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Observations of tree canopy structure are routinely used as an indicator of tree condition for the 13 

purposes of monitoring tree health, assessing habitat characteristics or evaluating the potential risk 14 

of tree failure. Trees are assigned to broad categories of structural condition using largely subjective 15 

methods based upon ground-based, visual observations by a surveyor. Such approaches can suffer 16 

from a lack of consistency between surveyors; are qualitative in nature and have low precision. In 17 

this study, a technique is developed for acquiring, processing and analysing hemispherical images of 18 

sessile oak (Quercus petraea (Matt.) Liebl.) tree crowns. We demonstrate that by calculating the 19 

fractal dimensions of tree crown images it is possible to define a continuous measurement scale of 20 

structural condition and to be able to quantify intra-category variance of tree crown structure. This 21 
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approach corresponds with traditional categorical methods; however, we recognise that further 22 

work is required to precisely define interspecies thresholds. Our study demonstrates that this 23 

approach has the potential to form the basis of a new, transferable and objective methodology that 24 

can support a wide range of uses in arboriculture, ecology and forest science. 25 

Introduction 26 

Traditionally the assessment of tree structural condition, as used in general tree surveys, relies upon 27 

simple methodologies and ground-based observations due to the physical complexities of directly 28 

measuring tree crowns. However, these traditional techniques are time consuming, manual and 29 

largely subjective. Subjectivity has been shown to prevent the same conclusions being reached 30 

during independent tree surveys, including surveys of the same trees by different, experienced tree 31 

surveyors (Norris 2007). Predominantly these assessments rely on a tree surveyor’s knowledge of 32 

ideal tree form, tree health, their ability to identify pests and disease, and the consideration of 33 

potential hazards and targets that are at risk of harm. Blennow, Persson et al. (2013) state that when 34 

managing trees or woodlands the use of subjective tree condition observations are not ideal, 35 

particularly where objective tree assessments would provide greater insights in the tree 36 

management decision process. Ultimately, traditional tree assessment procedures can result in 37 

subjective and potentially biased, field observations of tree condition, irrespective of how 38 

knowledgeable and experienced the surveyor is (Norris 2007, Britt and Johnston 2008). 39 

Trees are self-optimising organisms that respond to a range of recurrent environmental demands 40 

and employ strategies to alter their form to minimise potential negative effects or optimise their 41 

structure for the greatest physiological benefit (Zimmerman and Brown 1971, Mattheck and Breloer 42 

1994, Fourcaud, Dupuy et al. 2004, Pollardy 2008). In most angiosperms, the lateral branches grow 43 

almost as fast, or in some instances faster, than the terminal leader. This process results in the 44 

characteristic broad crown structure common in this tree type (Pollardy 2008, Burkhart and Tome 45 

2012). Tree form is typically the result of various influences combining the genetic potential, the 46 
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demands of physiological processes, spatial competition in the crown and the effects of other 47 

environmental conditions, such as thigmomorphogenic change caused by repeated wind force 48 

effects. The shedding of branches through responsive self-pruning driven by abscission, is a 49 

characteristic found in many tree species which has a direct effect on the shape of the crown 50 

(Pollardy 2008).  51 

There are many additional reasons for trees to shed branches, or parts thereof; which are 52 

accelerated by the effects of colonising pathogens e.g. fungal infestation, or external forces such as 53 

gravity or wind force. Indeed, the tree’s own physiology also increases the potential for crown 54 

dieback as trees age (King 2011). Despite many potential stimuli affecting overall tree structure, the 55 

growth habits of trees are fundamentally controlled by the genetic predisposition of individual 56 

species throughout different tree growth stages. Therefore, the characteristic structure and form of 57 

differing tree species remain visually recognisable even after the external impacts are considered 58 

(Zimmerman and Brown 1971). When trees reach late-maturity, there is a combined slowing down 59 

of both the stem diameter increment and extension growth in the crown, as a response of the 60 

influence of the tree species, genotype or its local environment (King 2011). It is the recognition of 61 

these types of biotic and abiotic structural changes that tree surveyors use to aid the classifying of 62 

trees into discrete categories, ultimately aiming to gain insights into the tree’s condition.  63 

There have been many studies of tree crown structure in recent years, many of which utilise high-64 

end technology such as light detecting and ranging (LiDAR) as the main method of data capture 65 

(Ørka, Næsset et al. 2009, Ferraz, Saatchi et al. 2016). Specifically with LiDAR data investigations, it is 66 

understood that the success of tree investigation algorithms for location detection or height 67 

estimation is strongly correlated to the type of tree structure under analysis (Vauhkonen, Ene et al. 68 

2012). Through analysis of aerial LiDAR data, boreal tree species have been identified at a species 69 

level due to differences in their tree structure signatures (Lina and Hyyppä 2016), or through LiDAR 70 

waveform analysis which identifies structural features within the LiDAR wave (Hovi, Korhonen et al. 71 
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2016). Aerial LiDAR investigations are often supported with aerial imagery which is captured 72 

simultaneously as image based investigations also provide opportunities for tree canopy structure 73 

analysis (Dash, Watt et al. 2016). Furthermore, photogrammetric techniques such as digital stereo 74 

imagery and radar imagery have been used in tree canopy structure investigations (Holopainen, 75 

Vastaranta et al. 2014). For many researchers or environmental managers, a restrictive element of 76 

these types of investigations is the requirement for expensive, specialised research equipment that 77 

is often mounted on an aerial platform, such as an unmanned aerial vehicle (UAV), aeroplane or 78 

satellite.  79 

The use of hemispherical photography to undertake proximal tree crown assessments has a field 80 

history of more than 50 years, with forest ecologists, Evans and Coombe (1959) using the technique 81 

to investigate the available light climate under woodland canopies with an early prototype ‘Hill’ (fish 82 

eye) camera. This has remained a readily used, accessible and repeatable method for the 83 

investigation of tree canopy structure (Hale 2004, Chianucci 2016). Researchers have also previously 84 

used hemispherical imagery to assess canopy gap fraction or provide leaf area index assessments 85 

(Weiss, Baret et al. 2004, Beckschäfer, Seidel et al. 2013), as it is understood that images captured by 86 

hemispherical, or fisheye, lenses provide opportunities for photogrammetric measurement 87 

(Schwalbe, Maas et al. 2009). Conducting photogrammetric analysis on hemispherical imagery falls 88 

within the remote, or indirect, methods of measurement which enable rapid, non-destructive 89 

determination of crown properties (Chason, Baldocchi et al. 1991, Weiss, Baret et al. 2004). Modern 90 

advancements in digital cameras, coupled with readily available hemispherical lenses or lens 91 

adapters, provide the opportunity for an off-the-shelf approach to photogrammetric research 92 

(Leblanc, Chen et al. 2005).  93 

When tree crowns are viewed from directly beneath, looking upwards towards the zenith viewing 94 

point (90° from the horizontal elevation), holes can be observed within the crown structure. The 95 

tree crown area is a complex arrangement of tree branches, combined with observable unoccupied 96 
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areas between the different parts of the tree crown. This upward looking view provides a visual 97 

separation between the tree structure and the sky, which when photographed can be converted into 98 

a binary image with the occupied and background regions of the image coded ‘1’ and ‘0’ respectively 99 

(Beckschäfer, Seidel et al. 2013, Sossa-Azuela, Santiago-Montero et al. 2013). Image analysis 100 

techniques for pattern recognition in tree structures have identified features of lacunarity (the size 101 

and distribution of holes), complex spatial distributions or other morphologic features (Zheng, Gong 102 

et al. 1995, Frazer, Wulder et al. 2005).  103 

Due to the unique geometry found in nature, the dimensions of natural, physical forms cannot 104 

readily be described in simple, integral terms (Mandelbrot 1982, Dimri 2000). Mandelbrot (1982) 105 

argues that more insightful measurements are required to measure pattern complexity, such as 106 

quantifying the degree of complexity in a structure. As trees exhibit natural structural variance, 107 

Mandelbrot (1982), also notes that it is the frequently anomalous nature of tree structure whose 108 

form is sculpted by, “chance, irregularities and non-uniformity”, that provides the opportunity for 109 

statistical investigation. Rian and Sassone (2014) demonstrate that the crown structures of trees are 110 

unique in their self-affine and highly irregular branching patterns. It has been stated that fractal 111 

dimensions (Df) can be used to quantify structural complexity in a continuous measure, theoretically 112 

ranging from 0 to infinity, which can be expressed as a single value (Mandelbrot 1967, Kaye 2008). 113 

Although tree crown structures are complex shapes, there are various examples of Df being used as 114 

a predictor variable for the classification of forest canopies (Zeide and Pfeifer 1991, Zeide 1998, 115 

Jonckheere, Nackaerts et al. 2006, Zhang, Samal et al. 2007).  116 

The aim of this study was to develop an objective methodology to assess the structural condition of 117 

broadleaved tree crowns (Quercus sp.) by quantifying the complexity of the tree crowns through 118 

hemispherical images taken under leaf-off conditions. This approach was designed to overcome the 119 

limitations of current subjective field methodologies. The first objective was to develop an in-field 120 

data capture technique that was suitable for a range of subject trees across a variety of structural 121 
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conditions. The second objective was to develop image processing methods for the assessment of 122 

crown structural condition. The third objective was to propose a new and objective means of 123 

evaluating tree structural condition on a continuous scale.  124 

Methodology 125 

Throughout three study areas across northwest Lancashire, England, 64 Sessile Oak trees (Quercus 126 

petraea (Matt.) Liebl.) were individually photographed using hemispherical imagery obtained from 127 

beneath subject tree canopies, looking towards the zenith viewpoint (Figure 1). The trees used in the 128 

study were either individual maiden trees, or trees that were located in closed canopy, woodland 129 

conditions. The trees were photographed over a single winter season in leaf-off condition, thereby 130 

allowing an unobscured view of the tree crown structure. To minimise potentially confounding 131 

variables, this method was applied to trees of the same species that were in the mature phases of 132 

tree development, specifically: early-mature (28%), mature (25%), late-mature (25%), veteran and 133 

senescent (22%) (Fay and de Berker 1997). To achieve a suitable sample size, a locally prolific species 134 

was used in this study.  135 

Figure 1 near here 136 

Field Methodology Development 137 

Reference data on the trees structural condition was collected using a four-point categorical system, 138 

as is common in arboricultural assessments using traditional field techniques. The four-point method 139 

used in this research is not based upon a single specific method, but broadly upon several 140 

arboricultural tree survey methods (e.g. BS5837:2012 surveys which use a four level condition 141 

hierarchy, the ISA tree hazard evaluation, which uses four classification categories to generate an 142 

accumulative hazard score (Matheny and Clark 1994, BSI 2012), and is also comparable with a 143 

qualitative tree condition category assignment as described in Swetnam, O’Connor et al. (2016)). 144 

Consequently, this approach is representative of similar tree survey methods where the assessment 145 
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of trees leads to an empirical categorisation of tree condition. Box 1 provides an overview of the 146 

classification descriptors. 147 

Box 1 near here 148 

Once identified, the tree’s cardinal orientation was determined by the use of a field compass. The 149 

part of the crown that extended towards the southernmost point (i.e. the tree crown’s southern 150 

axis), was marked out along the ground with a standard surveyors tape and used as the linear axis 151 

upon which the crown images were taken at specific intervals.  152 

Camera Set-up 153 

A high-resolution digital single-lens reflex (dSLR) camera (Canon EOS 550D DS126271) was used with 154 

an 18mm lens and a hemispherical lens adapter (Opteka Super Wide Fisheye Lens 0.20X). The lens 155 

adapter permits focal length conversion into a 3.6mm circular lens. The wide angle of the 156 

hemispherical lens enabled as much of each tree crown to be captured within each image as 157 

possible. The dSLR was placed on a standard photographic tripod, adjusted at each image capture 158 

location ensuring that the dSLR was positioned and levelled with the camera lens pointing vertically 159 

upward at ~0.5m from the ground level. To account for variability in solar illumination, the images 160 

were taken during uniform sky conditions. These conditions occur predominantly when the sky is 161 

overcast, although this technique can also be used just before sunrise or just after sunset, should 162 

bright daytime conditions be expected (Song, Doley et al. 2014).  163 

Image Acquisition and Spatial Sampling Strategy 164 

Initially, the number of images captured per subject tree was influenced by the overall length of the 165 

crown along the southern axis. Early trials with image capture involved taking images at 1m intervals 166 

along the southern axis, to the full extent of the crown. However, this produced a high number of 167 

replicates with large amounts of image content overlap. Inspection of these images identified two 168 
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problems with this approach. Firstly, that there was ~90% replication of content between the 169 

overlapping images (Figure 2a), and secondly, that additional tree features that were not required 170 

for the analysis were also captured. For example, additional stem wood was photographed in the 171 

images closest to the base of the tree (e.g. at 1m and 2m intervals), while large amounts of ‘sky’ was 172 

captured towards the canopy edge. Neither of these image components was required in the analysis. 173 

It followed that many of the repeated images was not within the optimal range for representing the 174 

fullest area of tree crown within an image. Repeated testing indicated that the optimal location for 175 

image capture was around the mid-point of the crown axis (Figure 2). Where there was no mid-point 176 

location on an exact 1m interval of the southern axis mid-point, the distance was rounded up to the 177 

next whole metre. The southern axis was used for standardisation purposes as the subject trees are 178 

located in the Northern hemisphere and our preference was to capture images on the non-shaded, 179 

south facing side of the trees.  180 

Figure 2 near here 181 

Immediately after acquisition, the quality of each image was visually assessed. This step was taken to 182 

ensure the images were suitable for later analysis and to allow additional images to be captured 183 

should the original image be unusable. The process of identifying the southern axis, setting-up the 184 

camera and completing image acquisition took between ~45 seconds to ~1.5 minutes, depending on 185 

the complexity of the local topographic environment.  186 

Image Preparation 187 

Upon return from the field, the images were re-examined on a desktop computer to check for image 188 

clarity, suitability in showing the area of interest, and for the presence of key features (Jones and 189 

Vaughn 2010). A limitation of the in-field image proofing was that this was completed on the dSLR 190 

camera’s 2.7-inch screen; therefore it was conducted at a very coarse resolution. Of the original 247 191 

images, 87 were removed for blurring or distortion errors, 96 images were removed as duplicates, 192 
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leaving the sample size reduced to 64 images of individual trees, with a single image representing 193 

each tree.  194 

Pre-processing interventions removed errors from the images that could affect the measurement of 195 

image metrics. Chromatic aberration (CA) is the misregistration of RGB channels causing interference 196 

with the dSLR Bayer-pattern sensor, leading to image deterioration and interference with pixel-197 

based classification techniques (Schwalbe, Maas et al. 2009). In this study, CA was corrected by 198 

removing the red and blue channels, and converting the image to the green element of the RGB 199 

channels only. Quadratic or ‘barrel’ distortion is also associated with images captured using 200 

hemispherical lenses. A distortion correction algorithm (Vries 2012) transformed the images from 201 

the distorted barrel extension to replicate an image captured at a normal focal length. This 202 

perspective distortion effect is influenced by the relative distances between the lens and subject 203 

canopy at which the image is captured, therefore, it is important that the relative distance was 204 

maintained during image capture. In order to reduce the effects of blurred images caused by 205 

contrast errors between colour ranges, an image sharpening algorithm was used. This algorithm was 206 

based upon un-sharp masking, where the image is sharpened by removing a blurred negative copy 207 

of the same image. The copied mask was laid over the original, resulting in a combined image that is 208 

visually sharper. Where there were instances of unsuccessful pre-processing, the affected images 209 

were not used in the investigation.  210 

The images were analysed in Matlab (2015a), where each image pixel was indexed and converted 211 

into binary form. This was achieved through applying uniform quantization where limited intensity 212 

resolution breaks the image colour space into individual pixels, which are indexed, and the pixel 213 

locations are mapped. A process of dithering corrects any potential quantization errors and limits 214 

the greyscale range of the image. This binarization procedure allows differentiation between the 215 

tree structure and other parts of the image, as optimum image analysis conditions are best achieved 216 

where there is high contrast between tree structure and the sky (Chen, Black et al. 1991). 217 
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Defining the Image Analysis Area 218 

Chianucci and Cutini (2012), describe that it is beneficial in image processing to reduce the field of 219 

view by masking some elements of the full hemisphere, thereby achieving greater spatial 220 

representation of heterogeneous tree crowns i.e. the inclusion of both dense and sparse crown 221 

regions in the analysis. At Figure 2b, image analysis is restricted to the part of tree canopy contained 222 

within the black bounding box, created on a per image basis. The analysis extent is influenced by  223 

standard forestry measurement conventions (West 2009), with the lower bounding box edge 224 

originating at the point of estimated timber height. In decurrent trees, this is where the main stem 225 

bifurcates to such a degree that the main stem is no longer discernible. From here, the analysis area 226 

is bordered by the upper bounding box at the edge of the tree crown and avoids the image’s 227 

vignette region caused by the visible inner walls of the camera lens. The left and right boundaries of 228 

the image analysis area are demarked by adjoining lines between the upper and lower bounding box 229 

extents maximising the crown analysis area, while again, also avoiding the vignette region at the 230 

edges of the image.  231 

Predictor Variable Creation 232 

Multiple indices were generated from the tree images that were developed into image metrics 233 

which were tested, both individually and in combination, for their suitability in describing the tree 234 

structural character. A description of the metrics is shown at Table 1. 235 

Table 1 near here 236 

Euler numbers represent the amount of tree crown occupied by solid tree structure through 237 

quantifying connected pixel components, holes and vertices within the image. Initially an RGB image 238 

is indexed and an inverse colour map algorithm restricts the number of possible RGB colour values 239 

to a predetermined range, e.g. 32, 48 or 64 colours, to refine the image resolution. Each pixel is then 240 

matched to the closest colour in the colour map, and the image is subsequently binarised for 241 
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analysis purposes. Euler numbers are then used to measure image topology through the frequency 242 

and area occupancy of ‘holes’ within the binarised image. These holes are subtracted from the total 243 

number of objects that occupy the image region, therefore the Euler value represents pixel 244 

occupation in the image (Chen and Yan 1988). The creation of the Euler number is defined as:  245 

  (1)  

where N is the number of connected image components (region), and H is the number of image 246 

holes identified as separate from the region (Sossa-Azuela, Santiago-Montero et al. 2013).  247 

Convex hulls are used to delineate a computed shape edge; therefore in this application, region 248 

convex hulls are considered representative of the tree crown edge extent and provide the 249 

opportunity to quantify the area covered by the hull shape. Region convex hulls were created 250 

demarking a polyhedron boundary in the Euclidean plane around a known distribution of data points 251 

(X). This process defines a measurable boundary where the polygon is considered convex if all of the 252 

dataset X lie within the boundary, and any two points in X can be joined using a straight-line 253 

segment that also remains within the boundary. A limitation of convex hulls is that the outer bounds 254 

of the polygon may extend beyond the data range in order to maintain convexity, thereby 255 

potentially adding additional area to the generated polygon. Successful convex hull algorithms 256 

however, provide the smallest convex contour area within a given region (Gargano, Bellotti et al. 257 

2007).  258 

A similar method used in photogrammetric analysis is the calculation of equivalent diameters. The 259 

projections of equivalent diameters are frequently used in RS investigations to model the spatial 260 

distribution of tree crowns. Within this study the equivalent diameter metric represents the area 261 

occupied by the tree crown structure in each image, while also providing a potentially continuous 262 

index of equivalent circle areas. A scalar value is defined that is the equivalent area of the irregular 263 

shape within the image (Kara, Sayinci et al. 2013), and is compared to the area of a known shape, 264 

e.g. a circle, using the equation;  265 
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  (2)  

where  is the area of the irregular shape, and  is the equivalent diameter.  266 

Finally, in order to quantify the complexity of the tree crown structure, a fractal geometric analysis 267 

approach was used to assess each image for self-affinity by calculating the logarithmic mean for the 268 

Df of each image. Df is used as a measure of complexity as Mandelbrot (1967) recognised the merits 269 

of using Df to quantify complex change in pattern detail relative to scale. Fractal dimensions should 270 

be considered an approximation of the Kolmogorov capacity, driven by a recursive process where 271 

small elements of the image are analysed individually, before the overall Kolmogorov capacity for 272 

the image is calculated. Equation 3 describes the Df calculation: 273 

  (3)  

Where N is the number of boxes needed to cover the fractal shape where it is present, R represents 274 

the unit size of the boxes, and N(R) is the number of boxes required to fulfil the fractal element for 275 

the image region. Lim refers to the limit of R, as R approaches infinity (Bonnet, Bour et al. 2001, 276 

Moisy 2008). In order to generate an individual Df model, a box-counting function (Moisy 2008) is 277 

applied that derives a local Df at each box size, integrated with the power law: 278 

  (4)  

where N0 is the expected value when R equals one. As this approach is dependent on both R and Df 279 

the result is a logarithmic mean of all the Df values generated for the fractal region of the image, and 280 

is interpreted as a quantification of the structural complexity of tree crowns. The steps required to 281 

process the tree images and compute individual tree metrics are summarised at Figure 3Figure 3. 282 

Calculating Statistical Probabilities  283 

The suitability of the predictor variables in quantifying tree structure was tested via multinomial 284 

regression, where the observed tree conditions are categorical responses, given as: 285 
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(5)  

where Xki is the kth predictor variable for i, the imaginary unit. 0 is the reference standard, j is the 286 

non-reference standard, and  and  are the various unknown population parameters. 287 

The predictor variables are used to discern where a response, i.e. the tree structure, relates to the 288 

same tree characteristics that are indicative of an observed condition. Multinomial regression 289 

therefore, creates a proportional odds model where a single category of trees is specified as the 290 

reference standard and is used as a comparative measure against which all other tree categories are 291 

compared. Probability (P) estimates are calculated for all trees, to quantify the likelihood that they 292 

share the same structural characteristics as the reference standard trees. For the purposes of this 293 

study, ‘Good’ category trees (Box 1), are used as the reference standard. The probability that the 294 

non-reference standard trees share the same structural characteristics of the reference standard is 295 

expressed as a P estimate percentage. 296 

Outlining Classification Thresholds 297 

To allow the comparison of continuous and categorical data, several predictor variables were used 298 

to create quantified indices to represent the structural character of the individual trees (Table 1). 299 

These variables were analysed to discriminate between the structural characteristics of individual 300 

trees and to determine how well the indices represented the field-observed classification. The 301 

predictor variable indices were grouped and analysed as individual indices, i.e. all Df values grouped 302 

as one data set, all Euler (64) values as another data set etc.  303 

An empirical data mapping test was undertaken where homogeneity traits were observed in the 304 

predictor variable indices. Data mapping is achieved where the categorical data is plotted over the 305 

ordinal data using the two available values for each tree image e.g. categorical: Good, 306 

ordinal/predictor value: Df 1.875. The tree images were grouped by their field-observed 307 
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classifications; Good, Moderate, Poor and Dead. For each of these four groups, the minimum and 308 

maximum predictor indices values showed the threshold value extent for each classification.  309 

Results  310 

At Figure 4a, the Df predictor variable quantifies the structural characteristics of all the assessed 311 

trees with individual Df values on a continuous scale, and displays homogenous clustering of the 312 

field-observed condition types. The group threshold extents are demarked as horizontal 313 

classification lines for the Df predictor variable in Figure 4a, where there are four separate groups of 314 

Df values consistent with their given field classifications; Good, Moderate, Poor and Dead (Table 2). 315 

In instances where heterogeneity was observed in the predictor variable indices, the data mapping 316 

could not be applied and it was not possible to define threshold extents (Figure 4b-d).  317 

Table 2 near here 318 

At Figure 4b-d, there are heterogeneous clusters of field classifications as denoted by the mixed 319 

colouring and absence of  threshold lines. All sub-plots in Figure 4 show similarities with generally 320 

decreasing indices, suggesting a continuous nature to the data, and implying that the trees included 321 

in the study possessed a varying range of structural conditions. In Figure 4b, c and d, all field-322 

observed conditions are shown in heterogeneous grouping for the different predictor variable 323 

indices, therefore demonstrating inconsistency with the field-observed classification for each 324 

predictor variable (Table 1). It follows that the remaining predictor variables (Table 1 and Figure 4 b-325 

d) do not provide a suitable mechanism to discriminate between different structural characteristics.  326 

Figure 3 near here 327 

Euler (64) (Figure 4b.) is the only variable to output negatively skewed data, and repeatedly 328 

quantified a number of individual trees with a Euler value of ‘1’, thereby also providing limited 329 

information on potential structural differences in these trees. Figure 4a shows the validity of Df as a 330 

continuous measure of tree structure complexity. We further demonstrate the relationship between 331 
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the categorical classifications and the probability that Df values are representative of these 332 

categories in Figure 5. Within the good category, there is a ~99% probability that the trees share the 333 

same structural characteristics as the trees in the reference standard. Within the moderate category, 334 

the probability that the trees show the same structural characteristics of a good tree structure has 335 

fallen to ~89% at the median, thereby identifying a probability shift between good and moderate 336 

structural characteristics. There is a further, large median shift between the moderate and poor 337 

categories, as the median reduces to ~29% for poor category trees when compared to the reference 338 

standard. Where trees were field-observed as belonging in the dead category, there is a decrease in 339 

probability to <1% that these trees show the same structural characteristics as the reference 340 

standard. 341 

Figure 5 near here 342 

Also in Figure 5, it is noticeable that there is no overlap between the overall visible spread (OVS) in 343 

the good field-observed population and any of the other potential categories, due to the OVS 344 

separation between all other field-observed categories. Similarly, this trend of OVS separation 345 

continues for each field-observed category when compared to any other category. Trees quantified 346 

as having structural characteristics of either the moderate or poor groups have a larger interquartile 347 

range then trees observed to be in either good or dead condition. This indicates that there is a 348 

greater degree of uncertainty in characterising the moderate or poor groups of trees, particularly as 349 

the trees with the good or dead characteristics, are assigned to their relative categories with a high 350 

degree of precision. In order to identify potential subgrouping effects, where similar classification 351 

probabilities may be clustered around specific probability values, a linear regression model was 352 

calculated which identified that there was no evidence of subgrouping and that the probability data 353 

range is randomly spread (r2 = 0.86, P-value 0.01).  354 

Discussion 355 
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This study presents a methodology for the objective assessment of tree crown structure, through 356 

analysing tree crown structure in hemispherical images. The underlying aim of this study is to reduce 357 

the degree of subjectivity currently accepted within tree surveying and assessment, and to provide 358 

opportunities for high resolution intra-category assessment of tree structure. Mandelbrot (1967) 359 

states that the question of how to accurately measure tree crowns, with the inherent complexity of 360 

objectively assessing various shapes, forms, structural porosity, all of varying sizes, is not a simple 361 

task that can be solved with classical geometry. Following the findings of this study, it is possible to 362 

quantify tree structural complexity using Df as an objective predictor variable using a relatively 363 

proximal photogrammetric method and computational analysis (Figure 4), thereby increasing the 364 

objectivity and repeatability of structural assessment, whilst also reducing the potential for bias from 365 

field measurements.  366 

Through quantifying tree structure in Df and creating a proportional odds model, the probabilities 367 

that field-observed, ‘good’ classified trees displayed the structural characteristics of structurally 368 

sound trees, was found to be statistically very high at P ~99%. Due to the way the proportional odds 369 

model functions, achieving this high level of probability is essential for the reliable characterisation 370 

of the remaining structural condition types. It is suggested that this method of analysis could be 371 

transferred to many other investigations of tree structure where the model is trained on a species-372 

specific basis across differing structural architectures.  373 

Following the creation of the model, the probabilities of trees with moderate, poor or dead 374 

observed classes reduce at the median to P ~89%, P ~29% and P <1% respectively when compared to 375 

the reference standard images (Figure 5). These changes in median levels reflect a measured 376 

reduction of the tree crown structure complexity. The continuous nature of the Df scale provides a 377 

unique measurement of individual tree structure characteristics, as opposed to individual trees 378 

being arbitrarily grouped into coarse-resolution, homogenous categories where intra-category 379 

differences cannot be easily identified. This insight provides the researcher or practitioner with the 380 
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opportunity to further sub-divide each classification group, and to monitor intra-category variance 381 

over time. This methodology has the potential for the long-term monitoring of pest, disease or 382 

pathogen progression, or for the quantification of structural decline, particularly with trees of high 383 

conservation, landscape or heritage value. This could include the monitoring of naturally occurring 384 

veteran trees, to quantify their rate of structural decline, particularly in areas where there is 385 

potential conflict with the public. Furthermore, this method could also be used to guide and inform 386 

the process of tree veteranisation, where pre-veteran, mature trees are intentionally injured and 387 

receive structural alterations to mimic the structure of naturally occurring veterans with the aim of 388 

providing valuable habitats that would otherwise only be found on the most mature trees 389 

(Bengtsson, Hedin et al. 2012).     390 

As shown in Figure 4a there is a wide range of Df values, homogenous grouping of field-391 

observations, and no clustering of the P ranges for each potential category. Therefore, it can be 392 

stated that tree structure is more accurately quantified in a structural condition continuum than 393 

with traditional categorical classification methods. Tree structure measurably degenerates the more 394 

trees senesce; tree crown structures change as branch death and limb shedding occur, which 395 

ultimately leads to a general decrease in the fractal nature of tree crowns (Mäkelä and Valentine 396 

2006). Through understanding phenotypic tree structures and the biological response of trees to 397 

environmental stress, there is the potential to relate tree structure complexity to an overall 398 

indication of tree health or general condition. Tree crown structures are indicative of the amount of 399 

photosynthetically active area in the tree required for homeostatic equilibrium, and therefore is 400 

considered to act as a reliable indicator of tree health (Burkhart and Tome 2012). 401 

An advantage of this method is the potential to measure intra-category differences in tree structure 402 

complexity and with the computerised storage and easy retrieval of this data, the same analysis can 403 

be repeated over time, allowing the accurate tracking of tree structure change. Sudden catastrophic 404 

damage to a tree crown is readily recognisable, such as when following a strong wind event. 405 
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However, more subtle or prolonged tree crown degeneration as a result of biotic or abiotic stress; 406 

such as pathogen ingress, or sudden death as a result of heavy, late frosts, could be measured and 407 

identified over repeat iterations of surveying. It is recognised that in the immediate period after the 408 

sudden death of a tree via these more subtle means, that the structure will likely not have changed 409 

significantly, and although potentially dead, a tree could still be classified as good due to the 410 

immediate retention of its ‘good’ structure, further reinforcing the requirement for temporal studies 411 

to monitor the subtle changes of the tree crown. Further developments of this method should 412 

include a refinement of the methodology to accurately measure more subtle structural change in the 413 

finer structures of the crown edge.  414 

The traditional coarse categorical classification methods do not provide a clear mechanism for 415 

measuring subtle structural degeneration as the thresholds for the each potential category are 416 

poorly defined and only provide generalised categories for the tree classification. For tree-risk 417 

managers such as local government tree officers or utility company infrastructure managers, a 418 

structural condition continuum can be used to objectively quantify the probabilities that their tree 419 

stock is in a suitable condition. Through quantifying tree structure in a continuous Df scale, specific, 420 

measurable thresholds for remedial intervention may be defined. With a categorical approach, tree-421 

risk managers have the limitation of allocating broad categories such as ‘poor’ or ‘dead’ as the 422 

triggers for remedial intervention. This limitation greatly increases the number of trees that will be 423 

designated as requiring remedial work, compounded by the additional costs and labour 424 

requirements. As a higher resolution method, our new approach has the potential to limit 425 

unnecessary remedial works, lowering tree management expenditure, and would facilitate limited 426 

resources being used in more focussed interventions. We acknowledge that additional work is 427 

required to quantify the extent of these improvements, particularly in respect to health and safety 428 

related tree management 429 
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This investigation used a single broadleaved tree species, and we recognise that further work is 430 

required to determine where categorical thresholds exist for other tree species. This would follow 431 

the work of Morse, Lawton et al.  (1985), who observed that there are differences in the structural 432 

complexity of varying vegetation species when they are measured in Df. During a pilot study phase, 433 

we identified that there are different thresholds for condition categories in different tree species. 434 

The other broadleaved species photographed in various quantities prior to this investigation, were; 435 

Acer pseudoplatanus (L.), (Fraxinus excelsior (L.), Quercus rubra (L.), Fagus sylvatica (L.), Betula 436 

pubescens (Ehrh.), Crataegus monogyna (Jacq.), and Pinus sylvestris (L.). Initial observations suggest 437 

that there are likely to be interspecies differences from the small sample numbers used, therefore, 438 

this research could also be extended to consider other tree species.  439 

In training the reference category for the proportional odds model, trees that are observed as being 440 

in a sound structural condition and are representative of trees in good condition for that species, are 441 

identified as the reference category trees. These become the standard against which the remaining 442 

trees of the same species are compared. In the process of developing the model, a small degree of 443 

user intervention is required to define the parameters of the model and to interpret the model 444 

efficacy. Similarly, a user defined bounding box is created to identify the area of interest for the 445 

image analysis. This method ensures the procedure can be applied across the full range of tree 446 

crown images. The creation of the bounding box is governed by the user following a set of standards 447 

that are influenced by standard forestry conventions (West 2009), and the simple requirement to 448 

only identify the tree crown of interest and no other elements, such as the image vignette region. An 449 

important distinction to highlight is that the procedure remains a dependable and independent 450 

methodology, despite the user intervention as the image analysis, statistical querying and 451 

computation of the Df value are all autonomous and therefore, remain objective. This methodology 452 

does not purport to entirely remove the requirement for practitioner intervention. We also 453 

recognise a potential limitation of this methodology is the reliance on the southern axis for capturing 454 

crown images. During methodology development, the southern axis was used to standardise 455 
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fieldwork when capturing tree crown images. It is recommended that additional field trials should be 456 

undertaken to determine the sensitivity of capturing images from differing cardinal points or 457 

multiple locations per tree.  458 

Conclusion 459 

The methodology described in this study for assessing the structural condition of trees is 460 

commensurate with traditional techniques. The development of a proximal, hemispherical image 461 

field methodology enabled the data capture of many trees in a range of different physical conditions 462 

and locations, and satisfies the first objective of this study. The second objective was met with the 463 

analysis and objective measurement of hemispherical tree structure images. Finally the ranking of 464 

individual trees by the automated calculation of the continuous Df values, satisfies the third 465 

objective. It can be stated that the traditional techniques which identify broad categories of 466 

structural condition are very coarse, as they do not account for intra-category structural variability 467 

and are highly subjective. Our approach enables the assessment of tree condition to be completed 468 

with a greater level of precision than was previously possible due to the continuous nature of the Df 469 

measurement. Fundamentally, this concept provides a repeatable and objective way to characterise 470 

tree crown structure, which can be used to improve the objectivity of tree surveying and inform the 471 

specific management of trees with high amenity value. We recognise that further work is required to 472 

define the sensitivity of the image acquisition protocol, and to gain further understanding of the full 473 

extent of intra-species differences. Nonetheless, it is envisaged that this methodology could form 474 

the basis for a new range of analytical measures that will enable tree, environmental or ecological 475 

managers to gain greater insights and make more informed decisions about the tree stock under 476 

their management. 477 
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Tables 636 

Table 1  Descriptions of analytical metrics used in an investigation to quantify tree structural condition.  

Name Description 

Convex Hull 

Area 

An area value of the smallest potential convex polygon used to envelop the indexed 

region in a p-by-2 matrix. 

Equivalent 

Diameter 
A scalar value for a computed circle with the same area as the indexed image. 

Euler Number 

(32) 

A scalar value that specifies the frequency of indexed objects in the image region. 

The Euler number subtracts porosity values (holes) representative of crown porosity 

using 32-bit imagery. 

Euler Number 

(48) 

A scalar value that specifies the frequency of indexed objects in the image region. 

The Euler number subtracts porosity values (holes) representative of crown porosity 

using 48-bit imagery. 

Euler Number 

(64) 

A scalar value that specifies the frequency of indexed objects in the image region. 

The Euler number subtracts porosity values (holes) representative of crown porosity 

using 64-bit imagery. 

Filled Area 

A scalar count identifying the number of pixels used to ‘fill-in’ the indexed image 

(removal of image/crown porosity), with the count extending to the full perimeter 

of the structure using a logical test of the region index. 

Fractal 

Dimension 

A continuous, scaled measurement of self-affinity, where repeating x and y curves 

are magnified by different factors and a logarithmic mean is calculated. 

 637 

638 
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Table 2 Threshold limits of tree condition categories, expressed in fractal dimensions (Df).  639 

Field Categories Df Threshold 

Good ≥1.6021 

Moderate ≤1.6020 to >1.4815 

Poor ≤1.4814 to >1.3423 

Dead ≤1.3422 

 640 

 641 

642 
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Box Caption 643 

Box 1  Classification descriptors for the subjective arboricultural assessment of trees. Estimated 

Remaining Contribution (ERC) refers to a methodology used to consider the health, condition and structure 

of the tree and aids in classifying the tree in to the different categories adapted from (Barrell 1993, Lonsdale 

1999, Barrell 2001, NTSG 2011, BSI 2012). Note: The images show trees in leaf-on condition to enable ease 

of comparison for the condition types.  

  

Illustrations Captions 644 

Figure 1 A schematic of the field method for taking a hemispherical picture from beneath a tree canopy. 

The camera is situated on a standard tripod, and is levelled and pointing towards the zenith viewing point 

(90° from the horizontal elevation). In this example, the full extent of the crown is four metres along the 

southern axis, and the image is taken at the two metre mid-point.   

 645 

Figure 2 A schematic showing the optimised range for image capture (a), and the area of tree canopy 

structure analysed within this study (b). The area of interest is specifically the structural elements of the 

canopy. Too much ‘sky’ within the image reduces the amount of structure that can be analysed (a). Stem 

wood and other elements not required, are removed from the image by only analysing the structure inside a 

user selected bounding box area (b). The use of a bounding box allows images of both individual trees and 

trees within closed canopies to be analysed.  

 646 

Figure 3 A procedural workflow showing how tree structure images are processed for the computation of 

image metrics.  

 647 

Figure 4  Sample subset of predictor variables used to define the characteristics of different tree 

structures (n64). The annotations Good, Moderate, Poor and Dead refer to the field observed condition of 

the individual trees. Only with the measure of fractal dimension (a.), provides homogeneous clustering of 

field observed conditions as identified by the threshold lines. Not all predictor variables used in this study are 

visualised in this plot.  

 648 

Figure 5  A proportional odds model to indicate the probability (P) that tree structure images, quantified 

in fractal dimensions (Df), are indicative of an observable tree structure condition and known reference 

standard (n64). Tree images were measured for structural complexity in Df. The box plot extents identify the 

P that the structures show characteristics of the reference standard.  
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Supplementary Information 

 

Image Pre-processing 
The pre-processing interventions were applied to the raw images and at each phase of 

processing were statistically checked for suitability. This procedure focussed on the 

interventions that were observed to have an effect on the further usability of images in this 

study. Concurrently, the interventions were also statistically tested for suitability of use in the 

study. 

Quantitative Strength of Pre-processing Phases 
In order to establish that the three different pre-processing interventions were having a 

measurable effect on the data, when applying each pre-processing phase, confidence 

intervals were calculated using the following formula where n is the sample size and s is the 

standard deviation: 

 

 X̅ +  Z 
s

√n

  

 (1)  

 

At Figure 1, the pre-processing interventions are represented as one; for the baseline or 

uncorrected image Df values; two, after applying a chromatic aberration correction; three, 

after lens distortion correction; and four, after image sharpening. As shown in Figure 1, there 

is a general positive effect caused by each of the post processing interventions on the image 

mailto:foresj@oup.com
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Df values. The dataset confidence level at CI95%, suggests that each post processing 

intervention has a reliable and repeatable influence on the Df values at each successional 

stage. 

  

 

Figure 1 Model testing of the impact of image post processing phases on average Df values, 

demonstrating 95% confidence interval (CI95%) (n247). Note: Image pre-processing phases 

applied 1 = raw unprocessed images, 2 = applying chromatic aberration correction, 3 = 

applying lens distortion correction, 4 = applying image sharpening. The Df values are a 

logarithmic scale, demonstrated on a truncated axis.  

 

Although the CI bars overlap, potentially suggesting there is no statistical conclusion to be 

drawn; it should be noted that CI are not a test of statistical significance. A paired, two 

sample t-test was used assessing the significance between the uncorrected Df data (phase 

one), and the Df data following the final post processing stage (phase four). The result is a p-

value of p0.005, therefore that the differences in the effects of the post processing 

interventions on the Df values are considered very highly significant.  

Validity Testing of Pre-processing 
In order to quantify the effect of the before and after the phases of post processing, the 

corrected effect size was calculated using Hedge’s g. This test quantifies the effectiveness of 

the post processing interventions. Hedge’s g, follows as: 
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(

 
 
 

ds = 
X1 − X2

√
(n1 − 1)SD1

2 + (n2 − 1)SD2
2

n1 + n2 − 2 )

 
 
 

× (1 −
3

4(n1 + n2) − 9
) (2)  

 

Where SD is standard deviation and n is frequency of values for the two variables; Df values 

before and after the pre-processing interventions. As can be seen in Figure 2, this results in 

a large impact on the Df values with the Hedge’s g effect size at 2.4504.  

 

 

Figure 2  The quantification of effect size following image post processing (n247). The value of Hedge’s 

g at 2.4504 with a confidence interval at 95%, suggests that the pre-processing phases have a 

significant effect on Df values.  

 

Due to the combination of the assessment of the effect size (Hedge’s g 2.4504), supported 

with a confidence interval of CI95% and a statistical significance of p0.005, the image post 

processing phases have had a significant effect on the quality and usability of the images, 

thereby enabling the images to be used in subsequent analysis within this study.  

Model Fitting 
Following the pre-processing interventions, the corrected images were reanalysed through 

generating a second Df score. These are compared with the original, raw Df to identify the 

extent of residuals between the two data sets in order to estimate the extent of potential 

statistical error. This phase of the investigation also indicates whether unwanted data noise 
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has been added in to the Df values, and identifies the correlation of remapping the pre-

processed Df back to the raw Df values. As can be observed from 

Figure 3 the sampled standard deviation of the modelled Df very closely agrees with the 

original, unprocessed Df values at 0.07% utilising normalised root mean squared error 

(NRMSE). 

 

 

Figure 3 Regression analysis of fractal dimension values following image pre-processing (n247). The 

pre-processed Df, remains a statically relevant representation of the raw Df values with a 

normalised root mean squared error (NRMSE) of 0.07% (y = 0.84*x + 0.26, R2
adjusted = 0.7%).  

 

Recommended Field and Data Processing Workflow 

The development of the techniques used during this research provides an operational 

methodology for the objective classification of tree structure. This procedure has two phases 

split between field and office based work (Figure 4). In phase one, using predefined rules for 

the selection of trees in accordance with the survey requirements, a tree would be selected, 

photographed at the mid-point of the crown and the image checked in the field using the 

same field methodology as described earlier in this paper. This process would be repeated 

for several iterations in order to create a reference data set for each tree species within the 

survey. The second phase also follows the earlier described process of uploading the tree 

images (to a desktop computer with the required code), defining a bounding box for the 

crown area to be analysed and the Df value to be calculated. Finally, to achieve objective 

classification for the individual trees, the Df values of each tree image would be cross-
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checked against the reference data threshold levels of the individual tree species (e.g. Table 

2 of main article).  

  

 

Figure 4  An operational workflow for the field practitioners use of a methodology for the classification of 

tree crown structure in fractal dimensions (Df), using hemi-spherical photography.  
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