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Abstract 1 

The status of seven currently used pesticides were assessed under the influence of soil 2 

parameters in surface soils of cash crop growing areas of Pakistan. Chlorpyrifos occurred in 3 

highest mean concentration (1.18 mg kg-1). Selected pesticides exhibited higher affinity towards 4 

both organic carbon and black carbon fractions. The δ13C stable carbon isotopic fraction of 5 

inorganic carbon was also used as a tracer and disclosed high retention of total organic carbon in 6 

Swat and Swabi sites. Statistical analysis revealed that carbon storage was primarily influenced 7 

by altitude and temperature. Soil clay mineral oxides of aluminum and iron positively correlated 8 

with organic carbon and selected pesticides (chlorpyrifos and cyprodinil). Soil to plant bio-9 

concentration ratios predicted heightened uptake of azinfos and diazinon in major cash crop bio 10 

mass. Occupational risk via soil ingestion expressed no significant threat to the farmer 11 

community. 12 

Keywords: Current-use pesticides; Cash Crops; Total Organic carbon; Black carbon; Stable 13 

Carbon isotope; Clay minerals 14 
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1. Introduction 21 

The conventional cropping patterns adopted for cash crops incorporate a wide application 22 

of pesticides. No doubt huge losses in crop output caused via pest attack are controlled by such 23 

practices (Oerke et al., 1994). Soils are a prominent storage reservoir and simultaneously act as a 24 

fundamental exposure route for individuals including agricultural workers and non-target 25 

organisms (Davie-Martin et al., 2015). Such contaminants find their way via soil and food into 26 

human beings causing a major health risk (Liu et al., 2016a).  27 

World pesticide expenditures accounted for more than $35.8 billion in 2006 and $39.4 28 

billion in 2007. In late 1990s, Asia and Latin America use of pesticides drastically ascended by 29 

5.4% annually, higher than reported global average of 4.4% (Oerke et al., 1994). China, India, 30 

Korea, Pakistan, Malaysia and Thailand are some of the major contributors (Abhilash and Singh, 31 

2009). Pakistan is one of the leading countries of South Asia responsible for massive pesticide 32 

use. About 27% of the total pesticides consumption is used on fruits and vegetable crops 33 

(Panhwar et al., 2014) while cotton cash crop accounts for 80-90% pesticide utilization. Recently 34 

disclosed figures reveal an accelerated production in Pakistan (PBS, 2015) and about 33% of 35 

farms in the country reportedly apply insecticides. Developing countries take limited steps for 36 

exposure control of these pesticides and Pakistan being an agrarian society is involved in 37 

consumption and import of pesticides without having any exposure control measures.  38 

Current used pesticides are organic in nature. Indiscriminate factors such as soil/site 39 

properties, pesticide properties (concentration, volatility etc.) and climate such as temperature, 40 

precipitation can affect the mobility and behavior of such pesticides in soil. The most prominent 41 

among them being organic carbon content (Baskaran et al., 1996; Wauchope et al., 2002; 42 

Bronner and Goss, 2010), clay minerals and half-life. Soil minerals also play a composite effect 43 
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in terms of active sorption sites for both TOC and pesticides. TOC in top soils chemically filters 44 

and absorbs pesticides and may also increase the activity of microorganisms thereby increase 45 

biodegradation. Its properties like content and nature are dominant traits (Olvera-Velona et al., 46 

2008). Organic carbon is associated with the O alkyl, alkyl, carboxyl and aromatic fractions. 47 

Black carbon is dominated by carboxyl and aromatic fractions (Motoki et al., 2014). Organic 48 

pesticides bind to un-charred biomass (TOC) via absorption mechanisms. Contrastingly they 49 

adsorb on surface of charred carbon content (BC), largely due to atomic surfaces and micro 50 

pores. BC has lately been reported as a better sorbent for organic pesticides (Ahmad et al., 2006; 51 

Motoki et al., 2014; Kumar et al., 2015). Composition of soil minerals is another trait that 52 

influence carbon storage. The presence of multivalent cations such as Ca2+, Al3+ or Fe3+ drives 53 

TOC binding (Xiao, 2015). Long term TOC pool status in soil media can also be effectively 54 

predicted through stable carbon fractions (C12 and C13). Agricultural expansion and 55 

intensification has resulted in continuous cropping leading to simultaneous declines in TOC as 56 

well as enrichment of δ13C (Awiti et al., 2008). Carbonate-13C values described as δ13C 57 

(carbonate-SOC) values can depict changes in TOC content, its yield and soil respiration fluxes 58 

(Stevenson et al., 2005).  59 

Crop protection measures are an unavoidable practice to augment food yield. Accelerated 60 

production is followed by bioaccumulation in food causing eminent threat (Liu et al., 2016a). 61 

The World trade organization (WTO) agreements (TBT/SPS) measures have contributed to 62 

ensure food safety in trading system focusing on third countries.  Pesticide residue is marked as 63 

one of top five reasons for rejections by top international markets (UNIDO, 2015). Pakistan is 64 

among the top 15 countries under the category of import rejections of food in USA (UNIDO, 65 

2013)(UNIDO, 2013)(UNIDO, 2013)(UNIDO, 2013). Import samples assessed in USA by FDA 66 
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2013 reveals a violation rate of 21.1 % by Pakistan. Pakistan being an economy relying heavily 67 

on agro exports, concept of the threshold-based application of pest control measures is an 68 

important approach.  69 

Limited studies are available on status of current-use pesticides in soil and factors 70 

regulating their long term prevalence and mobility in soil media of cash crops. Extraneous 71 

measures taken for inspection of cash crop exports lead to rejections. Soil being an important 72 

sorption media and source for uptake by associated crop is analyzed in present study. The core 73 

objectives of this study were (i) to probe the retention dynamics of selected pesticides in surface 74 

soils of cash crop growing areas of Pakistan; (ii) to determine the contribution of organic carbon 75 

fractions in pesticide retention; (iii) to validate TOC status using stable carbon isotope ratios as 76 

markers and whether its retention is influenced by variability in climate and soil properties and 77 

(iv) to predict the uptake of pesticides by cash crops from soils.  78 

2. Material and Methods 79 

2.1. Study area  80 

For the present study six major cash crop growing cities of Pakistan were selected as 81 

shown in Figure 1. Target sites include Swat, Swabi, Sargodha, Layyah, Muzaffargarh and 82 

Khairpur spatially distributed from North to South of Pakistan. Each site is famous for harvesting 83 

distinctive cash crops such as peaches, tobacco, oranges, cotton, mangoes and dates respectively. 84 

Spatial diversity of sites was kept in mind prior to selection to evaluate the influence of 85 

environmental factors on pesticide retention. Details regarding sampling station and sample 86 

acquirement are stated in supporting information. For sampling, three samples were collected 87 

from each site, hence a total of 18 top soil (0-6 cm) bulk samples were collected from six cash 88 

crop sites. Three representative samples (1 Sample=composite of 3) were taken from local farms 89 
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(n=3) at each sampling location. Samples were dug at a distance of 500 meters from one another 90 

to form composites for homogeneity. Top soil samples were removed by hand trowel, securely 91 

packed in polyethylene bags and taken to the Environmental Biology Lab, Quaid-i-Azam 92 

University Islamabad Pakistan. The bulk soil samples were stored at -4oC in the lab before being 93 

transferred to UK for analysis. The concentrations of pesticides (Diazinon, Chlorpyrifos, 94 

Parathion-Methyl and Azinfos) in cash crops of each respective site were obtained from Plant 95 

Protection Department, Pakistan for year 2015-2016. 96 

2.2. Gas Chromatography-Mass spectrometry Analysis 97 

Residual analysis for seven selected pesticides including diazinon, chlorpyrifos, 98 

parathion-methyl, tolclofos-methyl, deltamethrin, cyprodinil and azinfos were performed on soil 99 

samples by Gas Chromatographic-Mass spectrometric analysis. Details regarding experimental 100 

design and analytical procedures are mentioned in the Supporting Information. 101 

The analytes were quantified with a Finnigan TRACE GC-MS system. Soil samples were 102 

sieved and stored in freezer. Prior to analysis samples were allowed to thaw. 5 g of each sample 103 

was placed in a centrifuge tube. The dried sample was spiked with known concentration of 104 

pesticide to act as a recovery standard. A blank containing 3 g of Na2SO4 was included after 105 

every 10 samples. Extraction was carried out with 30 ml of Hexane-Ethyl acetate solution (2:3). 106 

Extraction procedure was performed three times. Extracts were concentrated to 1 ml by a slow 107 

torrent of nitrogen gas. For extract cleanup 6 g of alumina and 1 cm thick sodium sulphate were 108 

used. Column was rinsed prior to sample introduction with 20 ml of ethyl acetate. Extract elution 109 

was carried out from column by ethyl acetate. The final solution was blow dried and dissolved 110 

with 1ml Hexane. Finally, samples were analyzed by Finnigan Trace GC-MS. The temperature 111 

setting for transfer line, injector interface and ion source was set at 280, 250 and 230 oC, 112 
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respectively. The temperature programing of the GC oven was done as: 80 oC for 0.5 min, 20 oC 113 

min-1 to 160 oC, 4 oC min-1 to 240 oC and 10 oC min-1 to 295 oC and then hold for 10 min. The 114 

residues were quantified by the external standard calibration curve method. To ensure quality of 115 

quantification methods analytical grade reagents were used. Recovery for samples extracted was 116 

80-90 %. Linearity curves (r2=0.995) were obtained by spiked samples for instrument 117 

calibration.  118 

2.3. Total organic carbon and black carbon (CTO-375 method) 119 

The soil samples were prepared by weighing up to 4 g, followed by sieving and finely 120 

grounded to smooth powder. Chemo-thermal oxidation (CTO-375) method was used as standard 121 

protocol for BC residue analysis. BC samples were pre-treated with 1N HCl and stirred at 122 

intervals for 1 hour. Next (2-3 g) of acidified samples were dried and subjected to thermal 123 

oxidation (375 oC,18 hr) by providing suitable conditions in a muffle furnace under constraint air 124 

flow for removal of non-pyrogenic carbon (Gustafsson et al., 2001; Agarwal and Bucheli, 125 

2011)). The residual organic carbon content was determined as BC by using a TOC analyzer. 126 

Similarly, TOC residual quantification also required 4 g of sample. Each batch was dried, 127 

homogenized and acidified with 10% HCl for eliminating inorganic carbon. Later it was rinsed 128 

with de ionized water thrice and dried overnight at 60oC. The TOC content was determined with 129 

TOC analyzer. 130 

2.4. Stable Carbon isotope (δ13C) analysis 131 

The stable isotope analyses were executed with a modified Varian Mat GD- 150 Mass 132 

Spectrometer. Stable isotope ratio δ
13C is measured in Total dissolved inorganic carbon. For 133 

isotope analysis on mass spectrometer, soil samples have been converted into gas phase. For the 134 

extraction of CO2 gas from Total dissolved inorganic carbon of soil a 1g of soil sample was 135 
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poured into the Pyrex reaction flask. A small burette containing H3PO4 acid was then attached to 136 

the reaction flask. The reaction flask assembly was connected to the vacuum line. Dewar flask 137 

containing liquid N2-acetonmixture (temperature: -800oC) was attached to the moisture traps in 138 

the vacuum system. About 5 ml H3PO4 acid was added to the pre-evacuated reaction flask. The 139 

CO2 gas was evolved as a result of reaction between inorganic carbon component/fraction of 140 

sample and the phosphoric acid according to the following equation: 141 

H3PO4 + Carbonate mineral→ CO2 + H2O 142 

The moisture produced during the reaction was removed by cryogenic trap of - 800oC. 143 

The CO2 gas was passed through vacuum line and purified by freezing in U-trap dipped in liquid 144 

nitrogen flask. Other gases were pumped out from line. The liquid N2 flask from CO2 trap was 145 

removed to expand CO2 in vacuum linear which was finally collected in an ampoule dipped in 146 

liquid nitrogen flask at the other end of line. The ampoule was labeled and removed from the line 147 

for isotope ratio measurements onto the Isotope Ratio Mass spectrometer (IRMS). The overall 148 

analytical errors are ± 0.01 ‰ for δ13C measurements. To ensure precision, standard deviation of 149 

the mass spectrometer was also computed and standard deviation of each sample was ensured to 150 

be within permissible limit. 151 

2.5. Clay mineral fraction assessment by XRF 152 

For the analysis of clay mineral content in soils of cash crop sites soil samples from each 153 

site were weighed 10 g. Initially samples were air-dried in a purified area, and then crushed 154 

down to break aggregates. Sample is further ground to achieve fine powder. This ensures 155 

contribution of adequate number of particles of each fraction of the heterogeneous mass. The 156 

sample is sieved through a sieve of 60 um size and particles above this limit are ground again 157 

until no grains larger than 60 µm are left.  158 
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3. Results and Discussion 159 

3.1. Concentration profile of current-use pesticides 160 

Concentration of selected pesticides in soil and cash crops are presented below and 161 

discussed in detail. 162 

3.1.1. Soils 163 

The concentration profiles of pesticides in cash crop soils are given in Table 1. Among all 164 

target analytes, chlorpyrifos occurred in highest mean concentration (1.18 mg kg-1). The average 165 

concentrations presented in Figure 1 indicates that contaminants occurred were in order of 166 

chlorpyrifos > diazinon > parathion-methyl > deltamethrin > tolclofos-methyl > cyprodinil > 167 

azinfos. The least reported pesticide was azinfos with an average concentration of 0.37 mg kg-1. 168 

Concentration of Azinfos studied in comparison to Chlorpyrifos was also found to be less 169 

persistent in orchards (Reinecke and Reinecke, 2007). 170 

In general, spatial abundance of pesticides among six sites was as follows; Swabi > 171 

Khairpur > Swat > Sargodha > Muzaffargarh > Layyah. Target pesticides Tolclofos-Methyl, 172 

Chlorpyrifos and Cyprodinil showed a significant difference in their distribution and occurrence 173 

among six sites which predicted variability in factors responsible for persistence. Parathion-174 

Methyl did not exhibit any significant spatial variability among six sampling sites.   175 

The soil pesticide concentration profile was compared to the worldwide reported studies 176 

Supporting information. The residual concentration of Chlorpyrifos was much higher as 177 

compared to studies in primary agricultural areas of China (Liu et al., 2016a), Dehli, India 178 

(Bhupander et al., 2011), Western Cape and South Africa (Reinecke and Reinecke, 2007). They 179 

were comparable to concentration recorded in Bhawalpur, Pakistan (Anwar et al., 2014). In 180 
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Swat, Pakistan (Nafees et al., 2008a) residues reported were lower in general than current study. 181 

In contrast to previous studies Parathion-Methyl was detected in higher concentration than 182 

reported in Bhawalpur, Pakistan (Anwar et al., 2014). It has also been banned by Pakistan Plant 183 

Protection Department. Diazinon reported  in our study was comparatively less than the residues 184 

assessed in agricultural and urban soils of  Peshawar, Charsadda and Swat (Jan et al., 2003), 185 

(Nafees et al., 2008a). The estimated values of Azinfos were also lower in studies executed in 186 

Western Cape, South Africa (Reinecke and Reinecke, 2007) and Eastern, Washington State USA 187 

(Simcox et al., 1995) as compared to current study. Concerning Cyprodinil study was conducted 188 

in Spain, Galacia (Rial-Otero et al., 2004; Arias et al., 2005). It reports lower concentrations of 189 

Cyprodinil a new generation fungicides and frequently used in vineyards. Deltamethrin was also 190 

reported in lower residual values in a study of Hariyana, India (Bhupander et al., 2011) in 191 

comparison to our results. This comparison suggests that contamination of cash crop soils in 192 

Pakistan is significant in terms of pesticides and elevated status is pertaining to environmental 193 

problems. 194 

3.1.2. Cash crops  195 

The concentration profiles of pesticides in six cash crops are presented in Table 1. 196 

Pesticides were detected in order of Diazinon > Azinfos > Chlorpyrifos > Parathion-Methyl. 197 

Diazinon concentration ranged from 0.01-5.21 mg kg-1 with highest mean (2.61 mg kg-1) in 198 

mangoes (MUZ). Several studies report pesticide residues in food items supporting information. 199 

Diazinon had been monitored in various food crops and variety of fruits. The residues mentioned 200 

in this study were comparable to the ranges reported for peach and oranges (Gebara et al., 2005; 201 

Knežević and Serdar, 2009). Concentrations for Parathion-Methyl (0.02-0.18 mg kg-1) were 202 

equivalent to ranges reported by literature in grains, fruits and vegetables (Hjorth et al., 2011; 203 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

12 
 

Ogah and Coker, 2012; Liu et al., 2016b). Chlorpyrifos had been the most assessed pesticide in 204 

numerous fruits and vegetables. Residues concentrated in peach samples in this study were 205 

several folds higher than Xiamen, China (Chen et al., 2011). Mean value for Azinfos in target 206 

commodities was 0.32 mg kg-1. A study conducted on Croatian fruits and vegetables revealed 207 

comparable Azinfos averages, where orange and peach samples sustained residues above 208 

maximum residue limits (MRLs) (Knežević and Serdar, 2009). 209 

Pesticide residues consumed as part of food can prove a menace. Thus MRLs are 210 

established to regulate safe pesticide limits in consumer products for both domestic and 211 

international markets. The MRLs set by EU, Japan, China, US and FAO/WHO are summarized 212 

in Supporting Information. The comparison of mean concentrations and global MRLs revealed 213 

violation in cash crops. Pesticide residues in fruits (orange, peach, mangoes and dates) were 214 

above approved EU MRLs. Although pesticides were also reported significantly lower than 215 

FAO/WHO MRLs with the exception of Diazinon (Peach and mangoes) and Azinfos (mangoes). 216 

Nonfood crops are majorly ignored when it comes to assigning residue limits. No acceptable 217 

limits were available for tobacco and cotton fiber. However, guidelines are available for 218 

industries and organizations dealing with tobacco products. Russian MRLs area regulated for 219 

Diazinon residues in tobacco (0.05 mg kg-1). Guidance residue limits (GRLs) are also provided 220 

for tobacco growers by CORESTA (Cooperation Centre for Scientific Research Relative 221 

to Tobacco). The tobacco residues reported in this study were below instructed GRLs except for 222 

Diazinon. 223 

3.2. Soil properties and its association with pesticides  224 

Physic chemical characteristics of soil are listed in Table 2. The pH for all sampling 225 

locations was moderately alkaline and varied from 7.33-8.40. Soil texture was one of the most 226 
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chief factors regulating maximum spatial variability in our respective study area. Soil moisture 227 

content was in range of 11-21% in cash crop soils. It was found most abundant in soils of 228 

Khairpur (14-21%) and Swat (19-20%). The textural analysis exhibit that study area soils were 229 

dominated by silty loam soils. Swat bore sandy loam soils in contrast to rest of sites. Sand was 230 

reported dominant feature of all soil in Swat Valley (Nafees et al., 2008b). The results of EC 231 

indicated a high degree of salinity in LAY, SAW and SWB as compared to rest of the sites. Both 232 

organic carbon fractions occurred in moderately low concentration which was majorly due to 233 

poor ability of agricultural top soils to support organic carbon pools (Cochran et al., 2007). TOC 234 

and BC ranged from 0.49-2.30 % and 0.07-0.45% in cash crop top soils respectively. The 235 

correlation output represented in Supporting information showed that Diazinon, Tolclofos-236 

Methyl and Azinfos represented a strong positive correlation with BC% and Chlorpyrifos and 237 

Cyprodinil exhibited a significant correlation for TOC%  which was in agreement with study of 238 

(Dec et al., 1997; Loewy et al., 2011; Motoki et al., 2014). TOC and BC shared a prominent 239 

negative correlation. According to (Rumpel et al., 2006) the negative correlation found between 240 

BC reflected higher amounts of TOC existing as BC in surface soils. Deltamethrin supported a 241 

negative correlation with pH. Deltamethrin was found to be more persistent in acidic as 242 

compared to non-acidic soils by (Zhu, 2002). The rest of specified soil parameters did not 243 

significantly impact target pesticides according to Pearson correlation analysis significant at 0.01 244 

and 0.05. 245 

3.3. Spatial trend identification of cash crop sites using PCA 246 

The results for PCA applied as an ordination method on soil samples are summarized in 247 

Supporting information. PCA Euclidean biplots are represented in Figure 2 in order to show 248 

spatial variability of pesticides in study area. PCA is an imperative and valuable tool for 249 
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classifying data in terms of eigenvectors and eigenvalue. Classification of sampling sites was 250 

also determined on basis of physic chemical properties of soil at following sites. According to 251 

the significant eigenvalue four principal components were identified by Enter number method 252 

and the first component with the highest eigenvalue of 5.429 explained maximum variance in 253 

data set. The eigenvalue of all extracted factors were greater than 1. These four principal 254 

components extracted with PCA had a contribution of 75% to its total variance. The first two 255 

axis explained most of the variance i.e. PC 1 36% and PC 2 20%. According to Figure 2 the 256 

sampling points were represented as dependent variables while target contaminants and physic 257 

chemical properties of soil were represented as independent variables. Arrows were drawn from 258 

the joint centered ordination axis to the points representing each variable. 259 

The first Principal Component (PC 1) correlated positively with loading Diazinon, 260 

Parathion-Methyl, Tolclofos-Methyl, Azinfos, BC, Silt%. That signified the dominant role of BC 261 

in analyte binding process. A negative relation was found for Chlorpyrifos, Cyprodinil, TOC%, 262 

Sand% and Clay% at PC 1. Soil samples from Swabi and Swat substantially clustered along 263 

TOC%. These sites were also known to support elevated values of Chlorpyrifos and Cyprodinil 264 

according to previous results. TOC is well known for nonionic pesticide binding in soils but 265 

recently its aromatic fraction (BC) has proven to be a more effective sorbent (Ahmad et al., 266 

2001). Deltamethrin being an exception exhibited negative correlation with pH and no relation 267 

with TOC or BC. (Zhu, 2002) also found Deltamethrin to be least persistent in high pH soils 268 

despite higher organic matter content. Particle size distribution influenced TOC and BC 269 

retention. TOC strongly correlated to Sand% and Clay%. The sites supporting highest TOC were 270 

sandy loam and loam in texture (Swat and Swabi) which explained a positive correlation of TOC 271 

with sand content. The correlation coupled with study conducted by (Azlan et al., 2012) in 272 
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Malaysia where sandy clay loam soils supported high TOC. In contrast BC accumulation was 273 

regulated by silt content. Micro aggregates (Silt and Clay fractions) are dominant BC retaining 274 

fractions with more pronounced role of larger fractions (silt) (Zong et al., 2016). The long arrows 275 

of Diazinon, TOC% and Deltamethrin confirmed a gradual change in their concentration while 276 

rest of the variables had short arrows indicating rapid alteration. Previously represented results of 277 

Pearson correlation were in total agreement with PCA findings. The results support the 278 

hypothesis that BC and TOC were main drivers of pesticide distribution in soils of cash crop. 279 

3.4. TOC and BC allocation in cash crop soils 280 

The BC and TOC concentration profile is presented in Table 2. Mean values of BC and 281 

TOC in cash crop soils were 0.20 % and 1.09 % respectively. Cash crop sites at Sargodha and 282 

Layyah showed dominant BC accumulation. BC as percentage of TOC was low in Swabi and 283 

Swat as compared to rest of the sites. TOC pools show more reliance on land use changes in top 284 

soils (Wang et al., 2017), while BC is dependent on input and storage conditions (mineralogy, 285 

texture) (Lehndorff et al., 2016). TOC quantified in our study was generally low in content. 286 

Nonetheless the averages were in agreement with anthropogenic soils of Brazil (1.1-2.2 %) 287 

(Schellekens et al., 2017), Shanghai, China (Wang et al., 2014) and orchard (1.66 %) and 288 

farmlands (1.56 %) of Northern Iran (Ajami et al., 2016).  289 

3.4.1. Black carbon source credentials 290 

The ratios calculated for BC source identification are graphically presented in Figure 3. 291 

BC/TOC ratios ranged from 0.03 to 0.65. At Khairpur, Swabi and Swat biomass burning was the 292 

main source of BC. Ratios at Sargodha and Layyah highlighted fossil fuel burning, traffic or 293 

industrial BC origin as well as miscellaneous source. BC formed during burning supports 294 

residues derived from partially combusted plants to inert graphite carbon (Rumpel et al., 2006). 295 
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According to (Novakov et al., 2000; Wang et al., 2014) BC/TOC < 0.11 indicates incomplete 296 

combustion of biomass and values greater than 0.5 suggest industrial, fossil fuel burning and 297 

traffic source. BC/TOC ratios acted as an ideal indicator for identifying source of BC.  As our 298 

study area comprised of agricultural sites existing along road sides thus potential BC sources 299 

could be diverse. These ratios account for BC source characterization in several studies. Ratios in 300 

Changbai China (0.10-0.44) (Schellekens et al., 2017) and Shanghai China (0.14-0.17) (Wang et 301 

al., 2014) indicate dominant char inputs. While Industrial and roadside soils of Anshan, China 302 

(0.45-0.95) (Zong et al., 2016) as well as German croplands revealed dominant soot fraction 303 

(fossil fuel burning) (Brodowski et al., 2007). Similarly, miscellaneous sources also contributed 304 

to BC formation. Averages in our study were comparable to BC/TOC ratios reported in rural and 305 

urban settings of Beijing China (Liu et al., 2011). 306 

3.4.2. Climatic conditions as marker for TOC retention 307 

Average values of climatic factors (temperature, altitude, relative humidity and 308 

precipitation) for the respective sites are mentioned in supporting information (Table S6). The 309 

mean monthly data was acquired by running HYSPLIT trajectory model. Mean annual 310 

precipitation (MAP) and Mean annual temperature (MAT) values for target sites were roughly 311 

estimated from ranges available for the nearest weather station by Pakistan Meteorological 312 

Department. 313 

Regression analysis expressed positive correlation (r2 = 0.846) of altitude with 314 

accumulation of TOC pools in soil Figure 4(a). Rise in Altitude dominantly coincides with 315 

elevated TOC pools in recent studies conducted in Karakoram Pakistan (Shedayi et al., 2016; 316 

Bojko and Kabala, 2017). Since TOC magnitude elevates with rising mountain toposequences. 317 

The altitudinal gradient vitally distributes TOC and is preferably included in models for its 318 
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estimation. TOC shared an inverse trend with mean monthly temperature. MAP and MAT 319 

analysis revealed significant but comparatively less dominant role in TOC retention as shown in 320 

Figure 4. Previously quantitative relationships between TOC, temperature and precipitation have 321 

also been documented (Azlan et al., 2012). Dry ecosystems account for greater TOC losses. No 322 

regression could be assessed for the mean monthly precipitation because of dry spell of rain in 323 

December. Relative humidity had a comparatively weak positive correlation with TOC. In humid 324 

climates, both production and degradation of TOC increases with more profound decomposition 325 

(Jobbágy and Jackson, 2000). Our targeted cash crop sites supporting variable terrain and 326 

weather conditions, supporting labile pools in top soils, which are sensitive to alterations in 327 

temperature, precipitation and altitude (Shedayi et al., 2016). Altitude mediated TOC distribution 328 

is influenced by high rainfall inputs, declining temperatures, resulting in gradual fall in 329 

degradation patterns. Our results also reflect prominent role of climatic factors in tracing TOC 330 

persistence. 331 

3.4.3. Stable carbon isotopic enrichment as an indicator of TOC stability 332 

The mean values for δ13C of SIC in cash crop soils are summarized in Table 2. The δ13C 333 

values measured at six sites ranged from -1.75 to -8.49 ‰. The concentrations indicated low 334 

TOC inputs in cash crop soils as compared to carbonate fraction. δ13C values predicted high 335 

TOC content at SAW and SWB .The results were in agreement with δ13C of carbonates in 336 

agricultural soils of France (Bertrand et al., 2007). Regression analysis shown in Figure 4(f) also 337 

represented a strong negative correlation (R2=0.936) between mean TOC % and δ13C enrichment 338 

for six sites. These results provided a strong base for determining TOC pool retention in cash 339 

crop soils. The δ13C values were assessed in SIC because our study area supported alkaline 340 

conditions. Semiarid soils are naturally alkaline  limited precipitation and reduced leaching cause 341 
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carbonates to accumulate in the soil profile (Cochran et al., 2007). Secondly δ13C values of SIC 342 

are ideal indicators for TOC because its less prone to loss than TOC. Stable carbon isotope ratios 343 

of SIC (CO2, HCO3
-, CO3

-2) depended on the δ13C of soil-CO2 and dissolved carbonate that 344 

originated from limestone, relatively enriched in 13C at 0‰. δ13C values in the range of -3-2‰  345 

represented limestone dissolution and lower estimates denoted SIC rich in organic carbon 346 

(Coleman, 2012). The precursors for the carbonates in the soil are mainly ancient marine 347 

carbonate rocks with carbon isotopic composition between +2 and -2%.  348 

3.5. Clay mineral bound TOC and pesticide sorption in soils 349 

Mean clay mineral contents for cash crop soil characterization are summarized in Table 350 

2. Silica and Aluminum oxide (Al2O3) reportedly the most abundant mineral fractions occurred 351 

in the range of 47.98-59.11% and 11.09-12.86% respectively. Occurrences of Silica, Aluminum 352 

oxide and Calcium oxide (CaO) were above their quantified natural elemental fractions in soils. 353 

Mean range for Ferric oxide (Fe2O3) was 4.3-4.9%. Magnesium oxide contributed in a moderate 354 

manner. 355 

The regression analysis depicted in Figure 4(g) revealed significant TOC and clay 356 

mineral interactions. Al2O3 and Fe2O3 exhibited a strong positive correlation with TOC retention. 357 

Clay minerals play a major part in long term organic carbon retention in soil. TOC is normally 358 

retained in mineral top soils (0-40cm) (Jonard et al., 2017). These reactive minerals with specific 359 

surface areas are binding sites for TOC. Specifically weathering products such as nanometer 360 

sized Fe oxides and Al-silicates supporting diverse charge. TOC adsorption to Fe2O3 is mainly 361 

defined by ligand exchange mechanism. It is the dominant phenomenon for TOC retention in 362 

soils that are rich in oxides where Fe3+ and Al3+ form cation bridges with organic carbon (Keil 363 
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and Mayer, 2014). Clay minerals and TOC are reported to synergistically bind pesticides in soil, 364 

but influence of TOC in mineral availability for pesticides is not fully understood.  365 

3.6. Occupational exposure to current-use pesticide 366 

The cumulative occupational risk of pesticide ingestion via soil residues is presented in 367 

supporting information (Table S8 and S9). Evaluated results revealed remarkably low risk of 368 

exposure by soil media. Hazard quotient (HQ) did not exceed 1 (Threshold value) at any 369 

sampling station. The magnitude of risk from each target contaminant ranked in order of 370 

Parathion-Methyl > Diazinon > Chlorpyrifos > Azinfos > Deltamethrin > Cyprodinil. Average 371 

daily intake levels summarized in supporting information (Table S7) were multifold order of 372 

magnitude lower than reference doses (RfD) of pesticides. The highest daily intake was 373 

cumulated for Chlorpyrifos (1.01452E-06) in comparison to rest of pesticides. Hazard Quotient 374 

(HQ) for each contaminant was quantified. Since non- carcinogenic Chronic Oral Exposure 375 

doses have not been evaluated for some pesticides their risk could not be calculated. The RfD 376 

values in terms of chronic exposure and US EPA recommended exposure factors are listed in 377 

Supporting information. 378 

The results reported in this study contradict with studies highlighting ingestion as a core 379 

route of exposure in terms of pesticides. Primarily owing to the focus of literature on pesticide 380 

ingestion via food instead of soil. Study performed by (Simcox et al., 1995) reported greater 381 

sorption of Azinfos to dust particles in relation to soil media, making dust the prominent 382 

exposure medium. Estimated HQ did not predict risk to workers potentially exposed to multiple 383 

organophosphate and pyrethroid pesticides. However current-use pesticides are typically 384 

formulated with synergists (Saillenfait et al., 2015). Thus, cumulative risk should not be ignored. 385 

3.7. Plant uptake of current-use pesticides from soil 386 
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The bio concentration ratios equated for target pesticides are summarized in Table 3. The 387 

results indicated accumulation trend of contaminants in cash crops in following order; Azinfos > 388 

Diazinon > Chlorpyrifos > Parathion-Methyl. Highest uptake of Azinfos (2.49) was equated for 389 

cotton at LAY-1. Cotton and mango samples also exhibited accelerated influx of Diazinon from 390 

soil media at stations LAY-1 and MUZ-2. The overall trend indicates that mainly Azinfos is the 391 

most lipophilic contaminant in terms of plant uptake in this study for most cash crops. 392 

Chlorpyrifos bio concentration ratios (0.04-0.22) were comparable to uptake values reported in 393 

Ricinus communis L. by (Rissato et al., 2015). Parathion-Methyl revealed lowest biomass uptake 394 

(0.03-0.11) with lowest ratios reported in Dates. Study conducted on removal of soil bound 395 

Parathion-Methyl residues by oat plant revealed only 5.1 % of total residues were retained in 396 

green part of plants (Fuhremann and Lichtenstein, 1978). Organic contaminants have the 397 

tendency to concentrate in plant mass depending upon there lipophilicity. The averaged ratios 398 

accounted in this study demonstrated variability in uptakes with generally lower bio mass 399 

retention of Chlorpyrifos and Parathion-Methyl. (Liu et al., 2016a) also predicted low OC, OP 400 

and PY (pyrethroids) uptake by persimmons and jujube fruits. Soil bound pesticide residues, 401 

pesticide concentrations and physic-chemical properties of the pesticides are driving factors 402 

controlling uptakes. 403 

4. Conclusions 404 

The quantified results draw attention towards Chlorpyrifos and Diazinon supporting 405 

highest residues in study area. Pesticides specifically organophosphates retention is principally 406 

influenced by TOC and BC content. BC derived from fossil fuel rather than biomass is found 407 

effective in bounding affinitive pesticides. Topographic and climatic variations influence TOC 408 

distribution in cash crop soils. Specifically, altitudinal gradient is a salient feature in TOC 409 
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retention. Raised TOC storage in high altitude toposequences can be attributed to minimal 410 

temperatures and elevated precipitation. Among target pesticides, Chlorpyrifos and Cyprodinil 411 

are functionally absorbed by labile TOC pools. Recalcitrant fraction (BC) is strongly correlated 412 

with Diazinon and Tolclofos-Methyl. Specifically, in lower altitudinal sites containing more soot 413 

incorporated BC. Swat and Swabi with stable carbon isotopic ratios of SIC below -3‰ 414 

confirmed high TOC pools as compared to rest of sites. Clay minerals Aluminum oxide and 415 

Ferric oxide are major binding agents for TOC. Prominent residues of Diazinon and Azinfos are 416 

reported in cash crops of targeted study area. Bio concentration ratios (BCR) also confirm 417 

dominant soil to plant uptake of Diazinon and Azinfos chiefly in cotton, mango and orange crop. 418 

The ingestion of pesticide bound soil residues does not inflict any significant harm to farmer’s 419 

health. However synergistic effect of multiple pesticide residues long term ingestion cannot be 420 

ignored. The baseline information provided by this study on status of CUPs and their persistence 421 

in cash crops soil and their uptake must be taken into consideration for identifying need for 422 

monitoring of cash crop soils from an agro economical prospect. Continuous monitoring is 423 

crucial act for these areas owing to their global importance in terms of exportable commodities 424 

and status of environmental factors ideally retaining pesticides in these sites. 425 
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Table 1. Descriptive analysis of selected pesticide concentrations (mgkg-1) in soil and plants of cash crop sites 33 

p value is significant at < 0.05 34 

 35 

 36 

Sites Commodity Diazinon Parathion-Methyl 
Tolclofos-
Methyl Chlorpyrifos Cyprodinil Azinfos 

Delta-
methrin 

      Soil Plant Soil Plant Soil Soil Plant Soil Soil Plant Soil 

SA
R

 

Orange 

Min-Max 0.99-1.44 0.01-0.12 0.91-0.94 0.025-0.03 0.75-0.97 0.19-1.39 N.D-0.24 0.44-0.46 0.37-0.44 0.20-0.29 0.81-1.14 

Mean±SD 1.113±0.15 0.06±0.04 0.92±0.01 0.027±0.001 0.8±0.07 0.97±0.39 0.97±0.09 0.45±0.01 0.42±0.02 0.23±0.03 0.93±0.1 

Median 1.04 0.04 0.91 0.027 0.77 1.1 0.05 0.45 0.42 0.22 0.91 

L
A

Y
 

Cotton 

Min-Max 1.02-2.09 0.13-5.21 0.90-1.15 0.02-0.16 0.75-0.9 N.D-1.41 0.12-0.31 0.44-0.54 0.37-0.52 0.20-1.26 N.D-1.03 

Mean±SD 1.27±0.35 1.65±0.76 0.98±0.1 0.08±0.05 0.79±0.05 0.93±0.55 0.23±0.05 0.46±0.03 0.42±0.05 0.83±0.37 0.58±0.44 

Median 1.1 0.69 0.93 0.1 0.78 1.11 0.26 0.45 0.41 0.8 0.76 

M
U

Z
 

Mango 

Min-Max 0.97-2.34 0.10-5.21 N.D-1.45 0.02-0.18 0.74-0.93 N.D-1.54 0.04-0.26 0.44-0.46 0.36-0.50 0.06-0.58 N.D-0.98 

Mean±SD 1.16±0.45 2.49±1.8 0.87±0.37 0.05±0.005 0.78±0.06 1.03±0.59 1.16±0.09 0.45±0.01 0.40±0.04 0.30±0.19 0.78±0.3 

Median 1.02 2.61 0.91 0.03 0.76 1.27 0.19 0.45 0.39 0.26 0.85 

K
H

A
 

Date 

Min-Max 0.95-1.07 0.02-0.13 0.90-0.93 0.02-0.03 0.74-0.78 1.14-1.54 0.04-0.22 0.44-0.54 N.D-0.44 0.04-0.31 0.74-1.06 

Mean±SD 1.01±0.04 0.083±0.04 0.91±0.01 0.0261±0.001 0.76±0.01 1.32±0.13 0.15±0.07 0.47±0.04 0.36±0.14 0.23±0.08 0.87±0.12 

Median 0.99 0.1 0.91 0.02 0.76 1.33 0.2 0.45 0.39 0.24 0.87 

SW
B

 

Tobacco 

Min-Max 0.95-0.97 0.10-0.14 0.90-0.91 0.02-0.03 0.73-0.74 1.42-1.47 0.23-0.31 0.54-0.56 0.36-0.37 0.23-0.26 0.76-0.77 

Mean±SD 0.95±0.01 0.12±0.01 0.91±0.00 0.03±0.001 0.74±0.00 1.43±0.02 0.27±0.03 0.55±0.01 0.36±0.00 0.24±0.01 0.77±0.00 

Median 0.95 0.12 0.91 0.03 0.74 1.42 0.28 0.55 0.36 0.24 0.77 

SA
W

 

Peach 

Min-Max 0.95-0.95 0.08-0.12 0.91-0.91 0.02-0.04 0.74-0.74 1.40-1.44 0.16-0.26 0.56-0.57 N.D-0.37 0.02-0.26 0.76-0.77 

Mean±SD 0.95±0.00 0.99±0.01 0.91±0.00 0.03±0.004 0.74±0.00 1.42±0.01 0.23±0.03 0.56±0.00 0.32±0.12 0.13±0.07 0.77±0.00 

Median 0.95 0.1 0.91 0.3 0.74 1.43 0.24 0.56 0.36 0.14 0.77 

T
ot

al
 

  Min-Max 0.95-2.34 0.01-5.21 N.D-1.45 0.02-0.18 0.73-0.97 N.D-1.54 N.D-0.31 0.45-0.57 N.D-0.52 0.02-1.26 N.D-1.14 

  Mean±SD 1.08±0.26 0.75 0.92±0.15 0.04 0.77±0.05 1.18±0.41 0.19 0.49±0.05 0.38±0.08 0.32 0.78±0.24 

p-
va

lu
e 

  

  0.043 0.0003 0.804 0.001 0.008 0.009 0.0001 0.0001 0.09 0.0009 0.052 
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Table 2. Descriptive analysis of soil parameters in cash crop sites 37 

Sites   

Soil 
moisture 
% pH EC(uS) Sand% Silt% Clay% TOC% BC% 

SiO2 

% 
Al2O 3 

% 
Fe2O3 

% 
CaO 
% 

MgO 
% 

SO3 

% 
K2O 
% 

Na2O 
% 

δ
13C 
‰ 

SAR 

Min-Max 11.0-15.0 
7.33-
7.35 170-308 37-38.50 

47.9-
49.50 12-15.10 0.71-0.83 0.31-0.45 

Mean 13.33 7.34 230 37.6 48.47 13.93 0.77 0.36 49.59 11.27 4.3 4.44 2.66 -0.03 2.59 0.9 
-

1.86 

LAY 

Min-Max 15-17 
7.48-
8.40 2710-2850 14-15.70 72.3-77 9.0-12.0 0.49-0.67 0.29-0.32                   

Mean 16 7.93 2786 14.6 74.47 10.97 0.56 0.3 49.2 11.12 4.42 4.52 2.64 -0.92 2.18 1.29 
-

1.75 

MUZ 

Min-Max 15-17 
7.52-
7.96 265-470 20-43 47-61 10.0-19.0 0.81-0.93 0.18-0.24                   

Mean 15.67 7.78 373 34 52.77 13.23 0.87 0.21 47.98 11.09 4.51 6.72 2.62 -0.02 2.58 0.87 
-

1.98 

KHA 

Min-Max 14-21 
7.41-
7.77 320-455 15-19 59-62 22-23 0.89-0.97 0.10-0.14                   

Mean 16.67 7.58 375 17 60.67 22.33 0.93 0.12 57.26 11.75 4.55 10.23 2.32 -0.34 2.5 1.09 
-

2.27 

SWB 

Min-Max 12.0-17.0 
7.79-
7.86 2150-2890 19.7-36.0 47.0-74.0 6- 1.29-1.35 0.09-0.10                   

Mean 15 7.83 2556 29.4 56.7 13.8 1.31 0.09 58.84 12.74 4.99 10.3 2.6 -0.93 2.22 1.31 
-

3.37 

SAW 

Min-Max 19-20 
7.63-
7.92 2500-3500 74-81.20 3.0-7 13.2-20 1.90-2.30 0.07-0.13                   

Mean 19.67 7.82 2966 77.4 5.2 17.4 2.1 0.09 59.11 12.86 4.98 9.68 2.6 -0.87 2.25 1.32 
-

8.49 

Total 

Min-Max 21-Dec 
7.33-
8.40 170-3500 14-81.20 3.0-77 23-Jun 0.49-2.30 0.07-0.45 

47.98-
59.11 

11.09-
12.86 

4.3-
4.99 

4.44-
10.3 

2.32-
2.66 -0.91 

2.18-
2.59 

0.87-
1.32 

Mean 16.06 7.71 1548.06 34.99 49.71 15.28 1.09 0.2 53.66 11.81 4.63 7.65 2.57 -0.52 2.39 1.13 
-

3.29 

 38 
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Table 3. Bio-concentration ratios of cash crops for selected pesticides 45 

Site ID Diazinon Parathion-Methyl Chlorpyrifos Azinfos 

SAR-1 0.073 0.030 0.222 0.510 

SAR-2 0.043 0.029 0.074 0.582 

SAR-3 0.055 0.028 0.091 0.541 

Mean (Oranges) 0.057 0.029 0.129 0.544 

LAY-1 2.476 0.089 0.036 2.455 

LAY-2 0.346 0.106 0.189 2.492 

LAY-3 0.661 0.058 0.227 1.004 

Mean (Cotton) 1.161 0.084 0.151 1.984 

MUZ-1 0.350 0.030 0.050 0.182 

MUZ-2 4.299 0.079 0.085 1.337 

MUZ-3 2.743 0.041 0.089 0.640 

Mean (Mangoes) 2.464 0.056 0.075 0.720 

KHA-1 0.077 0.028 0.118 0.439 

KHA-2 0.053 0.028 0.081 0.515 

KHA-3 0.121 0.029 0.154 0.653 

Mean (Dates) 0.084 0.028 0.118 0.535 

SWB-1 0.136 0.028 0.171 0.662 

SWB-2 0.115 0.029 0.209 0.695 

SWB-3 0.111 0.029 0.193 0.653 

Mean (Tobacco) 0.121 0.029 0.191 0.670 

SAW-1 0.105 0.028 0.163 0.405 

SAW-2 0.105 0.037 0.175 0.254 

SAW-3 0.102 0.035 0.147 0.321 

Mean (Peaches) 0.104 0.033 0.162 0.327 

Total mean 0.665 0.042 0.137 0.797 

Min-Max 0.04-4.30 0.03-0.11 0.04-0.22 0.18-2.49 

 46 
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 1 
Figure 1. Targeted sampling sites and concentration profile of pesticides at selected sampling 2 

stations from cash crop growing areas of Pakistan. 3 
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 13 
Figure 2. Spatial classification of cash crop sites represented by Principal Component Analysis Bi 14 

plot 15 
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 32 
Figure 3. BC/TOC ratios for Black Carbon source identification at cash crop sites 33 
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 40 
Figure 4. Regression analysis between TOC and variables in cash crop sites (a) Altitude (b) Relative humidity (c) Mean monthly temperature (d) 41 

Mean Annual Precipitation (e) Mean Annual Temperature (MAT) (f) δ13C (g) Clay mineral fractions 42 
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Highlights: 1 

• Current-use pesticides status in soil media for six major cash crop growing areas of 2 

Pakistan 3 

• TOC and BC levels and distribution in cash crop growing areas and their influential role 4 

in sorption of current-use pesticides 5 

• Inspecting organic carbon distribution pattern using stable carbon isotope as a tracer 6 

• Effect of clay minerals and climatic factors on organic carbon retention and pesticide 7 

sorption 8 

 9 

 10 


