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Design and estimation in clinical trials with
subpopulation selection
Yi-Da Chiua, Franz Koenigb, Martin Poschb and Thomas Jakia∗†

Population heterogeneity is frequently observed among patients’ treatment responses in clinical trials because of
various factors such as clinical background, environmental and genetic factors. Different subpopulations defined
by those baseline factors can lead to differences in the benefit or safety profile of a therapeutic intervention.
Ignoring heterogeneity between subpopulations can substantially impact on medical practice. One approach to
address heterogeneity necessitates designs and analysis of clinical trials with subpopulation selection. Several types
of designs have been proposed for different circumstances. In this work we discuss designs that allows selection
of a predefined sub-group based on the maximum test statistics and investigate the precision and accuracy of the
maximum likelihood estimator (MLE) at the end of the study via simulations. We find that the required sample
size is chiefly determined by the subgroup prevalence and show in simulations that the MLE for these designs can
be substantially biased. Copyright c© 2017 John Wiley & Sons, Ltd.
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1. Introduction

Heterogeneity is frequently observed among patients’ treatment response in clinical trials. This is due to various factors
such as age, race, disease severity or genetic differences. Ignoring heterogeneity can substantially impact on medical
practice. For example, a treatment might work well in some patients but not in others. Naively estimating the treatment
effect across all patients will result in a diluted effect for the group that truly benefits from the treatment. At the same
time an ethical issue arises due to delivering a treatment to all patients while some might not expect an effect and will
potentially be exposed to harmful side-effects. To address these issues, trials that consider (potential) subgroups defined
by one or more biomarkers are becoming more popular. In general, a biomarker is some measurable variable that might
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help to identify distinct groups of patients and some examples include cholesterol levels, genetic variations or age. A
biomarker is considered prognostic if it provides information about the value of some other variable of interest (e.g. the
primary endpoint of a study) while it is called predictive if it’s value yields information about the treatment effect. In this
paper we will only consider the latter type of biomarkers.

A number of different designs concerning treatment selection and subgroups within the study populations have
been proposed. These designs can be categorized by factors such as design setting (confirmatory or exploratory) or
methodology (frequestist, Bayesian or utility/decision function) - see [1, 2, 3]. Additionally, the designs can be categorized
into single-stage (fixed sample) designs and multi-stage (adaptive) designs. Both conventionally utilize multiple testing
procedures to test for effects in each of the populations of interest. A single-stage design with one biomarker tests, for
example, the null hypotheses: the treatment effect of the full population is zero, H0F ; and the treatment effect in the
subgroup of interest is zero, H0S [1, 4, 5, 6, 7, 8]. These designs are usually employed for exploratory subgroup analysis
in phase II (i.e. to identify an interesting subgroup), or for confirmatory subgroup analysis in phase III, examining the
treatment benefit of pre-specified subgroups. Corresponding multi-stage designs are constructed either as extensions of
group sequential approaches [9] or using combination tests [10]. They can refine the population to either the whole or
one or more subgroups at the interim analysis and can allow for early stopping for benefit and lack of benefit (see e.g.
[1, 11, 12, 13, 14]).

The accuracy and precision of the treatment effect estimators in subgroup analysis is also crucial to the development
of novel treatments and decisions about treatment implementation. Especially, bias is ubiquitous in designs that select
(see [15]) and in the designs considered here the bias can come from selecting which (sub)population should be studied
further or from selective reporting promising results even in a simple fixed sample design. A variety of papers on
treatment effect estimation in the related problem of trials with treatment selection have been published. Approximate
bias-correction estimators for single stage designs for normal endpoints are discussed in [16, 17], uniformly minimum
variance conditional unbiased estimators (UMVCUE) for two stage designs have been proposed by Cohan and Sackrowitz
[18] and further extensions published in [19, 20]. Shrinkage estimators have been discussed in [21] while approaches to
construct confidence intervals are described in [22, 23, 24]. Time-to-event endpoints are considered in Brückner et al [25].

In contrast, rather limited literature addresses estimation issues in clinical trials with subpopulation selection. For
single-stage designs, Rosenkranz [26] proposed a bias-adjustment method employing bootstrap techniques to calibrate
the estimates upon general distributional assumption on outcomes. For multi-stage designs, Kimani et al. [27] proposed
two estimators: one is a naive estimator using a weighted average of per-stage means and prevalences for each subgroup;
the other is a uniformly minimum variance conditional unbiased estimator (UMVCUE) derived by the Rao-Blackwell
theorem. They assessed the performance under several situations, such as different values of prevalence and treatment
effect of one subpopulation, and also suggested which estimator should be used according to what population is selected
at stage 1. In addition, Magnusson and Turnbull [12] focused on the designs rather than estimation though, they outlined
an extended bias-reduction algorithm proposed by Wang and Leung [28] in which uses double bootstrap methods [29] to
adjust ML-estimates and build bootstrap confidence interval.

Despite some contributions on estimation, the aforementioned papers do not provide a complete overview of the
maximum likelihood estimator (MLE) under various designs and lack exploring the estimator performance in further
conditions. Rosenkranz’s [26] simulation work on single-stage designs implicitly regarded the MLE only in circumstances
with few different treatment effects for subgroups and thresholds used in the selection rule. Kimani et al. [27] considered
two-stage adaptive seamless designs selecting subpopulation based on the stage 1 data but not allowing early stopping,
and they only assessed estimators with selection but without reporting promising results. The multi-stage designs of
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Magusson and Turnbull allow to select multiple subpopulations if the estimates of treatment effects are above certain
thresholds at stage 1.

In this paper we discuss how to design single and multi-stage design which select subgroups based on the maximum
statistics and comprehensively evaluate the properties of the MLE for these designs. In Section 2 we derive a subgroup
selection design that selects groups based on the maximum test statistic. Section 3 describes a simulation study in
which different general design scenarios are evaluated and the bias and MSE of the corresponding maximum likelihood
estimators is derived. In Section 4 we remark on the designs with different selection rules, then summarise the results of
the simulation study and discuss its implications for future work.

2. Designs

In this section, we first define the basic setting and notation and then provide general ideas for designs with subpopulation
selection based on the maximum test statistic.

2.1. Basic Setting and Notation

Assume J mutually disjoint subpopulations are in the full study population (F ) and denote the prevalence of the j-th
subpopulation (Sj) by λj , where j = 1, . . . , J and

∑
λj = 1. The sample size of each subgroup is fixed as a proportion

of the total sample size depending on the respective prevalence. We use nj to denote the sample size in subgroup Sj

and more generally use subscripts to denote groups and treatments and superscripts for stages. We consider a normally
distributed endpoint with mean µj,l with j = 1, . . . J and l = T,C where subscript T corresponds to the treatment group
and C to the control group. Additionally we assume a common variance across subpopulations, σ2.

2.1.1. Single stage design For a single-stage design, the test statistics used for selection and decision are distributed as

Z
(1)
j = I

(1)
j

(
Ȳ

(1)
j,T − Ȳ

(1)
j,C

)
∼ N

(
I
(1)
j θj , 1

)
.

Note that we use the (unnecessary) superscript (1) for consistency with the multi-stage notation used later. Ȳ (1)
j,T and

Ȳ
(1)
j,C are the sample means of the treatment group and of the control group within Sj , respectively. The true treatment

difference in Sj is denoted θj = µj,T − µj,C and I(1)j = 1/
(
σ
√

1/n
(1)
j,T + 1/n

(1)
j,C

)
is the information level for Sj . This

further simplifies to 1/
(
2σ
√

1/n
(1)
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)
when the assumed treatment allocation ratio is 1:1, where n(1)j is the total sample

size of Sj until the end of stage 1.

Considering a composite population SU+V combining two subpopulations SU and SV (where U ,V ⊆ {1, 2, . . . , J},
U ∩ V = ∅ ), the test statistics are distributed as
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where Ȳ (1)

U+V ,T
and Ȳ

(1)

U+V ,C
are defined as before but the observations are from the combined treatment group and the

combined control group of the united subpopulation SU+V . The true treatment effect size and the information level

of SU+V are θU+V = µU+V ,T − µU+V ,C and I(1)
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, respectively. I(1)
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1/
(
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(1)
U + n

(1)
V )
)

for equal allocation. Additionally, θU+V = (λU θU + λV θV )/(λU + λV ). Note that if U and V are
complementary, their composite population SU+V is the full population F and then the subscript of the above notations are
replaced with f . If U and V have an individual element for each, such as {1} and {2}, we simplify the notation of U + V
as 1 + 2. This notation simply denotes the union of SU and SV , and it does not necessarily imply one is nested in the other.

2.1.2. Multi-stage design For multi-stage designs, the test statistic based on the accumulated data at the end of stage k
(k ≤ K, the total stage number) for SU is denoted by

Z1:k
U

=

k∑
i=1

√
I
(i)
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I1:k
U
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= I1:k
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(
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)
,

where the superscript 1:k refers to a quantity calculated based on the accumulated data at the end of stage k; therefore,
I1:k
U

is the accumulated information level defined accordingly as 1/
(
σ
√

1/n1:k
U ,T

+ 1/n1:k
U ,C

)
.

2.2. Designs considered

We consider designs that control the familywise-error rate (FWER) at level α in the strong sense [30] and the set of
hypotheses to be tested

H0s : θs ≤ 0 versus Has : θs > 0, s ∈ S,

where S is the index set corresponding to the subpopulations considered and can index nested groups. For instance if we
consider subgroup 1, subgroup 1 and 2 or the full population being of interest, S = {1, 1 + 2, f}.

2.2.1. Single-Stage Designs To select, we use the maximum of the test statistics among Z
(1)
s , s ∈ S for population

selection. Its implication and other selection rules will be discussed in the conclusion section. In the evaluation of the
operating characteristics we consider the case where population selection is undertaken first and only subsequently the
corresponding hypothesis being tested. The testing procedure is making a decision about rejecting H0w if Z(1)

w ≥ Cα,
where w is a realized value of the random variable W and refers to the event that subpopulation Sw is chosen. Z(1)

w

is the selected test statistic for Sw, andCα is the corresponding critical value found to ensure the FWER in the strong sense.

The crucial element to finding the appropriate critical value and sample size is the density of the joint distribution of the
selected test statistic Z(1)

W and the selected population index W . The joint densities p
Z

(1)
W ,W

(z
(1)
w , w; Θ), w ∈ S govern the

probability whether to select Sw and to reject the null hypothesis H0w (where Θ is a configuration of all mutually disjoint
subgroup treatment effects θ1, θ2, . . . , θJ ). It can further be decomposed as p

Z
(1)
w

(z
(1)
w ; Θ) · Pr(W = w|Z(1)

w = z
(1)
w ; Θ).

Consequently, the joint densities of Z(1)
W and W can be represented as

p
Z

(1)
W ,W

(z(1)w , w; Θ) = φ(z(1)w − θwI(1)w )ΨS\w

(
z(1)w , . . . , z(1)w ; Θ

)
, (1)

where φ denotes the standard normal density; ΨS\w(·, . . . , ·; Θ) is the cumulative distribution function (CDF) of the
|S| − 1-dimensional normal distribution conditional on Z(1)

w under a specified configuration of treatment effects Θ, where
|S| is the cardinality of S. The covariance matrix depends on whether subgroups are nested or not (see examples in
Appendix A.2 and A.3). The CDF specifies Pr(W = w|Z(1)

w = zw; Θ). It is noted that (1) is similar to the integrand
of equation (4) in [5] where two co-primary analyses are performed on the full population and a subgroup, and the
significance level for F is pre-specified.
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Using an iterative search, Cα can then be found using the following inequality

α ≥
∑
w∈S

∫ ∞
Cα

p
Z

(1)
W ,W

(z(1)w , w; Θ0)dz(1)w , (2)

where Θ = Θ0 denotes the global null hypothesis H0, θ1 = θ2 = . . . = θJ = 0. Note that finding the critical value under
this setting implies weak control of the FWER. Following [23] it can be shown, however, that weak control implies strong
control since θ1 = θ2 = . . . = θJ = 0 maximises the type I error when selection is based on the maximum. Similarly,
assume an alternative hypothesis that exactly one subgroup (say Sw, w in S) has nonzero positive effect size, δ, but others
have none is true, the required total sample size for the full population n(1)f can be found using the above critical values, a
desired effect and a specified power level, 1− β. The related equation is

1− β ≤
∫ ∞
Cα

p
Z

(1)
W ,W

(z(1)w , w; Θa)dz(1)w , (3)

where Θa denotes the alternative hypothesis, a vector of size J whose elements are all 0 except for the wth element which
is δ. The desired n(1)f is obtained by iteratively increasing the sample size until equation (3) holds.

Note that only rejection of the hypothesis with the truly largest effect is considered in this power requirement. Similar
considerations can be used to find the power to reject any false null hypothesis (see Figure 1 for an example).

We have derived the above formula here for consistency as for the multi-stage designs considered below only the
selected subgroup continues to subsequent stages.

The derivations of (2) and (3) are provided in Appendix A.1 and more specific example solutions for the single-stage
design with two and three subgroups are given in Appendix A.2 and A.3 when the index set of selection population is
S = {1, f} and S = {1, 1 + 2, f}.

2.2.2. Multi-Stage Designs The multi-stage designs we consider follow similar procedures as the aforementioned
single-stage designs. Population selection is performed at the first interim analysis, but any population in S can be
selected. We consider the case where data after stage 1 are enriched so that the total sample size in the trial remains fixed
but the sample size of subgroups that have not been selected is reallocated to the remaining populations. Suppose the
selected population is Sw, the difference is that at stage k the testing procedure stops by rejecting H0w if Z1:k

w ≥ Cuk,α,
or stops with retaining H0w if Z1:k

w ≤ Clk , or the procedure continues to stage k + 1 if Clk ≤ Z1:k
w ≤ Cuk,α, where Cuk,α

and Clk are the corresponding upper and lower stopping boundaries at stage k.

Two elements are required for appropriate stopping boundaries and stagewise sample sizes. The first is the joint density
of (Z

(1)
W ,W ), shown in (1). The second element is the density of the conditional distribution of the test statistics Z1:k

w

(with accumulated data until stage k) given its precursor Z1:(k−1)
w at stage k − 1. We denote this conditional density by

pw,k|k−1(z1:k
w |z

1:(k−1)
w ; Θ) and its general mathematical form is given in Appendix A.4.

The stagewise density comprising of the two elements can then be used to determine the probability of stopping for
efficacy or for futility at stage k. For example, the stagewise densities at stage 2 with different values of W are specified
as

p
Z

(1)
W ,W

(z(1)w , w; Θ) · pw,2|1(z1:2
w |z1w; Θ), w ∈ S. (4)
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Then given Θ = Θ0 (i.e. under the global null hypothesis), the probability of early stopping at stage 2 (either for lack of
effect or early rejection) for the subgroup Sw can be calculated as∫ Cu1,α

Cl1

∫ ∞
Cu2,α

p
Z

(1)
W ,W

(z(1)w , w; Θ0) · pw,2|1(z1:2
w |z(1)w ; Θ0)dz1:2

w dz(1)w , w ∈ S,

where the integral bounds signify that the design continues after stage 1 but stops at stage 2 for efficacy. The conditional
function pw,2|1(z1:2

w |z
(1)
w ; Θ) is used to calculate stopping probability at stage 2 given that the design does not stop at

the preceding stage. Similarly, the stagewise densities at stage k are the product of the expression in (1) multiplying
the factor

∏1
m=k pw,m|m−1(z1:m

w |z1:(m−1)
w ; Θ). The value of the k-fold multiple integral within the integrand region

defined by stopping boundaries before stage k + 1 is the early stopping probability at stage k. Each conditional density
pw,m|m−1(z1:m

w |z1:(m−1)
w ; Θ) with its respective integral bound controls the probability of whether the design stops or

continues, given that the design has proceeded at the previous stage.

To find boundaries that ensure FWER control an iterative search over the stopping boundaries is conducted based on
the following inequality

α ≥
∑
w∈S

{
K∑
k=1

[ ∫
. . .

∫
Ak

p
Z

(1)
W ,W

(z(1)w , w; Θ0) ·
( 1∏
m=k

pw,m|m−1(z1:m
w |z1:(m−1)

w ; Θ0)
)
dz1:k
w . . . dz(1)w

]}
, (5)

where the integration region Ak

Ak = [Cl1 , Cu1,α]× [Cl2 , Cu2,α]× . . .× [Cuk,α,,∞) in z(1)w × z1:2
w . . .× z1:k

w ,

where Θ0 denotes the globe null hypothesis. We define z1:0
w = z1:1

w and therefore pw,1|1(z1:1
w |z1:1

w ; Θ) = 1. Note that
this yields only one inequality while Cl1 , . . . , Clk and Cu1,α, . . . , CuK ,α are all unknown. To overcome this, we set them
to follow a specific functional form, where Clk = CuK ,α for the K stage design. For example, when using the O

′
Brien

Fleming (OBF) [9, 32] type stopping boundaries, Cuk,α = COBF(K,α)
√
K/k and Clk is a certain function of k. In

addition, the calculations in (5) assumes that the futility bounds are binding. For non-binding bounds, one can simply set
the lower bounds to −∞.

As before, (5) implies weak control of the FWER but also guarantees strong control following the arguments in Magirr
et al. [23].

Suppose an alternative hypothesis of the from θw = δ > 0 for exactly one element (say w) in S and θw∗ = 0 ∀w∗ 6= w ∈
S is true. Then under this alternative hypothesis, the above critical values and specified power, the stagewise total sample
size for the full population n(k)f can be found to satisfy the following inequality:

1− β ≤
K∑
k=1

[ ∫
. . .

∫
Ak

p
Z

(1)
W ,W

(z(1)w , w; Θa) ·
( 1∏
m=k

pw,m|m−1(z1:m
w |z1:(m−1)

w ; Θa)
)
dz1:k
w . . . dz(1)w

]
, (6)

where the configuration Θa has an non-zero positive effect δ on the wth element but the other J − 1 elements are zero.
Detailed derivations of (5) and (6) are provided in Appendix A.1 and the design details of two-stage designs with two
subgroups (considering selection of S1 or F ) in Appendix A.5.

2.2.3. Alternative Designs We have illustrated how to obtain critical bounds and sample size for general enrichment
designs above. Here, we discuss alternative designs considering different type-I-error and power configurations.
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Significance levels and stopping boundaries:

An alternative to specifying the design and corresponding stagewise α levels via the boundaries is to specify marginal
significance level αk to each stage k (where

∑
k αk = α) and use an error spending approach as used in classic group

sequential designs [9]. Such considerations affect the way we find stopping boundaries where the same boundaries are
shared by all the populations considered. More specifically, based on the following inequality (7) it is required to search
the critical value used in Ak−1 first under the upper limit of αk−1 (where the subscript of the upper bounds is changed
accordingly). Then substitute those critical values for the associated bounds used in Ak under the upper limit of αk for
finding the remaining critical values and so on.

k∑
i=1

αi ≥
∑
w∈S

{[∫
. . .

∫
Ak

p
Z

(1)
W ,W

(z(1)w , w; Θ0) ·
( 1∏
m=k

pw,m|m−1(z1:m
w |z1:(m−1)

w ; Θ0)
)
dz1:k
w . . . dz(1)w

]}
, (7)

Note that there are several ways to determine the lower stopping boundaries; for example, one could set symmetric values
with respect to the upper critical values, or simply set 0.

One can further pre-specify the marginal significance levels for |S| − 1 specific populations at each stage. One example
of taking this consideration can be found in [5] although they only consider single-stage designs. Such design features
may lead to different stopping boundaries for all the populations included in S.

Incidentally, for two-stage designs if early stopping is not considered at stage 1 (that is, the stage-1 data is only used
for population selection), then the first bound of integration in equation (5) and (6), Ak, is (−∞,∞), where k > 1.
Meanwhile, the upper bound Cu1,α1

of A1 is defined as∞ and therefore the integral
∫
A1
p
Z

(1)
W ,W

(z
(1)
w , w; Θ0)dz

(1)
w is 0.

Such designs are the same as the two-stage adaptive seamless designs used in [27].

Power:

The power of the designs in Section 2.2 is defined as the probability to detect the treatment effect of the population
of interest under Ha. Alternatively we can define power to detect any treatment effects wherever they are from a set of
specific subpopulations. Such change leads the total sample size for F to be different because of its influence on equation
(6), which is the basis of searching n(k)f . Moreover, the equation becomes

1− β ≤
∑
w∈S∗

{
K∑
k=1

[ ∫
. . .

∫
Ak

p
Z

(1)
W ,W

(z(1)w , w; Θa) ·
( 1∏
m=k

pw,m|m−1(z1:m
w |z1:(m−1)

w ; Θa)
)
dz1:k
w . . . dz(1)w

]}
, (8)

where S∗ is the subset of S and contains the specified subpopulations of interest. Take an example that if S = {1, f}
and S∗ = S, Figure 1 shows the resulting total sample sizes n(1)f in a single-stage design, corresponding to different
prevalence values of S1, under different definitions of power. The left panel is computed to have power 1− β for selecting
the subpopulation with the largest true effect and rejecting the corresponding null hypothesis, while the right panel
considers any correct rejection. As the prevalence λ1 approaches 1, n(1)f increases again and becomes very large for λ1
close to 1 whereas n(1)f always decreases under the definition of power to detect θ1 > 0 or θf > 0. Since the effect sizes for
S1 and F are close, it is difficult to select the correct subgroup and thus large sample sizes are needed. The reason that the
behaviour of n(1)f is always decreasing for larger prevalences in the right panel is that there is no restriction on selecting a
pre-specified population and reporting the efficacy. The decreasing pattern can be similar to that using the closed testing
procedure [31] in a single-stage design, where the total sample is available for investigating any subpopulation without
considering selection. Note that all the patterns observed in Figure 1 emerge in a case of multi-stage designs as well (not
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shown in this paper).
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Figure 1. The total sample sizes of the full population F (n(1)
f ) across prevalence rates of S1 (λ1) for two different definitions of power. The design is a

single-stage design with two subpopulations where the treatment effects θ1 and θ2 for S1 and S2 are 0.5 and 0, respectively. The type-I error and power are
specified at 0.025 and 80%.

3. Estimation Assessment

In this section we report a simulation study assessing the properties of MLEs. Note that in the reported figures different
scales for the y-axes are used in order to highlight patterns.

3.1. Simulation Set-up

In our evaluations, we specify the family-wise error rate, α, as 0.025 and set the sample size for each scenario so that the
power of the design is 1− β = 80%. Our alternative hypothesis is that the treatment has an effect of 0.5 in S1 while the
effect of the treatment is zero for all other subgroups. Therefore the power aims to detect the non-zero effect in S1 (that
is to reject H01) once the first subgroup is selected. The assumed common variance across subpopulations, σ2, is set to 1
and we use 1,000,000 simulation runs.

The designs we consider are: a single-stage design with two subpopulations (Design 1), a single-stage design with
three subpopulations (Design 2), a two-stage design with two subpopulations and three subpopulations (Design 3 and
Design 4, respectively), with an O

′
Brien Fleming (OBF) upper stopping boundary and a fixed lower boundary of zero is

used. We calculate the stopping boundaries and the total sample sizes for F based on (2) and (3) for single-stage designs
(and (5) and (6) for multi-stage designs). Based on these four designs, several scenarios are investigated altering the design
features such as prevalence.

Denote θ̂ as the naive MLE (that is not accounting for selection) for the parameter θ, then θ̂f and θ̂s represent the MLEs
for the treatment effect of F and Ss, respectively. The estimates can be calculated by Z(k)

s /I
(k)
s = Ȳ

(k)
s,T − Ȳ

(k)
s,C , where

s ∈ {1, f} in scenarios for Design 1 and s ∈ {1, 1 + 2, f} in scenarios for Design 2 . In multi-stage scenarios, the MLE
estimates of θ̂f and θ̂1 are calculated by Z1:M

s /I1:M
s = Ȳ 1:M

s,T − Ȳ 1:M
s,C , where s ∈ {1, f} and M is the stage at which the

study stops.
We define bias as bias(θ̂) = E(θ̂)− θ and the mean squared error (MSE), MSE(θ̂) = E((θ̂ − θ)2) as performance measures

for estimation assessment. As the sample size for the full population satisfies the above power requirement and varies
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across different prevalence, a standardized scale is used in the assessments (readers are referred to Appendix A.6 for
details on the standardization). In our subsequent evaluations we will consider three situations. Firstly, we consider the
treatment effect estimator regardless of the population being selected or the hypothesis test being significant. Secondly we
consider only the estimators of the selected populations which is expected to result in selection bias. The third situation
considers reporting bias and for this we only consider only treatment effect estimates of the selected population if the
corresponding hypothesis test is significant. Implicitly we are therefore considering that the outcome of a study is only
reported (published) if it was significant. Note that in the evaluations to follow we refer to the selection bias as Select Sw
and the reporting bias as Select Sw + RejectH0w, where w in S specifies the population chosen through a selection rule.

3.2. Scenarios for Design 1

Scenarios here cover different prevalence values of S1, λ1 varying from 0.05 to 0.95 in increments of 0.05. We illustrate
the assessments for the scenarios under three configurations of different values of θ1 and θ2 in Figure 3-4. Their horizontal
axes are for the prevalence of S1, λ1, and the vertical axes of the row-wise panels are for standardized bias, standardized√

MSE and simulation proportions (%).
Figure 2 presents the estimation assessment of θ̂f and θ̂1 under the assumption of θ1 = 0 and θ2 = 0. As expected we

do not see any bias when no selection is undertaken as well as constant standardized MSE - a pattern that is repeated
throughout all other simulations. Additionally the selection probability is constant at 50% due to the equal effect in both
subgroups. The selection bias is largest when the prevalence in the subgroup is smallest with a matching pattern for the
standardized MSE. The reporting bias and MSE follow the same pattern although at a markedly increased level.

Figure 3 considers the case when θ1 = 0.5 and θ2 = 0. Considering the selection probabilities first, we find that, as
per design, there is a 80% chance to select population 1 correctly and reject the corresponding hypothesis. The selection
probability of the full population increases as the prevalence increases as the effect in the full population gets larger as the
subpopulation contributes more towards it. At the same time the chance to also reject the hypothesis also increases. The
selection and reporting bias in the full population estimate is largest when the prevalence in the subpopulation is smallest
and then steadily decreases towards zero. The size of the bias is well over 0.5 standard errors for almost all prevalences
and hence should be considered important although incorrect selection in itself is not very common in this case. For the
full population the bias dominates the MSE and hence the MSE follows the same pattern.

Focusing attention on subpopulation 1, we find that bias is present, although it is of much smaller magnitude (selection
bias at most 0.1 and reporting bias at most 0.35 standard errors) than for the full population (up to over 2 standard errors).
The selection bias is maximised at a prevalence of around 0.75 while it is largest for a small prevalence for the reporting
bias.

When both treatment groups have the same effect, θ1 = θ2 = 0.5 (Figure 4) we observe that almost always the full
population is selected and only for large prevalences of the subpopulation (> 50%) we obtain notable selection probability
for the subpopulation (up to 20%). As a consequence of this we obtain no estimate of the bias and MSE for the
subpopulation for low prevalences. The bias in the estimate in this population is potentially very large (> 3 standard
errors) but drops quickly towards zero as the prevalence increases. In this setting it is also notable, that the selection bias
is virtually identical to the reporting bias as very large observed effects are necessary to select the subpopulation in the
first place.

The patterns for the full population are somewhat more distinct as no bias is observed for small prevalences, since it is
always the full population that is selected. The bias in this case is, however, very small even in the worst case situation
(prevalence of around 0.75) where the reporting bias is less than 0.1 standard errors and the selection bias is even smaller.

3.3. Scenarios for Design 2

Scenarios for Design 2 regard to select a population among S1, S1+2 and F under different configurations of θ1, θ2 and
θ3. Our focus here is to assess the MLEs θ̂1, θ̂1 and θ̂f under θ1 = 0.5, θ2 = 0, θ3 = 0 under the population selection rule
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Figure 2. (For Design 1, θ1 = 0 and θ2 = 0) the standardized bias and standardized
√

MSE of MLEs θ̂f , θ̂1 and the simulation proportions for different
circumstances against the prevalence of subpopulation 1, λ1.

given by 
selectS1 if Z

(k)
1 > max(Z

(k)
f , Z

(k)
1+2)

selectS1+2 if Z
(k)
1 ≯ max(Z

(k)
f , Z

(k)
1+2), and Z

(k)
1+2 > Z

(k)
f

selectF if Z
(k)
1 ≯ max(Z

(k)
f , Z

(k)
1+2), and Z

(k)
1+2 < Z

(k)
f ,

(9)

This rule is one variant of the maximum statistic rule and sequentially decides which population to be selected. The results
for other configurations of θ1, θ2 and θ3 are provided in Tables 3-5 in Appendix A.7. Note that for all the scenarios
simulations are run under the same stopping boundaries and sample sizes (n(1)f = 576) found based on Design 2 with the
maximum statistics selection rule, θ1 = 0.5, θ2 = 0, θ3 = 0 and equal subgroup prevalence.

The results in Table 1 shows that in this case the correct population is selected most of the time (> 80%) due to the
design constraint to obtain 80% power. The selection bias when selecting the correct population is small at < 0.1 standard
errors and even the reporting bias is only modest at 0.27 standard errors. The selection and reporting bias when selecting
the incorrect population are notably larger in this instance resulting in biases up to 1.3 standard errors. The bias is largest
for the full population as the true underlying effect in this group is at 0.167 smallest amongst all populations and hence a
rather unusual sample is required for its MLE to be largest.
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Figure 3. (For Design 1, θ1 = 0.5 and θ2 = 0) the standardized bias and standardized
√

MSE of MLEs θ̂f , θ̂1 and the simulation proportions for different
circumstances against the prevalence of subpopulation 1, λ1.

Bias/SE
√

MSE/SE Prop.(%)
θ̂f (Select None) -0.00186 0.99849
θ̂f (Select F) 0.96546 1.32104 3.74
θ̂f (Select F + Reject H0F ) 1.31217 1.47472 2.91

θ̂1 (Select None) -0.00151 1.00004
θ̂1 (Select S1) 0.09094 0.97526 88.58
θ̂1 (Select S1 + Reject H01) 0.27068 0.87036 80.20

θ̂1+2 (Select None) -0.00118 0.99884
θ̂1+2 (Select S1+2) 0.76128 1.19617 7.68
θ̂1+2 (Select S1+2 + Reject H0,1+2) 1.02579 1.26021 6.47

Table 1. (For Design 2, θ1 = 0.5, θ2 = 0 and θ3 = 0) Standardized bias and standardized
√

MSE of the MLEs where
the prevalence rates of three subgroups are 1/3. In addition, Proportion (Prop.) stands for how often the corresponding

circumstance occurs.
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Figure 4. (For Design 1, θ1 = 0.5 and θ2 = 0.5) the standardized bias and standardized
√

MSE of MLEs θ̂f , θ̂1 and the simulation proportions for
different circumstances against the prevalence of subpopulation 1, λ1.

3.4. Scenarios for Design 3

The investigation presented here concerns Design 3, a two-stage design and we focus on θ1 = 0.5 and θ2 = 0 here while
the results for other configurations are given in Figures 7-10 of Appendix A.7.

Figure 5 shows the results of the estimator for the full population. The top row corresponds to standardized bias, middle
row to standardized

√
MSE and the bottom row to the probability of selecting the full population. The first column is

associated with the estimators that stop at Stage 1, the second considers only trials that reach Stage 2 while the final
column corresponds to the estimator irrespective of when the trial was stopped. In addition to the selection bias and the
reporting bias, we also consider the estimator irrespective of the reason for stopping (green triangle) in the figure.

The reporting bias is potentially very large (up to 3 standard errors for stage 1 only and up to 2 standard errors for stage
2) and is largest when the prevalence of the subgroup is small and subsequently decreases. When only considering studies
that select the full population and stop at stage 1 it approaches zero while the bias does in fact become negative for trials
that stop at the second stage. The overall estimator is, however, always positively biased showing a very similar pattern
as the stage 1 cases only. The selection bias overall and for stage 2 only follows the same pattern as the reporting bias
while it does show an inverted U-shape for stage 1 only which is maximised at a prevalence of around 0.5. The bias in
the estimator that only considers stopping at stage 1 for any reason follows the same pattern as the selection bias although
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the bias is smaller. It is noteworthy that, although substantial bias is exhibited under some situation, the probability of
reaching these (e.g. selecting the full population and stopping at stage 1) are very rare. The standardized

√
MSE appears

like that in standardized bias except for the second stage. In those exceptional cases, the MSE (for selection, reporting and
regardless of selection) decreases at a different rate before inflating substantially at a prevalence of 0.8.
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Figure 5. (For Design 3, θ1 = 0.5 and θ2 = 0) standardized bias and MSE of θ̂f and simulation proportions for different circumstances at stopping stage
1, 2 and overall, against the prevalence of subpopulation 1, λ1.

Considering the findings for the estimator of the first subpopulation, θ̂1 (Figure 6), the results exhibit similar patterns in
many circumstances in Figure 5. When stopping the trial at the first stage, the estimator is largely biased for prevalences
up to 0.6. The reporting bias subsequently decreases from 2 standard errors while the selection bias is more moderate
at around 1 SE. All the MSE (regardless of any circumstances) decreases to 0.9 SE from 2 and is close one for larger
prevalances larger 0.7. As most of the time the subpopulation is selected correctly, the selection bias and the bias
considering all studies that stopped at stage 1 are very similar and the MSE, meanwhile, is near 1 standard error. The
estimators considering only trials that stop at stage 2 are almost unbiased for small and moderate prevalence but can
exhibit a large negative bias when the prevalence is large. The MSE is close to 1 SE for most of prevalences but becomes
very large beyond a prevalence of 0.7. The overall estimator is, however, positively biased (for both selection and reporting)
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for all prevalences and shows an inverted U-shape with a maximum bias of about 0.3 SEs for a prevalence of 0.6. Its MSE
conditional on selection or no-selection appears different from that considering reporting before a prevalence of 0.7. The
estimator thereafter performs similarly in MSE with a small U-shape under 1 SE.
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Figure 6. (For Design 3, θ1 = 0.5 and θ2 = 0) standardized bias and MSE of θ̂1 and simulation proportions for different circumstances at stopping stage
1, 2 and overall, against the prevalence of subpopulation 1, λ1.

3.5. Scenarios for Design 4

Scenarios for Design 4 is the two-stage counterpart of Design 2 for selecting a population among S1, S1+2 and F

under different configurations of θ1, θ2 and θ3. The investigation here focus on assessing the MLEs θ̂1, θ̂1+2 and θ̂f under
θ1 = 0.5, θ2 = 0, θ3 = 0 under the population selection rule given in the equation 9. The results for other configurations of
θ1, θ2 and θ3 are provided in Tables 6-8 in Appendix A.7. All the simulations are run under the same stopping boundaries
and sample sizes (n(1)f = 335) found based on Design 4 with the maximum statistics selection rule, the configuration of
treatment effects (θ1 = 0.5, θ2 = 0, θ3 = 0) and subgroup prevalences being 1/3.
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Stop at Stage 1 Stop at Stage 2 Overall
Bias/SE

√
MSE/SE Prop.(%) Bias/SE

√
MSE/SE Prop.(%) Bias/SE

√
MSE/SE Prop.(%)

θ̂f (Select None) 0.67715 1.13140 -0.26340 0.96585 0.05614 1.02209
θ̂f (Select F ) 2.02110 2.14318 1.54 0.36337 0.92461 5.98 0.70283 1.17414 7.52
θ̂f (Select F + Reject H0F ) 2.10568 2.14995 1.51 0.85268 1.01727 3.89 1.20283 1.33379 5.39

θ̂1 (Select None) 1.03255 1.22555 -0.29968 0.97840 0.15293 1.06237
θ̂1 (Select S1 ) 1.12932 1.27694 29.13 -0.20496 0.94416 51.17 0.27906 1.06487 80.29
θ̂1 (Select S1 + Reject H01) 1.14828 1.26420 28.99 -0.20175 0.93853 51.11 0.28684 1.05639 80.11

θ̂1+2 (Select None) 0.81892 1.16958 -0.26809 0.96219 0.10120 1.03265
θ̂1+2 (Select S1+2) 1.78983 1.88884 3.31 0.17732 0.89687 8.88 0.61488 1.16604 12.18
θ̂1+2 (Select S1+2 + Reject H0,1+2) 1.82834 1.88619 3.27 0.41744 0.81323 7.57 0.84338 1.13715 10.85

Table 2. For Design 4, θ1 = 0.5, θ2 = 0 and θ3 = 0) Standardized bias and standardized
√

MSE of the MLEs where
the prevalence rates of three subgroups are 1/3. In addition, Proportion (Prop.) stands for how often the corresponding

circumstance occurs.

Table 2 shows the results of the estimators for the first subgroup, the combined subgroup and the full population. The
standardized bias, standardized

√
MSE and simulation proportions are presented in the trials that stop at Stage 1, reach

Stage 2 and are irrespective of which stopping stage.
Considering the trials irrespective of stopping, we observed the correct population is selected in the 80% of simulations

due to the design requirement of 80% power. The bias is found positive for all the overall estimators and varies widely
(smallest at 0.05 and maximum up to 1.2 standard errors). The selection and reporting bias when selecting the correct
population are the smallest (less than 0.3 standard errors), but larger when selecting the incorrect population (particularly
for the full population). All the standardized MSE are larger than 1 standard errors but only up to a moderate size of
around 1.3. While selecting the correct population or rejecting the null hypothesis the estimator for the first subgroup has
a smaller standardized MSE (around 1.06 standard errors) than its counterparts.

The results at different stages show a contrary picture. More trials stop at stage 2 than at Stage 1 and each stage has
a higher proportion of selecting the correct population (around 30% and 50% at Stage 1 and Stage 2, respectively). The
bias is large at Stage 1. The selection and reporting bias are smaller when selecting S1 (around 1.1 standard errors) than
those when selecting S1+2 or F (around 1.8 and 2, respectively). A moderate bias is observed at Stage 2 (up to 0.85
standard errors). In particular, the selection and reporting bias are found negative in the estimator for the first subgroup.
The standardized MSE of all the estimators at Stage 1 are much larger than 1 SE but those at Stage 2 show the opposite
pattern being less than 1 (between 0.8 and 1).

4. Discussions and concluding Remarks

In this paper we have discussed general design considerations for clinical trials with subpopulation selection and illustrate
how such studies can be designed. Selection based on the maximum test statistics is only investigated throughout the
paper. While this selection rule is simple and intuitive, it may not be optimal in certain circumstances. It makes sense to
adopt the rule when some subgroup treatment effects have been identified as being positive and difference between test
statistics across subgroups are reasonably large. However, when the test statistic for Ss and F are close but the former is
larger, applying this rule leads to ethical issues that selecting only part of the population rather than the whole population
although they could benefit from the treatment. Therefore, other options for selection rules should be considered for
similar situations and investigation.

One alternative, which is also considered for designs with treatment selection (such as [33]), can be to introduce a
threshold in the selection rule. This allows all the subgroups whose effect sizes are similar to the best one (their absolute
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difference is within a threshold) to be united so that the pooled population can continue to the next stage. Meanwhile,
it also permits to select a population whose effect size is above a threshold plus the effect size from the others. This
threshold perhaps can be viewed as the degree of efficacy consistency for further testing.

Another option that has been used in the context of treatment selection (e.g. [34, 12]) is simply to select a population
whose efficacy exceeds a certain value at stage 1. This selection rule was used in [12] and integrates population selection
and hypothesis testing at the first stage. Their designs considering a prior ordering on underlying effect sizes of all
individual subgroups somehow connect to ours where the target subpopulations for selection has a nested structure. It is
noted that the mathematical expression of p

Z
(1)
W ,W

(·, ·) in (1) will be different if the above selection rules are used.

In term of estimation we have assessed the bias of the MLE under various scenarios. We find that almost always bias is
positive leading to an over-enthusiastic estimate of the true treatment effect. While for some settings the size of the bias
can be viewed as negligible it can become large under other situations. The challenge clearly being that one will usually
not know if one is in one of these extreme situations. Another observation we make is that although bias is introduced
by selecting the population, the bias gets markedly increased (often more than doubled) when only significant results
are reported highlighting the effect of reporting bias which may be even more problematic than the bias introduced by
selection.

Our results suggest the MSE of the overall MLEs performs quite well (around 1 standard error) in many circumstances
and scenarios. We find whether selecting the correct population or not impacts the size of MSE for the corresponding
estimator. The extent can be more substantial when further reporting significant results. The same finding is even observed
in the extreme scenario, where no correct population is defined because the underlying effect of each subgroup is assumed
none.

In this work we only consider designs with normally distributed endpoints, although they can easily be extend to
other types of endpoints via the efficient scores framework [35]. Moreover we assume that the subgroup prevalence
is known although clearly specifying this parameter correctly in the design will be crucial for the designs operating
characteristics. A consequence of the assumed known prevalence is that we only present the estimation assessment of the
MLE where subgroup sample sizes are fixed according to the respective prevalence in designs. Further simulations (not
shown), however, suggest that random sample sizes of populations only alter the findings marginally.

Future work will consider estimators that are unbiased (or have smaller bias) while maintaining comparable MSE.
Conditional bias-adjusted estimator following the ideas in [24] appear most promising. One extension to the case of
multiple-stage designs given the process continues to the final stage can be naturally achieved. However, whether the
derived estimators have less MSE should be verified in further investigations.
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A. Appendices

A.1. The derivations of Stopping Boundaries and Sample Size

Consider all the possible situations that lead to rejecting any individual null hypothesis, then the inequality (2) for searching
critical values can be derived based on

α ≥ Pr
[ ⋃
w∈S

(Z
(1)
W > Cα,W = w) |H0

]
=
∑
w∈S

Pr
[
(Z

(1)
W > Cα,W = w) |H0

]
=
∑
w∈S

∫ ∞
Cα

p
Z

(1)
W ,W

(z(1)w , w; Θ0)dz(1)w (A.1)

and similarly (3) which can be used to find the total sample size is based on

1− β ≥ Pr
[
(Z

(1)
W > Cα,W = w) |Ha

]
= Pr

[
(Z

(1)
W > Cα,W = w) |Ha

]
=

∫ ∞
Cα

p
Z

(1)
W ,W

(z(1)w , w; Θa)dz(1)w . (A.2)

For a multi-stage setting we begin equally by considering all situations that lead to rejecting any individual null
hypothesis at any stages and find equation (5) as

α ≥ Pr
[ ⋃
w∈S

(Z
(1)
W > Cu1,α,W = w) |H0

]
+ Pr

[ ⋃
w∈S

(Cl1 < Z
(1)
W < Cu1,α, Z

1:2
W > Cu2,α,W = w) |H0

]
+ . . .+ Pr

[ ⋃
w∈S

(Cl1 < Z
(1)
W < Cu1,α, . . . , ClK−1

< Z
1:(K−1)
W < CuK−1,α, Z

1:K
W > CuK ,α,W = w) |H0

]
=
∑
w∈S

{
Pr
[
(Z

(1)
W > Cu1,α,W = w) |H0

]
+ Pr

[
(Cl1 < Z

(1)
W < Cu1,α, Z

1:2
W > Cu2,α,W = w) |H0

]
+ . . .+ Pr

[
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(1)
W < Cu1,α, . . . , ClK−1
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1:(K−1)
W < CuK−1,α, Z

1:K
W > CuK ,α,W = w) |H0

]}

=
∑
w∈S

[∫ ∞
Cu1,α

p
Z

(1)
W ,W

(z(1)w , w; Θ0)dz(1)w +

∫ Cu1,α
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∫ ∞
Cu2,α

p
Z

(1)
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w |z(1)w ; Θ0)dz1:2
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· · ·
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. . .
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. (A.3)
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Similarly the inequality (6) is found as

1− β ≤ Pr
[
(Z

(1)
W > Cu1,α,W = w) |Ha

]
+ Pr

[
(Cl1 < Z

(1)
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]
+ . . .+ Pr
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A.2. Design 1 - single-stage designs with two subgroups

Given the index set for population selection S = {1, f}, the joint distribution of two test statistics Z(1)
1 and Z(1)

f is

(
Z

(1)
1

Z
(1)
f

)
= N

((
θ1I

(1)
1

θfI
(1)
f

)
,

(
1

√
λ1

√
λ1 1

))
.

Let the selected test statistic and the selected population index be Z
(1)
W and W . Both are random variables and

particularly W = 1 or f refers to whether subpopulation 1 or the full population is chosen. The joint density of Z(1)
W

and W , p
Z

(1)
W ,W

(z
(1)
w , w), is equal to p

Z
(1)
w

(z
(1)
w ) · p(W = w|Z(1)

w = z
(1)
w ). If Z(1)

w = z
(1)
w , then W = w if Z(1)

u < z
(1)
w for

all u 6= w. To express the probability for this event it is required to find the distribution of Z(1)
u |Z(1)

w = z
(1)
w . As Z(1)

u and
Z

(1)
w are correlated, we need to exploit a property of conditional densities of the multivariate normal distribution (refer to

Section 0.3 in [36]. Applying this fact it follows that

Z
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.

Then the densities of the joint distribution of Z(1)
W and W are

p
Z

(1)
W ,W

(z(1)w , w; Θ) = φ(z(1)w − θwI(1)w )Φ
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√
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)
, s 6= u ∈ {1, f}.

As a result, (2) for critical value Cα and (3) for the total sample size of F are respectively as follows:

α ≥
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Cα

p
Z

(1)
W ,W
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A.3. Design 2 - single-stage designs with three subgroups

Define the index set for population selection as S = {1, 1 + 2, f}, the joint distribution of three test statistics Z(1)
1 , Z(1)

1+2

and Z(1)
f is then


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 ,

where the entries of the above covariance matrix are obtained by

cov(Z
(1)
1 , Z
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I
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.

To derive the densities of the joint distribution of Z(1)
W and W , the conditional densities of Z(1)

u , Z
(1)
v |Z(1)

w = z
(1)
w for

all u, v 6= w need to be found. Using the gaussian identity about the conditional densities of the multivariate normal
distribution, they are

(Z
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1 = z
(1)
1 ∼ N (µ1+2,f ,Σ1+2,f ) , (A.5)
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As a result, the joint densities of Z(1)
W and W with different elements of W are

p
Z

(1)
W ,W

(z(1)w , w; Θ) = φ(z(1)w − θwI(1)w )Ψu,v

(
z(1)w , z(1)w ; Θ

)
, u, v 6= w ∈ {1, 1 + 2, f},
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where Ψu,v(·, ·; Θ) is the conditional cumulative distribution function of the bivariate normal distribution corresponding
to (A.5) or (A.6) or (A.7). Consequently, (2) for critical value Cα is as follows:

α ≥
∫ ∞
Cα

p
Z
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W ,W
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f .

And the equation which searching sample sizes depends on is the same as that in Section A.2.

A.4. The derivations of conditional densities (multi-stage designs with multiple subgroups)

The conditional densities in (4) are derived from the definition of the test statistic and the distributional properties. Given
Sw being chosn (w ∈ S), the test statistics based on the accumulated data at the end of stage k, Z1:k

w , can also be written
as
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so that the conditional distribution of Z1:k
w given Z1:(k−1)

w = z
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w follows

Z1:k
w |Z1:(k−1)

w = z1:(k−1)
w ∼ N

(√n
1:(k−1)
w

n1:k
w

z1:(k−1)
w +

√
n
(k)
w

n1:k
w

I(k)w θw,
n
(k)
w

n1:k
w

)
.

The conditional densities with different population selection are
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w ; Θ) =

1√
n
(k)
w

n1:k
w

φ

(Z1:k
w −

√
n
1:(1−k)
w

n1:k
w

z
1:(k−1)
w −

√
n
(k)
w

n1:k
w
I
(k)
w θw√

n
(k)
w

n1:k
w

)
, (A.8)

In general, n
1:(k−1)
w

n1:k
w

= λw+(k−2)
λw+(k−1) and n(k)

w

n1:k
w

= 1
λw+(k−1) , where λw is the prevalence of Sw in the full population F , where

w ∈ S.

A.5. Design 3 - two-stage designs with two subgroups

Given the index set for population selection S = {1, f}, Equation (5) for critical values is:

α ≥
∫ ∞
Cu1,α

p
Z

(1)
W ,W

(z
(1)
1 , 1; Θ0)dz

(1)
1 +

∫ Cu1,α

0

∫ ∞
Cu2,α

p
Z

(1)
W ,W

(z
(1)
1 , 1; Θ0) · pw,2|1(z1:2

1 |z
(1)
1 ; Θ0)dz1:2

1 dz
(1)
1 +∫ ∞

Cu1,α

p
Z

(1)
W ,W

(z
(1)
f , f ; Θ0)dz

(1)
f +

∫ Cu1,α

0

∫ ∞
Cu2,α

p
Z

(1)
W ,W

(z
(1)
f , f ; Θ0) · pw,2|1(z1:2

f |z
(1)
f ; Θ0)dz1:2

f dz
(1)
f ,

where Cu1,α and Cu2,α are upper critical values at stage 1 and 2. Moreover, Cu1,α = COBF (2, α)
√

2 and Cu2,α =

COBF (2, α). In addition, Cl1 and Cl2 are zero at stage 1 and 2.
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The stagewise total sample size n(k)f can be found with critical values and specified power. More clearly, under the
alternative hypothesis Ha,

1− β ≤
∫ ∞
Cu1,α

p
Z

(1)
W ,W

(z
(1)
1 , 1; Θa)dz

(1)
1 +

∫ Cu1,α

0

∫ ∞
Cu2,α

p
Z

(1)
W ,W

(z
(1)
1 , 1; Θa) · pw,2|1(z1:2

1 |z
(1)
1 ; Θa)dz1:2

1 dz
(1)
1 .

A.6. Standardization Procedures of Estimation Assessment Measures in Section 3.2-3.5

Bias and mean squared error (MSE) are converted to a standardized scale because some cases consider varying λ1 and
have different sample sizes for the full population across the prevalence. In Section 3.2 (scenarios for Design 1), for θ̂1,

the standardization is undertaken through multiplying bias(θ̂1) and
√

MSE(θ̂1) by I(1)1 = 1/
(
σ
√

1/n
(1)
1,T + 1/n

(1)
1,C

)
; and

for θ̂f , multiplying bias(θ̂f ) and
√

MSE(θ̂f ) by I(1)f = 1/
(
σ
√

1/n
(1)
f,T + 1/n

(1)
f,C

)
.

In Section 3.3 (scenarios for Design 2), the standardization procedures of bias and MSE for θ̂1 and θ̂f are the same as

those in Design 1. For θ̂1+2, multiplying bias(θ̂1+2) and
√

MSE(θ̂1+2) by I(1)1+2 = 1/
(
σ
√

1/n
(1)
1+2,T + 1/n

(1)
1+2,C

)
.

Due to the same reason as that in Section 3.2, we transform bias into a standardized scale in scenarios for Design 3.
At stage 1 the standardization procedures of bias and

√
MSE for θ̂1 and θ̂f are the same as those in Design 1. At

stage 2, the standardization for θ̂f is performed by multiplying the corresponding information level (based on the
accumulated data to stage 2). But for θ̂1, due to the enrichment design feature the standardization needs to consider
different information levels according to the outcomes of population selection. More specifically, if F is selected at
stage 1, then the standardization can be fulfilled by multiplying the information level I1:2f = 1/

(
σ
√

1/n1:2f,T + 1/n1:2f,C
)

=

1/
(
σ
√

1/(n
(1)
f,T + n

(2)
f,T ) + 1/(n

(1)
f,C + n

(2)
f,C)

)
. If S1 is selected at stage 1, then the standardization multiplicative factor is

I1:21 = 1/
(
σ
√

1/n1:21,T + 1/n1:21,C

)
= 1/

(
σ
√

1/(λ1n
(1)
f,T + n

(2)
f,T ) + 1/(λ1n

(1)
f,C + n

(2)
f,C)

)
.

Regardless of population selection or hypothesis testing, the standardized bias and
√

MSE at stage 2 can be obtained by
multiplying a weighted average of the accumulated information levels (considering whether F or S1 is selected at stage
1). The weights are the proportions of selecting F or S1 over all the simulations stopping at stage 2.

The standardization procedure of bias and
√

MSE in Design 4 mixes those in Design 2 and Design 3. It incorporates the
information levels (including the accumulated ones) of the estimator for S1+2.

A.7. Other Scenarios

The following figures provide an overview of estimation assessments and simulation proportions for other scenarios under
Design 2, Design 3 and Design 4.

Bias/SE
√

MSE/SE Prop.(%)
θ̂f (Select None) 0.00070 1.00111
θ̂f (Select F) 0.61007 1.13018 6.73
θ̂f (Select F + Reject H0F ) 0.62751 1.12185 6.69

θ̂1 (Select None) -0.00048 1.00082
θ̂1 (Select S1) 0.89487 1.28668 2.88
θ̂1 (Select S1 + Reject H01) 0.92464 1.28359 2.84

θ̂1+2 (Select None) 0.00045 1.00075
θ̂1+2 (Select S1+2) 0.06905 0.98314 90.39
θ̂1+2 (Select S1+2 + Reject H0,1+2) 0.07748 0.97220 90.13

Table 3. (For Design 2, θ1 = 0.5, θ2 = 0.5 and θ3 = 0) Standardized bias and standardized
√

MSE of the MLEs where
the prevalence rates of three subgroups are 1/3. In addition, Proportion (Prop.) stands for how often the corresponding

circumstance occurs.
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Bias/SE
√

MSE/SE Prop.(%)
θ̂f (Select None) 0.00087 1.00005
θ̂f (Select F) 0.02751 0.99165 96.37
θ̂f (Select F + Reject H0F ) 0.02776 0.99118 96.36

θ̂1 (Select None) 0.00007 0.99936
θ̂1 (Select S1) 1.45101 1.71585 0.22
θ̂1 (Select S1 + Reject H01) 1.45374 1.71607 0.21

θ̂1+2 (Select None) 0.00055 0.99999
θ̂1+2 (Select S1+2) 0.67728 1.17471 3.41
θ̂1+2 (Select S1+2 + Reject H0,1+2) 0.67819 1.17400 3.40

Table 4. (For Design 2, θ1 = 0.5, θ2 = 0.5 and θ3 = 0.5) Standardized bias and standardized
√

MSE of the MLEs where
the prevalence rates of three subgroups are 1/3. In addition, Proportion (Prop.) stands for how often the corresponding

circumstance occurs.

Bias/SE
√

MSE/SE Prop.(%)
θ̂f (Select None) -0.00035 1.00077
θ̂f (Select F) 0.44103 1.03131 34.53
θ̂f (Select F + Reject H0F ) 2.64275 2.66308 0.86

θ̂1 (Select None) -0.00003 1.00001
θ̂1 (Select S1) 0.43384 1.02366 38.71
θ̂1 (Select S1 + Reject H01) 2.64200 2.66239 0.91

θ̂1+2 (Select None) -0.00097 1.00021
θ̂1+2 (Select S1+2) 0.50868 1.06019 26.76
θ̂1+2 (Select S1+2 + Reject H0,1+2) 2.64538 2.66543 0.76

Table 5. (For Design 2, θ1 = 0, θ2 = 0 and θ3 = 0) Standardized bias and standardized
√

MSE of the MLEs where
the prevalence rates of three subgroups are 1/3. In addition, Proportion (Prop.) stands for how often the corresponding

circumstance occurs.

Stop at Stage 1 Stop at Stage 2 Overall
Bias/SE

√
MSE/SE Prop.(%) Bias/SE

√
MSE/SE Prop.(%) Bias/SE

√
MSE/SE Prop.(%)

θ̂f (Select None) 0.33661 0.89132 -0.78128 1.14724 0.06013 0.95461
θ̂f (Select F ) 1.01674 1.21289 8.25 -0.39540 0.87995 3.82 0.56999 1.10756 12.07
θ̂f (Select F + Reject H0F ) 1.01715 1.21252 8.25 -0.36132 0.82940 3.76 0.58602 1.09270 12.01

θ̂1 (Select None) 0.30985 0.93105 -0.60669 1.09339 0.08317 0.97120
θ̂1 (Select S1 ) 1.33691 1.47175 4.36 -0.07151 0.90106 2.68 0.80071 1.25449 7.04
θ̂1 (Select S1 + Reject H01) 1.33719 1.47162 4.36 -0.07034 0.89876 2.68 0.80142 1.25356 7.04

θ̂1+2 (Select None) 0.41228 0.85587 -0.80790 1.16351 0.11049 0.93196
θ̂1+2 (Select S1+2) 0.50316 0.88596 62.66 -0.72961 1.10383 18.23 0.22527 0.93507 80.89
θ̂1+2 (Select S1+2 + Reject H0,1+2) 0.50329 0.88571 62.65 -0.72885 1.10232 18.23 0.22559 0.93453 80.88

Table 6. For Design 4, θ1 = 0.5, θ2 = 0.5 and θ3 = 0) Standardized bias and standardized
√

MSE of the MLEs where
the prevalence rates of three subgroups are 1/3. In addition, Proportion (Prop.) stands for how often the corresponding

circumstance occurs.
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Figure 7. (For Design 3, θ1 = 0 and θ2 = 0) standardized bias and MSE of θ̂f and simulation proportions for different circumstances at stopping stage
1, 2 and overall, against the prevalence of subpopulation 1, λ1.

Stop at Stage 1 Stop at Stage 2 Overall
Bias/SE

√
MSE/SE Prop.(%) Bias/SE

√
MSE/SE Prop.(%) Bias/SE

√
MSE/SE Prop.(%)

θ̂f (Select None) 0.13730 0.89448 -1.35869 1.55812 0.03899 0.93810
θ̂f (Select F ) 0.18764 0.89275 85.46 -1.32389 1.52367 5.51 0.09614 0.93040 90.97
θ̂f (Select F + Reject H0F ) 0.18764 0.89275 85.46 -1.32360 1.52316 5.51 0.09617 0.93091 90.97

θ̂1 (Select None) 0.08507 0.96518 -0.84141 1.24285 0.02419 0.98343
θ̂1 (Select S1 ) 1.51904 1.66283 1.02 0.01030 0.91639 0.28 1.19387 1.50195 1.30
θ̂1 (Select S1 + Reject H01) 1.51904 1.66283 1.02 0.01254 0.91287 0.28 1.19453 1.50128 1.30

θ̂1+2 (Select None) 0.11869 0.92729 -1.15762 1.42881 0.03481 0.96025
θ̂1+2 (Select S1+2) 0.79607 1.13413 6.94 -0.67677 1.05975 0.78 0.64655 1.12658 7.73
θ̂1+2 (Select S1+2 + Reject H0,1+2) 0.79607 1.13413 6.94 -0.67632 1.05875 0.78 0.64662 1.12648 7.73

Table 7. For Design 4, θ1 = 0.5, θ2 = 0.5 and θ3 = 0.5) Standardized bias and standardized
√

MSE of the MLEs where
the prevalence rates of three subgroups are 1/3. In addition, Proportion (Prop.) stands for how often the corresponding

circumstance occurs.
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Figure 8. (For Design 3, θ1 = 0 and θ2 = 0) standardized bias and MSE of θ̂1 and simulation proportions for different circumstances at stopping stage 1,
2 and overall, against the prevalence of subpopulation 1, λ1.

Stop at Stage 1 Stop at Stage 2 Overall
Bias/SE

√
MSE/SE Prop.(%) Bias/SE

√
MSE/SE Prop.(%) Bias/SE

√
MSE/SE Prop.(%)

θ̂f (Select None) -0.93679 1.17125 0.30256 0.95624 -0.08733 1.02388
θ̂f (Select F ) -0.56853 0.81704 11.06 0.65069 1.05915 23.51 0.26069 0.98170 34.57
θ̂f (Select F + Reject H0F ) 3.39993 3.40983 0.08 2.55316 2.57226 0.81 2.62926 2.64753 0.89

θ̂1 (Select None) -0.92616 1.16465 0.21979 0.95338 -0.14072 1.01984
θ̂1 (Select S1 ) -0.57368 0.81690 10.98 0.45633 1.02935 26.09 0.12259 0.96051 38.59
θ̂1 (Select S1 + Reject H01) 3.41824 3.43006 0.08 2.57227 2.59311 0.78 2.65305 2.67303 0.86

θ̂1+2 (Select None) -0.98107 1.20604 0.29132 0.95240 -0.10897 1.03219
θ̂1+2 (Select S1+2) -0.54569 0.80728 7.90 0.59745 1.06136 18.94 0.26109 0.98660 26.84
θ̂1+2 (Select S1+2 + Reject H0,1+2) 3.41475 3.42472 0.07 2.57383 2.59524 0.67 2.65030 2.67067 0.74

Table 8. For Design 4, θ1 = 0, θ2 = 0 and θ3 = 0) Standardized bias and standardized
√

MSE of the MLEs where
the prevalence rates of three subgroups are 1/3. In addition, Proportion (Prop.) stands for how often the corresponding

circumstance occurs.
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Figure 9. (For Design 3, θ1 = 0.5 and θ2 = 0.5) standardized bias and MSE of θ̂f and simulation proportions for different circumstances at stopping
stage 1, 2 and overall, against the prevalence of subpopulation 1, λ1.
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Figure 10. (For Design 3, θ1 = 0.5 and θ2 = 0.5) standardized bias and MSE of θ̂1 and simulation proportions for different circumstances at stopping
stage 1, 2 and overall, against the prevalence of subpopulation 1, λ1.
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