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Summary. A combination of density functional theory and a tight-binding model
offers a robust means to describe the structure, vibrations, and electronic states of
silicene. In this chapter we give an overview of the electronic structure and phonon
dispersions of silicene and its fully hydrogenated derivative, silicane. We discuss the
dynamical stability of the buckled silicene and silicane lattices and we present their
phonon dispersions. We discuss the first-principles electronic band structure of ideal,
free-standing silicene, paying particular attention to the small band gap opened by
spin–orbit coupling, which renders the material a topological insulator. We look
at the tight-binding description of silicene and examine the effects of an external
electric field which, above a critical electric field, counters the spin–orbit gap and
triggers a phase transition into a band-insulator state in which the band gap is
linearly tunable by the electric field. We also present the tight-binding description
of silicane which, parameterised by density functional theory, sheds light on the
importance of long-range hopping in this material.

1.1 Introduction

Two-dimensional (2D) crystals exist in a broad variety of forms, perhaps the
simplest of which is graphene [1, 2]. Forming an atomically thin honeycomb
lattice with two atoms in its unit cell, it is a high-symmetry 2D crystal with
versatile physical properties. The next simplest 2D crystal comes to us in
the form of the silicon equivalent of graphene: silicene [3, 4]. The difference
in structure between graphene and silicene takes the form of a sublattice
buckling, illustrated in Fig. 1.1. The A and B sublattices of the crystal do
not lie in the same plane. For this reason, silicene has reduced symmetry in
comparison to graphene, which has important consequences for its physical
properties.

Silicene does not occur in nature, but monolayers have been synthesised
on Ag(111) surfaces [5–13]. Due to the similarity of the lattice structures, the
band structure of silicene resembles that of graphene, featuring Dirac-type
electron dispersion in the vicinity of the corners of its hexagonal Brillouin zone
(BZ) [14]. Moreover, silicene has been shown theoretically to be metastable as
a free-standing 2D crystal [3,4], implying that it is possible to transfer silicene
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Fig. 1.1. Atomic structure of silicene (a: side view, b: top view) and silicane (c:
side view, d: top view). The key structural parameters are marked in the figure: a is
the lattice parameter, d is the Si–Si bond length, ∆z is the sublattice buckling, dH
is the Si–H bond length, and W is the width of the silicane sheet. The structural
parameters are summarised in Table 1.1

Table 1.1. Structural parameters of silicene and silicane (see Fig. 1.1) in Å units
according to density functional theory are summarised below. The local density
approximation (LDA) and Perdew–Burke–Ernzerhof (PBE) exchange–correlation
functionals are used

Crystal Method a d ∆z dH W

Silicene LDA 3.83 2.21 0.44
Silicene PBE 3.87 2.23 0.45
Silicane LDA 3.78 2.31 0.74 1.51 3.76
Silicane PBE 3.84 2.34 0.74 1.51 3.76

onto an insulating substrate and gate it electrically. Recently, a silicene field-
effect transistor was fabricated by capping the silicene with Al2O3 before
transferring it off the Ag(111) surface on which it was grown [13].

The similarity between graphene and silicene arises from the fact that
C and Si belong to the same group in the periodic table of elements. How-
ever, Si has a larger ionic radius, which promotes sp3 hybridisation, whereas
sp2 hybridisation is energetically more favourable in C. As a result, in a 2D
layer of Si atoms, the bonding is formed by mixed sp2 and sp3 hybridisa-
tion. Hence silicene is slightly buckled, with one of the two sublattices of the
honeycomb lattice being displaced vertically with respect to the other, as
shown in Fig. 1.1. Such buckling creates new possibilities for manipulating
the dispersion of electrons in silicene and opening an electrically controlled
sublattice-asymmetry band gap [15]. In fact, by applying an external elec-
tric field to silicene it becomes a semiconductor with a tunable band gap
∆ that can reach tens of meV before the 2D crystal loses structural stabil-
ity [4]. But even at zero electric field, silicene is a gapped material, due to
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the Kane–Mele spin–orbit (SO) coupling [16] for electrons on a honeycomb
lattice, which opens a small SO-gap at the Brillouin zone corner and renders
the material a topological insulator [17,18].

The ability to open a band gap in silicene highlights one of the limitations
in the practical applicability of monolayer graphene, namely that it has no
band gap. Due to the lack of a sub-lattice buckling, the SO-gap in graphene
is negligible, and no gap appears upon the application of an electric field,
either. Hence plenty of research has gone into insulating and semiconducting
2D crystals, such as boron nitride [19, 20], transition metal dichalcogenides
[21–31], and III–VI chalcogenides [32–35].

Yet band-gap engineering in graphene has also been shown to be possible
by chemical means, as complete hydrogenation turns graphene into a gapped
material. The resulting material, graphane [36] (C2H2) has a buckled honey-
comb structure with a single hydrogen atom attached to each carbon site on
alternating sides of the sheet. Experiment [37] has shown that few-layer ger-
manane (Ge2H2), hydrogenated germanene, can be synthesised, expanding
the family of atomic 2D materials. It is expected that silicane will be stable
as well. Density functional theory (DFT) predicts that not only is silicane
stable, but it exhibits a sizable indirect band gap and a strongly anisotropic
conduction-band edge, which is a consequence of long-range hopping inter-
actions within the crystal [38].

In this chapter we overview the properties of silicene and silicane as re-
vealed by DFT and a tight-binding model, highlighting the tunable band gap
of silicene in an external electric field.

1.2 First-principles theory of silicene and silicane

1.2.1 Structure, stability, and electronic band structure of silicene

In the optimal structure of silicene the z-coordinates of the two Si atoms
in the unit cell (the A and B sublattices) differ by a finite distance ∆z,
shown in Fig. 1.1 and Table 1.1. This metastable lattice is the same as the
“low-buckled” structure found by Cahangirov et al. [3]. The parameters were
obtained as follows.

First-principles DFT was employed to calculate the optimal structure of
freestanding silicene, using the castep [39,40] and vasp [41] plane-wave-basis
codes, employing ultrasoft pseudopotentials and the projector-augmented-
wave (PAW) method, respectively. For the exchange-correlation functional
the local density approximation (LDA), the Perdew–Burke–Ernzerhof (PBE)
generalised gradient approximation [42], and the screened Heyd–Scuseria–
Ernzerhof 06 (HSE06) hybrid functionals were used [43,44].

All plane-wave DFT total energies were corrected for finite-basis error [45]
and it was verified that the residual dependence of the total energy on the
plane-wave cutoff energy is negligible. Ultrasoft pseudopotentials were used
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throughout, except where otherwise stated. The silicene system was made
artificially periodic in the z direction (normal to the silicene layer). The
atomic structure was obtained by relaxing the lattice parameter and atom
positions within DFT.

To evaluate the Fermi velocity shown in Table 1.2 the DFT band structure
was calculated using a 53×53 k-point grid and a plane-wave cutoff energy of
816 eV in a cell of length Lz = 26.46 Å. Then Eq. (17) of Ref. [46] was fitted
to the highest occupied and lowest unoccupied bands within a circular region
around the K point; the Fermi velocity is one of the fitting parameters. The
radius of the circular region was 6% of the length of the reciprocal lattice
vectors; the Fermi velocity was converged with respect to this radius.

Table 1.2. Silicene structural and electronic parameters: lattice constant a, sub-
lattice buckling ∆z (the difference between the z coordinates of the A and B sub-
lattices), and Fermi velocity v.

Method a (Å) ∆z (Å) v (105 ms−1)

PBE (castep) 3.86 0.45 5.27

PBE (vasp) 3.87 0.45 5.31

PBE [15] 3.87 0.46

LDA (castep) 3.82 0.44 5.34

LDA (vasp) 3.83 0.44 5.38

LDA [3] 3.83 0.44 ≈ 10

LDA [47] 3.86 0.44

HSE06 (vasp) 3.85 0.36 6.75

The experimental measurement of the structural properties of silicene is
invariably affected by the Ag(111) substrate on which the silicene is grown. A
detailed discussion of theoretically and experimentally determined structural
properties of silicene on various substrates can be found in Ref. [48].

By calculating the DFT phonon dispersion it has been verified [3,4] that
free-standing monolayer silicene is dynamically stable: no imaginary frequen-
cies appear anywhere in the BZ. The results of such an analysis are sum-
marised in Fig. 1.2. This stability proves that, as a metastable 2D crystal,
silicene can be transferred onto an insulating substrate, where its electronic
properties can be studied and manipulated.

The geometry optimisation and band-structure calculations were per-
formed with both the castep [39,40] and vasp [41] codes, to verify that the
results are in good agreement. The PAW method [49] was used in the vasp
calculations, whereas ultrasoft pseudopotentials were used in the castep cal-
culations. As can be seen in Table 1.2, the geometries predicted by the two
codes agree well, and it was verified that the phonon dispersions obtained
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Fig. 1.2. DFT-PBE phonon dispersion curves for silicene in zero external field
and at an external transverse electric field of Ez = 0.51 VÅ−1. In both cases the
calculations were performed using the method of finite displacements, with the
atomic displacements being 0.0423 Å, in a supercell consisting of 3 × 3 primitive
cells with a 20× 20 k-point grid in the primitive cell

with the two codes are virtually identical when the same parameters are
used. It was also verified that the phonon dispersion curves are converged
with respect to supercell size.

The calculated electronic band structure of a “free” silicene layer is shown
in Fig. 1.3. As expected, it resembles the band structure of graphene; in
particular it shows the linear Dirac-type dispersion of electrons near the K
points, where the Fermi level in undoped silicene is found.

1.2.2 Structure, stability, and electronic band structure of silicane

To obtain the optimal crystal structure, the phonon dispersions, and the
electronic band structure of silicane, the vasp [41] plane-wave-basis code
was used and the plane-wave cutoff energy was set to 500 eV. A 12 × 12
Monkhorst–Pack k-point grid was used for geometry optimisations while a
24×24 grid was used to calculate the band structures. The vertical separation
of periodic images of the monolayer was set to 15 Å. The force tolerance in
the optimisation was 0.005 eV/Å. Phonons were calculated with the force-
constant approach in a 3× 3 supercell. For an estimate of the band gap, the
HSE06 exact-exchange functional was used.
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Fig. 1.3. HSE06 band structure of freestanding silicene compared to a tight-binding
fit as described in the text. Tight-binding model parameters are listed on the right
hand side

The relaxed structure of silicane [38] is very similar to that of graphane,
as illustrated in Fig. 1.1. The bond lengths (see Table 1.1) obtained with
the PBE functional are systematically larger than those optimised with the
LDA, as expected [50]. Note that the hydrogenation is accompanied by a sig-
nificant increase in the magnitude of the sublattice buckling when compared
to silicene. Lattice constants and sublattice bucklings agree with previous
literature to within ±5% and ±10%, respectively [51–55].

The calculated electronic band structures are plotted in Fig. 1.4. One
important difference between graphane [56] and silicane is that in the latter
material a band appears close to the conduction-band edge at the M point.
In fact the conduction-band minimum of silicane is at the M point, making
silicane an indirect-gap semiconductor. The band gap of silicane is 2.91 eV
according to the HSE06 functional, which is expected to underestimate the
gap by no more than 10% [57]. Note that the conduction band is anisotropic
at the M point with a heavy effective mass in the M–Γ direction. The finding
that the band gap of silicane is indirect is supported by a variety of methods
ranging from semilocal DFT through hybrid functionals to single-shot GW
[51, 52,54,55].

Now we discuss the orbital composition of the valence and conduction
bands of silicane (see Table 1.3). At the Γ point the valence band consists of
Si px and py orbitals, while the conduction band is predominantly Si s and
pz. However, at the M point the conduction band also contains Si px and py
contributions. The H s orbital also contributes to the valence band in silicane
at the M point. This means that for a tight-binding description of silicane an
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Fig. 1.4. Band structure of silicane. The zero of energy is taken to be the Fermi
level and the top of the valence band is marked with a horizontal line. The effect
of SO coupling at the Γ point is illustrated in the inset. Effective masses (in units
of electron mass) in the HSE06 calculations are provided in the conduction band
at M and Γ , and in the valence band at Γ (where the H and L subscript refers to
the heavy and light effective mass). There is almost no sign of anisotropy in the
effective masses at Γ . In comparison to the literature on graphene, an LDA study
found a small anisotropy in both the valence and conduction band of graphane [58],
while an earlier generalised gradient approximation study makes no mention of any
such anisotropy [56]

all-valence description is required taking into account the s, px, py, and pz
orbitals of Si, as well as the H s orbital. This is a direct consequence of the
sublattice buckling; an all-valence model is already needed for the description
of the silicene lattice (excluding the H orbitals, naturally) [63].

Table 1.3. Orbital decomposition of the valence and conduction bands of silicane
at the Γ and M points according to the local density approximation

Γ M

Silicane val. 0.23(pSix + pSiy ) 0.05pSix + 0.16pSiy

Silicane cond. 0.09sSi + 0.05pSiz + 0.03sH 0.07sSi + 0.01pSix + 0.01pSiy + 0.03pSiz
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While a full geometry optimisation of silicane yields an energetically sta-
ble configuration, it is necessary to examine its phonon dispersion in order
to ascertain whether that configuration is dynamically stable. The phonon
dispersion reveals that silicane is stable as there is no sign of any dynamical
instability anywhere along the high-symmetry lines of the Brillouin zone (see
Fig. 1.5).

The so-called chair-like structure shown in Fig. 1.1 corresponds to the
case when H atoms alternate on the two sides of the sheet such that for each
sublattice the H atom is on a fixed side. In the so-called boat configuration,
which is not considered here, the H atoms alternate in pairs instead, which
slightly increases the unit cell size. The latter has been shown to be notably
less stable than the chair configuration in the case of graphane [56]; never-
theless the boat configuration of silicane has been found to be stable [52].
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Fig. 1.5. Phonon dispersion of silicane.

1.3 Tight-binding description of silicene and silicane

1.3.1 All-valence tight-binding model of silicene

The unit cell of silicene comprises two Si atoms in a honeycomb lattice, and
the A and B sublattices of Si atoms exhibit a buckling. The minimum tight-
binding model required to describe the band structure in the entire Brillouin
zone is an all-valence nearest-neighbour model that takes into account four
orbitals per Si atom (one s and three p orbitals). The tight-binding Hamil-
tonian is
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H = H0 +H1, (1.1)

where

H0 =
∑
i

[
εsa

+
i ai + εp

∑
α

(
b+iαbiα

)]
H1 = γssa

+
AaB +

∑
α

{
γspv

AB
α a+AbBα + γppσ

(
vABα

)2
b+AαbBα

+ γppπ

[
1−

(
vABα

)2]
b+AαbBα

}
+
∑
α 6=β

(
γppσv

AB
α vABβ b+AαbBβ − γppπv

AB
α vABβ b+AαbBβ

)
+ h.c. (1.2)

Here, a+ and a are the creation and annihilation operators of the s electrons of
Si, b+ and b are the same for the p electrons of Si. In H0, parameters εs and εp
are the on-site energies of the s and p orbitals of Si. In H1, γss, γsp, γppσ, and
γppπ are the nearest-neighbour hoppings between Si electrons on sublattice
A and sublattice B. Summations in i go over the A and B sublattices while
summations in α and β go over x, y, and z. vABα ,vAA

′

α , and vAB
′

α take into
account the orientation of the p orbitals, where R denotes the coordinates of
the atoms. The Hamiltonian in the Slater–Koster approach [59], shown with
solid lines separating the A and B sublattice contributions, has the form of
an 8× 8 matrix:

εs Hss Hsx Hsy Hsz

εp Hsx Hxx Hxy Hxz

εp Hsy Hxy Hyy Hyz

εp Hsz Hxz Hyz Hzz

H∗ss H
∗
sx H

∗
sy H

∗
sz εs

H∗sx H
∗
xx H

∗
xy H

∗
xz εp

H∗sy H
∗
xy H

∗
yy H

∗
yz εp

H∗sz H
∗
xz H

∗
yz H

∗
zz εp


, (1.3)

where

Hss = γss
∑
B

eik·(R
A
Si−R

B
Si), (1.4)

Hsα = γsp
∑
B

vABα eik·(R
A
Si−R

B
Si),

Hαα = γppσ
∑
B

(vABα )2eik·(R
A
Si−R

B
Si) + γppπ

∑
B

[
1− (vABα )2

]
eik·(R

A
Si−R

B
Si),

Hαβ = γppσ
∑
B

vABα vABβ eik·(R
A
Si−R

B
Si)

− γppπ
∑
B

vABα vABβ eik·(R
A
Si−R

B
Si) for α 6= β. (1.5)
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The total number of parameters in this model is six, but one can choose
one of the on-site energies to be zero to set the Fermi level, leaving five pa-
rameters to fit. The resulting model can be used to provide a simple, semiem-
pirical reproduction of first-principles band structures.

After fitting the model to the HSE06 band structure of silicene, the fol-
lowing values are obtained for the parameters: εs = −6.08 eV, γss = −2.55
eV, γsp = −2.74 eV, γppσ = −2.76 eV, and γppπ = −1.28 eV.

1.3.2 All-valence tight-binding model of silicane

Silicane has a honeycomb lattice as depicted in Fig. 1.1. The unit cell com-
prises two Si atoms and two H atoms, and the A and B sublattices of Si atoms
exhibit a buckling. The minimum tight-binding model needed to describe the
band structure in the entire Brillouin zone is an all-valence second-nearest-
neighbour model that takes into account four orbitals per Si atom (one s and
three p orbitals) and the s orbital of hydrogen. The tight-binding Hamiltonian
is

H = H0 +H1 +H2

H0 =
∑
i

(εsa
+
i ai + εp

∑
α

(b+iαbiα) + εsHc
+
i ci)

H1 =
∑
i

(γsHsc
+
i ai) + γssa

+
AaB +

∑
α

(γspv
AB
α a+AbBα +

γppσ(vABα )2b+AαbBα + γppπ(1− (vABα )2)b+AαbBα) +∑
α6=β

(γppσv
AB
α vABβ b+AαbBβ − γppπv

AB
α vABβ b+AαbBβ) +

∑
α

γsHpv
AB
α c+AbBα + h.c.

H2 =
∑
i

(γ
′

ssa
+
i ai′ +

∑
α

(γ
′

spv
AA′

α a+i bi′α + γ
′

ppσ(vAA
′

α )2b+AαbA′α +

γ
′

ppπ(1− (vAA
′

α )2)b+AαbA′α) +∑
α6=β

(γ
′

ppσv
AA′

α vAA
′

β b+AαbA′β − γ
′

ppπv
AA′

α vAA
′

β b+AαbA′β) +

γ
′

sHsc
+
AaB +

∑
α

γ
′

sHpv
AB′

α c+AbBα + h.c.

vABα = (RA
Si −RB

Si)α/|RA
Si −RB

Si|
vAA

′

α = (RA
Si −RA′

Si )α/|RA
Si −RA′

Si |
vAB

′

α = (RA
Si −RB′

H )α/|RA
Si −RB′

H | (1.6)

Here, a+ and a are the creation and annihilation operators of the s electrons of
Si, b+ and b are the same for the p electrons of Si, while c+ and c are the same
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for the electrons of the H atoms. In H0, parameters εs and εp are the on-site
energies of the s and p orbitals of Si, εsH is the on-site energy of the electron of
the hydrogen atom. In H1, γsHs parameterises the nearest-neighbour hopping
between s orbitals of Si and hydrogen, while γss, γsp, γppσ, and γppπ are the
nearest-neighbour hoppings between Si electrons on sublattices A and B. In
H2, parameters γ

′

ss, γ
′

sp, γ
′

ppσ, and γ
′

ppπ are the second-nearest-neighbour

hoppings between the Si electrons on the same sublattice, while γ
′

sHs and

γ
′

sHp are the second-nearest-neighbour hoppings between the orbitals of Si
and hydrogen on different sublattices. Summations in i go over the A and
B sublattices while summations in α and β go over x, y, z; vABα ,vAA

′

α , and
vAB

′

α take into account the orientation of the p orbitals, where R denotes the
coordinates of the atoms. The Hamiltonian in the Slater–Koster approach
[59], shown with solid lines separating the A and B sublattice contributions
as well as hydrogen contributions, has the form of a 10× 10 matrix:

H
′

ss H
′

sx H
′

sy H
′

sz Hss Hsx Hsy Hsz HsHs H
′

sHs

H
′∗
sx H

′

xx H
′

xy H
′

xz Hsx Hxx Hxy Hxz H
′

sHx

H
′∗
sy H

′∗
xy H

′

yy H
′

yz Hsy Hxy Hyy Hyz H
′

sHy

H
′∗
sz H

′∗
xz H

′∗
yz H

′

zz Hsz Hxz Hyz Hzz HsHp H
′

sHz

H∗ss H∗sx H∗sy H∗sz H
′

ss H
′

sx H
′

sy H
′

sz H
′

sHs HsHs

H∗sx H∗xx H∗xy H∗xz H
′∗
sx H

′

xx H
′

xy H
′

xz H
′

sHx

H∗sy H∗xy H∗yy H∗yz H
′∗
sy H

′∗
xy H

′

yy H
′

yz H
′

sHy

H∗sz H∗xz H∗yz H∗zz H
′∗
sz H

′∗
xz H

′∗
yz H

′

zz H
′

sHz HsHp

H∗sHs H∗sHp H
′∗
sHs H

′∗
sHx H

′∗
sHy H

′∗
sHz H

′

sHsH

H
′∗
sHs H

′∗
sHx H

′∗
sHy H

′∗
sHz H

∗
sHs H∗sHp H

′

sHsH


(1.7)

where

Hss = γss
∑
B

eik(R
A
Si−R

B
Si), HsHs = γsHs, HsHp = γsHp

Hsα = γsp
∑
B

vABα eik(R
A
Si−R

B
Si), H

′

sα = γ
′

sp

∑
A

vAA
′

α eik(R
A
Si−R

A′
Si )

Hαα = γppσ
∑
B

(vABα )2eik(R
A
Si−R

B
Si) + γppπ

∑
B

(1− (vABα )2)eik(R
A
Si−R

B
Si)

Hαβ = γppσ
∑
B

vABα vABβ eik(R
A
Si−R

B
Si) − γppπ

∑
B

vABα vABβ eik(R
A
Si−R

B
Si), α 6= β

H
′

αα = εp + γ
′

ppσ

∑
A

(vAA
′

α )2eik(R
A
Si−R

A′
Si ) + γ

′

ppπ

∑
A

(1− (vAA
′

α )2)eik(R
A
Si−R

A′
Si )

H
′

αβ = γ
′

ppσ

∑
A

vAA
′

α vAA
′

β eik(R
A
Si−R

A′
Si ) − γ

′

ppπ

∑
A

vAA
′

α vAA
′

β eik(R
A
Si−R

A′
Si ), α 6= β

H
′

sHs = γ
′

sHs

∑
B

eik(R
A
Si−R

B′
H ), H

′

sHsH = εHs + γ
′

sHsH

∑
A

eik(R
A
Si−R

A′
Si )
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H
′

sHα = γ
′

sHp

∑
B

vAB
′

α eik(R
A
Si−RHyB′ ), H

′

ss = εs + γ
′

ss

∑
A

eik(R
A
Si−R

A′
Si ) (1.8)

The total number of parameters in this model is sixteen, but one can
choose one of the on-site energies to be zero to set the Fermi level, leaving
fifteen parameters to fit. The resulting model can be used to provide a simple
semiempirical reproduction of first-principles band structures.

Using the HSE06 band structures as reference, the tight-binding band
structure can reproduce the entirety of the DFT valence band and the vicin-
ity of the conduction band at both the Γ and M points (see Fig. 1.6) to
within ≈ 1 eV of the band edge. It is important to note here that if second-
nearest-neighbour interactions are neglected, the valence band can still be
reproduced to within several eV of the band edge, but the behaviour of the
conduction band at the M point cannot, which indicates that the second-
nearest-neighbour interactions are responsible for the minimum in the con-
duction band at the M point. Also, the d-shell of Si is likely to affect states
in the conduction band. The best fit is achieved with the parameters listed
in the legend of Fig. 1.6; the fitting was optimised to give a quantitative de-
scription of the valence band and the conduction band near the Γ and the
M point.
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Fig. 1.6. Tight-binding band structure of silicane compared with the HSE06 DFT
bands. The parameters of the model are shown in the legend in units of eV. The
reference energy level is set by εp = 0
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1.4 Silicene in a transverse external electric field

To exploit the weak buckling of silicene, one can apply an external electric
field Ez in the z direction, as shown in Fig. 1.7. The main effect of such
an electric field is to break the symmetry between the A and B sublattices
of silicene’s honeycomb structure and hence to open a gap ∆ in the band
structure at the hexagonal BZ points K and K′. In the framework of a sim-
plified nearest-neighbour tight-binding model, which can be thought of as
an expansion of the tight-binding model in Sec. 1.3.1 for small wave vectors
around the corner of the Brillouin zone, this manifests itself in the form of
an energy correction to the on-site energies that is positive for sublattice A
and negative for B. This difference in on-site energies ∆ = EA − EB leads
to a spectrum with a gap for electrons in the vicinity of the corners of the
BZ: E± = ±

√
(∆/2)2 + |vp|2, where p is the electron “valley” momentum

relative to the BZ corner. Opening a gap in graphene by these means would
be impossible because the A and B sublattices lie in the same plane.

E
z

Fig. 1.7. Sketch of silicene in an external electric field, with an illustration of the
charge density for the highest occupied valence band in the vicinity of the K point

A näıve estimate of the electric-field-induced gap in silicene can be made
using first-order perturbation theory by diagonalising a 2 × 2 Hamiltonian
matrix at p→ 0,

δH(Ez) = eEz

[
〈ψ−K |z|ψ

−
K〉 〈ψ

−
K |z|ψ

+
K〉

〈ψ+
K |z|ψ

−
K〉 〈ψ

+
K |z|ψ

+
K〉

]
. (1.9)

Here, ψ±K are the degenerate lowest unoccupied and highest occupied Kohn–
Sham orbitals at the K point at Ez = 0, and z = 0 corresponds to the mid-
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plane of the buckled lattice. This suggests a band gap which opens linearly
with the electric field at a rate d∆/dEz = 0.554 and 0.573 eÅ for the wave
functions ψK found using the LDA and PBE functionals, respectively.
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Fig. 1.8. DFT-PBE band structure for silicene in a cell of length Lz = 26.5 Å
with a plane-wave cutoff energy of 816 eV and a 53× 53 k-point grid in Ez = 0.26
VÅ−1 external electric field. The zero of the external potential is in the centre of
the silicene layer. The dashed line shows the Fermi energy and the inset shows the
spectrum near the Fermi level in the vicinity of the K point

The estimate is in fact only an upper limit for the rate at which the band
gap opens, since it neglects screening by the polarisation of the A and B
sublattices. In order to obtain an accurate value of the rate at which a band
gap can be opened with an electric field, fully self-consistent calculations of
the DFT band structure in the presence of an electric field must be carried
out. A typical result of such a calculation is shown in Fig. 1.8. At small elec-
tric fields, relaxing the structure in the presence of the field does not have
a significant effect on the band gap, but the screening of the electric poten-
tial by the sublattice polarisation of the electron states makes a substantial
difference. The DFT-calculated gaps are gathered in Fig. 1.9. The variation
of the band gap ∆ at K with electric field Ez is almost perfectly linear for
fields up to Ez ≈ 1 VÅ−1. The results for the rate d∆/dEz at which a gap
is opened are shown in the table inset in Fig. 1.9. The eightfold difference
between the self-consistent and the unscreened values of d∆/dEz indicates
that the system exhibits a strong sublattice polarisability.

Applying a transverse electric field Ez in a periodic simulation cell re-
sults in a sawtooth potential in the out-of-plane (z) direction. This creates
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Fig. 1.9. DFT gap against applied electric field Ez for silicene with a plane-wave
cutoff energy of 816 eV and a 53×53 k-point grid. Unless otherwise stated, the PBE
functional was used. The box length in the z direction was varied from Lz = 13.35
Å to 26.46 Å. The results have been extrapolated to the limit Lz → ∞ of infinite
box length (solid lines). Unscreened band gaps calculated using perturbation theory
are also shown. The inset table shows the calculated rate at which the band gap
opens

a triangular quantum well in the vacuum region between periodic images of
the silicene layer. If a plane-wave basis set is used, the formation of a quasi-
2D electron gas in this spurious quantum well can in principle be described;
however, for the cell lengths used and the electric fields considered in Fig.
1.8, these quantum-well states are unoccupied, as demonstrated by the ab-
sence of quadratic bands at Γ in the vicinity of the Fermi energy. Hence at
low Ez the electric-field-induced band gap can be reliably calculated using a
plane-wave basis, and a linear dependence of the field-induced gap on Ez is
obtained. It is found that the gap for a given Ez varies with the length of
the cell in the z direction; however, the gap can be extrapolated to infinite
layer separation using a series of cell lengths that are sufficiently short that
no spurious quantum-well states are found close to the Fermi energy.

Several DFT-PBE calculations of the rate at which the gap opens in the
presence of a transverse electric field have been reported. Plane-wave basis
DFT-PBE calculations yield a rate of 0.0742 eÅ [4], while localised basis set
calculations give values between 0.157 eÅ [15] and ≈ 0.1 eÅ [62], which agree
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to within an order of magnitude. The plane-wave results are illustrated in
Fig. 1.8.

It is important to note that the electric field does not simply open a
linearly tunable band gap but can also slightly alter the structure, or in
extremely large fields it can destabilise it. It was demonstrated [4] by reopti-
misation of the geometry in the presence of an electric field that the material
is stable in fields up to at least Ez ≈ 0.4 VÅ−1.

Figure 1.2 demonstrates what happens to the phonon dispersion in the
presence of the electric field. The main effects of a small Ez on the phonon
dispersion curve are (i) to lift some degeneracies at K and M and (ii) to
soften one of the acoustic branches, but without making the frequency imag-
inary. Under much higher electric fields, the honeycomb structure of silicene
becomes unstable: Ez ≥ 2.6 VÅ−1 causes the lattice parameter to increase
without bound when the structure is relaxed. In the phonon calculations, the
box length was Lz = 19.05 Å and the plane-wave cutoff energy was 435 eV.
This is slightly different from how the phonons were calculated without the
presence of an electric field, because the error due to a finite box length Lz
is potentially much larger in the presence of a transverse electric field.

1.5 SO coupling and topological phase transition in
silicene

The effects of SO coupling on the band structures of silicene and silicane
yield quite different results. In the case of silicane, which is an indirect-
gap semiconductor, the effect of SO coupling is limited to splitting some
of the bands as shown in the inset in Fig. 1.4. In the case of the semimetal
silicene, on the other hand, the effect is much more important, especially
when considering the behaviour of the material in an electric field.

1.5.1 SO induced band gap in silicene

The PBE band structure of silicene with SO coupling explicitly included
in the Hamiltonian is shown in Fig. 1.10. The functional predicts an SO
gap of the order of a few meV at the K point, while the rest of the band
structure barely differs from the nonrelativistic case, in agreement with the
LDA functional. The calculated LDA and PBE SO gaps are 1.4 meV and 1.5
meV, respectively, in agreement with the literature [60].

The SO calculations were performed with a plane-wave cutoff of 500 eV
and a 24 × 24 k-point grid. The length of the simulation box has negligible
influence on the SO gap: the gap is the same with simulation box lengths of
15 Å and 30 Å up to numerical accuracy.



1 Density-functional and tight-binding theory of silicene and silicane 17

Γ K M Γ

k

-4

-3

-2

-1

0

1

2

3

4

ε
(k

) 
- 
ε

F
  

(e
V

)
PBE
PBE, SO

K

-5

0

5

ε
(k

) 
- 
ε

F
  
(m

e
V

)
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pling taken into account. The inset shows the bands around the K point, revealing a
small band gap induced by SO coupling. The width of the bottom panel corresponds
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1.5.2 Transition from topological insulator to band insulator state

In the theory of Dirac electrons on the honeycomb lattice, the SO gap is
accounted for by the Kane–Mele term describing, e.g., intrinsic SO coupling
in graphene [16]. The Kane–Mele SO coupling and the electric-field induced
A–B sublattice asymmetry for electrons in the vicinity of the BZ corners
K± = (±4π/(3a), 0) in silicene can be incorporated in the Hamiltonian

HK± = vp · σ +∆SOszσz +
1

2
ξ∆zσz, (1.10)

where ξ = ±1 distinguishes between the two valleys, K+ and K−, in silicene’s
spectrum. Here, the Pauli matrices σx, σy, and σz act in the space of the elec-
trons’ amplitudes on orbitals attributed to the A and B sublattices, (ψA, ψB)
for the valley at K+ and (ψB ,−ψA) for the valley at K−. In Eq. (1.10), sz is
the electron spin operator normal to the silicene plane, and ∆SO and ∆z are
the DFT-calculated SO-coupling and electric-field induced gaps.

The Hamiltonian of Eq. (1.10) generically describes the transition between
the 2D topological and band-gap insulators. Its spectrum,

E↑± = ±
√

1

4
(∆SO + ξ∆z)

2
+ v2p2,

E↓± = ±
√

1

4
(∆SO − ξ∆z)

2
+ v2p2, (1.11)
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includes two gapped branches, one with a larger gap |∆SO +∆z| and another
with a smaller gap |∆SO −∆z|. At a critical external electric field Ecz ≈ 20
mVÅ−1, ∆SO = ∆z, and the smaller gap closes, marking a transition from
a topological insulator [16–18] at ∆SO > ∆z to a simple band insulator
at ∆SO < ∆z. The difference between these two states of silicene is that
the topological insulator state supports a gapless spectrum of edge states
for the electrons, in contrast to a simple insulator, where the existence of
gapless edge states is not protected by topology. However, something similar
to the topological properties of Dirac electrons may show up even in the band
insulator state of silicene: an interface between two differently gated regions,
with electric fields Ez and −Ez (where Ez � Ecz), should support a one-
dimensional gapless band with an almost linear dispersion of electrons [61].

1.6 Summary

As illustrated in this chapter, silicene and silicane are prime examples of 2D
materials with rich physics and great application potential. The topological
insulator ground state of silicene and its electric field induced transformation
into a band insulator with a tunable band gap certainly warrants future study
of this fascinating material, while the indirect semiconductor silicane could
potentially see good use in silicon-based semiconductor technology.
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J. Park, and D. C. Ralph, Phys. Rev. Lett. 114, 037401 (2015).
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