidate context variables of various importance. The results are reported in

Figures 4.11, 4.12 and 4.13.

As can be noticed, the relative importance amongst variables is recognised in all

datasets. On the other hand, in line with previously conducted experiments, we can see

that context identification performs best in datasets with abrupt changes, and in the



Chapter 4 Context Identification Model 93

presence of noise, the performance of the approach is negatively affected in recognising

the importance of context variables compared to noise-free settings. For example, vari-

able C1 gets a weight of more than 0.8 with Sine1 dataset (abrupt changes-noise free

settings), while it gets only 0.5 weight with Gauss dataset (abrupt changes-high level

of noise), and a weight under 0.7 for Circles dataset (gradual changes).
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Figure 4.11: Evaluation of context identification strategy: Gauss dataset.
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Figure 4.12: Evaluation of context identification strategy: Sine1 dataset.
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Figure 4.13: Evaluation of context identification strategy: Circles dataset.

4.4.9 Real-World Datasets

Now, we apply the proposed context identification approach to deduce the actual con-

textual variables for the electricity and email datasets. In the electricity dataset (Fig-

ure 4.14), the results indicate that both day of the week and season are relevant for

characterising context (both get CMI values greater than zero), while the noisy variables

are irrelevant (all get values close to zero). Similarly, in the email dataset (Figure 4.15),

only location is recognised as relevant context variable. We can also see that the permu-

tation test in both datasets confirms the significance of the obtained CMI values for the

identified contextual variables (day of the week and season for the electricity dataset,

and location for the email dataset), and the insignificance for the noisy variables.
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Variable CMI Permutation Test 
 (p-value) 

Day of the Week 0.1615 0 

Season 0.1124 0 

N1 0.0299 1 

N2 0.030 1 

N3 0.0288 1 

Figure 4.14: Conditional mutual information estimates for the candidate context

variables of the Electricity dataset.

Variable CMI Permutation Test 
 (p-value) 

Location 0.4518 0 

N1 0.0755 1 

N2 0.0698 1 

N3 0.0768 1 

Figure 4.15: Conditional mutual information estimates for the candidate context

variables of the Email dataset.

4.4.10 Correlation Handling

In this section, we examine the ability of the proposed context identification approach to

address correlation among context variables. In particular, the goal is to test the effec-

tiveness of the proposed context identification approach to identify redundant context

variables (i.e. select only relevant variables and eliminate redundant variables).Unlike

previous experiments, the importance of each candidate context variable is evaluated

here taking into consideration other variables previously identified as contextual.

First, we test the behaviour of the proposed context identification method given limited

context dimensionality. In the second part, due to computational problems as men-

tioned in Section 4.3.4, we incorporate existing approximation approaches for handling

correlations in the case of high variable dimensionality.
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In the first part of the analysis, we consider 3 cases for context generation with various

dimensionality. In the first case, we only generate 3 variables, with their importance

being defined as follows: variable C1 is relevant, while variables C2 and C3 are redun-

dant (with correlations of 1, 0.9, 0.8, respectively). In the second case, we increase the

dimensionality to 5 variables, where only variable C1 is relevant, while the other vari-

ables are redundant (with correlations varying from 1 to 0.5 with a step size of 0.1). In

the third case, we generate 10 variables, where only the first variable is relevant, while

the other variables are redundant (with correlations varying from 1 to 0.1 with a step

size of 0.1). Here, increasing the dimensionality beyond 10 would increase the compu-

tational problems of the context selection algorithm, which requires utilising one of the

approximation methods. These methods are tested in the next experiment. The results

are presented in Figures 4.16 and 4.17, given abrupt and gradual changes, respectively.

The effectiveness of the approach is illustrated in all cases, since only the first variable

is identified as contextual, while other variables, despite their individual contextual

relevance (in this case the correlation degree), get values close to zero. This is because

in the presence of one perfectly contextual variable, as in the considered experiments,

all the other variables become redundant (provide equivalent contextual information),

which is successfully captured by the utilised selection criterion I(I(Y,Cj |{X,S})).
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(c) 10 candidate context variables

Figure 4.16: Evaluation of context identification strategy for correlation handling:

abrupt changes

Despite the efficiency of the proposed approach in addressing redundancy illustrated in

the above experiments, increasing context dimensionality (given limited sample size)

will affect the behaviour of the approach and require incorporating some approxima-

tion methods. To illustrate this, we increase context dimensionality by generating 15

candidate context variables, with their importance being defined as follows: 1-5 the

variables are relevant (with correlation values varying from 1 to 0.6), 6-10 the variable

are redundant (perfectly correlated with variables 1-5), and 11-15 the variables are

irrelevant (with zero correlations).
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Figure 4.17: Evaluation of context identification strategy for correlation handling:
gradual changes

Here, in addition to the proposed context selection approach, we compare how the

existing approximation algorithms mentioned in Section 4.3.4 perform in the case of our

problem. The aim is to select first the relevant context variables ordered in ascending

order (the first selected variable is the more relevant), followed by the redundant and

irrelevant variables. In all approximation approaches, CMI is estimated with the help

of the k-nearest neighbour estimator. The values of parameters β and θ in MIFS and

CMIFS approaches are set to 0.5 and 0.2, respectively. Figures 4.18 and 4.19 report

the corresponding results for abrupt and gradual changes, respectively.

As can be seen, the proposed approach is still performing reasonably well compared to
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some of the considered approximation methods (such as mRMR and MIFS approaches).

However, as expected, increasing context dimensionality affects the behaviour of the ap-

proach, resulting in some ordering inaccuracies due to computational problems. Specif-

ically, we can see that 4 out of 5 irrelevant variables with our approach are selected

prior to other relevant variables in the case of abrupt changes, and 5 out of 5 in the

case of gradual changes. For example, with abrupt changes (Figure 4.18(a)), irrele-

vant variable C12 is selected prior to the relevant variable C3. Similarly, in the case of

gradual changes (Figure 4.19 (a)), many irrelevant variables are selected prior to the

relevant variable C3.

On the other hand, in the approximation approaches, the best performing algorithms

are NMIFS and CMIFS. Although these approaches suffer from some inaccuracies with

regard to addressing redundancy among variables. For example, in NMIFS approach

(see Figure 4.18(d)), variables C6 and C1 are selected subsequently despite being per-

fectly correlated with each other. Similarly, with CMIFS approach (see Figure 4.18(e)),

variables C6 and C7 are selected along with their correlated counterparts C1 and C2.

Similar behaviour can also be observed in Figure 4.19 with gradual changes. Despite

such inaccuracy with handling redundancy, in both NMIFS and CMIFS approaches,

all relevant variables are selected prior to the irrelevant ones unlike the other mRMR

and MIFS approaches. Hence, in high dimensional problems, either NMIFS or CMIFS

can be utilised for the purpose of our analysis.
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(a) The proposed CMI Algorithm
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(b) MIFS Algorithm
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(c) mRMR Algorithm
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(d) NMIFS Algorithm
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(e) CMIFS Algorithm

Figure 4.18: Comparison of different approximation algorithms for context variables

selection: abrupt changes.
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(a) The proposed CMI Algorithm
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(b) MIFS Algorithm
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(c) mRMR Algorithm
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(d) NMIFS Algorithm
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Figure 4.19: Comparison of different approximation algorithms for context variables

selection: gradual changes.
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4.5 Conclusion

Exploiting context information in adapting the classification model to concept changes

enables capturing the indicators of drift, and hence facilitating more effective adapta-

tion. Such exploitation, however, requires identifying relevant context variables that

actually affect the concept of interest. In this chapter, we have presented a systematic

information-theoretic-based approach (utilising entropy and conditional mutual infor-

mation measures) for relevant context identification from available historical data. The

computation models required for its implementation are also illustrated.

Experimental results demonstrated the ability of the proposed approach to recognise

the differential importance among candidate context variables, and to rank these in ac-

cordance to this importance. The feasibility and robustness of the approach are tested

with respect to a number of factors, including type of change (i.e. whether changes be-

tween concepts happen abruptly or only gradually), speed of change, presence of noise,

and erroneous context recognition. In addition, a solution for correlation handling and

addressing high problem dimensionality are presented.

A main assumption in the experiments presented is the availability of sufficient and

representative training data of the domain when identifying relevant context variables.

Evaluating the behaviour of the approach in the case of gradual availability of the

training data represent an interesting extension of our approach, but is out of the

scope of this thesis.

In the next chapter, we demonstrate how the identified contextual knowledge improves

the prediction accuracy of the classification model via a data weighting model, which

facilitates weighting of training examples according to their relevance.



Chapter 5

Context Exploitation Model -

Example Weighting

5.1 Introduction

In classification problems, the predictive model at time step t is normally derived based

on the previously observed labeled examples {u(i)}t−1
i=1. As we discussed earlier, in the

presence of concept drift, not all such past examples necessarily remain relevant, and

hence a selection mechanism is needed to determine which examples should have a

(higher) impact on the learning process at hand (i.e. on learning the predictive model

at the current time step t). Existing approaches use recency as a measure for selecting

relevant training examples, with recent examples being considered the most relevant,

with older ones being forgotten eventually. In particular, the classifier is (re-)estimated

using either a window of the latest observed examples (e.g. [6, 7]), or a time-based

example weighting function (e.g. [12, 15]). However, we argue that recency is not nec-

essarily an accurate indicator of example relevance. This is because, recent observations

103
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may have been affected by circumstances that have now changed, and thus recency will

weight such examples higher than older but potentially more relevant ones. Moreover,

old examples may remain good predictors when their circumstances are comparable

to current circumstances (the case of reappearing concepts). Therefore, we argue that

the contextual circumstances of past examples should be recorded and incorporated as

additional clues when assessing example relevance.

In response, this chapter builds on the contextual knowledge identified in the previous

chapter (Chapter 4), and utilises such knowledge to control the contribution of each

training example in estimating the classification model parameters according to sim-

ilarity to current contextual circumstances. In particular, we propose to weight each

training example based on the degree of similarity between the context under which

the training example is collected and the current context. That is, data examples col-

lected under context conditions more similar to the current context (the context of the

example to be classified) should receive higher weights, and the weights should decrease

correspondingly as this similarity decreases.

The rest of the chapter is organised as follows. An abstraction of existing classification

models, upon which our context-aware extension is proposed, is presented in Section 5.2,

followed by the proposed context-driven extension in Section 5.3. Evaluation setup and

results are reported in Section 5.4, while Section 5.5 concludes the chapter.

5.2 Base Classification Model

From existing classification approaches, we can derive a generic abstraction of a clas-

sification model, which will serve as a base for our context-aware extension. This ab-

straction, which we henceforth in this chapter refer to as the base classification model

(and denote it with the subscript b), can be summarised as a tuple,
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〈Ot,W t
b (u(i)), P tb (Y |X)〉 (5.1)

where:

• Ot is the set of available past observations (i.e. labelled training examples) of the

system at hand up to the current time step t. That is,

Ot = {u(i) | u(i) = 〈x(i), y(i)〉}t−1
i=1

where x(i) = (x1(i), x2(i), ..., xm(i)) represents the value vector of input variables

at time step i, and y(i) is the respective target class label.

• W t
b (u(i)) is an example weighting factor governing the contribution (relevance)

of each training example u(i) ∈ Ot, for estimating the model at time step t. Such

example weights would potentially change over time. A commonly utilised factor

for evaluating an example’s weight is the point in time i at which the example

is collected (i.e. an example’s weight decreases over time). Note that for models

that do not support example weighting, W t
b (u(i)) = 1, ∀i.

• P tb (Y |X) is the estimated model at time step t, reflecting the approximated prob-

ability of obtaining an output label ŷ, given an input vector x. It captures the

approximation, at time step t, of the underlying function between the target class

label and the respective input data. This approximation is typically estimated

by applying some learning function L, over available past observations u(i) ∈ Ot,

while accounting for their weights W t
b (u(i)), i.e.

P tb (Y |X) = L( { 〈W t
b (u(i)), u(i)〉 }t−1

i=1 ) (5.2)
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The type of this learning function depends on the classification model considered.

Example instantiations corresponding to two commonly used classification models

in the literature are presented in the following subsections.

5.2.1 Naive Bayes Classifier

In the basic Naive Bayes classification model (see Chapter 3), which we denote here

with the subscript n, approximated probability P tn(Y |X) of obtaining class label ŷ,

given an input vector x = (x1, x2, ..., xm), is given by,

pn(ŷ|x) = pn(ŷ)×
m∏
j=1

pn(xj |ŷ) (5.3)

Note that superscript t is omitted from probabilities pn above for readability, but these

probabilities are still time-dependent (i.e. may differ at different time steps depending

on the knowledge available to the model).

The estimation of probabilities pn(ŷ) and pn(xj |ŷ) is easily achieved via maintaining

corresponding value counts, as follows,

pn(ŷ) = count(ŷ)
|Ot|

(5.4)

pn(xj |ŷ) = count(xj ∧ ŷ)
count(ŷ) (5.5)

where |Ot| is the total number of past observations, count(ŷ) is the number of past

observations with class label ŷ, and count(xj ∧ ŷ) is the number of past observations

with both class label ŷ and value xj for input attribute Xj . Functions count(ŷ) and
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count(xj ∧ ŷ) are given as follows,

count(ŷ) = |{〈x(i), y(i)〉 ∈ Ot | y(i) = ŷ}| (5.6)

count(xj ∧ ŷ) = |{〈x(i), y(i)〉 ∈ Ot | y(i) = ŷ ∧ xj(i) = xj}| (5.7)

To account for the case of zero frequencies in Equations 5.4 and 5.5, the Laplace

correction can be utilised adjusting the counts as follows,

pn(ŷ) = 1 + count(ŷ)
|Y |+ |Ot| (5.8)

pn(xj |ŷ) = 1 + count(xj ∧ ŷ)
|Xj |+ count(ŷ) (5.9)

where |Y | is the number of possible class labels, and |Xj | is the number of possible

values for input variable Xj .

Now, the above basic Naive Bayes classifier can be rewritten in terms of our generic

(base) classification model of Equation 5.1, as follows. According to the basic Naive

Bayes classifier, all available data examples are considered equally important. Thus,

∀u(i) ∈ Ot, W t
b (u(i)) = 1 (5.10)

The approximated probability P tb (Y |X) is as in Equation 5.3,

pb(ŷ|x) = pb(ŷ)×
m∏
j=1

pb(xj |ŷ) (5.11)
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where probabilities pb(ŷ) and pb(xj |ŷ) are given by rewriting probabilities pn(ŷ) and

pn(xj |ŷ) of Equations 5.8 and 5.9 in terms of weights W t
b , as follows,

pb(ŷ) = 1 +
∑t−1
i=1 check(y(i) = ŷ)×W t

b (u(i))
|Y |+

∑t−1
i=1 W

t
b (u(i))

(5.12)

pb(xj |ŷ) = 1 +
∑t−1
i=1 check(y(i) = ŷ)× check(xj(i) = xj)×W t

b (u(i))
|Xj |+

∑t−1
i=1 check(y(i) = ŷ)×W t

b (u(i))
(5.13)

where function check(a = b) returns 1 if a = b, and returns 0 otherwise.

In the case of continuous input data, weights are introduced by computing the weighted

mean and weighted variance from the training data (assuming data is normally dis-

tributed as explained in Chapter 3).

5.2.2 Logistic Regression

In the Logistic Regression classifier (see Chapter 3), which we denote here with the

subscript l, the approximated probability P tl (Y |X) of obtaining class label ŷ, given an

input vector x = (x1, x2, ..., xm), is given by,

pl(ŷ = 1|x) = eβ
T z

1 + eβT z
(5.14)

where z = (1, x1, x2, ..., xm), and β is the vector of regression parameters that need

to be estimated to fit the current training data points Ot as well as possible. Again

superscript t is omitted from probability pl and parameters β for readability (but these

differ at different time steps).

Parameters β are derived by maximising the following log-likelihood function,

LogLikl =
t−1∑
i=1

ϕ(β|u(i)) (5.15)

with function ϕ(β|u(i)) being given in Equation 3.8 (see Chapter 3).
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In the above Logistics Regression classifier, learning from past examples is conducted

via estimating parameters β. Within this estimation, all examples are considered

equally important in the log-likelihood function. This classifier can thus be rewrit-

ten in terms of our generic (base) classification model of Equation 5.1, as follows. Since

the model does not discriminate between training examples, it follows that,

∀u(i) ∈ Ot, W t
b (u(i)) = 1 (5.16)

Based on this, the log-likelihood function can be rewritten in terms of these weights as,

LogLikb =
t−1∑
i=1

W t
b (u(i))× ϕ(β|u(i)) (5.17)

Finally, P tb (Y |X) is given as in Equation 5.14, utilising LogLikb for estimating param-

eters β.

5.3 Context-Aware Classification Model

Based on the contextual knowledge identified in Chapter 4, we can define the vector of

relevant context variables, as,

(C1, C2, ..., Cr), such that ∀j = 1...r, rl(Cj) > 0 (5.18)

where rl(Cj) is the relevance degree of context variable Cj (as explained in Chapter 4).

We propose to utilise knowledge of such relevant contextual clues in order to scale the

contributions of past examples when learning the predictive model. In particular, we

extend the base classification model of Equation 5.1 to account for context information.

We denote this context-aware extended version with the subscript c, and it is given as
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follows,

〈Otc,W t
c (u(i)), P tc (Y |X)〉 (5.19)

where:

• Otc is the set of past data observations (labelled training examples) up to the

current time step t, extended with context information. That is,

Otc = {〈u(i), c(i)〉}t−1
i=1

where c(i) = (c1(i), c2(i), ..., cr(i)) is the context instance under which example

u(i) was collected. It corresponds to the value vector of the relevant context

attributes (C1, C2, ..., Cr), at time step i.

• W t
c (u(i)) is the context-aware example weighting factor, which is a combination of

the original weighting scheme of the base classification model and of our proposed

weighting by context information,

W t
c (u(i)) = W t

b (u(i))× csim(c(i), c(t)) (5.20)

where csim(c(i), c(t)) is the degree of similarity between the context instance un-

der which example u(i) was collected, c(i), and the context instance at the current

time step t, c(t). As indicated above, by context instance we refer to the value

vector of the relevant context variables at a particular time step. The intuition

behind this is that data examples that were collected under circumstances more

similar to the current circumstances should be considered more relevant for the

current prediction, and thus should have a higher impact on the current learning

process (at time step t).
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Similarity degree csim(c(i), c(t)) can be estimated as follows,

csim(c(i), c(t)) =
r∑
j=1

rl(Cj)× veq(Cj , cj(i), cj(t)) (5.21)

where rl(Cj) is the relevance degree of context attribute Cj determining its im-

portance (as explained in Chapter 4), while veq(Cj , cj(i), cj(t)) ∈ [0, 1] is the

value equivalence function, which determines the degree of equivalence (similar-

ity) between values cj(i) and cj(t) of context attribute Cj . We propose two

approaches for implementing function veq, which are discussed in Section 5.3.1

and Section 5.3.2.

• Finally, P tc (Y |X) is the context-aware estimated model at time step t, reflecting

the approximated probability of obtaining an output label ŷ, given an input vec-

tor x. It incorporates the contextual information underlying training examples in

order to adjust their effect on the learning process (learning the underlying func-

tion between the target class label and the respective input data). In particular,

P tc (Y |X) applies the same learning function of the base classification model (i.e.

as in Equation 5.2), but replaces the original weighting scheme W t
b , with that

extended by context information W t
c . That is,

P tc (Y |X) = L( { 〈W t
c (u(i)), u(i)〉 }t−1

i=1 ) (5.22)

5.3.1 Simple Approach for Value Equivalence

At a basic level, in order to detect the degree of equivalence between two values v1 and

v2 of context attribute Cj , i.e. veq(Cj , v1, v2), we can compute the direct difference
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between v1 and v2, as follows,

veq(Cj , v1, v2) =


1− |v1−v2|

max(Cj)−min(Cj) if Cj is numerical

1 if Cj is categorical and v1 = v2

0 if Cj is categorical and v1 6= v2

(5.23)

where min(Cj) and max(Cj) are the minimum and maximum values, respectively, of

context attribute Cj .

However, this simple realisation of function veq may not necessarily reflect the value

equivalence of interest in our approach. This is because we are interested in identifying

two values of variable Cj as equivalent if their associated underlying concepts are the

same, regardless of the actual direct difference between these values. Hence, an alter-

native realisation of the value equivalence function would be to learn the equivalence

among context values from historical data, based on how these values discriminate

between occurring concepts. More details are presented next.

5.3.2 Learning-based Approach for Value Equivalence

Two different values v1 and v2 of context variable Cj should still be considered similar

if the two probability distributions, P (Y,X|v1) and P (Y,X|v2), do not differ much

under those values. Here, Y and X are the target variable and the vector of input

variables, respectively. The intuition behind this is that, as mentioned above, we want

to identify two values of a context variable as equivalent if their underlying concepts are

similar. That is, the degree of equivalence between values v1 and v2 of context variable

Cj corresponds to the similarity between their underlying distributions P (Y,X|v1) and

P (Y,X|v2).

To compare the two distributions P (Y,X|v1) and P (Y,X|v2), we utilise two alternative

information theoretic measures suitable for this purpose: Entropy Absolute Difference
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(EAD) [17] and Kullback-Leibler Divergence (KL) [24]. These measures are applied to

derive equivalence degrees among context values in an offline mode, assuming existence

of a representative training set. However, these measures can also be similarly applied

in an online mode, following the availability of new training data, to update the equiv-

alence degrees with more accurate estimations.

The utilised measures are presented below, where probabilities p(.) are estimated based

on value frequencies (a discretisation is first applied in the case of continuous context

variables).

5.3.2.1 Entropy Absolute Difference

The Entropy Absolute Difference (EAD) measure [17] detects changes between two dis-

tributions by measuring the dispersions of the differences between these distributions.

In particular, and with reference to our problem, the EAD measure is defined by:

H(P (Y,X|v1)||P (Y,X|v2)) =

−
∑
y

∑
x

|p(y, x|v1)− p(y, x|v2)|log2|p(y, x|v1)− p(y, x|v2)| (5.24)

Smaller values of this measure indicate smaller differences between distributions. More-

over, if the two distributions are identical, the measure is equal to zero. The other two

important properties of this measure are non-negativity and symmetricity, i.e. the dis-

tance from distribution P (Y,X|v1) to P (Y,X|v2) is equivalent to the distance from

distribution P (Y,X|v2) to P (Y,X|v1).
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The degree of equivalence between two values v1 and v2 of context attribute Cj , i.e.

veq(Cj , v1, v2), based on EAD is given as follows,

veq(Cj , v1, v2) = 1− H(P (Y,X|v1)||P (Y,X|v2))
maxH

(5.25)

where maxH is the maximum value of measure H(P (Y,X|vl)||P (Y,X|vk)) among any

two values vl and vk of the context variable. Note that, in the case of an online learning

mode, the values of the EAD measure will be updated after each observation, and the

maximum value will be determined based on the values observed so far.

5.3.2.2 Kullback-Leibler Divergence

Another commonly used information theoretic-based distance measure that can be

utilised in our analysis is relative entropy or Kullback-Leibler divergence (KL) [24].

It is one of the most commonly used measures for quantifying the difference (non-

symmetric distance) between distributions, and is computed as follows [24].

KL(P (Y,X|v1)||P (Y,X|v2)) = −
∑
x

∑
y

p(x, y|v1)log2
p(x, y|v1)
p(x, y|v2) (5.26)

This measure is also non-negative and equals zero if and only if the distributions

are identical. On the other hand, unlike EAD measure, KL is not symmetric, i.e.

KL(P (Y,X|v1)||P (Y,X|v2)) 6= KL(P (Y,X|v2)||P (Y,X|v1)). A commonly used method

to overcome this is to take the average of both distances, which is usually referred to

as J-divergence [24].

The degree of equivalence between two values v1 and v2 of context attribute Cj , i.e.

veq(Cj , v1, v2), based on KL is given as follows,

veq(Cj , v1, v2) = 1− J-divergence(P (Y,X|v1)||P (Y,X|v2))
maxJ

(5.27)
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where maxJ is the maximum value of measure J-divergence(P (Y,X|vl)||P (Y,X|vk))

among any two values vl and vk of the context variable.

5.4 Evaluation

In this section, we conduct empirical evaluation of the proposed context-aware example

weighting approach, focusing on its influence on classification performance in terms

of avoiding performance degradation and producing accurate predictions in dynamic

settings. In particular, we test the behaviour of the approach under varying conditions,

and compare its performance against a number of adaptation strategies existing in the

literature. For this purpose, we base our evaluation on both artificial and real-world

datasets, including Stagger, Hyperplane, Gauss, Sine1, Elec and Elist datasets. For

artificial datasets, the results reported are averaged over 30 runs.

5.4.1 Objectives

In the following experiments, our aim is to achieve the following objectives.

Objective 1. Study the influence of various factors affecting the behaviour of the

proposed context-driven weighting approach in adapting the classification model to

concept changes.

Objective 2. Compare the proposed context-driven weighting approach under two

realisations of the value equivalence function: the simple (direct-difference-based) and

the learning-based approaches.

Objective 3. Compare the proposed context-driven weighting approach against incor-

porating context variables as additional input variables into the classification model.
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Objective 4. Compare the proposed context-driven weighting approach to other data

selection strategies (including window-based and time-based-weighting approaches) un-

der varying concept recurrency settings.

Objective 5. Test the behaviour of the proposed context-driven weighting approach

in a static environment.

Further details regarding the experimental setup and results are presented next.

5.4.2 Factors Affecting Context Utilisation

In this section, we conduct a number of experiments to test the behaviour of the

proposed approach under the following conditions: varying contextual importance,

varying context dimensionality, and the presence of noise. To achieve this, we generate

3000 examples and 5 concepts according to the data generation framework introduced

in Chapter 3, following concept sequence: 1-2-3-4-5-1-2-3-4-5, with 300 examples per

concept. More details are provided below.

5.4.2.1 Imperfect Context

This section studies the influence of having imperfect contextual knowledge on adapting

the classifier to concept changes. First, we introduce one normally distributed context

variable, where its contextual importance is made to vary according to the following

values (on a scale between 0 and 1): 1, 0.75, 0.5, and 0.25 (see the context generation

framework in Section 3.2.1.2). The corresponding predictive accuracy of the classifier

in the considered 4 cases are presented in Figure 5.1, where the base classifier adopted

is Naive Bayes classifier.
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The case of perfect contextual knowledge (i.e. with a context variable importance of

1) is demonstrated in Figure 5.1(a). As can be observed, having perfect contextual

knowledge enables fast recovery after encountering new change points (points 300, 600,

900, and 1200), and helps avoiding performance degradation in the case of recurring

concepts (starting from time step 1500). In particular, when a change occurs, only the

most recent relevant examples with context similar to the current context are included

for learning the predictive model (i.e. all examples belong to the same concept), which

eliminates the effect of older irrelevant examples on the current prediction. Moreover,

in the case of recurring concepts, all older observations with similar context are im-

mediately utilised for prediction, without experiencing performance degradation while

training the classifier on new observations.

On the other hand, in Figures 5.1(b), 5.1(c), and 5.1(d) (the case of imperfect contex-

tual knowledge), we can see that the classifier suffers from performance degradation.

In particular, in Figure 5.1(b), the classifier exhibits a deep accuracy drop at time step

1200 due to the inability of the context variable to distinguish between Concepts 4 and

5, which causes the utilisation of observations irrelevant for the current concept. In

addition, when concepts re-appear, we can see the performance of the classifier deterio-

rates at time step 2400 (when Concept 4 re-appears), due to utilising data that belongs

to both Concepts 4 and 5. Similar behaviour is observed in Figures 5.1(c) and 5.1(d).

For example, in Figure 5.1(d), where the context is only able to distinguish one change

point, we can see that the classifier suffers from accuracy drop starting from time step

600 (when moving from Concept 2 to 3).

Similar observations are exhibited when utilising Logistic Regression as the base clas-

sifier, which is demonstrated in Figure 5.2. For simplicity, in the rest of the chapter we

depict the results with Naive Bayes being the base classifier.
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(c) Context variable with importance of 0.5
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(d) Context variable with importance of 0.25

Figure 5.1: Performance evolution given different levels of contextual importance
with Naive Bayes classifier.

While normally utilising imperfect context results in decreased classification perfor-

mance as shown above, there could be cases where a combination of imperfect context

variables would actually result in an improved performance. This is the case of im-

perfect context variables that complement each other. To illustrate this, we generate

4 context variables, where each context variable has an importance of 0.25 such that

the first one distinguishes between Concepts 1 and 2, the second variable distinguishes

between Concepts 2 and 3, the third variable distinguishes between Concepts 3 and

4, while the last variable distinguishes between Concepts 4 and 5. The results are

presented in Figure 5.3.
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(c) Context variable with importance of 0.5
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(d) Context variable with importance of 0.25

Figure 5.2: Performance evolution given different levels of contextual importance
with Logistic Regression classifier.
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Figure 5.3: Complementarity among context variables.
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As can be seen, although each variable individually is able to distinguish only one

concept change point, utilising these variables collectively help to recognise all change

points and recurring concepts, resulting in a corresponding positive effect on perfor-

mance (i.e. fast recovery of the classifier in the case of new concepts and avoiding per-

formance degradation with recurring concepts). The classifier, however, still achieves

lower performance than the case of perfect contextual knowledge (Figure 5.1(a)). This

is because, despite having one discriminating context variable at each change point, the

other non-discriminating context variables will still carry an impact on example weights

at that point, boosting the weights of irrelevant examples, which therefore have some

impact on the prediction process.

5.4.2.2 High Dimensionality and Noise

In this section, our goal is to demonstrate the effect of having redundant context

variables on the performance of the classification model. For this purpose, we assume

one perfect context variable, and generate noise via introducing a number of imperfect

context variables of varying levels of correlations with the perfect one. For this purpose,

we consider two cases. In the first case, we introduce 6 context variables, where the first

variable is perfectly contextual, while the other 5 ones are redundant. In the second

case, we increase the number of redundant context variables from 5 to 10. Figure 5.4

reports the results. Note that, we limit the tested dimensionality to 5 and 10 variables

since increasing the dimensionality beyond 10 achieve similar results but with further

degradation in the classifier performance.

As can be seen, including imperfect redundant variables negatively affects the perfor-

mance of the classifier. This is because, according to Equation 5.21, such imperfect

redundant variables would still carry some influence on the context similarity measure,
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Figure 5.4: Effect of redundancy.

reducing the influence of the perfect context variable(s) in weighting the training ex-

amples. This negative influence of the imperfect redundant variables increases as the

number of these variables increases (the case of 10 redundant variables in the figure).

As a result, examples that are not relevant for the current concept will also have some

impact when adapting the classifier to changes, leading to decreased performance.

The above results highlight the importance of eliminating redundancy. Redundancy

elimination can be achieved by applying the proposed context selection algorithm intro-

duced in Chapter 4 (see Section 4.3.4) prior to utilising the identified context variables

in classification.

5.4.3 Evaluation of Value Equivalence Function

In this section, we compare the performance of the proposed context-driven weighting

approach under the alternative variations proposed for the value equivalence func-

tion: the simple direct difference approach and the learning-based approach. For the
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learning-based approach, both EAD (EAD-based) and KL (KL-based) are utilised in

the analysis.

The experiments are conducted on the Stagger dataset, which exhibits abrupt changes.

Note that it is not intuitive to apply the learning-based approach with gradual changes.

This is because, in the case of gradual changes, the target concept is shifting slightly

at each time step, and so does the associated context values. Given this semantics, the

direct difference approach is more intuitive in this case.

We generate 1200 examples and 3 concepts, with each concept occurrence lasting for 200

examples following concept sequence 1-2-3-1-2-3. As context, we introduce a perfect

context variable, C1 ∈ {v1, v2, v3, v4, v5, v6}, where each value is associated with a

certain concept. Specifically, C1 = v1∨v2 under Concept 1, C1 = v3∨v4 under Concept

2, and C1 = v5∨ v6 under Concept 3. This context variable is exposed to 5% noise (i.e.

has a 5% probability to take on values not associated with the current concept). In all

experiments, the equivalence among the values of the context variable is first learned

separately in an offline mode (the first 600 examples), and then incorporated during

classification into the adaptation process (the following 600 examples).

First, we report the identified value equivalence (veq) between the values of the context

variable utilising the learning-based approach (see Tables 5.1 and 5.2). All results are

normalised on a scale between 0 and 1. Ideally, the approach should recognise the

equivalence between values v1 and v2, values v3 and v4, and values v5 and v6.

We can see that EAD-based is able to better recognise equivalence among values com-

pared to KL-based approach. For example, with KL-based approach (Table 5.2), the

equivalence degree between values v1 and v2 that appear under the same concept is

identified as 0.52, which is similar to the equivalence degree identified between values

v1 and v4 (0.51) that belong to different concepts. On the other hand, with EAD-based
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Table 5.1: Identified equivalence among context values with EAD-based realisation
of the value equivalence function.

Values v1 v2 v3 v4 v5 v6

v1 1 0.56 0.24 0.18 0.01 0.10
v2 0.56 1 0.21 0.13 0 0.08
v3 0.24 0.21 1 0.65 0.25 0.24
v4 0.18 0.13 0.65 1 0.24 0.26
v5 0.01 0 0.25 0.24 1 0.49
v6 0.10 0.08 0.24 0.26 0.49 1

Table 5.2: Identified equivalence among context values with KL-based realisation of
the value equivalence function.

Values v1 v2 v3 v4 v5 v6
v1 1 0.52 0.40 0.51 0.34 0.18
v2 0.52 1 0.56 0.45 0.41 0.06
v3 0.40 0.56 1 0.59 0.51 0.20
v4 0.51 0.45 0.59 1 0.52 0
v5 0.34 0.47 0.51 0.52 1 0.27
v6 0.18 0.06 0.19 0 0.27 1

approach (Table 5.1), the equivalence degree between values v1 and v2 is identified as

0.56 compared to 0.18 between values v1 and v4.

We further compare the performance of EAD-based and KL-based approaches in terms

of the accuracy of the classifier achieved. As can be seen from Figure 5.5, the classifier

with EAD-based approach outperforms the classifier with KL-based approach. This is

because, as demonstrated by the equivalence degree tables above, the latter has lower

ability in differentiating equivalent from non-equivalent context values. Thus it suffers

from accuracy drops during periods of concept stability due to treating no-drift cases

(a change in a context value to another equivalent value) as a concept drift.

Based on the above, in the following experiments, we utilise EAD-based approach for

learning the equivalence degrees among the values of context variables.

Now, we compare the Simple Difference and the EAD-based approaches. Figure 5.6
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Figure 5.5: Comparison of EAD-based and KL-based realisations of the learning-
based value equivalence function: Stagger dataset.

reports the corresponding results. The advantage of using EAD-based over Simple Dif-

ference is evident, with the former outperforming the latter in terms of AC (accuracy)

and other performance metrics. To further analyse the results, Figure 5.7 studies the

accuracy evolution over time of both approaches after a new concept (Concept 2 in the

figures) is encountered. As can be seen, the Simple Difference suffers from an accuracy

drop during the period of concept stability (in particular, after time step 300, when

the context variable switches from value v3 to v4 while still being under Concept 2).

This is because the appearance of a new value for the context variable is interpreted as

an indication of a new concept, thus neglecting relevant examples prior to this value

change (i.e. examples under context value v3). In contrast, the EAD-based approach

recognises the new value of the context variable as an equivalent one (belonging to the

same concept), avoiding such degradation in the predictive accuracy.

5.4.4 Comparative Analysis Against Other Approaches

In this section, we compare the following classification strategies.
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Value Equivalence AC KS AUC H 
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(0.01) 

0.73 
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Figure 5.6: Comparison of different realisations of the value equivalence function
(standard deviations are indicated in parentheses)

0.4

0.5

0.6

0.7

0.8

0.9

1

150 200 250 300 350 400

Ac
cu

ra
cy

 

Time Step 

Simple Difference
EAD-based

Concept Change Point Performance Degradation 
During the Same Concept 

(a) Predictive Accuracy

0.4

0.5

0.6

0.7

0.8

0.9

1

150 200 250 300 350 400

AU
C 

Time Step 

Simple Difference

EAD-based

Concept Change Point Performance Degradation 
During the Same Concept 

(b) AUC

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

150 200 250 300 350 400

H 
m

ea
su

re
 

Time Step 

Simple Difference
EAD-based

Concept Change Point Performance Degradation  
During the Same Concept 

(c) H measure

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

150 200 250 300 350 400

Ka
pp

a 
St

at
is

tic
 

Time Step 

Simple Difference

EAD-based
Concept Change Point Performance Degradation 

During the Same Concept 

(d) Kappa Statistic

Figure 5.7: Comparison of different realisations of the value equivalence function
over time: Stagger dataset.
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Standard Incremental. The classification model is re-estimated based on all the exam-

ples observed so far, assigning equal weights to all examples.

Context as Input. The classification model is similar to the Standard Incremental, but

with considering relevant context variables as additional input variables.

Sliding Window. The classification model is re-estimated based on a fixed window of

the latest observed examples (assigning equal weights to all examples).

Dynamic Window. The classification model is re-estimated based on a dynamic window

of the latest observed examples. Three alternative realisations of the dynamic window

strategy are considered in the analysis: the change detection approach proposed by [6]

(which is the default Dynamic Window approach in our analysis), the statistical Page-

Hinkley test [81], and the drift detection method (referred to as EDDM) proposed

by [7].

Time-based Weighting. The classification model is re-estimated utilising a time-based

weighting scheme inspired by the approach proposed in [12], such that the weight of

each example decreases with time.

Context-based Weighting. The classification model is re-estimated utilising the pro-

posed context-based weighting scheme (i.e. the proposed context-driven classifier of

Section 5.3).

Figure 5.8 reports the corresponding results for Stagger (abrupt changes) and Hyper-

plane (gradual changes) datasets, with concept sequence settings being the same as in

the previous section.

As can be seen, in the case of abrupt changes (Stagger dataset), Context-based Weight-

ing outperforms all the other considered strategies (including Context as Input). Fur-

ther analysis of this case is provided in Figures 5.9 and 5.10, where we depict the
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Classification Strategy Stagger  Hyperplane 
AC KS AUC H AC KS AUC H 

Standard Incremental 0.57 
(0.02) 

0.15 
(0.03) 

0.64 
(0.02) 

0.09 
(0.02) 

0.79 
(0.03) 

0.65 
(0.05) 

0.90 
(0.02) 

0.56 
(0.05) 

Context as Input 0.70 
(0.02) 

0.41 
(0.04) 

0.75 
(0.02) 

0.26 
(0.04) 

0.82 
(0.02) 

0.64 
(0.05) 

0.89 
(0.02) 

0.54 
(0.05) 

Sliding Window 0.68 
(0.01) 

0.37 
(0.02) 

0.87 
(0.01) 

0.24 
(0.14) 

0.84 
(0.01) 

0.67 
(0.03) 

0.89 
(0.01) 

0.57 
(0.03) 

Dynamic Window 0.81 
(0.09) 

0.62 
(0.19) 

0.86 
(0.07) 

0.54 
(0.05) 

0.82 
(0.02) 

0.64 
(0.04) 

0.89 
(0.02) 

0.53 
(0.04) 

Time-based Weighting 0.59 
(0.01) 

0.19 
(0.03) 

0.67 
(0.02) 

0.12 
(0.02) 

0.83 
(0.02) 

0.66 
(0.04) 

0.90 
(0.02) 

0.56 
(0.04) 

Context-based Weighting  0.91 
(0.01) 

0.81 
(0.01) 

0.92 
(0.01) 

0.73 
(0.02) 

0.82 
(0.02) 

0.64 
(0.04) 

0.89 
(0.02) 

0.54 
(0.05) 

Figure 5.8: Comparison of different classifiers for Stagger and Hyperplane datasets
(standard deviations are indicated in parentheses)

evolution of predictive accuracy over time, distinguishing the cases of new and recur-

ring concepts. In particular, when a new concept is encountered (Figure 5.9), all the

considered strategies suffer from performance degradation. However, Context-based

Weighting achieves the fastest recovery. This is because, as mentioned previously, the

utilisation of contextual evidence enables capturing only relevant observations for learn-

ing the new concept. In particular, the change in the value of the considered context

variable signals the classifier to forget older observations, and to consider only the

most recent data observations that belong to the new concept, with context similar to

the current context. In contrast, time-based strategies suffer from slower reaction to

changes since the effect of older irrelevant observations takes longer to be forgotten.

Furthermore, when encountering a recurring concept (Figure 5.10), and unlike other

strategies, Context-based Weighting always maintains high accuracy without experienc-

ing performance degradation after a change point, due to its ability to utilise old (but

relevant again) data.

In the case of gradual changes (Hyperplane dataset in Figure 5.8), the examples be-

come less relevant gradually (as opposed to abrupt changes where the relevance of ex-

amples drastically decreases after the change point). Hence, recency based approaches

achieve good prediction accuracy via gradually forgetting outdated data. Our proposed
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Figure 5.9: Performance Evolution of different classifiers for Stagger dataset: en-
countering new concept.

context-driven approach also achieves good results, approximating the performance of

recency based approaches.

The advantage of the proposed approach is also demonstrated with Gauss and Sine1

datasets, with their results being reported in Figure 5.11. As in the previous experi-

ments, the proposed context-based weighting outperforms all the other approaches.

Similar observations hold for the real-world datasets, with the results being reported

in Table 5.3. For these datasets, we utilise the McNemar’s test [5] to evaluate the

statistical significance of the performance differences obtained.
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Figure 5.10: Performance evolution of different classifiers for Stagger dataset: en-
countering recurring concept.
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Figure 5.11: Performance Evolution of different classifiers for Gauss and Sine1
datasets.
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Table 5.3: Comparison of different classifiers for Elist and Elec datasets
Classification Strategy Elist Elec

AC KS AC KS
Expanding Window 0.62∗ 0.23 0.63∗ 0.26
Context as Input 0.69∗ 0.38 0.64∗ 0.28
Sliding Window 0.62∗ 0.24 0.64∗ 0.26
Dynamic Window 0.70∗ 0.39 0.66 0.29

Time-based Weighting 0.62∗ 0.24 0.64∗ 0.27
Context-based Weighting 0.81 0.61 0.67 0.34
∗ Significant difference according to McNemar Test (0.05 significance level)

5.4.5 Static Environment

In this section, we generate a static artificial dataset by fixing the mean of the data

generating distribution to be the same at each time step. In such settings (i.e. in

the case of no concept changes), all previously observed examples remain relevant. In

Figure 5.12, we compare the behaviour of the proposed approach against the Standard

Incremental (expanding window) strategy. The results show that both approaches

behave similarly, demonstrating the validity of our approach in static domains.
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Figure 5.12: Accuracy evolution of the context-based weighting in a static dataset.
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5.5 Conclusion

The chapter presented a context-based weighting approach for adapting classification

models to concept changes, where each example is weighted according to the degree of

similarity with the current context. When assessing the degree of similarity between

two contextual instances, context variables with higher imprtance carry a higher im-

pact. Moreover, equivalence between two values of a context variable is determined by

either assessing the direct numerical difference between these values, or by alternatively

learning their conceptual similarity (i.e. learning the degree of similarity between their

underlying concepts). The latter is achieved in an offline mode, assuming the existence

of a representative training sample. The experimental analysis demonstrated that the

learning-based approach achieves advantages over the direct difference one in settings

with abrupt concept changes where the numerical difference between the context values

is not necessarily informative.

The experimental analysis also demonstrated the advantage of the proposed approach

compared to other existing approaches. The benefit of external context utilisation

(as opposed to incorporating context as an input) and the ability of the approach to

perform in a static environment are also illustrated.

The presented weighting approach, however, requires iterating over the past data to

evaluate the degree of similarity between the context under which each example is col-

lected and the current context. As the size of the historical data increases, especially

in the case of data streams which have infinite length, it becomes impractical and

computationally expensive to store all the historical data and do multiple passes over

this data for the purpose of weight re-evaluation. Therefore, an interesting extension

would be to adapt the weights of training examples without the need to store or re-

visit the contextual information of the examples each time, by applying some form of
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incremental learning.

The proposed weighting-based approach assumes a continuous drift, re-weighting the

data examples every time the classifier is updated, without identifying if the drift actu-

ally occurred. In the next chapter, an alternative context-based adaptation approach

based on drift detection is presented.

Finally, in the thesis, we assume that the number of classes is fixed. Yet, there could be

situations where new classes might emerge over time, a problem know in the literature

as concept evolution. The currently assumed offline mode for learning the importance of

context variables will not be suitable in this case, as potential classes cannot be known in

advance. Hence, to tackle this problem, the importance of the context variables has to

be learned incrementally. Moreover, to keep the example weighting approach applicable

in this case, an additional variable may need to be added such that it changes values

every time a novel class is detected. The detection of new classes can be conducted

using proposed techniques in the literature [121], [120]. However, this is out of the

scope of this thesis.



Chapter 6

Context Exploitation Model -

Drift Detection

6.1 Introduction

Drift detection is an important step towards achieving more effective concept drift

handling, and the reason is twofold. First, it facilitates choosing the right data instances

for adjusting the classification model (e.g. data preceding the detection point may no

longer be relevant). Second, it eliminates the need for the costly revisiting of past data

samples to re-assess their relevance every time the classifier is updated (as seen in the

previous chapter). In particular, the classification model built from data following the

drift point remains relevant, and any new data can be simply incorporated into this

model to increase its accuracy potentially applying efficient incremental update rules.

Existing approaches to drift detection mainly focus on monitoring the performance

accuracy of the classification model to identify the point where the drift has occurred.

133
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This is a costly process (in terms of performance degradation) since it usually requires

a sufficient number of misclassified instances before drift can be confirmed.

In this chapter, we propose an adaptive learning model equipped with a drift detection

strategy that relies on monitoring changes in relevant contextual variables. Such utili-

sation of contextual information will enable a faster (less costly in terms of performance

degradation) and more reliable method to recognise drift. Moreover, to account for the

possibility of concept recurrence during the learning process, a context-based recur-

rency detection strategy is proposed. In particular, the proposed learner maintains a

set of previously-learned prediction models (i.e. it is multi-model), each corresponding

to an identified different concept. When a previously-encountered concept reoccurs,

the respective stored prediction model is reused to make future predictions, facilitating

a faster adaptation to drift (as opposed to re-learning the concept from new examples),

and consequently enables improving the predictive accuracy. Two realisations of such

an adaptive multi-model learner are proposed: a purely-contextual learner and a hybrid

learner that additionally incorporates a performance degradation monitor.

The remaining of this chapter is organised as follows. The purely-contextual multi-

model learner is presented in Section 6.2. In Section 6.3, the hybrid learning model is

introduced. Evaluation setup and results are reported in Section 6.4, while Section 6.5

concludes the chapter.

6.2 Purely-Contextual Multi-Model Learner

In the first realisation of the multi-model learner, drift detection and the recognition of

concept recurrence (with the corresponding classifier selection) are only based on the

utilisation of contextual information. That is, change detection is based on monitoring

any deviations in the values of the context variables. Similarly, the value(s) of the
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context variable(s) are utilised for recognising the recurrence of a previously observed

concept, and the selection of the appropriate classifier (in terms of context similarity).

More details of this learner are provided below.

6.2.1 Learner Configuration

The configuration of the multi-model learner at a particular moment is a tuple:

(M,ma, ctxcnd(m))

where the components are as follows.

M is a library of classification models, containing the set of previously learned models

up to the current time point. Each model m ∈M characterises a different concept (i.e.

a different function between the variable to be predicted and the respective input data).

Note that the approach is not restricted to any specific type of classification models;

ma ∈M is the currently active classification model, i.e. the one utilised to predict the

outcome of future unlabelled examples; ctxcnd(m) is the context condition function,

assigning to each model m ∈ M the contextual condition under which the model is

applicable. In particular, given the relevant context attributes (C1, C2, ...., Cr), each

condition ctxcnd(m) is a conjunctive clause of the form:

ctxcnd(m) = c1 ∧ c2 ∧ ... ∧ cr

where values (c1, c2, ..., cr) correspond to a particular restriction on the values of context

attributes (C1, C2, ...., Cr). For example, given two context attributes (Season,Day),

a possible condition is Winter∧Saturday, where Winter and Saturday are the values

restricting Season and Day, respectively.
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Drift Context Variable 푪 

Concept 1 푣 ˅	푣  

Concept 2 푣  

Concept 3 푣  

Figure 6.1: Perfect context knowledge: individual concept distinction.

Drift Context Variable  Context Variable  

Concept 1 ݒଵ ݒଷ 

Concept 2 ݒଵ ݒସ 

Concept 3 ݒଶ ݒସ 

Figure 6.2: Perfect context knowledge: collective concept distinction.

Drift Context Variable  

Concept 1 ݒଵ 

Concept 2 ݒଵ 

Concept 3 ݒଶ 

Figure 6.3: Imperfect context knowledge.

6.2.2 Drift Detection

The purely-contextual realisation of the multi-model learner mainly relies on available

contextual knowledge in order to detect the occurrence of a concept drift. It monitors

changes in the values of relevant context attributes and exploits the relation between

these changes and concept changes.

In order to be able to identify changes in the values of context attributes, we first define

the following equivalence relation between context values.

Definition 1. Value Equivalence ≡v. Given two values v1 and v2 of context attribute

Ci, these values are considered equivalent, i.e. v1 ≡v v2, if: veq(Ci, v1, v2) ≥ eqThresh.

Here, veq is the learning-based value equivalence function proposed in Chapter 5, and

eqThresh is the value equivalence threshold.
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Now, the drift detection principle assumed by the purely-contextual multi-model learner

can be defined as follows. Given the relevant context attributes (C1, C2, ...., Cr), there

is a concept drift at time step t if and only if there is a change in the value of at least

one of these attributes Ci. That is:

concept drift at time step t ⇔ ∃Ci, ¬[ci(t) ≡v ci(t− 1)] (6.1)

where ci(t) is the value of context attribute Ci at time step t. Note that, in order

to account for random noisy value occurrences, such a change in the value of context

attribute Ci is confirmed only if it persists for at least chThresh time steps.

The intuition behind the sufficiency condition (i.e. that there is a concept drift if there

is a change in a context value) can be justified by the semantics of the context value

equivalence function (upon which the equivalence, and thus the change, among context

values is determined). In particular, and as explained in Chapter 5, the degree of equiv-

alence between values v1 and v2 of context attribute Ci, veq(Ci, v1, v2), corresponds to

the similarity between their underlying distributions P (Y,X|v1) and P (Y,X|v2). That

is, the higher the equivalence degree, the higher the chance that v1 and v2 appear

under similar concepts, whilst the lower the equivalence degree, the higher the chance

that v1 and v2 appear under different concepts. This justifies the signalling of a drift

when context attribute Ci switches between values v1 and v2 and these values are non-

equivalent (i.e. the case where veq(Ci, v1, v2) is low). Clearly, the value equivalence

threshold eqThresh, which governs the assessment of whether two context values are

distinct, plays an important role, and its effect is studied in Section 6.4.1.

On the other hand, the necessity condition (i.e. that there is a concept drift only if

there is a change in a context value) requires the available contextual attributes to per-

fectly distinguish among all occurring concepts, either individually (e.g. see Figure 6.1)

or collectively (e.g. see Figure 6.2). Such perfect contextual knowledge, however, may
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not be available in reality, resulting in cases where a drift may occur despite no corre-

sponding changes in context values (e.g. see Figure 6.3), and thus the purely-contextual

learner would fail to identify such a drift. The hybrid approach (see Section 6.3) at-

tempts to account for such cases.

6.2.3 Concept Recurrency Detection

Similarly to drift detection, the recognition of a recurrent concept is also purely guided

by contextual knowledge, associating similar context values with similar concepts. Let’s

first define the following equivalence relation between two context conditions.

Definition 2. Condition Equivalence ≡c. Consider two context conditions, cnd1 =

c1
1 ∧ c2

1...∧ cr1, and cnd2 = c1
2 ∧ c2

2...∧ cr2, restricting the values of relevant context

attributes (C1, C2, ...., Cr). Conditions cnd1 and cnd2 are considered equivalent, i.e.

cnd1 ≡c cnd2, if: ∀i ∈ {1, .., r}, ci
1 ≡v ci2.

Based on this, the recurrency detection principle assumed by the purely-contextual

multi-model learner can be defined as follows. Given a drift at time step t, the upcoming

concept (i.e. the concept staring from time step t) is recurrent if and only if its

respective context values are subsumed by the context condition of a previously-learned

classification model. That is:

the concept from time step t is recurrent ⇔

∃m ∈M, ctxcnd(m) ≡c [c1(t) ∧ c2(t)... ∧ cr(t)] (6.2)

where [c1(t)∧ c2(t)...∧ cr(t)] is the context condition corresponding to the conjunction

of context values observed for the relevant context attributes (C1, C2, ...., Cr) at time

step t.
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The same discussion provided above regarding drift detection also applies here (with re-

spect to the sufficiency and necessity conditions of the recurrency detection principle).

In other words, while the absence of an existing classifier with an equivalent context

condition negates concept recurrence (driven by the semantics of context value equiv-

alence), the presence of such a classifier does not necessarily confirm the recurrence if

contextual knowledge is imperfect, leading to cases with incorrectly identified recur-

rency by the purely-contextual learner. For example, consider the imperfect contextual

knowledge of Figure 6.3, and assume the following order of concept appearance: con-

cept 1 - concept 3 - concept 2. The purely-contextual learner would incorrectly identify

concept 2 as recurrent, due to the existence of a library classifier with a similar context

condition (the one previously built for concept 1). Again such a case is handled by the

hybrid approach (see Section 6.3).

Moreover, given such a recurrency detection principle of the purely-contextual multi-

model learner, the following property can be concluded.

Property 1. There can be at most one classifier in the model library per context con-

dition at any particular moment. That is:

∀m1,m2 ∈M, ¬[ctxcnd(m1) ≡c ctxcnd(m2)]

Proof. The proof is straightforward, and can be provided by contradiction. Assume

the property does not hold, i.e.:

∃m1,m2 ∈M, [ctxcnd(m1) ≡c ctxcnd(m2)] (6.3)

Suppose m1 was built before m2. From above assumption and the recurrency detection

principle, the concept for which m2 is built would be identified as recurrent (due to the

existence of m1 with an equivalent context condition). This results in the reuse of m1
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for such a concept, without building a new classifier, i.e. m2 /∈ M, which contradicts

the assumption in Equation 6.3. Thus, this assumption cannot be true, which proves

our property.

6.2.4 Overall Learning Algorithm

The main learning steps of this approach are summarised below (see Algorithm 6).

1. At each time step, compare the current context (the context of the example to

be classified), ctx(t) = [c1(t) ∧ c2(t)... ∧ cr(t)], with the context of the currently

active classifier, ctxcnd(ma);

2. If ctx(t) is not equivalent to ctxcnd(ma) for chThresh time steps, a drift is

detected and the following two cases are distinguished:

• Case 1 : The concept following the drift is new (not recurrent) according to

Equation 6.2. In this case, a new classification model, mn, is instantiated

and added to the library of classification models, i.e. M ← M ∪ {mn}.

This classifier becomes the currently active classifier, i.e. ma ← mn, and is

trained on the latest examples (the examples following the change point).

Its context condition is set to ctx(t), i.e. ctxcnd(mn) = ctx(t).

• Case 2 : The concept following the drift is recurrent according to Equa-

tion 6.2, with meq being the existing equivalent classification model found

in the library. In this case, the currently active classification model is simply

replaced by the existing found model, i.e. ma ← meq.
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Algorithm 6 ACTX-Simple
Require: Data Stream: D, Context Stream: CTX , Active Model: ma, Model Li-

brary: M, Persistence Threshold: chThresh
1: Initialize: classifier mn, counter ← 0
2: for all x(i) ∈ D, c(i) ∈ CTX do
3: if ¬[ctx(i) ≡c ctxcnd(ma)] then
4: counter ← counter + 1
5: else
6: counter ← 0
7: if counter = 0 then
8: reset classifier mn to initial settings
9: Model prediction: ŷ(i)← ma(x(i))

10: Update ma with (x(i), y(i))
11: else
12: if counter < chThresh then
13: Model prediction: ŷ(i)← ma(x(i))
14: Update mn with (x(i), y(i))
15: else
16: newconcept← True
17: for all m ∈M do
18: if (ctx(i) ≡c ctxcnd(m)) then
19: ma ← m
20: newconcept← False
21: if newconcept then
22: M←M ∪ {mn}
23: ctxcnd(mn) = ctx(i)
24: ma ← mn

25: counter ← 0
26: reset classifier mn to initial settings
27: Model prediction: ŷ(i)← ma(x(i))
28: Update ma with (x(i), y(i))

6.3 Hybrid Multi-Model Learner

6.3.1 Learner Configuration

The configuration of the hybrid multi-model learner at a particular moment is a tuple:

(M,ma, ctxcnd, prfMntr)



Chapter 6 Context Exploitation Model - Drift Detection 142

where the first three components are similar to those of the purely-contextual multi-

model learner, while prfMntr is an additional component to monitor the performance

of the learner in terms of accurately classifying incoming examples. In particular,

prfMntr(t) returns an indication of the error rate of the currently active classification

modelma at time step t, thus providing additional evidence for detecting the occurrence

of a drift besides contextual knowledge.

6.3.2 Drift Detection

The hybrid multi-model learner combines context-based drift detection with accuracy-

based drift detection to boost the performance of the former in cases where perfect

contextual knowledge may not be available. The main idea behind accuracy-based

drift detection, a well-known approach in the literature [92], is that if the distribu-

tion of the incoming examples is stationary, the probability of making an error will

decrease or at least stabilise as more examples become available. A significant increase

in this probability indicates that the distribution generating the examples has changed,

signalling a drift.

Based on this, the drift detection principle assumed by the hybrid multi-model learner

can be defined as follows. Given relevant context attributes (C1, C2, ...., Cr), there is a

concept drift at time step t, if and only if one of the following is satisfied:

• there is a change in the value of at least one of these context attributes Ci, at

time step t (and this change persists for at least chThresh time steps); or

• there is a degradation in the performance of the currently active classification

model, signalled by a warning level wrnThresh at time step t, and confirmed by
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a further drift level drfThresh at some point in future. That is:

(prfMntr(t) ≥ wrnThresh) ∧ (∃tf > t, prfMntr(tf ) ≥ drfThresh) (6.4)

While the first point matches the detection principle of the purely-contextual learner,

i.e. Equation 6.1, the second one is specific to performance monitoring and is introduced

to boost the necessity condition of this equation (to account for cases with imperfect

contextual knowledge).

A possible instantiation of prfMntr, wrnThresh, and drfThresh is to adopt the er-

ror rate approach proposed by Gama et al. [6], which is also utilised in Gomes et al.’s

learning system [28] against which we conduct our experimental analysis (yet alterna-

tive instantiations are also possible). In particular, it is assumed that the error of each

incoming example, u(i) = (x(i), y(i)), represents a random variable from Bernoulli

trials, and that the number of misclassified examples, denoted as E, follows a Bi-

nomial distribution. Given this, the probability of making an error, denoted as pi,

and the associated standard deviation, denoted as si, are computed incrementally for

each incoming example according to the following formulas: pi = E
i , si =

√
pi(1−pi)

i .

The learner’s performance at example i, prfMntr(i), corresponds to pi + si, while

wrnThresh and drfThresh correspond to pmin + 2 ∗ smin, and pmin + 3 ∗ smin, respec-

tively. Here, pmin and smin are the minimum error probability and minimum standard

deviation, respectively, among the examples observed so far, obtained in the sequence

of calculating pi and si for the incoming examples.

6.3.3 Concept Recurrency Detection

Given the drift detection principle of the hybrid learner, and the possibility of imperfect

contextual knowledge (e.g. see Figure 6.3), Property 1 should no longer hold. That is,
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there may exist two classifications modelsm1 andm2 corresponding to distinct concepts

such that ctxcnd(m1) ≡c ctxcnd(m2) (the case where a drift occurs despite no change in

contextual knowledge, and is detected utilising degradation of performance prfMntr).

Hence, although the absence of an existing library classifier with a context condition

similar to that of a detected concept still confirms that the concept is new (driven

by the semantics of context value equivalence), the presence of such a classifier does

not necessarily confirm that the concept is recurrent, requiring an additional similarity

measure to confirm recurrency.

Let’s define the following equivalence measure between two classification models.

Definition 3. Model Equivalence ≡m. Given two classification modelsm1 andm2, these

models are considered equivalent, i.e. m1 ≡m m2, if: similarityDegree(m1,m2) ≥

mdlThresh. Here, similarityDegree is the degree of similarity between models m1

and m2, and mdlThresh is the model equivalence threshold.

A possible way to compute the similarity degree between two classification models is to

utilise the conceptual equivalence measure originally proposed by Yang et al. [57] (and

also utilised by Gomes et al. [28]). In particular, the conceptual equivalence between two

models (i.e. whether or not they belong to the same concept) is determined according

to their degree of agreement in classifying the data examples. That is, given two

classification models m1 and m2, and a sample of examples Wn = {x(i)}n1 of size n, the

conceptual equivalence between m1 and m2 (and hence similarityDegree(m1,m2))

corresponds to:
∑

x(i)∈Wn
score(x(i),m1,m2)
n . Here, score(x(i),m1,m2) in the similarity

score between the models per each example, and is set to 1 if both models predict the

same class label for example x(i), and is set to −1 otherwise. The higher the value of

conceptual equivalence, the higher the degree of concept similarity between the models.

Based on this, the recurrency detection principle assumed by the hybrid multi-model

learner can be defined as follows. Consider a drift at time step t, and a new classification
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model mn, built from stblExmNum examples arriving after the change point t (where

stblExmNum is the number of examples required to stabilise the classification model).

The concept staring from time step t is recurrent if and only if its respective context

values are subsumed by the context condition of a previously-learned classification

model, and this model is equivalent to mn, i.e.

∃m ∈M, (ctxcnd(m) ≡c ctx(t)) ∧ (m ≡m mn) (6.5)

where ctx(t) is the context condition corresponding to the conjunction of context values

observed for the relevant context attributes (C1, C2, ...., Cr) at time step t.

6.3.4 Overall Learning Algorithm

In what follows, we summarise the main learning steps of the hybrid approach (see

Algorithm 7).

1. At each time step, compare the current context, ctx(t), with the context of the

currently active classifier, ctxcnd(ma);

2. Compute the current error rate of the currently active classifier, prfMntr(t);

3. Signal a warning level if at least one of the following is satisfied:

• The current context ctx(t) is not equivalent to ctxcnd(ma) for less than

chThresh time steps.

• The error rate of the currently active classifier is above the warning level

threshold but less than the drift level threshold, i.e.

wrnThresh ≤ prfMntr(t) < drfThresh
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Algorithm 7 ACTX-Hybrid
Require: Data Stream: D, Context Stream: CTX , Active Model: ma, Model

Library: M, Persistence Threshold: chThresh, Warning Level Threshold:
wrnThresh, Drift Level Threshold: drfThresh, Model Equivalence Threshold:
mdlThresh, Minimum Warning Window Size: stblExmNum

1: Initialise: Classifier mn, counter ← 0, warnwindow ← ∅
2: for all x(i) ∈ D, c(i) ∈ CTX do
3: if ¬[ctx(i) ≡c ctxcnd(ma)] then
4: counter ← counter + 1
5: else
6: counter ← 0
7: if (prfMntr(t) < wrnThresh) ∧ (counter = 0) then
8: Status ← Normal
9: else

10: if (prfMntr(t) < drfThresh) ∧ (counter < chThresh) then
11: Status ← Warning
12: else
13: Status ← Drift
14: if Status is Normal then
15: warnwindow ← Empty
16: reset classifier mn to initial settings
17: Model prediction: ŷ(i)← ma(x(i))
18: Update ma with (x(i), y(i))
19: else
20: if Status is Warning then
21: Model prediction: ŷ(i)← ma(x(i))
22: Adjust the warning window: warnwindow ← warnwindow ∪ (x(i), y(i))
23: Update mn with (x(i), y(i))
24: if Status is Drift then
25: if warnwindow < stblExmNum then
26: Model prediction: ŷ(i)← ma(x(i))
27: Adjust the warning window: warnwindow ← warnwindow ∪ (x(i), y(i))
28: Update mn with (x(i), y(i))
29: else
30: newconcept← True
31: for all m ∈M do
32: if (ctx(i) ≡c ctxcnd(m)) ∧ (similarityDegree(m,mn) ≥ mdlThresh)

then
33: ma ← m
34: newconcept← False
35: if newconcept then
36: M←M ∪ {mn}
37: ctxcnd(mn) = ctx(i)
38: ma ← mn

39: counter ← 0
40: warnwindow ← Empty
41: reset classifier mn to initial settings
42: Model prediction: ŷ(i)← ma(x(i))
43: Update ma with (x(i), y(i))
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4. Signal a drift level if at least one of the following is satisfied:

• The current context ctx(t) is not equivalent to ctxcnd(mn) for chThresh

time steps.

• The error rate is above the drift level threshold, i.e.

prfMntr(t) ≥ drfThresh

5. If the learning model is in the warning level, the following actions are performed:

• Instantiate a warning window (store the examples following the potential

change point in the warning window).

• Instantiate a new classifier, mn, based on the examples in the warning win-

dow.

6. If the learning model is in the drift state (triggered by context changes or perfor-

mance degradation of the currently active classifier), the following two cases are

distinguished:

• Case 1 : The concept following the drift is new according to Equation 6.5. In

this case, the new classification model, mn, instantiated during the warning

state is added to the library of classification models, i.e. M ← M ∪ {mn}.

This classifier becomes the currently active classifier, i.e. ma ← mn. Its

context condition is set to ctx(t), i.e. ctxcnd(mn) = ctx(t).

• Case 2 : The concept following the drift is recurrent according to Equa-

tion 6.5, with meq being the existing equivalent classification model found

in the library. In this case, the currently active classification model is simply

replaced by the existing found model, i.e. ma ← meq.
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In addition to the context-based hybrid multi-model learner, we introduce another

adaptive learning model that is similar to the hybrid model but with no context utili-

sation during the learning process. That is, only performance degradation and concep-

tual equivalence are utilised to detect concept drift and concept recurrency, respectively.

The learning steps of this model are illustrated in Algorithm 8. It is utilised in our anal-

ysis to demonstrate the benefit of context utilisation as we illustrate in Section 6.4.3.

6.4 Evaluation

In this section, we present an empirical evaluation of the proposed adaptive multi-model

learner, and study the influence of various factors affecting its performance. Moreover,

we compare the performance of the approach against other similar approaches existing

in the literature. More details about the experimental analysis and the corresponding

experimental setup are provided in the following sections.

Datasets. As in previous chapters, we base our evaluation on artificial and real-

world datasets, utilising STAGGER and Emailing List Dataset (Elist), respectively.

Both datasets exhibit abrupt concept drifts and recurrent concepts, relevant for the

purpose of evaluating drift detection techniques. The description of these datasets is

provided in Chapter 3. To account for any performance differences due to the class

imbalance problem, we make the STAGGER dataset to have 50% positive and 50%

negative examples, whilst for the real-dataset we utilise AUC and Kappa Statistic (see

Chapter 3) as additional performance evaluation metrics.

Performance Measures. In the evaluation of the proposed approach, we focus on

measuring (1) the predictive accuracy of the multi-model learner (as previously), and

(2) the associated efficiency in memory consumption (in terms of the number of stored

classifiers in libraryM). Both accuracy and memory consumption are highly influenced
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Algorithm 8 Adaptive Learner - No Context Utilisation
Require: Data Stream: D, Active Model: ma, Model Library: M, Warning Level

Threshold: wrnThresh, Drift level Threshold: drfThresh, Model Equivalence
Threshold: mdlThresh, Minimum warning window size: stblExmNum

1: Initialise: Classifier mn, warnwindow ← ∅
2: for all x(i) ∈ D do
3: if (prfMntr(t) < wrnThresh) then
4: Status ← Normal
5: else
6: if (prfMntr(t) < drfThresh) then
7: Status ← Warning
8: else
9: Status ← Drift

10: if Status is Normal then
11: warnwindow ← Empty
12: reset classifier mn to initial settings
13: Model prediction: ŷ(i)← ma(x(i))
14: Update ma with (x(i), y(i))
15: else
16: if Status is Warning then
17: Model prediction: ŷ(i)← ma(x(i))
18: Adjust the warning window: warnwindow ← warnwindow ∪ (x(i), y(i))
19: Update mn with (x(i), y(i))
20: if Status is Drift then
21: if warnwindow < stblExmNum then
22: Model prediction: ŷ(i)← ma(x(i))
23: Adjust the warning window: warnwindow ← warnwindow ∪ (x(i), y(i))
24: Update mn with (x(i), y(i))
25: else
26: newconcept← True
27: for all m ∈M do
28: if (similarityDegree(m,mn) ≥ mdlThresh) then
29: ma ← m
30: newconcept← False
31: if newconcept then
32: M←M ∪ {mn}
33: ma ← mn

34: warnwindow ← Empty
35: reset classifier mn to initial settings
36: Model prediction: ŷ(i)← ma(x(i))
37: Update ma with (x(i), y(i))
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by the ability of the learning model to correctly identify any concept changes and to

recognise any recurrency in concepts. Hence, additional quality metrics are relevant in

this chapter in order to analyse the performance of the approach, which are detailed

below.

• Recall: the ratio between the number of correctly detected concept changes (i.e.

corresponding to actual change points) and the total number of concept changes

that have occurred during the learning process. Recall measures the ability of the

learning model to detect all concept changes encountered. Low Recall indicates

that there are changes in the underlying concept that were left undetected, result-

ing in accuracy drops due to continuing to utilise no-longer relevant classification

models following the undetected drifts.

• Precision: the ratio between the number of correctly detected concept changes

and the total number of detected concept changes during the learning process.

Precision measures the degree to which the changes signalled by the learning

model are correct. Low Precision indicates that the learner erroneously detects

changes during periods of concept stability. This negatively affects both the accu-

racy and memory consumption. The former is due to the unnecessary instantia-

tion and utilisation of new, unstable classifiers following the incorrectly detected

changes, while the latter is due to the redundant storage of similar classifiers

(belonging to the same concept).

• Recurrency Recall: the ratio between the number of correctly detected recurrent

concepts and the total number of recurrent concepts that have occurred dur-

ing the learning process. Recurrency Recall measures the ability of the learning

model to recognise all concept recurrences encountered. Low Recurrency Recall

indicates that there are recurrent concepts that the learner is not able to recog-

nise as such, e.g. the learner treats such concepts as new concepts. Again, this
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results in inefficient memory consumption (redundancy in classifiers), and affects

accuracy since older relevant again examples, which boost classification stability,

are ignored.

• Recurrency Precision: the ratio between the number of correctly detected recur-

rent concepts and the total number of detected recurrent concepts during the

learning process. Recurrency Precision measures the degree to which the re-

currences signalled by the learning model are correct. Low Recurrency Precision

indicates that the learner erroneously identifies concepts as recurrent, resulting in

the reuse of non-relevant classifiers, thus negatively affecting accuracy (similarly

to low Recall).

As can be seen, each of the above metrics analyses different aspects in the performance

of the learning model, which helps to better analyse its effectiveness in addressing

concept changes. The values of each of the above measures range between 0 and 1,

where the higher the value, the better.

6.4.1 Effect of Value Equivalence Threshold

In this section, we study the influence of the value equivalence threshold eqThresh

(with respect to which equivalence among context values is determined) on the perfor-

mance of our proposed multi-model learner. In particular, we assume perfect contextual

knowledge, and analyse the behaviour of the purely-contextual multi-model learner in

detecting concept changes and identifying concept recurrences. Given that such anal-

ysis requires pre-existing knowledge about the drift points, we base our evaluation on

an artificial dataset (the STAGGER dataset). The corresponding experimental design

and results are discussed in what follows.
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6.4.1.1 Experimental Design

We generate three STAGGER concepts, following concept sequence 1 − 2 − 3 − 1 −

2 − 3, with added 5% label noise in each concept (see Chapter 3 for the definition

of each concept). Context is generated by introducing an additional variable, C ∈

{v1, v2, v3, v4, v5, v6, v7, v8, v9}, where each value is associated with a certain concept.

Specifically, C = v1 ∨ v2 ∨ v3 under Concept 1, C = v4 ∨ v5 ∨ v6 under Concept 2, and

C = v7∨v8∨v9 under Concept 3. In total, we generate 900 examples, with each context

value lasting for 100 examples, following sequence v1−v2−v4−v5−v7−v8−v3−v6−v9.

In other words, the first 600 examples encounter 3 distinct concepts, while the last 300

examples exhibit 3 recurring concepts.

We compare the performance of our learner under three different settings for the value

equivalence threshold eqThresh: a strict threshold (eqThresh = 1), a medium thresh-

old (eqThresh = 0.7), and a relaxed (loose) threshold (eqThresh = 0.3). As mentioned

in previous chapter, the equivalence among context values is learned separately in an

offline mode, and then incorporated during classification into the adaptation process.

6.4.1.2 Results with Naive Bayes classifier

In this set of experiments, we adopt the Naive Bayes Classifier for the purpose of

implementing each classification model m ∈ M. Figures 6.4, 6.6, and 6.8 report the

corresponding results (all results are averaged over 30 runs) for the three different

value equivalence thresholds outlined above. As can be seen, setting the threshold to

a medium level achieves the best results in terms of all the considered performance

metrics.
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Performance Measures eqThreshold =0.7 
Overall Accuracy 0.899 (0.012) 

Memory 3 
Recall 1 

Precision 1 
Recurrency Recall 1 

Recurrency Precision 1 

Figure 6.4: Evaluation of the purely-contextual learner with medium eqThresh (the
standard deviation is in parenthesis).

In particular, when the value equivalence threshold is set appropriately to a medium

level, i.e. eqThresh = 0.7 (see Figure 6.4), equivalence among context values is cor-

rectly identified. That is, values v1, v2, v3 are considered equivalent, values v4, v5, v6

are considered equivalent, and values v7, v8, v9 are considered equivalent. As a result,

the learner is able to correctly detect all concept changes (Recall=1, Precision=1), as

well as to correctly recognise all concept recurrences as such (Recurrency Recall=1, Re-

currency Precision=1). This contributes to achieving a high accuracy (0.899), and an

optimum memory consumption (only 3 classifiers are stored in the library, correspond-

ing to the three distinct concepts encountered). Figure 6.5 provides further analysis of

the accuracy achieved over time in this case (the accuracy evolution is this experiment

and all subsequent experiments are reported as a moving average over the last 15 ex-

amples). As can be seen, the learner is able to achieve a fast recovery after each change

point during the first 600 time steps, due to detecting all such changes and utilising

this to capture only relevant examples for learning the new corresponding concepts. As

for the last 300 time steps, the learner always maintains a high accuracy by recognising

all recurrences, thus eliminating the period of performance degradation after a change

point due to reusing an already existing stable classifier from the library.

When the value equivalence threshold is too strict, i.e. eqThresh = 1 (see Figure 6.6),

all context values v1, v2, v3, v4, v5, v6, v7, v8, v9 are considered to be distinct, neglecting

existing similarities between these values. Given this, a drift will be detected too often,
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Figure 6.5: Accuracy Evolution of the purely-contextual learner with medium
eqThresh.

whenever the context attribute switches to another value, even if this value is still

associated with the same concept, resulting in high Recall (1), but low Precision (0.625).

Moreover, all detected changes are regarded as new concepts, without recognising any

recurrences (both Recurrency Recall and Recurrency Recall are equal to 0). These all

lead to more than necessary memory consumption (9 classifiers, each corresponding

to a possible context value), and to an effect on accuracy (0.838). Figure 6.7 further

elaborates on the accuracy in this case, demonstrating its evolution over time. As can

be seen, an accuracy drop is encountered at each change point of a context value to

learn a new classifier, even during stability periods (the case at time step 100 and time

step 300), and after recurrences (the case at time steps 600, 700, and 800).

On the other hand, when the value equivalence threshold is too relaxed (loose), i.e.

eqThresh = 0.3 (see Figure 6.8), not only all existing similarities among context val-

ues are recognised, but also some dissimilar values are considered equivalent (in our

experiments, context values v4, v5, v6, v7, v8, v9 are all considered equivalent). Although

this eliminates signalling changes during periods of concept stability (highlighted by
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Performance Measures eqThreshold=1 
Overall Accuracy 0.838 (0.016) 

Memory 9 
Recall 1 

Precision 0.625 
Recurrency Recall 0 

Recurrency Precision 0 

Figure 6.6: Evaluation of the purely-contextual learner with strict eqThresh (the
standard deviation is in parenthesis).
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Figure 6.7: Accuracy Evolution of the purely-contextual learner with strict
eqThresh.

the high Precision of 1), not all concept changes will be detected (which is evident in

the low Recall value of 0.6). In particular, the learner is no longer able to distinguish

between concept 2 and concept 3 (due to regarding their underlying context values as

similar), and therefore suffer from considerable degradation in accuracy after time step

400 when concept 3 is encountered (see Figure 6.9). This is because, the classifier built

under concept 2 remains the active classifier under concept 3, despite being no longer

valid. Note that the learner here is able to recognise concept recurrences (2 out of 3

recurrences due to the inability to detect concept 3), with only 2 classifiers (less than

the number of distinct concepts) being stored in the model library.
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Performance Measures eqThreshold =0.3 
Overall Accuracy 0.796 (0.022) 

Memory 2 
Recall 0.6 

Precision 1 
Recurrency Recall 0.667 

Recurrency Precision 1 

Figure 6.8: Evaluation of the purely-contextual learner with loose eqThresh (the
standard deviation is in parenthesis).
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Figure 6.9: Accuracy Evolution of the purely-contextual learner with loose
eqThresh.

Given the above analysis, the following experiments will be conducted with the value

of eqThresh being set to 0.7.

6.4.1.3 Results with Perceptron

In order to demonstrate the generality of the multi-model learner with other classifi-

cation models, we repeat the above experiments with the three alternative values for



Chapter 6 Context Exploitation Model - Drift Detection 157

Performance Measures eqThreshold=1 
Overall Accuracy 0.828 (0.006) 

Memory 9 
Recall 1 

Precision 0.625 
Recurrency Recall 0 

Recurrency Precision 0 

Figure 6.10: Evaluation of the purely-contextual learner with Perceptron Algorithm:
strict eqThresh (the standard deviation is in parenthesis).

Performance Measures eqThreshold =0.7 
Overall Accuracy 0.857 (0.034) 

Memory 3 
Recall 1 

Precision 1 
Recurrency Recall 1 

Recurrency Precision 1 

Figure 6.11: Evaluation of the purely-contextual learner with Perceptron Algorithm:
medium eqThresh (the standard deviation is in parenthesis).

Performance Measures eqThreshold =0.3 
Overall Accuracy 0.808 (0.021) 

Memory 2 
Recall 0.6 

Precision 1 
Recurrency Recall 0.667 

Recurrency Precision 1 

Figure 6.12: Evaluation of the purely-contextual learner with Perceptron Algorithm:
loose eqThresh (the standard deviation is in parenthesis).

eqThresh with a perceptron algorithm. Similar behaviour is observed as for the multi-

model learner when the perceptron algorithm is utilised for each model m ∈ M, with

the corresponding results being reported in Figures 6.10, 6.11, and 6.12.

6.4.2 Effect of Imperfect Contextual Knowledge

The above analysis assumes the availability of perfect contextual variable that is able

to distinguish among all occurring concepts. Now, to demonstrate the effectiveness of

the hybrid multi-model learner, we consider the case where we have imperfect context
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Performance Measures  
Overall Accuracy 0.786 (0.021) 

Memory 2 
Recall 0.6 

Precision 1 
Recurrency Recall 0.667 

Recurrency Precision 1 

Performance Measures  
Overall Accuracy 0.81 (0.013) 

Memory 2 
Recall 0.6 

Precision 1 
Recurrency Recall 0.667 

Recurrency Precision 1 

Figure 6.13: Evaluation of the purely-contextual learner with imperfect context
knowledge (the standard deviation is in parenthesis).

Performance Measures  
Overall Accuracy 0.886 (0.009) 

Memory 3 
Recall 1 

Precision 1 
Recurrency Recall 1 

Recurrency Precision 1 

Performance Measures  
Overall Accuracy 0.891 (0.009) 

Memory 3 
Recall 1 

Precision 1 
Recurrency Recall 1 

Recurrency Precision 1 

Figure 6.14: Evaluation of the hybrid learner with imperfect context knowledge (the
standard deviation is in parenthesis).

variable(s). That is, when the concept change occurs with no associated changes in

context. Similarly to the above experiments, we utilise the STAGGER dataset as

described below.

6.4.2.1 Experimental Design

We utilise the same experimental setup described in Section 6.4.1 with regard to concept

sequence settings. However, here we introduce 2 context variables (C1, C2), with their

value distributions being as described in Figure 6.2.

6.4.2.2 Results

Figures 6.13 and 6.14 report the results of applying the two realisations of the multi-

model learner in the case of imperfect context knowledge (i.e. when only one of the

two variables C1 and C2 is available). As can be seen, the advantage of using the

hybrid model over the purely-contextual model is evident in terms of accuracy. In
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Figure 6.15: Accuracy Evolution of the purely-contextual learner with imperfect
context knowledge.

particular, when only partial contextual knowledge is utilised, concept changes that

are not associated with corresponding context value changes will not be recognised

by the purely-contextual learner. As a result, it will fail to respond to such changes

and suffer from performance degradation as illustrated in Figure 6.15. In contrast,

the hybrid learner successfully detects and responds to all concept changes (even those

that are not associated with context value changes). Further analysis is depicted in

Figure 6.16. As can be seen, the learner correctly detects two change points: the first

change point at time step 200 is detected with the help of monitoring the performance

of the currently active model, while at time step 400, concept change is detected based

on monitoring context variable value changes similarly to the purely-contextual learner.

In the case where both C1 and C2 are available, the two learners perform similarly as

shown in Figures 6.17 and 6.18.
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Figure 6.16: Accuracy Evolution of the hybrid learner with imperfect context knowl-
edge.

Performance Measures  and  
Overall Accuracy 0.929 (0.006) 

Memory 3 
Recall 1 

Precision 1 
Recurrency Recall 1 

Recurrency Precision 1 

Figure 6.17: Evaluation of the purely-contextual learner with perfect context knowl-
edge: collective concept distinction (the standard deviation is in parenthesis).

Performance Measures  and  
Overall Accuracy 0.911 (0.007) 

Memory 3 
Recall 1 

Precision 1 
Recurrency Recall 1 

Recurrency Precision 1 

Figure 6.18: Evaluation of the hybrid learner with perfect context knowledge: col-
lective concept distinction (the standard deviation is in parenthesis).
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6.4.3 Effect of Context Utilisation

In this section, our aim is twofold. First, we illustrate the benefit of context utilisa-

tion in achieving a faster adaptation to concept drift. To achieve this, we compare

the two realisations of the proposed multi-model learner against an adaptive learner

that is solely based on monitoring performance degradation (the adaptive learner of

Algorithm 8).

In the second part, we compare the proposed approach with another adaptive context-

based approach existing in the literature. In particular, we compare our approach

against the MReC (Mining Recurring Concepts) learning model proposed by Gomes et

al. [28] (see Chapter 2). In MReC model, unlike the proposed approach, context is not

utilised for change detection or concept recurrency detection. It is only utilised as part

of the model selection procedure for recurrent concepts.

6.4.3.1 Experimental Design

In both experiments, we utilise the real-world Elist dataset with its context variable

Location. The dataset exhibits the concept sequence 1-2-1-2-1 (with a total of 1500

examples). As in the previous chapter, the statistical significance of the performance

differences obtained are evaluated utilising the McNemar’s test. The corresponding

experimental results are discussed below.

6.4.3.2 Results

Tables 6.1, 6.2 and 6.3 report the corresponding results of applying the two realisations

of the multi-model learner and the performance monitoring based adaptive classifier

of Algorithm 8 (with no context utilisation). As can be seen, all approaches perform
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Table 6.1: Effect of context utilisation: purely-contextual multi-model learner.
Performance Measures

Overall Accuracy 0.80
Memory 2
Recall 1

Precision 1
Recurrency Recall 1

Recurrency Precision 1

similarly in terms of Recall, Precision, Recurrency Recall and Recurrency Precision.

However, the multi-model learners outperform the approach with no context utilisation

in terms of predictive accuracy. This is because, the utilisation of context enables a

faster recognition of concept changes, which helps to avoid delays in concept change

detection (i.e. eliminating the period of performance degradation). On the other hand,

the approach with no context utilisation requires longer period before drift can be

confirmed, and as a result suffers from accuracy drops at concept change points. This

is evident in the reported overall accuracy, and is further illustrated in Figure 6.19,

where we depict the evolution of predictive accuracy over time. As can be seen, the

advantage of context utilisation is evident at concept change points in both cases of

new and recurrent concepts.

We can also see that in the case of perfect contextual knowledge, as in the Elist dataset,

the hybrid model performs slightly worse than the purely-contextual learner at change

points (at time steps 300, 600, 900 and 1200). This is due to the recurrency detection

principle assumed by the hybrid model, which requires an additional overhead (accu-

mulating examples in the warning window for computing the conceptual equivalence)

before recurrency can be confirmed (see Equation 6.5).

In the second part of the experimental analysis, we report the results of comparing

the proposed multi-model learners against the MReC learning model. The results

in Table 6.4 show that both realisations of the multi-model learner outperform the
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Table 6.2: Effect of context utilisation: hybrid multi-model learner.
Performance Measures

Overall Accuracy 0.79
Memory 2
Recall 1

Precision 1
Recurrency Recall 1

Recurrency Precision 1

Table 6.3: Effect of context utilisation: adaptive learner with no context utilisation.
Performance Measures

Overall Accuracy 0.70
Memory 2
Recall 1

Precision 1
Recurrency Recall 1

Recurrency Precision 1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 151 301 451 601 751 901 1051 1201 1351

Ac
cu

ra
cy

 

Time Step 

Purely-Contextual Hybrid No Context Utilisation

Figure 6.19: Accuracy evaluation of the multi-model learner against an adaptive
learner with no context utilisation.
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MReC model. As can be seen, the MReC model is able to detect all concept changes

(Recall=1) and all concept recurrences (Recurrency Recall=1). However, the drift in

this approach is detected too often as is evident in the low Precision (Precision=0.01)

and high memory consumption (8 classifiers), which contributes to an effect on accuracy

(0.76 compared to 0.80 and 0.79 for the purely-contextual and multi-model learner,

respectively). Further analysis of this case is provided in Figure 6.20, where we depict

the evolution of predictive accuracy over time. The benefit of context utilisation in the

MReC approach in the cases of recurrent concepts is evident compared to the adaptive

learner with no context utilisation in Figure 6.19 (faster selection of an old classifier from

the stored models, resulting in a shorter period of performance degradation). However,

MReC still relies only on accuracy to detect a drift, taking longer period before drift

can be confirmed, as opposed to our learning model with incorporated context-based

change detection that enables faster detection and selection of an appropriate classifier

from the library.

Table 6.4: Comparison of multi-model learner with MReC.

Performance Metrics Purely-Contextual Hybrid MReC

Accuracy 0.80 0.79 0.76

Kappa 0.60 0.58 0.53

AUC 0.88 0.87 0.83

Memory 2 2 8

Recall 1 1 1

Precision 1 1 0.01

Recurrency Recall 1 1 1

Recurrency Precision 1 1 0.63
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Figure 6.20: Accuracy evaluation of the multi-model learner against MReC.

6.5 Conclusion

In this chapter, we have presented an adaptive context-based learning model for han-

dling concept drift in dynamic environments. In particular, the model is equipped

with drift detection and recurrency detection strategies based on monitoring changes

in relevant contextual variables. To address the challenges of perfect and imperfect

contextual knowledge, two realisations of the adaptive model are proposed: a purely-

contextual learner and a hybrid learner that supports context-based monitoring with

additional monitoring of performance degradation. The latter provides additional evi-

dence to support change detection in the cases where perfect contextual knowledge is

not available. Experimental results demonstrated the ability of the proposed model to

achieve a faster drift recovery compared to approaches with accuracy-based detection
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methods. Moreover, the utilisation of contextual knowledge for detecting concept re-

currences during the learning process enables the model to maintain a high accuracy

following the change points.

Compared to the example weighting approach (see Chapter 5), which requires a weighted-

example version of the prediction model, the proposed multi-model approach allows

managing the drift at a meta-level, without making any changes to the base prediction

model itself. Thus, it can be applied with a wider range of prediction models (e.g.

some models might not support a weighted-example version).

Moreover, the proposed multi-model approach does not necessitate storage and re-

processing of historical training examples in order to tackle recurring concepts. Instead,

only the parameters of already-built models are stored and later reused, thus improving

overall efficiency (in terms of time and storage). In other words, incremental classifiers

can be utilised inside the learning model, allowing single data pass, without storing

and re-processing past data. This makes the proposed approach also suitable for the

case of data stream learning (with infinite size and imposed constraints on memory

and computation resources). To further meet these constraints, it is possible to fix the

size of the multi-model learner by introducing a strategy to remove one of the previous

models whenever a new model is added to the learner.

Other challenges such as concept evolution can also be considered in the proposed

learning model. In particular, it is possible to introduce an additional point to the

detection principle of Section 6.3.2, which signals the emergence of new classes utilising

one of the novel class detection techniques existing in the literature (e.g. [121], [120]).

A main assumption in the proposed learning model is that changes in concepts occur

abruptly. Therefore, an interesting extension would be to adapt the model (in terms

of drift detection and classifier selection approaches) to address the case of gradual

changes. Extending the approach for gradual change is added to the future work (please
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see Section 7.3.3). It is also worth noting that, as previously indicated, addressing

incremental concept changes when the new concept appears after a transient period

will not pose a challenge with the proposed context-aware approach. In particular,

the examples related to the transient period between consecutive concepts will not

be selected to update the classifier. This is because the contextual conditions of the

examples during this period will not match that of the examples during the new concept.

Hence, such examples will be eliminated from the selection process. These examples

might only be considered at the beginning of the change when the concept is new and

there is no sufficient number of examples.



Chapter 7

Conclusions and Future Work

Classification models are utilised in many domains to predict the unknown outcome

of future data, thus improving decision making and problem solving. One of the main

challenges when building such models is that, in the real world, the concept learned

may change over time under the influence of varying contextual factors. This problem,

usually referred to as concept drift, requires the ability of the classification model to

adapt to such changes in order to be able to produce accurate and reliable classification

decisions. The main contributions of this thesis towards addressing the problem of

classification under concept drift are summarised in Section 7.1. The limitations of the

thesis are provided in Section 7.2, followed by a list of possible future extensions of our

work in Section 7.3.

7.1 Research Summary

Concept drift is usually linked to changes in various contextual variables. Therefore,

unlike existing approaches, we propose to explicitly model and monitor the factors that

cause the drift (i.e. the contextual variables and their changes), rather than monitoring

168
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its consequences (i.e. the performance degradation). In particular, we propose to learn

the contextual characteristics of the domain of interest, and exploit the learned knowl-

edge at the classifier level for adapting to changes. For the purpose of the latter, we

propose a context-based data weighting model for data selection, and a context-based

drift detection model. More details are provided below.

7.1.1 Context Identification

In the first contribution of this thesis, we propose a context learning model that utilises

historical data to infer variables that actually affect the concept of interest. For this

purpose, an identification criterion based on Shannon’s entropy and conditional mu-

tual information measures is proposed. To address the challenge of estimating these

measures in the case of continuous variables with high dimensionality, an appropriate

approach based on the k-nearest neighbour estimator is presented. An extension of

the identification approach for addressing correlations among context variables is also

provided via a context selection algorithm. Finally, to address possible computational

problems in the case of high context variable dimensionality, implementations of the

selection algorithm based on popular approximation approaches are also presented.

Experimental results demonstrate the feasibility of the proposed identification approach

and its robustness with respect to a number of factors. Moreover, the advantage of the

proposed information-theoretic-based criterion to recognise context is demonstrated

against other existing filter-based approaches. On the other hand, although the results

show that the approach is able to recognise the relative importance among context vari-

ables under both abrupt and gradual changes, the absolute importance of the context

variables is better recognised in the case of abrupt changes. Unsurprisingly, increas-

ing noise levels negatively affects the performance of the approach in recognising the

importance of context variables compared to noise-free settings. Finally, despite the
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efficiency of the proposed context selection approach in addressing redundancy, im-

plementing the approach with approximation methods achieves better results in high

dimensionality settings (given limited sample size).

7.1.2 Context Utilisation

In terms of utilising the identified contextual information during classification, the

following have been achieved.

7.1.2.1 Context-based Weighting

In the second contribution of this thesis, we propose to utilise context knowledge for

discriminating between training examples in terms of their relevance for the current

situation. In particular, the impact of each example on model estimation is controlled

via a context-driven weighting factor, which can be added on top of an existing clas-

sification model that supports example weighting. This weighting factor corresponds

to the degree of similarity between the context instance under which the example is

collected and the current context instance. The similarity degree between two context

instances is affected by the degree of equivalence between the values of relevant context

variables in both instances, and the respective importance of these context variables.

To assess the equivalence between two values of a context variable, two approaches

are proposed. The first approach is simply based on the numerical difference between

the values. The second approach is based on a more sophisticated semantics, where

the equivalence between two context values is determined based on the similarity be-

tween their underlying distributions, which quantifies how these values discriminate

among occurring concepts. Such a distribution-based equivalence is learned utilising

two alternative information theoretic measures, namely Entropy Absolute Difference
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(EAD) and Kullback-Leibler Divergence (KL). The EAD based approach demonstrated

(empirically) a better ability to recognise equivalence among context values.

Moreover, experimental results on both artificial, benchmark, and real-world datasets

demonstrate the feasibility of the approach, and its ability to improve the prediction

accuracy of the classification model under various settings. Moreover, the proposed

approach outperforms other state-of-the-art time-based adaptation strategies in both

cases of new and recurring concepts. The results obtained also show the advantage of

utilising context for weighting compared to incorporating context as additional input

variable(s).

7.1.2.2 Context-based Drift Detection

In the third contribution of this thesis, context knowledge is utilised at a meta-level,

without affecting the base classification model. In particular, for environments with

perfect contextual knowledge, a purely contextual multi-model learner is proposed,

which maintains a pool of classification models, each corresponding to different con-

textual circumstances (i.e. different concept). To detect a drift, the values of relevant

contextual variables are monitored, and when a deviation is encountered, a drift is

signalled, triggering the need for data re-selection actions. Such actions correspond

to either initialising a new classifier, or reusing another stored classifier if concept re-

currency is confirmed (based on comparing the current contextual conditions against

those of the stored classifiers). For environments where perfect contextual knowledge

is not necessarily available, a hybrid version of the multi-model learner is proposed,

where contextual knowledge is augmented with performance degradation monitoring.

Moreover, to confirm concept recurrency in such case of imperfect context knowledge,

similarity in contextual conditions is supported with measuring the conceptual equiv-

alence between classifiers.
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Experimental analysis on benchmark and real-world datasets demonstrate the ad-

vantage of the proposed detection-based adaptation algorithms compared to other

detection-based adaptation approaches in the literature (based on monitoring perfor-

mance degradation and on explicit context utilisation).

7.2 Limitations

In the proposed context-aware adaptive approach, the identification of relevant con-

textual knowledge is performed as a preliminary step prior to classification. That is,

we assume the availability of sufficient and representative training data to learn con-

text. Moreover, we assume that the context learned remains stable over time. In other

words, we assume that the data in the application set is affected by the same context

variables as that of the training set.

Another main limitation is the high computational costs of the proposed context-based

example weighting approach. In particular, it requires revisiting the contextual in-

formation of the examples each time the classifier is updated to assess the degree of

similarity between the context of these examples and the current context. This im-

plies no memory restrictions to keep all previous data examples with the contextual

information associated with each example. In addition, the efficiency of the approach

decreases with the continuous growth of training data.

Moreover, in the experimental analysis, we assume either abrupt or gradual changes to

test the behaviour of the proposed approaches. However, in the real world a combina-

tion of both changes may occur together.

Finally, in connection to the decision support applications, to which this thesis mainly

contributes, some efficiency constraints of data stream such as infinite size are not

handled in the thesis. We also assume label availability immediately after classification.
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This, however, is not applicable with certain decision support applications (e.g. credit

worthiness evaluation).

It is also worth mentioning that in evaluating the learning algorithms presented in

the thesis we use prequential analysis, which is commonly utilised for dynamic en-

vironments with concept drift problem. However, as indicated previously, validating

learning models in dynamic environments is still an open issue [49]. In particular, the

challenges introduced by dynamic environments (continuously evolving model, changes

in data distributions and continuous data arrival) make standard evaluation methods

such as cross-validation and other sampling methods not applicable [49].

7.3 Future Work

In what follows, we list a number of future directions that we believe are interesting

extensions and improvements to our work.

7.3.1 Context Identification

The first interesting extension is to study an incremental identification of context vari-

ables. That is, we plan to explore how the importance of context variables can be

identified over time in the absence of pre-existing training data, i.e. when training data

becomes available only gradually. The information theoretic measures proposed enable

to perform such incremental learning. Moreover, it would also be interesting to explore

the case where the importance of the context variables may change over time. Given

this, the weight of the context variables should not remain static once identified, but

updated continuously on the availability of new data examples. For this purpose, it

is possible to apply some forgetting approaches (windowing or weighting) with respect
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to the available past observations, so that context identification would be a continuous

learning process.

7.3.2 Example Weighting

To account for resource boundedness, it would be interesting to explore the possibility

of an online context-based weighting approach to adjust example weights without the

need to reiterate over the past data.

Moreover, the weighting process assumes continuous drift, without attempting to iden-

tify when a drift actually occurs, and thus constantly re-weights the training examples

whenever the classifier needs to be updated with new data. Therefore, it would also be

interesting to explore a triggered-based re-weighting approach, which combines exam-

ple weighting with drift detection. That is, re-weighting of the training examples can

be triggered only if the recent contextual circumstances change. This eliminates the

need for the unnecessary reiteration over past examples to update their weights in the

absence of drift.

Finally, learning the equivalence among context values incrementally, in the absence of

pre-existing training knowledge, is also an interesting extension to our work.

7.3.3 Drift Detection

The context-aware adaptive multi-model learners proposed for drift detection do not

account for the case of gradual changes. Therefore, an interesting research direction is to

design an appropriate extensions to the proposed drift detection and classifier selection

mechanisms (for example introducing a weighting function into the model selection

process), so that the model will also operate in gradually changing environments.
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Testing the behaviour of the proposed hybrid model learner with other change detection

methods would also be interesting. It is also worth noting that the proposed context-

based drift detection approach may be beneficial for the case of unlabelled streaming

data (i.e. where the class labels of the examples are not readily available). On the other

hand, existing change detection approaches mainly depend on monitoring the error rate

of the classification model, which makes them not applicable for the unlabelled data

case.

7.3.4 Other Research Directions

In addition to the above mentioned future work extensions to the proposed work, it

would also be interesting to explore the following research direction. First, test the

behaviour of the proposed algorithms with other change types and scenarios (such as

local concept changes and virtual changes), the possibility of new class emergence, and

the presence of complex concept drift (i.e. when more than one type of drift is present

at the same time). The second important future research direction is to address the

constraints of data steam learning (e.g. infinite size, limited memory and computation

resources, one-shot treatment etc.), which extend the applicability of the proposed

algorithms to other application domains.

Finally, the usefulness of the proposed algorithms can be further tested with other

real-world domains that exhibit concept drift and contextual characteristics, such as

consumer credit scoring and stock market price prediction. Both these domains are

subject to concept drift that is usually linked to changes in different macroeconomic

variables, which represent contextual characteristics for these domains.



Appendix A

Evaluation of k-Nearest

Neighbour Approach

Appendix A

In the following, we test the accuracy of the conditional mutual information (CMI)

estimator given in Equation 4.20 and analyse the influence of various factors that could

affect this estimate utilising bias and relative bias as a performance criteria.

A.1 Experimental Setup and Results

In order to evaluate the performance of the k-nearest neighbour estimate, we will use

multivariate normally distributed variables with zero mean and unit variance, because

in this case we are able to compare with analytic results. Specifically, the theoretical

value of the conditional mutual information for normally distributed variables can be
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derived in terms of Equation 4.31, with the entropies being calculated according to the

definition of entropy for a multivariate normal distribution given as follows [24]:

H(X1, X2, ..., Xd) = 1
2 log2[(2πe)d|Σ|] (A.1)

where |Σ| is the determinant of the covariance matrix Σ.

The bias of the estimates with respect to the theoretical values will be computed in

terms of the absolute bias: |Î − I|, and the relative bias: |Î−I|I , where Î is the average

of the obtained estimates, and I is the theoretical value.

Let us assume that Z = (C, Y,X) is normally distributed random variable of dimension

dz (the variables C,Y ,X can be either scalars or multidimensional) with zero mean

values and covariance matrix M , whereMi,j = 1, fori = j, and Mi,j = r, for i 6= j,

i, j = 1 : dz. Here, we assume that C,Y are scalars, while X is an element of a higher

dimensional space, with dimension dx = 3. Each variable is made to be correlated with

the other variables with correlation, r, ranging from 0.9 to 0.6 with a step size of 0.1.

Here, with reference to a predictive model, X corresponds to a vector of the primary

variables, while C, Y to the candidate context variable, and the target variable, re-

spectively. Three factors will be considered in evaluating the accuracy of the CMI

estimator: the value of the parameter k, the dimension of the dataset, and the number

of available data samples. The related experiments are detailed next.

A.1.1 Varying Parameter k

In the first case, we analyse the influence the chosen value of parameter k has on the

estimation accuracy. For this purpose, we generate 3000 examples in 5-dimensional

space, as described above, using correlation matrix M , and vary the value of k from 2

to 30 as illustrated in Figures A.1 and A.2.
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Figure A.1: Absolute bias of CMI estimator given various k values averaged over 20
runs (true value= 0.318). The error bars denote the standard deviations.

Figure A.2: Relative bias of CMI estimator given various k values averaged over 20
runs (true value= 0.318). The error bars denote the standard deviations.

As can be noticed, the biases of conditional mutual information estimator are relatively

low (less than 0.05 and 0.15 for absolute biases and relative biases, respectively) for

all tested values of k, where smaller values of k get better estimation accuracy (lower

biases) with approximately the same variability.

On the other hand, when the relevance between variables is very small, i.e. the true

value of CMI is close to zero, small values of k lead to larger variability in the estimates.
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Figure A.3: Absolute bias of CMI estimator given various k values averaged over 20
runs (true value= 0.0305). The error bars denote the standard deviations.

Figure A.4: Relative bias of CMI estimator given various k values averaged over 20
runs (true value= 0.0305). The error bars denote the standard deviations.

To illustrate this, we repeat the above experiment, but, this time, fixing the correlation

to the same value among all variables, i.e.Mi,j = 1, for i = j and Mi,j = 0.9, for i 6= j,

so that the true value of CMI is 0.0305.

The results in Figures A.3 and A.4 show a different pattern with respect to the values

of k, where small values of k lead to higher biases and larger variability. Based on

this, a balanced choice for the value of k to account for both bias and variability given



Appendix A Evaluation of k-Nearest Neighbour Approach 180

 

Figure A.5: Absolute bias of CMI estimator with different sample sizes averaged
over 20 runs (true value= 0.318). The error bars denote the standard deviations.

different values of the CMI, would be to take a mid-range value, e.g. k = 6, which will

be adopted in the following experiments.

A.1.2 Varying Sample Size

In the second case, we test how CMI estimator is affected by different numbers of

available data samples. In order to do this, we fix the value of k to 6, and vary the

sample size from 250 to 6000. As in the previous case, we examine the influence of the

sample size with respect to two different values of the CMI. Specifically, with varying

correlation between variables, i.e. true value of CMI is 0.318 (Figures A.5 and A.6), and

the same correlation between variables, i.e. true value of CMI is 0.0305 (Figurse A.7

and A.8).

In general, it can be seen that both bias and variability decrease as the number of

samples increases. For example, increasing the sample size from 250 to 500 in Fig-

ures A.5 and A.6 reduces the bias and relative bias by around 3% and 8%, respectively.

The reduction level gradually decreases to become around 0.005 for bias and 0.02 for

relative bias, when increasing the sample size from 4000 to 6000. A similar trend can

be observed in Figures A.7 and A.8, which reports the results for small value of the
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Figure A.6: Relative bias of CMI estimator with different sample sizes averaged over
20 runs (true value= 0.318). The error bars denote the standard deviations.

 

Figure A.7: Absolute bias of CMI estimator with different sample sizes averaged
over 20 runs (true value= 0.0305). The error bars denote the standard deviations.

 

Figure A.8: Relative bias of CMI estimator with different sample sizes averaged over
20 runs (true value= 0.0305). The error bars denote the standard deviations.
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Figure A.9: Biases of CMI estimator with various dimensions of X averaged over 20
runs (true CMI> 0).

CMI. In other words, the CMI estimator converges to the true value with the increasing

sample size, similarly to the MI estimator reported by Kraskov et al. [29].

A.1.3 Varying Dimension

In the last case, we study the effect of a change in the dimension of Z to the accu-

racy of the estimates. To do this, we increase the dimension of Z from 5 to 10, i.e.

Z = (C, Y,X3, ..., X10), and generate 4000 realizations of variable Z with the following

covariance matrix M : Mi,j = 1, for i = j, and Mi,j = r, for i 6= j, where r varies from

0.9 to 0.1. In the following, we vary the dimension of X from 3 to 8. The results as

illustrated in Figure A.9.

We can see from Figure A.9 that the bias proportionally increases with higher dimen-

sions when CMI> 0, with approximately the same variability. Similarly, when the true

CMI have values close to zero, increasing the dimensionality worsens the accuracy of

the estimator, but with higher variability as shown in Figure A.10. Note that, since

the actual value of CMI also varies with the varying dimensionality (i.e. takes smaller
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Figure A.10: Biases of CMI estimator with various dimensions of X averaged over
20 runs (true CMI around zero).

values as the dimensionality increases), we only report here the results for the relative

bias.

A.2 Conclusion

The experimental results show that the influence degree of the various factors tested

on the accuracy of the k-nearest neighbour approach in estimating conditional mutual

information is linked to the true value of the estimate (i.e. the degree of dependency

between variables). For example, when the variables are independent (true CMI=

0), small values of k lead to higher bias and larger variability. In contrast, when

variables are not independent (true CMI> 0), the estimation accuracy decreases with

larger values of k. Furthermore, although the estimator performs reasonably well with

higher dimensions, the experiments show that increasing the dimensionality worsen the

accuracy of the estimates. On the other hand, the experimental results with varying

sample size indicate that the estimator converges to the true value with the increasing

sample size.
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