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Abstract

We address a natural question in noncommutative geometry, namely the rigidity observed in many
examples, whereby noncommutative spaces (or equivalently their coordinate algebras) have very few
automorphisms by comparison with their commutative counterparts.

In the framework of noncommutative projective geometry, we define a groupoid whose objects are
noncommutative projective spaces of a given dimension and whose morphisms correspond to isomor-
phisms of these. This groupoid is then a natural generalization of an automorphism group. Using
work of Zhang, we may translate this structure to the algebraic side, wherein we consider homogeneous
coordinate algebras of noncommutative projective spaces. The morphisms in our groupoid precisely
correspond to the existence of a Zhang twist relating the two coordinate algebras.

We analyse this automorphism groupoid, showing that in dimension 1 it is connected, so that
every noncommutative P! is isomorphic to commutative P*. For dimension 2 and above, we use the
geometry of the point scheme, as introduced by Artin-Tate-Van den Bergh, to relate morphisms in
our groupoid to certain automorphisms of the point scheme.

We apply our results to two important examples, quantum projective spaces and Sklyanin algebras.
In both cases, we are able to use the geometry of the point schemes to fully describe the corresponding
component of the automorphism groupoid. This provides a concrete description of the collection of
Zhang twists of these algebras.
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1 Introduction

It is well-known that affine algebraic varieties can have many automorphisms:

Theorem 1 ([ I, [ ). Let k =k be an algebraically closed field. The group of automorphisms of
the affine plane A} over k is isomorphic to Autay(k[z,y]), which is isomorphic to (GLa(k)x k?)*g, () B2 (k)
where

Eo(k) ={f: klz,y] = klz,y] | f: (z,y) = (ax + P(y), By + ), B,7 € k, P(y) € klyl}

and So(k) is the intersection of GAy(k) = GLg x k% and Ey(k), and * denotes the amalgamated free
product. O

Furthermore, informally,

Theorem 2 (][ I, 1 D). Autey(klz,y, 2]) contains wild automorphisms - that is, automorphisms
that cannot be expressed in terms of elementary automorphisms.

Of course, the situation is more tractable for projective rather than affine varieties:

Il

Theorem 3. Let PP = (A}1!)/ ~ be projective (n-)space. Then Aut(P?) = Autz_ g (k[zo, ..., n))
PGLy41(k) = GLypa(k)/(k*)" 1.

However, non-commutative deformations of these spaces typically have very few automorphisms:

Theorem 4 ([ ). Let q € k*, ¢ not a root of unity. Denote by Oq(P}) the k-algebra
Oq(PR) = k(zo, ..., xn)/{Tiz; = qrjz; Vi < 7).

(k) A2,

O
ko (k%) n=2.

Then Aut(O4(P})) = {

The (k*)™*! is the torus action corresponding to the natural Z"*!-grading. The automorphisms that
act by scaling corresponding to this torus preserve the total grading, which is the Z-grading of interest.

The same phenomenon of a significantly smaller automorphism group has been observed for many
other quantum algebras: quantized enveloping algebras and related algebras, quantum matrices, quantum
Weyl algebras, Nichols algebras, and others. Contributors include Andruskiewitsch-Dumas | ], Fleury
[ ], Goodearl-Yakimov | ], Joseph | ], Launois-Lenagan [ ], Rigal [ ] and Yakimov
[Yak13],[Yak14].

This begs the (admittedly somewhat naive) question: where have all the classical automorphisms
gone? The ultimate goal of the approach we will describe here is to understand how, given a projective
variety X, one can study families of noncommutative projective spaces that are close to X in a suitable
sense, and how one may lift some symmetries of X to symmetries of and between these noncommutative
spaces.

We start with a brief discussion of the underlying philosophy we will adopt, with a view to making a
more precise formulation of the previous paragraph.

1.1 Symmetries and groupoids

One classical notion of a geometry is that of a space equipped with an action of a set of invertible,
structure-preserving transformations. This “space” can be a set, vector space, manifold, algebraic variety
etc. and the set of transformations forms a group of symmetries of it.

In categorical language, a group is a category with one object and all of whose morphisms are invertible.
An example relevant to our project is given by taking a Z-graded commutative k-algebra A as the object
and elements of the group of degree 0 automorphisms Autg, (A) as the morphisms.

However, in addressing the question of recovering automorphisms from the commutative setting and of
introducing a paradigm for studying automorphisms in noncommutative projective geometry it is natural,



and necessary, to work with groupoids - that is, categories with more than one object but with all
morphisms invertible.

Noncommutative algebras “close enough” to a given commutative algebra are of course not isomorphic.
However, certain module categories associated to these algebras will be equivalent and even isomorphic
- induced by twists of these algebras, explained below - and we wish to remember how these categories
are equivalent. The morphisms between objects in a groupoid precisely retain this information. We want
to say that certain objects are the same without identifying them. In Baez’s phrasing, “groupoids are
like sets with symmetries” ([Bae]). This point of view has also been expounded by Brown | ] and
Weinstein | ] among others.

As such, we take a collection of noncommutative spaces that model our chosen classical space and,
instead of allowing all possible morphisms between them, concentrate on just the isomorphisms between
them.

That is, we do something like

e consider all spaces and all morphisms between them: a category of noncommutative schemes over
k,

e throw away all objects not sufficiently like our chosen one and
e throw away any non-invertible morphisms.

This groupoid typically has many connected components. This will be the basis for the construction
we describe. However, before that, we need to clarify what we will mean by a noncommutative space. We
will adopt the approach of noncommutative projective geometry, the outline of which we will give below
in Section 2 for the reader unfamiliar with this area.

1.2 Contents

In Section 2 we recall both a theorem of Serre providing an equivalence between the category of quasi-
coherent sheaves on a projective scheme and a certain module category over its homogeneous coordinate
ring, and a noncommutative analogue due to Artin and Zhang. These results motivate the notion that
such module categories should be considered as noncommutative projective schemes. We define the class
of algebras that we take to be homogeneous coordinate rings of noncommutative projective spaces and
then recall the definition of a Zhang twist of a graded algebra. This is a family of automorphisms
of the underlying vector space which induce a new associative multiplication, “twisting” the original
multiplication. Finally, we recall the definition of the point scheme, a classical scheme which is an
important geometric invariant of noncommutative projective schemes.

We introduce and define our main object of study, the groupoid A4 € (P™), in Section 3. This is a
groupoid whose objects are certain module categories for the coordinate rings of noncommutative P™s
and whose morphisms are particular equivalences of these categories induced by Zhang twists. That
this is a groupoid is deduced from a result of Zhang, and that twisting preserves the properties of a
noncommutative P”. We also briefly introduce slice categories associated to 4 € (P™), which allow us to
study all the twists - that is, all of the “generalized automorphisms” - of a given noncommutative P™.

In Section 4 we begin studying the groupoid, considering the case n = 1. Here 4% ([Pl) has only
one connected component (which of course contains the object associated to the commutative polynomial
ring).

We study A% ([P2) in Section 5. Here, the behaviour is considerably more varied and subtle. As
such, more sophisticated techniques are required to analyse the groupoid, in particular the geometry of
the point scheme. Using results of Artin-Tate-Van den Bergh and Mori, relating twists of algebras in this
dimension to isomorphisms between their point schemes (Proposition 35 and Theorem 36), we study the
connected components of the commutative polynomial ring and those of certain quantum deformations of
it. In the latter case, we recover some automorphisms not arising from graded algebra automorphisms of
these deformations.

In Section 6 we consider the groupoid for general n. After introducing Mori’s notion of a geometric
algebra, we generalize Proposition 35, now connecting Zhang twists of such algebras with automorphisms
of their associated point schemes, for arbitrary n. Let A be an object in A€ (P™") associated to a



noncommutative P™ which is geometric in Mori’s sense. Let £ C P™ be its associated point scheme, o a
certain automorphism of £ and £ the very ample line bundle giving the embedding into P™. The main
result of the paper is the following, Theorem 42:

Theorem. Let A be a geometric noncommutative P™ with homogeneous coordinate ring A and let (E, o, L)
be its associated triple. Then
Aut(A) = Aut(E 1 P").

Here, Aut(E 1 P™) is the group of automorphisms of the point scheme that extend to P™. The group
Aut(A) is that obtained from the slice category associated to A, modulo graded Morita equivalence. The

theorem thus says that, up to graded Morita equivalence, the generalized automorphisms of a geometric
noncommutative P" are precisely controlled by the geometry of the point scheme. We conclude with
two examples of the theorem: quantum deformations of polynomial rings in n variables; and Sklyanin
algebras, an important class of noncommutative P2s, before briefly discussing an alternative approach to
considering noncommutative P2s in an appendix.
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2 Preliminaries on noncommutative projective geometry

Let k& be an algebraically closed field of characteristic 0 and let A be a right Noetherian Z-graded k-
algebra. Let Gr A denote the category of (not necessarily finitely generated) Z-graded right A-modules
with morphisms of degree 0. Henceforth, by any graded module category over a k-algebra A, we mean
the category of right A-modules. We denote by (1) the grading shift functor on Gr A. That is, for M a
Z-graded right A-module, and n € Z denote by M (n) the graded module whose degree m component is
given by M(n)m = My ym. Recall from | ] that, for M in Gr A, an element © € M is called torsion if
xAss = 0 for some s. The set of torsion elements of M forms a graded A-submodule, 7(M). The module
M is called torsion if 7(M) = M and torsion-free if 7(M) = 0. The submodule 7(M) is the smallest such
that the quotient M/7(M) is torsion-free. The collection of all torsion modules forms a Serre subcategory
of Gr A which we denote Tors(A).

Let 7 : Gr A — Gr A/ Tors(A) be the canonical quotient functor and define QGr A = Gr A/ Tors(A).
One can roughly think of QGr A as the category whose objects are the same as those of Gr A, but with
torsion modules isomorphic to the zero module. More precisely, the objects of QGr A are those of Gr A
and the morphisms can be described as

HOmQGrA(W(M),W(N)) = h_H)lHOmGrA(M/,N/T(N))

where the limit runs over the quasi-directed category of submodules M’ of M such that M /M’ is torsion.
See [ ] for more details.

To motivate the definition of a noncommutative projective space we want to use, we recall a classical
result of Serre and its noncommutative analogue.

Let X be a projective scheme and £ be a line bundle on X. To this data one can associate the
homogeneous coordinate ring B = B(X, L) = @,,.,, I'(X, L"). Given a quasi-coherent sheaf M on X we
may similarly define T'; (M) = D, en (X, M ® L"), which is a graded B-module. Composing with T,
we obtain a functor I'y,: QCoh(X) — QGr B. Finally, an N-graded k-algebra A is called finitely graded if
dimy A; < oo and connected if Ag = k. By describing such an algebra as connected graded, we mean that
it is both connected and finitely graded.



Then we have:
Theorem 5 ([ D-

(i) Let £ be an ample line bundle on a projective scheme X. Then T, defines an equivalence of categories
between QCoh(X) and QGr B.

(ii) If A is a commutative connected graded k-algebra generated in degree 1 then there exists a line
bundle L over X = Proj(A) such that A = B(X, L), up to a finite-dimensional vector space. Again,
QGr A ~ QCoh(X).

That is, in the commutative setting, studying the category of quasi-coherent sheaves on a projective
variety is essentially the same as studying graded modules modulo torsion over a graded ring.

This suggests that we could naturally consider noncommutative projective schemes to be categories
of the form QGr B for B in some suitable family of (not necessarily commutative) graded rings. For this
definition to be reasonable and useful, one would like to consider rings for which an analogue of Serre’s
theorem holds - in particular, rings B for which QGr B is a Grothendieck category - and for this to form
a sufficiently broad and interesting class of rings to study. The rings to which this analogue pertains are
characterized in [ , Theorem 4.5].

In | ], a categorical version of the homogeneous coordinate ring is defined: namely, given the triple
(C,0,s) of a Grothendieck category C, a Noetherian object O in C and an autoequivalence s, one can
define the homogeneous coordinate ring

B=T4(C,0,s) = @ Hom(0,s'0)
1=0

with the triple (QCoh(X),Ox,— ® L) for X a projective scheme and £ a line bundle being the key
example. Indeed, after giving a categorical definition for a pair (O, s) to be ample and, assuming certain
additional technical conditions on the category C and on a right Noetherian, finitely graded k-algebra A,
the authors show that:

e Given a triple (C, O, s) as above, C ~ QGr(T's(C, O, s))
e For such a graded k-algebra A, A 2T, (QGr A, A, (1)) in sufficiently high degrees, and (7 A4, (1)) is

ample.
(see [ , §4] and | , §2] for a more detailed exposition).
Remark 6. Note that in | , Theorem 4.5(1)] the first result is stated as an isomorphism of triples of
the form (C, O, s) as above. Such an isomorphism of triples requires only that the relevant categories, in
our case C and QGr(I'4(C, O, s)) are equivalent and not themselves isomorphic (see | , D.237)).

All of the k-algebras we consider henceforth satisfy the conditions of Artin-Zhang’s theorem.

To further support the idea that studying module categories of the form QGr A is as fruitful as studying
their associated rings or projective schemes - particularly with regard to our focus on automorphism groups
- recall the following result of Bondal-Orlov:

Theorem 7 (cf. | , Theorem 3.1]). If X is a smooth irreducible projective variety with an ample
canonical or anticanonical sheaf, then the group of isomorphism classes of exact autoequivalences is given

by Aut(Dl,,,, (X)) = Aut(X) x (Pic(X) & Z).

It follows that Aut(Coh(X)) = Aut(X) x Pic(X), so that if we wish to study invertible morphisms of
our noncommutative spaces - meaning equivalences between categories of the form QGr B - then these do
(essentially) correspond to considering automorphisms of varieties in the commutative case.

Indeed, as is shown in | , Corollary 6.9] and | , Proposition 2.15], any automorphism of the
category of coherent sheaves of A-modules, for A a coherent sheaf of O x-algebras, is of the form o, (—® L)
where ¢ € Aut(X) and £ is an invertible (A,.A)-bimodule. As such, following Artin-Zhang’s theorem,
one can study the so-called twisted homogeneous coordinate rings B = I'y,(QCoh(X), Ox, 0.(— ® L)) and
their module categories QGr B via an understanding of Pic(X) and of the automorphisms of X.



Given that projective varieties embed into an ambient projective space, we now restrict to considering
noncommutative analogues of P™.

That is, we want to define the class of noncommutative k-algebras that we consider as giving rise to
noncommutative projective n-space - pairs of the form (QGr A, mA) where the k-algebra A shares impor-
tant homological and algebraic properties with a graded polynomial ring in n + 1 variables. We adopt the
definition given in section 4 of | ]. We first recall some basic definitions giving noncommutative ana-
logues of homological properties enjoyed by commutative polynomial rings. As such rings are Gorenstein,
we make the following:

Definition 8. Let A be a connected graded k-algebra. Then A is called Artin-Schelter Gorenstein (AS-
Gorenstein) if we have the following;:

(i) A has finite left and right injective dimension n;

(ii) for some shift ,
0 ifi#n

Exte 4 (k. 4) = {k(l) ifi=n

Remark 9. One reason for making this definition is that a Noetherian AS-Gorenstein ring A satisfies
certain hypotheses required such that a noncommutative version of Serre duality holds for (QGr A, wA).
That is, there exists an object w® € D?(QGr A) and a natural isomorphism

RHom(—,w?) =2 RHom(7A4, —)*

See [ , §7.4] and the references therein.

In keeping with the fact that polynomial rings also have finite global dimension we define:

Definition 10. Let A be a connected graded k-algebra. Then A is Artin-Schelter reqular (AS-regular)
of dimension n if:

(i) A has right and left global dimension n;
(i) GKdim(A) < oo; and
(i) A is AS-Gorenstein of injective dimension n.

We direct the reader to §8 of | ] for more detailed intuition and motivation behind this definition.
With these notions in hand, we can define the class of algebras we are interested in.

Definition 11 (cf. | , Definition 4.3]). Let A be a connected graded k-algebra. We say that the pair
(QGr A, wA) is a noncommutative P™ and that A is the (homogeneous) coordinate ring of a noncommu-
tative P™ if

(i) A is a Noetherian domain;

(ii) A is AS-regular of dimension n + 1;

)
)
(iil) if [ is the shift from Definition 8, then | =n + 1;
(iv) A is generated in degree 1; and

)

A has Hilbert series (1 —t)""".

(v
As Keeler notes, his characterization is more restrictive than is found elsewhere in the literature.

Remark 12. Note that we have reordered the conditions in Keeler’s definition so that A being Noetherian
is placed first. In this case, A has equal left and right global dimensions, and equal left and right injective
dimensions. Moreover, definitions 8 and 10 are left-right symmetric and so we can omit the conditions
placed on A°P by Keeler.



Before proceeding further, we recall the definitions related to the notion of a Zhang twist, the relevance
of which will become clear shortly.

Definition 13 (] , Definition 2.1]). Let G be a semigroup with identity e and let A be a G-graded
k-algebra. A twisting system for A is a set of graded k-linear A-automorphisms 7 = {1, | g € G} such
that

7g (Y (2)) = 74 (y) Tgn (2)
for all g,h,l € G, y € A, and z € A;.

Any semigroup homomorphism G — Autg (A4) given by g + 7, produces a twisting system {7, | g € G}
where Autg (A) denotes the group of graded algebra automorphisms of A. Twisting systems arising from
semigroup homomorphisms as above are called algebraic. For example, for G = Z and f € Autz (4), we
have the homomorphism n +— f™ and corresponding twisting system {f™ | n € Z}.

In the case of a connected N-graded algebra A = € A; generated in degree 1, the fundamental defining
relations for a Zhang twist are equivalent to the following ([ , D- 284]). A twisting system in this
case is a set 7 = {7, | n € N} of graded linear isomorphisms satisfying

Tm(ab) = Tm(a)TernT;l(b)

for a € A,,. Notice that if 7,4, 7, ! were equal to 7,,, we would have that 7,,, was an algebra map (and
in fact then an automorphism). So this formulation makes visible another way in which twisting systems
are close to, but are more general than, algebra automorphisms.

As with other notions of twisting, such as twisting by automorphisms or by group 2-cocycles, given a
twisting system 7 for A, we can form a new algebra A”, whose underlying k-vector space is the same as
that of A but whose multiplication is twisted by 7.

Definition 14 (] , Definition and Proposition 2.3]). Let A be a G-graded k-algebra and 7 =
{7y | g € G} be a twisting system for A. One defines the twisted algebra of A by 7, denoted A7, as
the triple (®444,%, 1;) where * is an associative, graded multiplication given by

Yxz B y7h (2)

for y € Ay, and z € A; and where 1, < 7.1 (14) is the identity in A”.

The following lemma concerns twisting systems for quadratic algebras and generalizes an observation
of Zhang, made in examining Example 5.12 in | ]

Lemma 15. Let A be a connected N-graded finitely generated algebra, generated in degree 1 and quadratic.
Let 7 = {7, | m € N} be a twisting system. Suppose the graded linear isomorphism 71 is additionally an
algebra automorphism and set 7/ = {7i™ | m € N}. Then we have an isomorphism of algebras AT = AT .

Proof: Since A is generated in degree 1, we may present A as a quotient of the tensor algebra on Aj:
let p: T(A1) — A be the associated canonical map, so that ker p N As generates the ideal of (quadratic)
relations defining A. Fix a basis {z; | 1 < i <r} for A;.

Let R € Az be a quadratic homogeneous relator, i.e. R € kerpN Ay. Write R =) _,» @, X%, where

Xe = g 252 ...z, Note that 3 a; = 2, since R is chosen to be quadratic.

a a Qg(q -1 —
For each monomial X<, let s(a) = max{i | a; # 0} and set X7 = x,* --- xs(;—)) * 71 (T(a))-



Arguing similarly to Example 5.12 of | ], in A™ we have

def
R™ = E o X2
a€EN”

— a1 Qs(a) 1 —1
= E agly' T * T (Ta(a)
a€EN”

a Qs(q -1 —
= > et d (S nn (@) (1)
a€EN”

Z g X*

a€EN”
=0.

-1
Here (1) is a consequence of R being quadratic, so that x%l e xf(ff)) has degree 1; recall that y x z =

y7h(z) with h = degy.
We see that A7 is also generated by A; and R™ =0 in A™ ; only the map 7 is involved in the above
calculation. Hence A7 is isomorphic as a graded algebra to A" . O

Remark 16. Note that the condition on 7 in the lemma is necessary, in the sense that 7/ = {7]" | m € N}
is a twisting system if and only if 77 is an algebra automorphism, under the other assumptions of the
lemma. This follows from the fact that the defining property of a twisting system is equivalent to the
above-stated identity,

Tm(Y2) = T (y)TernT;l(Z)
forally € A, z € A,.

If 7/ = {r" | m € N} is a twisting system, then 7/, = 7"t

" satisfies

Tm(Yz) = Tm (Y)Tm (2)

and in particular 7; is an algebra map. The converse is clear.

Given a coordinate ring of a noncommutative P™ (that is, an algebra A satisfying the conditions in

Definition 11), Theorem 1.3 in | ] states that if A is a Noetherian domain, then so is any twist of
it. Clearly, the degree of an element is preserved by twisting, and hence any twist of A is generated
in degree 1 with Hilbert series (1 —¢)"". From Theorem 5.11 of | ], we have that any twist of

A will be AS-regular of the same dimension. Finally, we have that for some twisted algebra B = A",
Extl, 4 (k, A) = Extl, 5 (k7, B) where k is the A-module A/As;. Hence k™ = A7/AZ, = B/B>; = k as
B-modules. The class of connected graded k-algebras defined above is thus closed under Zhang twisting.
With this in mind, we make the following definition.

Definition 17. Let A and B be G-graded k-algebras. We say that A and B are twist-equivalent if there
exists a twisting system 7 for A such that B = A™ as graded k-algebras.

As in various incarnations of noncommutative algebraic geometry, it is useful to define classical com-
mutative objects which capture some of the information of their noncommutative counterparts. We finish
this section by recalling an important invariant of noncommutative projective schemes - the point scheme -
introduced by Artin, Tate and Van den Bergh. To do so, we wish to define a noncommutative analogue of
a point on a projective scheme and so study irreducible objects of QGr A. As such, we make the following:

Definition 18. Let A satisfy the conditions of Definition 11. A point module for A is a graded cyclic
module with Hilbert series 1/ (1 — ).

Definition 19. Let A be as above and let d € N. A truncated point module of length d + 1 is a graded
cyclic A-module with Hilbert series 1% .



Before defining the point scheme, it remains to introduce the notion of a multilinearization of an
element in the defining ideal of A.
- —d
We adopt the shorthand {n} = {0,1,...,n} and i = {ig,...,iq—1} for a vector in {n —1} . Let
A = T(V)/I be as before, where V' = kaog + -+ + kxp—1 and let f € Iy for some d € N. Thus,
f=> 0z ...x;, , for some o € k.

Definition 20 ([ ]). Define fto be the element of the homogeneous coordinate ring of ([P"_l) xd
given by

E Q3 T50,0 -+ Lig_q,d—1
I

where the coordinate ring of the (j + 1)* copy of P"~! is given by k[0, ..., %n_1,,]. The element fis
the multilinearization of f.

As explained in | , 83], truncated point modules of length d+1 are parametrized by a projective
scheme I'y - that is, 'y represents the functor of taking flat families of truncated point modules and is thus
independent of the chosen presentation of A. By sending a truncated point module of length d + 1 to one
of length d by factoring out the highest degree component, a morphism of schemes I'y — I'y_; is induced,

corresponding to the forgetting of the last component in the projection ([P"’l) xd ([P”*l) =t Finally,
we come to:

Definition 21 (] ). The point scheme of A, T'(A), is defined as the inverse limit of the diagram:
ToT1 - Ty 1 Tg+---

The significance of the point scheme in our framework will become apparent later.

Remark 22. In general, T'(A) is a pro-scheme, representing the functor of taking point modules of A.
However, it is often the case that the projection I'y — I'y_1 is an isomorphism for some d. In that case,
the inverse system is constant for ¢ > d — 1 and I'(A) = T'y_; is a scheme. This is true of regular algebras
of dimension 3, considered in | ], and of the algebras we are concerned with here.

3 Definition of 4% (P")

The above description of Zhang twisting is rather concrete, which has advantages when one wants to
explicitly calculate specific twists, as we shall later. However, even demonstrating some elementary
properties, such as showing that twist-equivalence is actually an equivalence relation, can be cumbersome
when using this definition.

Along with the definition, the other key insight of Zhang was that twist-equivalence of A and B is
equivalent to the existence of a well-behaved functor between certain corresponding categories of graded
modules for A and B. From this, it is easy to see that twisting gives an equivalence relation. We briefly
outline the results of Zhang in this direction, taken from | ], in order to motivate the definition of
the groupoid we wish to study.

Assume that A is a connected Z-graded k-algebra. In Definition 11, we assume a lot more about
algebras that are associated to noncommutative P"s, but even this is already reasonably strong.

Let GR A denote the category of Z-graded A-modules with morphisms being graded morphisms of any
degree - that is, Homgr a(M, N) = @, ., Homg, A(M, N(r)) (note that Zhang writes Hom(M, N)).

We also note that Homgg 4 (M, M), denoted I'(M) by Zhang, is important in a key theorem of Zhang
( , Theorem 3.3]), most notably in the case M = A4. We define GrEnd(A4) = Homgr a(Aa, Aa),
the graded endomorphism algebra of A4 (we avoid the notation I', which we used earlier for the point
scheme of A). By the proof of | , Theorem 3.4], with the above assumptions, GrEnd(A44) = A; that
is, by analogy with the ungraded theory, A is isomorphic to its graded endomorphism algebra.

We say that A and B are graded Morita equivalent if GR A is equivalent to GR B by a graded functor,
i.e. a functor which induces a map of graded rings on Hom spaces. For connected graded algebras, A and
B are graded Morita equivalent if, and only if, they are isomorphic.

As previously, we say A and B are twist-equivalent if B is isomorphic to a Zhang twist of A. By
combining results of Artin-Zhang and Zhang, as detailed in the proof, we obtain the following.



Proposition 23. Let A and B be coordinate rings of moncommutative P"s, so that (QGr A,wA) and
(QGr B, wB) are noncommutative P"s. The following are equivalent:

(i) A and B are twist-equivalent.
(ii) Gr A is isomorphic to Gr B.
(iii) QGr A is equivalent to QGr B via a functor F and
F((rA)(n)) = (xwB)(n) for alln (SSS)
(the “preserves shifts of the structure sheaf” condition).

Furthermore A and B are graded Morita equivalent, i.e. GR A is equivalent to GR B wvia a graded
functor if, and only if, B= A™ = A.

Proof: Consider the following assertions:
(1
2

B is isomorphic to a Zhang twist of A;
Gr A is equivalent to Gr B;
Gr A is isomorphic to Gr B;

4) Gr A is equivalent to Gr B via a functor F' and

)
(2)
(3)
(4)

F(A(n)) = B(n) for all n; (GrSsS)

(5) Gr A is isomorphic to Gr B and (GrSSS) holds;
(6
(
(

)

) QGr A is equivalent to QGr B;

7) QGr A is equivalent to QGr B and (SSS) holds for 7A and 7 B;
)

8) QGr A is isomorphic to QGr B and (SSS) holds for 7A and 7B
Clearly,

e (4) implies (2),

e (5) implies (3) implies (2) and

o (8) implies (7) implies (6).

The first fundamental result of Zhang’s paper is | , Theorem 3.1], which proves that (1) implies
(3). Next, [ , Theorem 3.4] proves that (1) holds if and only if (4). Notice that in the course of
proving (4) implies (1), one has that GrEnd(A4) = A, GrEnd(Bg) = B and GrEnd(B) = GrEnd(4)7,
and hence B = A".

Now, by | , Theorem 3.5], recalling that we are assuming that A and B are connected graded,
we have (1) if and only if (2). The proof of | , Theorem 3.5] (Case 1) also tells us that (2) implies
(4), that is, the condition (SSS) holds automatically for connected Z-graded algebras. Correspondingly
[ , Theorem 3.5] works for N-graded algebras also.

Assuming further that A, B are N-graded right Noetherian AS-Gorenstein algebras - as we do, as these
are among the conditions of Definition 11 - we have the following. The AS-Gorenstein condition implies,
by Artin-Zhang (] ]), that

GrEnd(7A) = @ Homqar a (w4, (1A)(n)) = A

nez

which very much need not be the case in general.
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Then by the proof of | , Theorem 3.7], one has
e (5) implies (7) and, most importantly,
e (1) if and only if (7).

The key point is that [ , Theorem 3.7(2)] gives that the existence of an equivalence of QGr A
with QGr B satisfying (SSS) implies GrEnd(7A) twist-equivalent to GrEnd(wB), for not necessarily
AS-Gorenstein algebras. As noted above, having AS-Gorenstein as well yields A = GrEnd(wA), B
GrEnd(7B) and hence twist-equivalence of A and B, that is, (7) implies (1).

That is,

e 2)eB) e @) e(7)

and (5) and (8) both imply all of these equivalent statements. In particular we have that (1) if and only
if (3) if and only if (7), as claimed.
The final claim of the proposition is immediate from the discussion preceding its statement. (|

We wish to highlight that the list of conditions in Definition 11 is extremely strong. In particular,
as noted in Example 3.10 of | ], for a Z-graded algebra A with right progenerator P, A and B =
@, Homg; 4 (P, P(n)) are graded Morita equivalent, and hence Gr A is equivalent to Gr B. However, in
this generality B is not always isomorphic to a twist of A whereas in our setting, where we have N-graded
AS-Gorenstein algebras, these statements are equivalent.

The proof of Proposition 23 uses the following result due to Artin and Zhang (| D

Proposition 24. Let A be a coordinate ring of a noncommutative P™ and let (QGr A, wA) be the associated
noncommutative projective space.
The graded endomorphism algebra of A in QGr A,

GrEnd(rA) = @ Homqar a(mA, (mA)(n))

nez
is isomorphic as graded k-algebras to A. O

Hence, in our setting the algebra A can be recovered from the data (QGr A,7A). We mention this
result separately to highlight that regarding the pair (QGr A, 7A) as a noncommutative projective space
mirrors Grothendieck’s insight that to study a scheme, one should study its category of quasi-coherent
sheaves.

We thus take condition (iii) in Proposition 23, QGr A being equivalent to QGr B and (SSS) holding, as
the most appropriate formulation of a noncommutative projective space of the three equivalent conditions
of the proposition, as it is closest to the statement in Serre’s theorem. That is, given Grothendieck’s
philosophy and Serre’s result, we regard QGr A as the category of quasi-coherent sheaves on a noncom-
mutative space and regard such spaces as being equivalent if the categories (QGr A, 7A) and (QGr B, 7B)
are equivalent.

It is useful to phrase certain statements in terms of properties of the algebras that are coordinate rings
of noncommutative P"s, as we have being doing, only because not all of the conditions of Definition 11
have a convenient expression internal to QGr A.

Given that an algebra A and its appropriate module category determine one another, we now define
our main object of study, the groupoid A4 € (P™):

Definition 25. Let A4 € (P™) be the category whose objects are the pairs (QGr A, mA) where A is an
algebra satisfying the conditions of definition 11 and whose morphisms are equivalences of categories
F : QGr A — QGr B such that F (7A(m)) = xB(m) for all m € N.

By Proposition 23, the groupoid A4°€ (P™) partitions into connected components corresponding pre-
cisely to all of the Zhang twists of any given algebra A whose pair (QGr A,7A) is in that component.
For example, for n > 2, O(P") = k [zo, 21, ..., 2, and O4(P}) correspond to pairs in different connected
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components. Henceforth, we call the component containing (QGr O(P™), rO(P™)) the commutative com-
ponent.

Our initial project is to attempt to understand these connected components for the cases n = 1 and
n = 2 and, as such, to systematically introduce the study of generalized automorphisms into this strand
of noncommutative geometry, in keeping with the classical literature of Artin, Stafford, Tate, Van den
Bergh, Zhang et al. and the more recent work of Pym (] D.

By considering the groupoid formed from noncommutative spaces and those equivalences between
them induced by Zhang twists, we can give categorical interpretations of the twists of a given algebra
A germane to our project of defining and studying an object that generalizes the graded automorphism
group of A. As such, we will soon consider the slice category associated to (QGr A, wA), which allows us
to focus attention on the connected component of A4€ (P™) containing (QGr A, wA).

This object will not be a group but in the two approaches we outline it can be thought of as either
a groupoid or a functor. This object does not form a group because in general taking a Zhang twist of
a given algebra does not produce an isomorphic algebra. Composing Zhang twists thus involves passing
between different domains and codomains, and so between different module categories. However, the
groupoid precisely encodes the compositions that are defined.

Remark 26. The proof of Proposition 23 shows that we do not have a lot of scope to relax our definition
of /€ (P™), to - for example - obtain a groupoid with fewer components. (We will see later that for
n > 1, /%€ (P") has many components.) In particular, the condition Gr A isomorphic to Gr B is seen to
imply and be implied by Gr A equivalent to Gr B, so weakening “isomorphic” to “equivalent” has no effect
here. We consider it to be an interesting but wide open question as to whether there is a weaker form of
equivalence than twist-equivalence yielding fewer equivalence classes but retaining sufficient strength to
obtain results comparable with our main theorem below.

Remark 27. An additional property on the algebras we consider that one might wish for, with its roots in
geometry, is the Calabi-Yau property. In work of Reyes-Rogalski-Zhang (] LI 1), a definition
of a skew Calabi-Yau A is given (the term twisted Calabi-Yau being used elsewhere), part of which asks
for the existence of an algebra automorphism pa of A, known as the Nakayama automorphism. Then
the algebra is Calabi-Yau if p4 is an inner automorphism; the original definition of Calabi-Yau is due to
Ginzburg | ]

We refer the reader to | ] for a comprehensive discussion but note that our assumptions in Defini-
tion 11 in particular imply that homogeneous coordinate rings of noncommutative P"s are skew Calabi-Yau
(0 , Lemma 1.2]). In | ], the authors establish a relationship between the Nakayama automor-

phism of a skew Calabi-Yau algebra and that of a twist by a graded algebra automorphism, noting that
not every skew Calabi-Yau algebra can be twisted by an automorphism to a Calabi-Yau one.

Given that we have additional assumptions on our algebras and also that we wish to consider all
Zhang twists, not just those coming from automorphisms, the question of whether or not each connected
component of A4 € (P™) contains a noncommutative projective space whose homogeneous coordinate ring

is Calabi-Yau remains open. We note that Pym | ] has an analogous statement in the setting of
deformations, but the analytic argument used there is not available in our framework.
We also note that in | ], the authors prove that we can detect whether the algebras we consider

are Calabi-Yau by examining the algebra F = Ext% (k, k), specifically showing that A is Calabi-Yau if
and only if E is graded-symmetric.

We now adopt the calligraphic font A < (QGr A, wA) for objects of A€ (P™). Given an object A, we
wish to focus attention on the morphisms to A. The connected components of A4 € (P™) do not in general
have a terminal object but, for a given A, we can form the slice category 4% (P™) /A, whose terminal
object is the morphism id4 : A — A. The objects of A€ (P"™) /A are maps B — A and the morphisms
are the triangles:

B L C

N/

A

where f is a morphism in A€ (P™).
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The slice category A€ (P™) /A comes with a forgetful functor ® to .4#€ (P™), given on objects by
taking the domain, ®(B — A) = B and on morphisms by taking the map f in the triangle above. In
our situation, since A4 %€ (P™) is a groupoid, one can easily show that this functor is full. However, it
is not faithful; A€ (P™) and its slices are closely related but do not hold identical information. Part
of the reason for this is that “unique” is a very strong statement in this set-up whereas “unique up to
isomorphism” is very weak.

Remark 28. The slice category has a close relationship with the functor Hom_y«@n)(—,.A), the latter also
being a natural way to focus on morphisms in A€ (P™) whose codomain is A. The relationship between
these is akin to that between a function f: X — Y and its graph I'(f) C X x Y. In this instance we will
find that statements regarding the structure of the slice category (and hence of twists of A) are easier to
state for the category than for the associated functor.

However at other times it is fruitful to consider the functor Hom Jygg(nan)(—,A), not least because
the form of this functor permits its interpretation as a (representable) presheaf. We note many poten-
tially interesting morphisms between noncommutative projective spaces are not contained in the groupoid
A€ (P™) and as such this presheaf is rather special.

The presheaf model and the corresponding Yoneda embedding Y: A€ (P™) — [A4¢C (P™)°", Set]
has a “test space” interpretation: A€ (P™) is our category of noncommutative projective spaces and
the presheaf Y (A) = Hom_y«(pn)(—,.A) captures the information of all of the noncommutative spaces
isomorphic to A and how they are isomorphic. That is, we are “testing for sameness”, which as we
suggested earlier should correspond to the generalized notion of symmetry that we need in this generality.

By Proposition 23, morphisms F : (QGr B,7B) — (QGrA,7A) in A€ (P") correspond to twists
7 such that B & A". As such, the slice category A€ (P") /A gives a categorical interpretation of
Zhang twists. Indeed, we could define Twists (A) = 4 € (P") /A, as the twists of the algebra A cor-
responding precisely to the morphisms in A4 € (P™) with codomain (QGr A, 7A). That is, Twists (A) =
Hom_y4pry (—, (QGr A, 7A)).

This makes clear the fact that Zhang twists under composition form a groupoid, as the slice of the
groupoid A € (P™) is a groupoid. This supports the contention referred to earlier that the correct replace-
ment of automorphisms in the commutative setting should be morphisms in a groupoid. More precisely,
we have the following elementary results.

Lemma 29. Let A, B be coordinate rings of noncommutative P™s and let f: B — A be a graded al-
gebra isomorphism. Then the pushforward f.: QGrB — QGr A is an equivalence of categories sat-
isfying fo(wB(m)) = (wA)(m) for all m € N, and hence defines an object in NE (P™) /A, where
A= (QGrA,rA). O

Remark 30. Note that if B is isomorphic to A, then certainly B is isomorphic to a twist of A, namely the
identity twist. For connected graded algebras, isomorphism is equivalent to graded Morita equivalence,
as explained above.

In general, not every twist will arise from an automorphism of algebras, but certainly every automor-
phism of algebras gives rise to an algebraic twist (p. 7). If we take B = A in the above - that is, f an
automorphism - then the pushforward functor f, yields an automorphism of A4 "¢ (P™) /A, in the following
sense, this being a categorical version of the algebraic twist construction.

For a category C, let Iso(C) denote the group of auto-isomorphisms of C.

Proposition 31. Let Autg (A) denote the group of k-algebra automorphisms of A that are Z-graded of
degree 0. For each coordinate ring of a noncommutative P™, A, there is an injection

Autg, (A) < Iso(A) < Iso (AE (P") /A)
given by f +— f. o — which on objects is given by fyo— : (B— A) — (B% ALy A), where f, is

the equivalence of module categories induced via push-forward along an isomorphism of algebras. On
morphisms, one sends the diagram
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B—C to the diagram B—C
N/ N/
A A

e
A

Proof: Let us briefly abuse notation and write simply f,, as opposed to fx o —. By the properties of
composition of homomorphisms, f, is clearly a functor. In the same manner, it can also be readily
verified that z, oy, = (x o y),, that (f) ' = (f71),, and that (14), = Id_ye@n)/a- Injectivity follows

by definition. O

Note that we could have used the pull-back of modules along a morphism f* in the previous proposition.
The pull-back applies more generally to any morphism of modules, though would produce a contravariant
functor. As we are concerned only with push-forward and pull-back under isomorphisms of modules, we
choose to work with the push-forward. Accepting the various notions of a group action on a category, in
our context, the above definition is sufficient.

We also note that the above injection is not usually surjective. For in the commutative case, the Picard
group also acts by auto-equivalences on Coh X, by the result of Bondal and Orlov recalled earlier.

We now turn our attention to a more detailed analysis for A4 % (P™) for small n, beginning with n = 1.

4 Noncommutative P's

We now consider the case of A€ ([Pl). To describe the algebras A such that (QGr A,7A) € 4/ € ([Pl)7
we mimic the discussion in Section 1 of [ ] and more specifically the proof of their Theorem 1.5. We
are concerned with a special case of their results but we consider it helpful to include a detailed exposition
here for the particular case at hand, where in some parts we can be more explicit.

Let A be a connected graded k-algebra generated in degree 1, and write

Agk<1‘1...,1'r1>/(f1;-'-7f’l“2)

where r; is the minimal number of generators and r, is the minimal number of homogeneous relations.
Without loss of generality, we can write the relations as

T1
fi= E Mgy
J=1

We then define an exact sequence of left A-modules

Az Moam o4 k0 (2)
where M = (m;;) with m;; € k(x1,...,z,).
Proposition 32 (cf. | LI |). Let A be a coordinate ring of a noncommutative P*. Then we have

rr =2 and ro = 1 so that A has a single quadratic relation f. Hence, one obtains a graded resolution of

left A-modules of the form
0 A2) B A1) B A1) 5 A=k —0 (3)
Proof: Consider a minimal resolution of 4k

0—-A” A" - A—4k—0 (4)
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with r1 and 7o as before. The ranks of the free modules are given by r; = dimy Torg4 (k,k). From the
AS-Gorenstein property with shift [ = 2 (Definition 8), we know that applying the functor Hom(—, A) to
this resolution will produce a resolution of the right A module k4 = Ext? (k, A)

O ka+ A+ A"+ A+ 0 (5)

and this is minimal, since (4) is minimal. Since dimy Torf‘ (k, k) is symmetric in both left and right, we
conclude that ro = 1. Henceforth set r; = r.
We have therefore obtained a resolution

0 A(—s) B (A1) 5 A=k —0 (6)

where s is the degree of f. Setting a,, < dimy, A,,, the above exact sequence gives rise to the recurrence
relation a, — ra,—1 + an—s = 0. The characteristic polynomial of this relation is p(t) = ¢° — rts~L 4 1.

We know that A has Hilbert series 1/ (1 —)* = 1+ 2t + 3t2 + 4¢3 + ... Setting (r, s) = (2,2) gives the
correct dimensions and it is clear that r, s > 2. We claim that this is the only solution.

To show this, we demonstrate that if r + s > 4, then p(¢) has a real root strictly greater than 1. If
s>2andr>2,p(1)=2—7r<0but p(t) >0 for ¢ > 1 and we are done.

Otherwise, if r = 2 and s > 2, p(1) = 0. Since p(t) > 0 for ¢t > 1 still, it suffices to show that the
derivative

p(t)=t""2 (st —r (s - 1))

is negative at ¢ = 1. But for r = 2, p/(1) = s —2(s — 1) = 2 — s < 0 and so we are done in this case
too. g

We have shown that A = k(z,y)/ (f) where deg(f) = 2. One can show that, in order for A to satisfy
the condition on Exté, 4(k, A) in Definition 8, f must be of the form z(az + by) — y(cx + dy) = 0 for
ad — be # 0. By Example 3.6 of | ], these are precisely the algebras which are Zhang twists of
k [x,y] and two such algebras are isomorphic if, and only if, the linear automorphisms corresponding to
two relations f; and fo are in the same PGLa(k)-conjugacy class. Thus, we have that A4 € ([Pl) has one
connected component, whose morphisms are controlled by PGLq(k)-conjugacy class.

More categorically, via Serre’s theorem, we then see that every QGrA € 4% ([Pl) is equivalent to
QCoh P'. We may interpret this as saying that there are no non-trivial noncommutative P!’s, and the
trivial ones all have the classical automorphism group as their twists.

The above theoretical considerations are complemented by the fact that in low dimensions we can
proceed very concretely.

In the case of a connected N-graded algebra A = € A; generated in degree 1, recall that the funda-
mental defining relations for a Zhang twist are equivalent to the following (| , P- 284]): a twisting
system in this case is a set 7 = {7,, | n € N} of graded linear isomorphisms satisfying

Tm(ab) = Tm(a)TernT;l(b)

for a € A,.

Since A is assumed to be generated in degree 1, we can view the above as giving us a way to inductively
construct twisting systems. Let 7¢, denote 7,,|4,: A; — A;. By results of Zhang, without loss of generality
7o may be taken to be the identity, so we start by choosing 71 : A3 — A1 ([ , Proposition 2.4]). This
is equivalent to choosing an invertible matrix acting on a set of generators of the algebra.

Then since 72 will need to respect the relations of our algebra we may try to define 72 by solving to
find 75 such that the twisting relation above is satisfied. If we can do this, we can then try to find 735, 73
and so on, building up 7 piece by piece.

If we know more about our algebra, such as that A is quadratic, then we might expect this process to
terminate and the higher components of the maps to be determined. Note though that we will need to
specify 7., for all m.

Conversely, we may view the above process as a series of obstructions for a collection of linear maps
to form a twisting system. A failure of the existence of solutions to the relevant equations at some point
can indicate that a particular choice of 7} cannot lead to a twisting system, for example. That is, we can
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consider twisting as a type of deformation problem. In the case of noncommutative P"s corresponding to
geometric algebras (see Definition 37), we can partially resolve this problem by computing certain twists
via geometric data (see Theorem 42).

By writing down a matrix 7" representing the projection from the tensor algebra over A; to A, we
can produce the following linear algebra computations corresponding to this process, and for dimension 1
actually solve these, as follows.

Example 33. We consider first A = O(P!) = k[z,y], with degz = degy = 1.
Let

SO O
o o= O
o o= O
_ O O O

whose kernel is spanned by v = (0 1 — 1 0) corresponding to  ® y — y ® z, and

_ 1 _y-1({a b ad — fc Ba—ab
§=A®@BA™ =X (c d)®('yd5c da — b

where A = 71, B = 73 and A\ = det A. Then A and B will extend to a twisting system precisely if
kerT'S C ker T: we may calculate and see that

TSv=0 & A2<ﬂ 5)<0 H) & up to scaling, B = A?
—a  —v —u 0

By means of this computation, we see that all twists of the commutative polynomial ring are algebraic:
they come from automorphisms as {7,, = f™}.

Example 34. Consider next A = O,(P') (p.2), also with degz = degy = 1.
Let g € k* and let

o O O
o o O
o O = O
_ o O O

whose kernel is spanned by v = (0 1 — ¢q 0) corresponding to z ® y — qy ® x, and

_ 1 _y-1f{a b ad— fc Pa—ab
S=A®BA™ =A (c d)®('yd5c da — b

as before. Then A and B will extend to a twisting system precisely if ker T'S C kerT: we may calculate
and see that

- 10 B 5\ (0 u . _ 10
TSv=20 & A(O q>A<—a —7)<—,u 0> & uptoscahng,BA<0 q> A.

That is, S=vA® A (é 2) This ought not to be a surprise: is precisely what we twist the

1
0
polynomial ring O(P) = k[z, y] by to get O,(P'). So we see that O (P!) “has the same twists” as O(P!)
- which we knew from a more theoretical analysis above - and we see this concretely, as a combination of
a general twist of the polynomial ring and the particular twist taking us to the quantum plane.
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However, two significant differences occur in higher dimensions, even dimension 2. Firstly, it is straight-
forward to show explicitly that the polynomial ring and the algebra O,(P?) (often less formally called
“quantum P2”) are no longer twist-equivalent. Secondly, the dimension of A; and thus the size of the
matrices 7', S increases significantly (from (1 + 1)2 =4 to (2 + 1)?> = 9) and the dimension of the kernel
of T becomes 3 rather than just 1. So the above explicit linear-algebraic approach becomes less viable.

Fortunately in the case of P? - that is, algebras that are AS-regular of dimension 3, so of global
dimension 3 - we have the seminal work of Artin-Tate-Van den Bergh ([ LI ]) available
to us, in which the authors introduced point schemes and associated concepts. In the next section, we
will utilize this to analyse the groupoid A€ ([PQ).

5 Noncommutative P32s

In | ] and | ] the authors study AS-regular algebras A of dimension 3, among which
are the noncommutative analogues of P? we wish to consider. To such an algebra A they associate a
triple 7 = (E,0,L) where E is the point scheme of A (Definition 21), ¢ is an automorphism of F and
L= j*O (1) where j is the embedding of F in P2.

Let r be the size of a minimal generating set for A. Let 7 be a triple associated to a regular algebra
as above. In [ , Theorem 2] it is shown that these triples satisfy

(c—1)%[L]=0 ifr=3 and (0°—1)(c—1)[L]=0 ifr=2

where [L£] is the class of £ in Pic(E) and such triples are also called regular. Let s be the degree of the
defining relations of A.

For regular algebras of dimension 3 generated in degree 1, there are two possibilities: A is generated
by three elements and has three quadratic relations; or A is generated by two elements and has two
cubic relations. As noted in | , p- 175], A has the same Hilbert series as the polynomial ring if and
only if the algebra has three generators and is quadratic, so henceforth we will focus on this case, where
LD’ ~ o (here £ denotes the pullback p*L along an automorphism p).

In §8 of | ] the authors define the notion of twisting a regular Z-graded algebra A by a
graded A-automorphism. This twisting process was later generalized by Zhang to that described above.
They then define an action of graded A-automorphisms on the set of regular triples and demonstrate
a correspondence between twists of a given algebra and images of its regular triple under the action
of A-automorphisms. For completeness, we give a slight generalization of their argument ([
Proposition 8.9]) in the case r = 3 for Zhang twists.

)

Proposition 35. Let A be a reqular algebra of dimension three determined by the reqular triple T =
(E,0,L) and let T be a twisting system on A. By dualization and projectivization, there is an automorphism
1% of P(A1) induced by 7 and 71*(E) = E. Denote by 7L the induced automorphism of E and let T, p

be the triple (E,TlEO’, E). Then AT is the algebra determined (up to isomorphism) by 971150.

Proof: Since Zhang twisting preserves regularity, A" is regular. Let ¢ = (1,7) and let T” S o(T(E)).

Since I'(E) is the locus of common zeroes of the multilinearized relations of A, { fi}, we have that IV is

the locus of common zeroes of the multilinearized twisted relations f: and hence, I'" =T'(A7).

Since s = 2, we have that E = pr;I”. Since A7 is regular, I'" defines an automorphism ¢’ of E. Hence,
AT defines a triple 7’ = (E,¢’,£). By analysing the construction, one can see that ¢/ = 70 and so

T'=T e, =(E 10 L). 0
T O ( 1

To proceed further, we will use a combination of algebraic and geometric methods, as were illustrated
for /¢ (P'). On the geometric side, we have the following theorem of Mori ([ ]); the version below
has been adapted to the specific case at hand.

Theorem 36 (cf. | , Theorem 4.7]). Let A and A’ be coordinate rings of noncommutative P%s, with
associated triples 7 = (E,0,L) and ' = (E',0’, L") respectively. Then A is twist-equivalent to A’ if and
only if there exists a sequence of automorphisms {p,, | m € N} C Aut P? such that, setting pE, ] omlE,
we have pE (E) =2 E' and pZ. 0 = o'pE for alln € N.

17



Diagrammatically,

Mori’s original version of the result makes fewer assumptions on A and A’, including that the algebras
concerned are only Z-graded and not necessarily N-graded. By use of | , Proposition 2.8] for the N-
graded case and an examination of Mori’s proof, one sees that for N-graded algebras, a family {p,, | m € N}
is sufficient, rather than a family {p,, | m € Z} as Mori requires.

Also, the conclusion of the theorem is expressed as Gr A being isomorphic to Gr A" if and only if
{pm | m € N} exists with the stated properties. Of course, we have already seen that for coordinate rings
of noncommutative projective spaces, this is the same as twist-equivalence. Indeed, Mori’s proof is not
categorical but goes via the existence of a Zhang twist, for which Mori has sufficiently many assumptions.

In particular, Mori’s result works in higher dimensions: he gives a definition of a geometric algebra,
this being a quadratic algebra that satisfies some conditions relating to the point scheme. For dimension 2,
it is known that every coordinate ring of a noncommutative projective P? is geometric (see the references
given in [ D.

It is natural to ask whether this is true for all noncommutative P™s with n > 2; given what is known
of the rich landscape of algebras, with quite diverse examples, we expect that the answer is no in general.
Specifically, a generic AS-regular algebra of dimension 4 has a finite point scheme, whereas geometricity
asks that the point scheme is sufficiently large to encode the relations of the algebra (see [ , 81.4]).

However, Mori’s results do show that if we have a geometric algebra then any twist of this is also geo-
metric. So provided we know that one algebra in a given connected component of A4 % (P™) is geometric,
we immediately know this for all algebras in the component. For analysis of twists of some particular
algebra, this can allow us to use Mori’s results.

Staying with dimension 2, let us use Mori’s result to analyse twist-equivalence for the 2-dimensional
algebras analogous to O(P!) = k[z,y] and O,4(P') that we treated in the previous section.

Consider the component of .44 (P?) containing (QGr A, mA) for A = O(P?), whose associated triple
is (P?,id,O(1)). Any triple for an algebra twist-equivalent to A must necessarily have point scheme
P2, so without loss of generality we may let A’ be an algebra associated to the triple (P2, o, O(1)) for
o € PGL3(k) arbitrary.

In this situation, Mori’s theorem may be rephrased (as in | , Remark 4.8]) to say that A and A’
are twist-equivalent if and only if there exists py € PGL3(k) such that

e po(P?) = P? and
® pm S o™ po(id)~™ can be extended to an automorphism of P? for all m € N.

But pg = id clearly satisfies this, so we deduce that (QGr A’, 7A’) is also in the connected component
and A’ = A%, the twist of A by the automorphism induced by o.

Mori ([ , Remark 4.9]) also shows that such A and A’ are isomorphic if and only if {p,,} can be
taken to be constant, i.e. p,, = p for all m. Then the condition p,,+10 = o’ py, for all m € N reduces to
conjugacy:

A= 47 & Jpsuchthat o’p=poc <« o is conjugate to o

This generalizes the earlier statement for noncommutative P's, where there is only one component
whose morphisms are controlled by PGL2(k) conjugacy.

For every (QGr A’, 7 A’) in the commutative component of A € (P™), we have that QGr A’ ~ QCoh(P™).
Furthermore, by exactly the same argument as above for P2, every element of PGL,,11(k) gives rise to a
twist, and graded Morita equivalence is controlled by conjugacy in PGL,, 41 (k).

We may use this method to analyse other components too. The following is an extended presentation
of | , Example 4.10], which we include both for the reader’s convenience, as an illustration of the
method, and also in preparation for its extension later.
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Consider the algebra Og(P?) for @ = (o, 3,7) € (k*)® with presentation

Oq(P?) = k(,y, 2)/(2y = ayz, 0z = fzx,yz = yy).

This is the natural multi-parameter generalization of Og(P?) = Og-1 4 4-1)(P?).

Provided a3y ¢ {0, 1}, all algebras of the form Og(P?) have the same point scheme E C P2, namely
the union of the three lines in P? given by the vanishing of the coordinates x, y and z; let I; = V(z) etc.
The associated o = ¢(Q) is given by o(Q) = p(«, 5,7) where

w1, (0,0, ¢) = (0, ab, c)
pli, (@, 0, ¢) = (a,0, Be)
Mlls (a’ b, 0) = ('yaa b, 0)'

One may easily check that such a pu(a, 8,7) extends to all of P? if and only if a8y = 1.

Furthermore, the subgroup of elements of PGL3(k) that preserve this triangle E is isomorphic to
(k*)? x S3, where the 2-torus action precisely comes from the action of maps of the above form pu(a, 3,7)
with a8y = 1 and the S3 permutes the three lines.

In | , Example 4.10], Mori uses his theorem to give necessary and sufficient conditions for the
twist-equivalence of A and A’ associated to (E,0 = p(«, 8,7)) and (E, o’ = p(o, 8',7")).

For example, take py = (1 2) € S5. Then one may straightforwardly check that

(Ulp00_1)|ll (05 bv C) = (a_lbv Oa ﬂlc) = (ba 07 O‘ﬂlc) €ly

with similar expressions for o/ pgo =1 on I and I3. From these, one sees that o’ pgo=! = u(a’B, af’,vy")opo.

Now po extends to P? by definition, hence o’pgo~! does if and only if u(a’/B, aB’,~vy") does, which
happens if and only if o/ 8'y" = (a8v)~!. Furthermore this condition suffices to ensure that (') pg(c)~™
extends to P2 for all m and hence A and A’ are twist-equivalent.

This phenomenon - of the sufficiency of one condition, independent of m, to establish twist-equivalence
- can also be seen in other examples (Theorems 5.2 and 5.4 of | ]) and we will return to this later.

Iterating through the other choices for pg, one may show that A = O, 3,1)(P?) and A’ = O g/ 1) (P?)
are twist equivalent if and only if o/ 8'y" = (a87y)*!.

Recalling that @ = (¢71,¢,q7 1) gives the single parameter quantum P2, O,(P?), we see as a special
case that O,(P?) is not twist equivalent to Oy (P?) for all but one other choice of ¢’ € k*:

()™M d () H=@"a@H = =¢"

This makes it very clear that A% ([PQ) has very many connected components. It also shows that in the
case of quantum algebras defined with respect to a parameter ¢ € k* (or indeed, multiple parameters)
varying ¢ does not give rise to twist equivalences. So while twist equivalence has some features of a
deformation-theoretic problem, it is too strong and somewhat too discrete to be related to smooth variation
of deformation parameters and the associated geometry of the latter.

This completely answers the question of when two algebras of the form Og(P?), that is, multi-
parameter quantum P2s, have associated objects in A€ ([PQ) in the same connected component. However,
more work is needed to completely describe these components in full: they contain objects associated to
algebras A not of the form Og(P?).

The above example shows that there exist non-trivial twists of the standard quantum P2, O,(P?),
induced by automorphisms of the point scheme and associated to elements of S3, which is not a subgroup
of Aut(0y(P?)) = k x (k*)® (see Theorem 4, recalled earlier). That is, we have recovered some classical
automorphisms.

6 Geometric noncommutative P"'s

To proceed further, we use a careful analysis of Mori’s proof of the above theorem to generalize Proposi-
tion 35. First we give the precise definition of a geometric algebra.
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Definition 37 ([ , Definition 4.3]). A quadratic algebra A = T'(V')/R is called geometric if there is a
pair (E, o) where j: E — P(V*) is an embedding of F as a closed k-subscheme and o is a k-automorphism
of E such that

1. Iy = V(R) C P(V*) x P(V*) is the graph of E under o, and
2. setting £ = j*Op(y+)(1), the map
w: HY(E,£)® H°(E, L) — H°(E,L ®0, 0*L)
defined by v ® w — v ® (w o o) has ker p = R, with the identification
HO(E,L) = H'(P(V*),0(P(V*)(1)) =V
as k-vector spaces.
If A is geometric as above, we associate the triple (E, o, £) to both A and the pair QGr A, 7A).

Then we may give Mori’s original theorem in its greater generality (with some adjustments in notation
to fit with our own).

Theorem 38 (] , Theorem 4.7)). Let A = T(V)/I and A’ = T(V)/I' be graded algebras finitely
generated in degree 1 over k.

1. If A= A(E,o0) is geometric and Gr A = Gr A’ then A’ = A(E’,0’) is also geometric and there is a
sequence of automorphisms {1} of P(V*), each of which sends E isomorphically onto E' such that
(Thi1lE)o =o' (i |E) for everyn € Z.

2. Conversely if A = A(E,o) and A’ = A(E',c") are geometric and there is a sequence of automor-
phisms {1} of P(V*), each of which sends E isomorphically onto E'" such that (1; | |g)o = o' (7;;|E)
for everyn € Z, then Gr A = Gr A’.

We note that if A, A’ are N-graded, the index n may be taken to range over N rather than Z, with no
change to the conclusions.

We will insert the adjective “geometric” into our terminology for noncommutative projective spaces
in the natural way, referring to (QGr A,7A) as a geometric noncommutative P™ if (QGr A,7A) is a
noncommutative P" for a geometric algebra A, and similarly refer to such an A as a coordinate ring for
a geometric noncommutative P".

Proposition 39. Let A be a homogeneous coordinate ring for a geometric noncommutative P™ and let
(E,0,L) be its associated (reqular) triple. Let T be a twisting system for A.

By dualization and projectivization, there is an automorphism 7T1* of P(A}) induced by 71 and 77*(F) =
E. Denote by F the induced automorphism of E and let T, be the triple (E,mf0,L). Then A7 is the
algebra determined (up to isomorphism) by T.z,.

That is, by comparison with Proposition 35, we are able to remove the assumption on the dimension
at the expense of requiring geometricity.

Proof: By Theorem 38, A™ is geometric and has an associated triple (E’, o', L’). Now since A" is a twist of
A, there are graded linear isomorphisms ¢, : A™ — A such that ¢, (a* 4+ b) = ¢ (a) x4 Ppti(b) for a € A7,
where *4- and x4 are the multiplications in A™ and A respectively. These graded linear isomorphisms
are obtained via | , Proposition 2.8(1)] and a careful examination of the proof of that result - which
is stated for an algebra B isomorphic to a twist of A - shows that if B is equal to a twist of A, i.e. we
take B = A7 in Zhang’s proposition, then in fact ¢, = 7,,. (In general, ¢, = 7, 0 f for f: B — A".)
Consequently, in Mori’s theorem (38), the key to the proof of the first part is the dualization of the
maps Tpla,, namely 7,%: P(A}) — P(A}). (Since the 7,4, are isomorphisms, it follows that the maps
(Tn]a,)* are also isomorphisms and hence, being injective, they descend to the projectivization of A7.)
Then Mori shows that E' = (75*|g)(F) and ¢’/ = (77*|g) o0 o (75*|g) . As above, set 7 = 71| z.
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In principle, 79 can be any graded k-linear automorphism of A and then these claims would be best
possible. However, by | , Proposition 2.4], we may if necessary - with an acceptable loss of generality
- replace 7 by a twisting system 7’ for which 7} = id, and have A™ & AT

Doing this, and bearing in mind that we have potentially introduced a “hidden” isomorphism in the
course of doing so, we conclude that the triples (E’,o’,£’) and (E, 7 o 0, L), with £ € Aut E, yield
isomorphic algebras, one of these being A”. |

Remark 40. Mori’s theorem also tells us how to construct the full twisting system. For as in |
Remark 4.8], the condition (T,71"|g)o = ¢/ (7| ) implies that given 77", we may inductively define

= (o))" = () o)

and dualize and extend these from automorphisms of P(A7) to automorphisms of T'(A4;), which will define
a twisting system 7 on A.

We note two consequences. The first is that the twisting system 7 obtained is completely determined
by 71, corresponding to A being generated in degree 1.

Secondly, if 7£ commutes with o then the twisting system 7 is algebraic: 7,,* = ()" and hence
T, = 7i" for all n. As in | , Proposition 8.8] this is precisely the situation of A™ being a twist
by an automorphism. Conversely, non-algebraic twists arise when we can find some 7{ that does not
commute with o in Aut(E).

Let E be a closed subscheme of P™ and define the following two subgroups:

Aut(E1P") = {0 € Aut E | (36 € AutP")(6|p = 0)} C Aut E,
Aut(P" | E) = {p € AutP" | p(E) = E} C AutP".

Restriction defines a surjective group homomorphism Resg: Aut(P™ | E) — Aut(E 1 P™).

We may then interpret the previous proposition as follows. Given a geometric noncommutative P™
with associated coordinate ring A, we have a triple (E, 0, £) with o € Aut E. If 7 is a twisting system for
A, then 7 = Resp(71*) € Aut(E 1 P") is such that (E, 70, £) determines A™ up to isomorphism.

Furthermore, by symmetry, every twist is of this form.

So we conclude that

Corollary 41. Let A be a coordinate ring of a geometric noncommutative P™ with associated triple
(E,0,L). The isomorphism classes of algebras twist-equivalent to A are in bijection with the elements of

the coset Aut(E 1T P™)o C Aut E. O

The coset Aut(E 1 P™)o is not a group, unless the identity of Aut E is contained in Aut(FE 1 P")o,
in which case we must in fact have E = P, Aut(E T P") = Aut F = AutP” = Aut(P" | E) and A
twist-equivalent to O(P™).

Note that there is a bijection between any two cosets of Aut(E 1 P™) so that any two algebras having
the same point scheme E, twist-equivalent or not, can be viewed as having the same number of twists.

The group Aut(FE 1 P™) has a natural left action on Aut(E 1 P™)o, giving rise to a groupoid structure
on Aut(E 1 P™)o by defining the set of objects to be the elements of Aut(F 1 P™)o and the morphisms
to be pairs (7/,70): 70 — 7'70. This is precisely the action groupoid Aut(E 1 P™)o // Aut(E 1 P™), also
known as the weak quotient.

It is well-known that the action groupoid gives rise to a faithful functor

G: Aut(E 1t P")o // Aut(E 1+ P") — Aut(E 1 P™),

the latter being the group Aut(E 1 P™) considered as a one-object groupoid. The functor G is given by
sending every object to the unique object of Aut(FE 1 P™) and each morphism (7, 7¢) to 7’. In the instance
at hand, with the action groupoid arising from the left action of a group on a coset, we have a transitive
action, or equivalently a connected groupoid. Then G is the functor giving rise to the equivalence of a
connected groupoid with a group.

That is, while it is conceptually helpful to consider Aut(E 1 P™)o // Aut(E 1 P™), as it keeps the role
of o explicit, this groupoid is in fact equivalent to the group Aut(E 1 P™).
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We fix some A = (QGr A, 7A) with A having associated triple (E, o, £). We may now define a functor
F: NC(P") /A — Aut(E 1 P")o, by F(B) = o' for (E, o', L) the triple associated to B. We may see by
examining the definitions of morphisms in the two categories that given a twisting system 7, we have the
associated map 7{*c = o', and by the proposition (asserting that twists precisely correspond to o + 7 0),
this is functorial.

However while this functor F is both full and essentially surjective, it not an equivalence: it fails to be
faithful because we may have graded Morita equivalences in 4% (P™), which give rise to isomorphic twists
that the triples cannot detect. We saw this when we noted that we were suppressing some isomorphisms
in the proof of Proposition 39 above - indeed, precisely those coming from graded Morita equivalences.

Since A€ (P™) /A is a connected groupoid, it too is equivalent to a group, which we denote Aut(A).
Note that this group is isomorphic to the same such group for any object in the connected component of
A. Via G, it follows that F induces a surjection Aut(A) - Aut(E 1 P™).

From this, we can obtain an isomorphism by first taking the quotient of A€ (P™) by graded Morita
equivalence, which we denote .4 "¢ (P"). The corresponding functors F and G then induce an equivalence
NE (Pn) /A~ Aut(E 1 P").

Let us denote by Aut(A) the group obtained from the connected groupoid 4% (P")/A which is, by

definition, the automorphism group of A in A€ (Pn)/A.

This gives our main result, which identifies the Zhang twists of homogeneous coordinate rings of
noncommutative P"s (up to graded Morita equivalence) with the automorphisms of the associated point
scheme that extend to P".

Theorem 42. Let A = (QGr A,wA) be a geometric noncommutative P™ with homogeneous coordinate
ring A and let (E, o0, L) be its associated triple. Then

Aut(A) = Aut(E 1 P").

That is, the automorphism group Aut(A) of A in the connected component

NE (P7)/ A containing the equivalence class of A of the groupoid of noncommutative projective spaces
up to graded Morita equivalence, /€ (P™), is isomorphic to the group Aut(E 1T P™) of automorphisms of
the point scheme E of A that extend to P™. O

We reiterate that the group Aut(E 1 P™) and hence the group Aut(A) depends only on E, so that any

two components of A€ (P™) with the same associated point schemes have the same twists.

Also note that the group on the left hand side is defined entirely algebraically, whereas the group on
the right hand side is defined entirely geometrically.
Remark 43. Some care needs to be taken with respect to twists by graded algebra automorphisms of A,
Autg, (A). As we saw in Proposition 31, Autg (A) embeds in Iso(A4% (P™) /.A), but this does not imply
that Autg, (A) embeds in Aut(A). To form the latter group, we take a quotient by graded Morita equiva-
lences, or equivalently by twists yielding isomorphic algebras. A twist by a graded algebra automorphism
may or may not yield an isomorphic algebra, so that in general we only know that a quotient of Autg(A)
embeds into Aut(A) (this quotient possibly being the trivial group).

Thus, Theorem 42 does not necessarily give any information about the graded automorphism groups
of homogeneous coordinate rings of geometric noncommutative P"s.

Zhang twists of a given algebra are rarely isomorphic to one another. The group Aut(A) characterizes

the generalized automorphisms arising as morphisms in the groupoid A4'€ (P"), and not those coming
from isomorphisms of the algebra A itself. That is, Aut(.A) describes the non-algebraic twists of A, without

containing the classical automorphism group Aut(A) as a subgroup.

We conclude with two examples, the first being O,(P™), generalizing Example 34 and the discussion
in Section 5. The second example concerns 3-dimensional Sklyanin algebras, whose point schemes are
smooth elliptic curves.

Example 44. Recall that we define quantum projective n-space to be the k-algebra

O (P™) = ko, - .., xn)/(@iz; = qux; ¥V i < j)
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where ¢ € k* is assumed not a root of unity.
Define ["7'] = {I € {0,...,n} | |I| = 2}. By work of De Laet-Le Bruyn' (| , Proposition 1]),
the point scheme of O4(P™) is the union of the lines
=V |j ¢ 1), for I €[]
in P*. Set £ = Ule[nJrl] lr.

2
The associated automorphism of F is defined on each line as

Oleg iy (0o 20:p; 1022 20:p, :0:---20)=(0:---:0:psy 10101 gps, :0:---:0),

corresponding to the relator z;, ® x;, — qr;, ® x;, via the correspondence indicated in the definition of
geometricity (37). Indeed, the existence of such data (E, o) affirms that O,(P") is geometric.
n+1
This automorphism does not extend to all of P™. Indeed, let A = ()\I)Ie 3] < (k*)[ > ] and define
2

1(A) € Aut E by
) e, gy (0220 ipsy 1020 ipsy 1 0:e--20)= (01200 Agyy ipyPiy 10+ :0:ps 10222 0).

Then one may check that a purported extension of p(A) to P™ would have to be represented by the image
of the diagonal matrix

n—1 n—1
diag(H Ak(k41)s- -+ s H Ae(k41)s -+ > An—1)ns 1)
k=0 k=i
in PGL,,+1(k) subject to the conditions
in—1
iy iy = H Ak(k+1)
k=i

for all i1 < is. Now o = pu(A) with A;, ;, = ¢~ ! for all iy, ia, which therefore does not extend to P™ since
q is not a root of unity.

Noting that any element v of PGL,,4+1(k) preserving E C P™ must be projectively linear, send each
line ¢; to another line £; and each intersection e; &= ¢; # N¥¢; ;v to another such intersection, we see that v
is determined by its values on the intersections e;, ¢ € {0,...,n}. From a consideration of the remaining
possibilities, it follows that

Aut(P" | B) = Aut(E 4 P") = Sppq x ((K*)"F1/k*)

with S, 11 acting on (k*)"*! by the natural permutation action >: that is, for o € Sy41, u € (K*)"T1/k*
and p € P" we have (o> u)(p) = (0 opoo=1)(p).

We therefore conclude that the automorphism group Aut(QGr O, (P"), 7O, (P™)) is isomorphic to the
group Aut(E 1 P") = S, 1 x ((k*)"T!/k*) of automorphisms of the point scheme E = UI€ [n+1] £r that
2

extend to P™.

Notice in particular that elements of (S,41,0) € S,+1 X ((K*)"*1/k*) do not induce graded algebra
automorphisms of Oy (P™) and therefore correspond to non-algebraic twists.

For example, the transposition (01) gives rise to the triple (E, (01)o, £) and we can compute the

relations in its associated algebra as per Definition 37. For example, on £o1, (01)o maps (po : p1 : 0:---: 0)
to (gp1 :po : 0:---:0), for which
(o ® 20 —qr1 @ 21)((Po :p1:0:-+-:0),(gp1:po:0:---:0)) = polgp1) — gpipo = 0,

leading to the relation 22 = qa?.
Continuing in this way yields the algebra

k(zo,...,7,)/(x3 = q23, z0xj = qTj71, Tivj = qri7; ¥V 1 <i < j<n).

ISee also Belmans-De Laet-Le Bruyn, [ .
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Example 45. Let k be of characteristic not equal to 2 or 3. Consider the 3-dimensional Sklyanin algebras
Skls(a, b, c) = k(xo,x1,x2) /{ax;xit1 + brip12; + cz12+2>

where all indices are taken modulo 3. For all but a known finite set of points (a, b, ¢), this algebra is a
geometric noncommutative P? with associated point scheme the smooth elliptic curve

E:abe(z® +y° +2%) — (a® + b° + )ayz = 0

and automorphism o given by translation by a point (with respect to the group law on E).

A summary of relevant results and references concerning the 3-dimensional Sklyanin algebras (and their
relationship with mathematical physics) may be found in work of Walton (| ]). For completeness,
we also note that De Laet ([ ]) has identified an action by graded algebra automorphisms of the
Heisenberg group H3 of order 27 on Sklyanin algebras.

By general results on elliptic curves (see for example, | , 8III]), every automorphism of E is the
composition of a translation and an isogeny of the curve with itself. Thus Aut(FE) is the semidirect
product of the curve itself with the auto-isogeny group, the isogenies preserving a chosen base point and
the translations changing the base point.

The auto-isogeny groups of elliptic curves are well-known: depending on the j-invariant of the curve,
the auto-isogeny group is cyclic of order n = 2, 4 or 6, realized as u, acting as [(](z : y : 2) = ((Pz: By : 2)
(cf. | , Corollary II1.10.2]). It is common to call the auto-isogeny group Aut(E), but we shall not;
rather we will denote it Z(F). Note that the aforementioned action is projectively linear and hence
I(E) C Aut(E 1 P?).

Furthermore, it is known when a translation extends to an automorphism of the ambient P2. This is
given explicitly in [ , Lemma 5.3], where it is shown that a translation 7, by a point p extends to P?
if and only if p is 3-torsion, i.e. 7, has order 3. The group E[3] of 3-torsion elements of an elliptic curve
E is also known: it is isomorphic to Z/3Z x Z/3Z, a group of order 9 (] , Corollary I11.6.4]).

Combining these results, we conclude that Aut(E 1 P?) = (Z/3Zx7/3Z) ><II( ), a finite group of order
9n. One may interpret this as saying that Sklyanin algebras are extremely rigid, or very noncommutative,
as they have very few twists.

Note that the auto-isogenies act as graded algebra automorphisms of Skls(a, b, ¢); indeed Sklz(a, b, ¢)l¢) =
Skls(¢%a, ¢®b, ¢). Furthermore, for a point p, 7,0 is again a translation by a point, so that twists of Sklyanin
algebras by translations are again Skylanin algebras. Thus, we see that .4 % (P?) contains countably many
connected components which, modulo graded Morita equivalence, are finite and consist of Sklyanin alge-
bras.

Appendix

A An alternative approach to analysing noncommutative P%s

As explained in the introduction to | | and explored in more detail in §7 of that work, there is
another approach to analysing noncommutative P?s that one can take, by studying the “open complement”
of the “closed subscheme” defined by the point scheme of a noncommutative P2. We briefly recall the
general construction and then give some more details in the specific case of Og(P?). We will not prove
the assertions we make: proofs may be found in | ]

Given a homogeneous coordinate ring of a noncommutative P?, A say, we have seen the construction
of its point scheme E, parameterizing point modules in QGr A, and the associated triple (E,o, £ =
Og(1)). The coordinate ring of F is in fact given by a quotient of A by a unique (up to scalar) normal
regular degree 3 element g € As. Specifically, B = A/gA is a twisted homogeneous coordinate ring
B=@,.,Hom(Op, LOLT @---® LT ).

Furthermore, QGr B ~ QCohE and g annihilates point modules in QGr A. Indeed, via the surjection
A — B = A/gA, we have QGr B C QGr A. By a natural extension of the usual terminology, we regard
(QGr B, B) as defining a closed subscheme of (QGr A, wA).
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It is then also natural to ask about the open complement. This is given by the degree zero part Ag of
the graded localized algebra A = A[g~1].

One has a natural functor Gr A — Gr Ay, given by localization: M + M[g~']y. Furthermore, the
category of finite-dimensional Ag-modules is equivalent to the category of g-torsion-free normalized A-
modules (see [ , p-371] for details).

Then the dichotomy between g-torsion and g-torsion-free A-modules corresponds to the complemen-
tarity of the closed subscheme and its open complement.

Lastly, we note that it follows from | , Proposition 5.4] that one may directly generalize | ,
Proposition 8.12], to show that if A7 is a twist of A then Ag = Alg~']o = (A7)[g-']o. That is, twisting
is compatible with the decomposition of QGr A into the closed subscheme (corresponding to the point
scheme) and its open complement (given by Ag).

For the case of A = Og(P?), we may calculate Ag explicitly, as follows.

Recall that we have

Oq(P?) = k(z,y,2)/(2y = ayz, 2z = Bz, yz = yay)

so that g = (1 — afy)xyz is the canonical normalizing element described above. As previously, we assume

that afy ¢ {0,1}.
From the quasi-commutation relations in Og(P?), it is straightforward to verify the following relations

in A:

gariyi sk = aifjﬂifk,yjkaiyjzkg
g aiyi k= ajfiﬂkfi,ykfgxiyjzkg 1
k1 ) 7|i71j71| 7‘i71k71| _|]—1 k—1| . ik
(' 2" (2’ y™2"g ™) = a =1 m=1Ig =1 n=1ly Im=1n-1l(z'y™2"g™ " )(z'y’ 2"g ")

Indeed, we note that computationally it is easiest to work in the fully-localized algebra A[z=1,y~t 271],
into which A naturally embeds.

A generating set for Ay is given by the cubic monomials in z, y and z that span Az, multiplied by the
inverse of g:

1 1

(2% v g7 atyg T 2ty T P eg Tyt T w2ty T ayzg T = (- aBy) )

From the above relations, we see that every pair of these satisfies a quasi-commutation relation and
since Og(P?) is quadratic, we deduce that A is in this case isomorphic to what is commonly referred to
in the literature as a quantum polynomial algebra on nine generators. This contrasts starkly with the

commutative case, where g = 0, E = P2, B = A and there is an empty open complement.
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