
Software Development and CSCW: Standardization and
Flexibility in Large-Scale Agile Development

HELENA TENDEDEZ, Lancaster University, Lancaster, UK
MARIA-ANGELA FERRARIO, Lancaster University, Lancaster, UK
JON WHITTLE, Monash University, Melbourne, Australia

Identifying which agile methods and processes are most effective depends on the goals and aims of an
organisation. Agile development promotes an environment of continuous improvement and trust within self-
organising teams. Therefore, it is important to allow teams to have the flexibility to customize and tailor their
chosen methods. However, in a large-scale agile deployment, there needs to be a degree of process
standardization across the organisation; otherwise, different teams will not be able to effectively share
knowledge and best practices. This paper addresses this classic CSCW issue of the tensions that arise between
process standardization and flexibility in a large-scale agile deployment at the BBC.

CCS Concepts: • Human-centered computing~Empirical studies in collaborative and social
computing • Software and its engineering~Software creation and management

KEYWORDS
Agile development, software development, empirical study, flexibility, standardization

1 INTRODUCTION: Software development and CSCW
Software development has featured strongly within CSCW research as an example of cooperative
work. For example, Schmidt and Sharrock [40], Dittrich [39], Button and Sharrock [41]; Grinter
[42] all point to the importance of coordination, the use of representations and tools, as well as
organizational obstacles and constraints. In recent years agile development has been highlighted as
an approach that relies on what some might regard as classic CSCW properties in the use of a
repertoire of coordination mechanisms, communication modes and tools, artefacts and structuring
devices while following an agile, user-centered development approach [43]. Agile development is
a software development methodology that is responsive to changing requirements. It follows a set
of principles aimed at building software in a flexible environment, through collaboration of self-
organizing, cross-functional teams [1]. Organizations can adopt an agile methodology wholesale,
or implement different tools or processes to conform to the agile development principles. However,
organizations will continually evolve and tailor their agile development processes to suit the needs
of the organization [3]; that is; any application of agile development in an organization is a practical
interpretation of the agile principles outlined in the Agile Manifesto [1]. Interpretations of how to
practice agile development will differ between organizations and agile teams [3]. Where there is
opportunity for interpretation of these principles, there is freedom to select and adopt practices that
are most effective and valuable in a particular environment [3, 4, 27]. There is added challenge for
large-scale organizations which apply agile methodologies, due to reasons such as difficulties of
coordinating large development teams, preserving productivity and dealing with large and complex
software [5, 10, 21]. As agile development is relative to each organization, different organizations
will require different agile scaling strategies and techniques to remain effective [2]. Large-scale
organizations must consider if their interpretations of agile development work at scale, as at scale,
strategies can change and restrict flexibility [2, 4, 5, 6, 27]. For example, standardizing agile
processes through established frameworks may make process alignment across teams simpler, and
best practice sharing more consistent [27]. However, agile methods are organization-dependent,
hence it has been suggested that selecting a few methods may be more suitable than adapting
wholesale to a single agile framework [28]. This is because frameworks can limit flexibility
typically encouraged by agile development values [4, 6, 24]. Larman and Vodde [24] discuss the

difference between a self-managing agile team’s genuine desire to hold a daily stand-up meeting
and holding a stand-up meeting to conform to an imaginary ‘we are doing agile’ checklist.
 This paper explores the tensions between standardization and flexibility in a large-scale agile
environment. Standardization refers to agile processes that are enforced as a standard protocol
across an organization to share knowledge and best practice. Flexibility refers to the ability to
customize and evolve processes to suit the aims of an agile team. Tensions occur when the desire
to standardize certain processes prevents the ability to be flexible, whether this occurs within agile
teams, from team to team or externally. We contribute an exploration of these tensions, and discuss
the challenges of balancing flexibility and standardization in large-scale organizations as informed
by our findings. This challenge can be seen as an extension of the ‘classic’ CSCW problem, ‘what
to automate and what to leave to human skill and ingenuity’.

2 RELATED WORK

2.1 Large-Scale Agile Development
Large-scale agile organizations can be defined by the number of software teams within the
organization, the lines of code for a solution, or the cost of the agile project [7]. Determining scale
based on number of teams suggests that 2-9 software development teams is large-scale, with 10 or
more teams being ‘very large’ [7]. Scaling agile development usually refers to increasing the
number of teams or their sizes, or scaling in respect to geographical location [6]. Scaling team
practices, managing multi-site organizations and distributed teams are among some of the
challenges when scaling agile development [8, 9]. It is thought that large-scale agile development
is less effective, with levels of agility being limited by scaled environments [14]. Knowledge
sharing across teams in a large-scale agile organization is an example of the challenges faced with
agile at scale [35]. Understanding agile development and large-scale projects, followed by what
effects self-organizing teams was among the ‘Top 10 Burning Questions from Practitioners’ in 2010
[11]. Five years later, scaling agile development and self-organizing teams was once again noted as
a key challenge in practice, highlighting the relevancy of the ongoing problem today [9]. Allowing
self-organizing teams to independently decide how to reach organizational goals versus employing
organization-wide standardized processes that each team must follow is an example of problems
arising from scaling strategies [24]. Experimenting with practices and facilitating novel practices
were noted as key guidelines for tailoring agile in the large by Rolland et al. [36].

2.2 Coordination and Interaction
Coordination and interaction are central to CSCW; indeed, as Schmidt [61] notes, CSCW can be
said to have been born with the concerns surrounding how various cooperative groups can be better
enabled to coordinate their interactions to ensure reliability and efficiency. Standardized processes
across agile teams can be beneficial, such as daily stand up meetings, which can improve
communication and promote team awareness [17]. Standardizing processes can also help with
alignment and coordination in large-scale environments [27]. However, the daily demand to remain
socially active in agile environments can be stressful for team members [17]. Dourish and Belloti
[31] discuss different approaches to awareness and coordination in successful collaborative
environments. Particularly, they note that there is a cost associated in collaborative working
environments when individuals must exchange and produce information through restrictive
structured processes [31]. In distributed teams, lightweight mechanisms to support awareness and
information sharing can help build a sense of community and shared understanding of work [32],
which can be difficult with visual information sharing in agile environments [33].
 Alongside one of twelve agile principles being to efficiently and effectively ‘[convey]
information to and within a development team’ through ‘face-to-face conversation’ [1], it has been
highlighted in CSCW literature that emotional context can be lost when replacing face-to-face

communication with email and other communication tools [34]. As larger and distributed teams
collaborate, there is a shift towards more formal, controlled and well-defined interaction processes
through computer-supported methods [34]. Schmidt and Simone [36] describe the importance of
being able to change the configuration of organizational-wide protocols (such as Kanban systems)
in order to adapt to changes in organizational demand and requirements. Adapting such processes
to suit new situations requires direct and informal cooperative arrangements between team members
in order to increase the flexibility of existing systems [36]. This requires that team members can
take control of existing protocols and systems in order to adapt them and keep them flexible when
there is a change in demand [36]. In some instances, the adaption methods can lead to processes
going against core agile beliefs. Hoda et al. [51] describe how extensive documentation is necessary
for project communication between teams and customers, and cannot be avoided as encouraged by
the Agile Manifesto [51]. For example, software used for airline cockpits requires extensive
documentation for certification processes [51].

2.3 Flexible Processes and Standardization
One of the main attraction points of agile development is the flexibility offered and the positive
impact that this flexibility has on development activities [15]. Empowering self-directed teams to
exercise flexibility increases levels of trust and respect for one another, and can improve
performance [16, 27]. Agile development processes are by nature transient and can lose
effectiveness as time progresses [12, 13]. Therefore, standardization of processes can undermine
the values of agile software development, as processes should be open to adaption and
experimentation [27]. This is where an organization may come across tensions between
standardizing practices and allowing flexibility of processes in and between agile teams. Hoda et
al. [51] discuss the benefits of adapting agile methods to suit different projects and contrast this
with the view that agile should be done ‘by-the-book’. They note that the ‘but Agile says…’ by-
the-book mindset is unhelpful in understanding the best methods to employ for a particular project.
 The autonomy provided by agile development to teams requires a change in mindset, which can
be a difficult and slow process [53]. The boundaries between the project management and
development roles become blurred when there is an expectation for all team members to possess
some level of autonomy and heightened responsibility (contrasting with a traditional software
development environment) [53]. However, the ability to continually adapt and take ownership of
different agile methods has shown to have a positive impact on team members during development
activities [15, 27]. This allows for team members to innovate with their development process, with
the ability to craft processes to create an optimal development cycle. Standardizing software
development processes also allows for well-established, software best practices to be followed by
organizations, such as through software capability maturity models [18]. Standardization may also
make interactions and relationships required for metawork more uniform and consistent, but can
reduce choice and in turn, flexibility [34]. Typical hierarchical decision-making structures within
an organization can cause resistance from agile teams [15, 27]. Identifying the best way to balance
flexibility with the top-down impositions of standardizing a single interpretation of agile
development across an organization is an area with limited exploration. Once this area is
understood, contributions can be made to the maintenance of successfully aligned large-scale agile
environments that retain empowerment and flexibility to self-organizing teams.

3 METHODOLOGY AND CONTEXT
Dingsøyr et al. [19] have noted the slow increase of empirical research surrounding agile
development, creating a barrier between research and practice. They note that studies need to be
based on empirical data rather than argument alone to progress, with challenges being overcome
through theories built and tested within industry [19, 20]. We expand on the existing body of
empirical work carried out in software engineering contexts [47, 48, 49, 50, 51, 52, 54] through our
case study presented in this paper, demonstrating how specific tensions arise when attempting to
balance flexibility and standardization in a large-scale agile environment.

 The motivation for this study was to assess the ways in which standardization impacts on
flexibility in a large-scale agile environment [7]. We achieved this through the ethnographic
interview and observation of the culture and agile practices within teams at the BBC’s Television
and Mobile Platform (TVaMP) at Media City UK, which had 16 agile teams at the time of the study.
This continues the ethnographic turn in CSCW, which developed out of an interest in documenting
the details of work arrangements; a sophisticated view of the relationship between work and
technology (Suchman [45]; Hughes et al [46]; Heath and Luff [38]); and a concern to understand a
social setting as perceived by its participants (or users). Our study is comprised of 17 semi-
structured interviews and 9 days of disclosed direct observation [23], carried out at the BBC TVaMP
in MediaCityUK. This choice in methodology allowed for the capture of a rich qualitative dataset,
without interfering with the day-to-day working schedule of the employees. The interviews were
designed to discover interesting initial insights and understand the research context, which were
then followed up during the observation. The observation provided depth to the interview data,
whilst providing the ability to observe and speak to the agile teams in their natural work setting.

3.1 Interviews
Semi-structured interviews were conducted as the first means of data collection for the study. A
total of 17 interviews, each lasting 30-60 minutes were carried out over 5 weeks at the site. A semi-
structured approach allowed each participant the freedom to express their views on a range of topics
without being constrained by any fixed, systematic questions. A mixture of open and closed
questions were asked. This was an important approach for our emergent methodology, as we wanted
the initial interviews to uncover insights that were not geared towards specific pre-defined topics.
Interview questions were updated around every 2nd to 3rd interview to explore interesting emerging
themes and ideas. We asked questions about what agile methods were used to manage software
projects at TVaMP, how agile methods were mixed and matched, what they believed were the
benefits and challenges of the agile environment and how teams self-organized.
 Interview participants were recruited by the commissioner of the study at the BBC, with the aim
of recruiting a diverse range of participants (in terms of job titles and number of years at the
corporation). Potential participants were approached via an e-mail sent by the commissioner of the
study. Those who expressed interest in discussing their thoughts on agile development at their
department were invited to participate. Table 1 summarizes the range of participants interviewed.

Table 1. The roles of interviewed participants and their experience with software development

Participant’s Job Role Experience with agile
development (years)

Experience with software
development (years)

Software Engineer 1 < 1 < 1
Software Engineer 2 2+ 7+
Software Engineer 3 3+ 8+
Software Engineer 4 5+ 9+
Software Engineer 5 < 1 < 1
Portfolio Project Manager - -
Project Manager 1+ 5+
Technical Project Manager 3+ 7+
Technical Project Manager 5+ 9+
Software Tester - -
Senior Test Engineer 2+ 3+
Business Analyst 1 3+ 8+
Business Analyst 2 5+ 5+
Technical Lead 7+ 10+
Development Team Lead 3+ 5+

3.2 Direct Observation
A disclosed direct observation at the BBC site in MediaCityUK was the second data collection
method. Direct observation involves unobtrusively observing environments as they occur, to not
bias the observations [23]. This method was the most appropriate given the study’s exploratory
nature. As participants knew they were being observed, the type of observation was disclosed
observation. A 9 day observation lasting 6 hours per day took place at the site (54 hours in total).
Data was gathered through being embedded into different teams, sitting in on meetings, discussions,
forums, and pair programming sessions. We also had the opportunity to briefly visit other agile
departments in the BBC building. The activities chosen for observation were mainly decided based
on the emerging themes from interviews. For example, as communication was a recurring theme
from the interviews, activities centered on communication such as stand up meetings were
observed. However, there was also a degree of spontaneity when choosing activities to observe,
depending on the types of activities that were taking place each day. Detailed field notes were taken
during each day of the observation. At the end of each day, emerging data was mapped with
previously collected data (through the interviews and the previous days of observation). Key themes
which developed during the first days of the observation were used to fuel the questions asked and
activities observed for the following days. In total, we observed 12 daily stand ups, 9 pair
programming sessions, 4 retrospective meetings, 4 software testing sessions, 9 meetings and 1
demonstration or ‘demo’.

3.3 Analytical Approach
Interview and observational data were analyzed using a thematic analysis approach [22]. The
intention with this study is not to extract theory from the empirical observations, but to understand
how things work in the specifics of practice. Coding of the interview transcripts and observation
notes was carried out by hand by the first author, which was then iteratively cross referenced and
discussed with author three. Thematic analysis was the most appropriate method of analysis given
the nature of the collected data. The interview transcripts and observational notes were carefully
analyzed at a sentence level, coded into themes and then grouped into larger parent themes. Both
datasets were then compared and any relationships between the themes in the data were identified
and discussed among the authors, forming a taxonomy of the data. Themes which emerged from
the data were grouped under the parent themes: process, organizational or social factors. Table 2
summarizes the taxonomy of themes and sub themes.

Table 2. The themes of the interview and observation data.

Parent theme Definition Sub themes
Process Processes explore specific agile

processes used within the crews and
the organization as a whole. This
includes how processes are defined,
used and their perceived usefulness.

Process Experimentation, Flow,
Problems with Standardized
Processes, Challenges with Scrum,
Challenges with Kanban

Organizational Organizational factors explore the
way that the organization manages
crews, organizes itself internally and
aligns with external stakeholders.

Coping with Scale, Crew Factors,
Dependencies, Culture, Top Level
Authority Perceptions

Social factors Social factors relate to the way
crews interact and make decisions.

Trust, Communication, Crew
Expectations

3.4 Context
At the time of the study, the BBC in MediaCityUK was made up of many departments that practiced
different software development methodologies. Some used an agile approach and some did not.

This study focuses on TVaMP, who operated across a single open-plan floor. Within the
department, there were 16 teams, or crews as they are called at TVaMP, ranging in size from
approximately 6-10 members. This made the department a very large-scale agile environment [7].

3.4.1 Platform and the Crews. There were 7 main groups in the platform which crews worked
within, split by product or service. These were: Red Button (a digital interactive television service),
Sport, iPlayer (an online video streaming service), Mobile Core Engineering (dealing with the iOS
and Android mobile features and experience), Certification Team (dedicating to testing devices in
order to ensure they are compatible with iPlayer and Red Button), UX Design (consisting of user
experience designers that join specific crews where they are needed) and Platform Health
(dedicated to working on tickets that have been raised as containing bugs or minor problems by
other crews). Crews within the broader groups were occasionally dependent on one another, and
during periods of high demand on the service, crews from different groups would depend on one
another (for example, during the season of a high profile sporting event, Sport and Red Button and
Mobile Core Engineering may all depend on one another). Crews may often have a weekly
dependency on Platform Health, while minor issues and bugs are resolved.
 A typical crew was made up of 4 developers, 2 testers, 1 business analyst (BA) and 1 project
manager (PM) who worked collaboratively. Interview participant 1, a PM, described their
unconventional role in the agile crew as “My role can do anything to helping out with the testing,
requirements definitions, to helping out managing expectations internally and externally, breaking
down problems … if you looked at a traditional PM for an external organization, it would be very
much managing budgets, creating Gantt charts and might say ‘we are 62.8% complete’ – that means
nothing. So I say my roles and responsibilities is what I will move whenever there is a blockage in
the workflow, to fundamentally get that value out that we are working on”.
 The number of members or roles within a crew varied and members were occasionally rotated
between crews for skill building. Crew members were managed by their respective PMs. However,
each technical role (tester or developer) was additionally managed by a technical lead. One
technical lead was responsible for all the testers and a separate lead for the developers. Technical
leads had responsibilities such as overseeing the technical work of the platform and running
workshops for those in technical roles to learn about new tools and technologies. Technical leads
could be developers from regular crews. However, most their time was spent managing testers or
developers, rather than being embedded in a specific crew. Fig. 1. depicts the relationship between
crews and technical leads.

 Fig. 1. How testers and developers within crews are additionally managed by technical leads.

Despite the platform being divided into different groups, the platform had a shared goal of providing
a heightened digital broadcasting experience to the UK population. Interview participant 1
described the importance for crews to stay aligned and aware of one another’s work, despite being
in different groups, to “[avoid] re-inventing the wheel”, for example “someone will develop some
capability in Sport, but when iPlayer comes around to implement it, it already exists, so [not
keeping crews aligned is] a very costly mechanism”.

3.4.2 Agile Development Approach. We understand that this department had used a mixture of
different agile methods, but had transitioned from Scrum to a ‘hybrid Kanban/Scrum’ or
‘Scrumban’ approach (as described by interview participants) three years prior to our study.
Interview participant 12 described the rationale for the change: “[we started] using Scrum… but
what we found happened was that because we were working on a product that a number of other
teams required or needed to feed into, it was very difficult to protect two weeks’ worth of time, so
we moved towards a more Kanban based model, as people often call it”. However, Scrum
ceremonies such as retrospectives and stand up meetings (or ‘stand ups’) were still used. Interview
participant 12 described the benefit of the transition:

“We’ve transitioned from Scrum to more Kanban – I personally would find it very difficult to switch
back to a Scrum based structure, I think the freedom you get from being in a continuous delivery
flow means that it sort of just frees you up to focus on the problem and not have to worry about
schedules or these kind of false promises you’re making in a Scrum environment, where you’re like
‘oh I promise to do this by two weeks’ time’ rather than saying ‘right, what’s the highest priority
thing?’ So, from a developer’s perspective I think it’s very valuable to have that freedom to be able
to say ‘right, tell me the problem, state the goals, state the problem space and tell me my constraints
and we’ll go off and sort the problem, we’ll go off and work out the best solution to that thing’”

Crews were encouraged to continually optimize and tailor their own processes to suit their needs.
For example, they could choose to use digital and/or physical boards to visualize their work in
progress. Participants noted the importance of flexibility and autonomy across the platform:

“Through the very nature of continuous improvement, we have layered on top of that various levels
of Kanban and lean principles … and then the teams optimize in their own and unique way. I think
that’s encouraged … we aren’t looking for standardization of everything, although some things may
be standardized … what’s right for today isn’t right for tomorrow… the tools and approaches just
aren’t fit for tomorrow” – Interview participant 1

“If we don’t give people autonomy, we might as well employ typists not developers” – Interview
participant 12

“I think we are quite free … but we do need to align … Every crew needs a consistent front” –
Observation participant 34

Given these descriptions, it was not expected that there would be one interpretation of how agile
development should be practiced across the platform, although there were standardized practices in
place. Individual crews even had their own manifestos written on paper and pinned onto their
boards. One example observed was: ‘we vow to: not break stuff, delete code that is not needed,
visualise what we are doing, share knowledge so everyone can do everything’. This is also in accord
with Schmidt’s [61] analysis of Kanban systems at work and the need for a nuanced understanding
of the ways in which formal organizational constructs such as plans, procedures, models are
implemented in ‘real time, real world’ working practice.

3.5 Limitations
There are two particular and important limitations that arise from our study. Firstly, our case study
was carried out at one organization that had been using ‘a collection of agile methods’ for around

4 years and this may not be representative of the challenges faced by more mature agile
organizations. Secondly, the fact that the organization employed a range of different agile practices,
which they described as their ‘interpretation’ of ‘hybrid Scrum/Kanban’ must be acknowledged
before making generalizations to other large-scale agile practicing organizations.

4 FINDINGS
After carefully analyzing transcripts and observation data, the most prominent emerging theme was
the tensions between standardization and flexibility in the large-scale agile environment. This
insight was particularly interesting as TVaMP strived to foster a culture of flexibility within crews.
However, there was a degree of standardization across the platform, which referred to processes
that were enforced as a standard protocol to share knowledge and best practice. Tensions occurred
when the desire to standardize certain processes prevented the ability to be flexible, whether this
occurs within crews, from crew to crew or externally. Our findings report on a number of different
processes and activities that agile crews engaged, with a focus on flexibility and standardization.

4.1 Work in Progress Boards
Physical and digital boards were a standardized mechanism used across the department to visualise
work in progress (Fig. 2). These are traditional Kanban tools used to optimize work flow and
provide visibility about the status of tasks to the crew and wider platform. Boards are typically
broken down into different ‘lanes’, which reflect the development stage of a certain task. A typical
lane used by all crews is the ‘doing’ lane, which contained all the current tasks in progress (the
work that the crew are currently doing). Tasks are usually referred to as ‘tickets’ and physical boards
depict these tickets as post-it notes. Tickets are placed inside lanes to indicate their status, and move
across each lane as they progress towards completion. Completed tasks usually move to a ‘done’
lane (to indicate that the task has been completed). Some crews used more than one board and some
preferred a combination of physical and digital boards. Crews could view each other’s physical
boards by walking around the platform and looking at them. Digital boards were projected on
electronic screens across the platform and could be viewed in the same way, or accessed online.

Fig. 2. A physical Kanban board (left) and a digital Kanban board (right).

4.1.1 Board Customization. Across the platform, each Kanban board displayed the same task
information and used the same terminology to retain a universal understanding of progress, however
crews could structure their boards in different ways. For example, all boards had a ‘doing’ and
‘done’ lane to represent development tasks which were in progress and those that had been
completed. However, boards could have additional lanes such as ‘releasing’, which indicates that a

completed task (previously placed in the ‘done’ lane) is currently being released, or ‘test’ which
indicates a ticket is currently in the testing phase of development. On physical boards, crews often
conveyed information through handwritten post-it notes, magnets, personalized avatars
(representing each crew member) and printed notes. Physical boards were divided in creative ways,
providing the opportunity for crew members to place personal messages about their overall crew
goals and reminders onto the boards for motivation. One example observed: “DON’T GET ILL!”
 Digital boards were displayed on monitors near the desks of the crews. They were hosted on Jira
or Trello, which are software project tracking and management tools that can be accessed online.
Crews could choose which tool to use. The tools allowed users to define lanes and create tickets,
similar to the physical boards. Digital boards typically had limited scope for rich visual
customization compared to physical boards, as they were confined to the customization options
offered by the software. Interview Participant 7 stated “I think they [physical boards] are far more
flexible”.
 Physical boards varied in appearance, demonstrating how crews took full ownership of them. It
was common practice for crew members across the platform to review one another’s boards to
understand their task progress, promoting visibility across the platform. Interview Participant 1
summarized the use and ownership of the boards across the platform: “We are all about radiating
visibility about work and some people choose to do that on physical boards, some people choose to
do that on electronic boards ... you can decide your own way of working, your own lane structure,
whether you want just a simple ‘to do, doing, done’ [lane], whether you want more lanes than that.”

4.1.2 Impacts of Board Choice on Work. Crews which chose to operate a combination of physical
and digital boards faced significant overhead when attempting to sync the information across both
boards to keep them consistent. Crews would have to replicate tickets from the physical board onto
the digital board, as physical post-it notes that tracked information would eventually be thrown
away, becoming irretrievable. Keeping a digital record of tickets was believed to provide stronger
visibility and traceability across the platform, as crews could easily opt to access and search digital
boards online rather than walking over to another crew’s physical board. Participants discussed how
a crew’s board choice impacted their work and crew culture:

“There’s a lot of conversations which happen around the [physical] board which I don’t think would
happen if everyone just used Jira and sat on their laptops” – Interview participant 5

“With physical boards, you cannot measure the history of what you did last week as tickets are
pulled off [the board], which makes it hard to review your progress.” – Observation participant 4

“It’s impossible to keep digital and physical boards synced, when it’s time to align them, the tickets
go in the wrong orders and do not reflect the physical board.” – Observation participant 10

Syncing the task information across different boards was especially difficult. Tickets from physical
boards that were entered onto digital boards appeared in the order they were input onto the software,
which did not always reflect the ticket’s true status. For example, Ticket-1 may appear after Ticket-
2 on a digital board, reflecting the time it was input onto the software rather than the actual ordering
of the tasks. This caused confusion about progress between crews, making it difficult for crews to
be coordinated and properly informed about one another’s work. It was also difficult to capture
certain information onto the digital boards from physical boards, as physical boards allowed for
personalized notes and abstract representations of information (such as through avatars and
magnets) which cannot be replicated in the same way onto Jira and Trello.
 Some participants discussed feeling challenged by technical leads and PMs regarding the tasks
which were on their boards. Observation participant 6 explained how this was dispiriting for crews,
who need space and autonomy to fully engage with processes. This was later highlighted by
technical leads during a meeting:

 “It shows lack of trust in the group if they aren’t putting stuff on the board because maybe they
can’t justify [the work] to management or don’t feel like they can...” – Observation participant 7

“I seldom see boards that really reflect what is being played by crews” – Observation participant 8

In some instances crews were using boards which they did not find effective, but the board choice
was made by the PM of their crew, instead of being a joint decision among the crew. A developer
(observation participant 5) of a crew that used a digital board noted that they preferred physical
boards, as they felt it was clearer to see task progress. They mentioned finding it more satisfying to
move physical tickets across lanes rather than digital ones. Observation participant 5 discussed the
drawbacks of using Jira: “Jira is a nightmare ... it’s useful for statistics, but conversations happen
over Jira when two people are sitting next to each other, just so it’s all documented and up to date”.
 While observing a different crew who were discussing the status of a ticket, the PM requested
that the developer documented their verbal conversation onto Jira. This was so their conversation
regarding the status of a ticket was visible to the rest of the crew and platform. Crews that used a
combination of physical and digital boards also had to document conversations onto their digital
boards for the same reason, which was time consuming for the crew members.
 The types of software tracking tools utilized for digital boards also had an impact on crews’ work.
A tester (observation participant 4) discussed rotating into a crew that operated their digital board
on Trello. When asked why the crew had decided to use Trello instead of Jira, they mentioned that
crew members had felt Trello was more attractive in terms of customization of the interface.
However, it was also mentioned that Trello had caused some problems, such as having no concept
of unique identifiers to refer to individual tickets. This caused particular problems for testers when
raising bugs, and when crews did want to raise bugs and were using Trello, tickets had to be
manually duplicated onto a separate Jira board so that unique identifiers were possible.
 What these varied empirical findings point to are some of the subtleties and nuances involved in
work organization systems. The important point of these findings, much as Schmidt [61] notes for
Kanban systems, is that this is not a simple critique of any particular system but a critique in the
Kantian sense: “an attempt to determine the proper domain of this approach, so as to unburden it of
some popular misunderstandings and unwarranted generalizations and suggest some nuanced
conceptualizations for further research”.

4.2 Impact of Meetings
 There were many different types of meetings utilized within crews and additionally to manage
the large-scale environment at TVaMP. These included stand ups (a short, traditional Scrum style
meeting), retrospective meetings (focused on improving and crews’ work ethic and spirit),
technology forums (to discuss convention when using technical platforms such as Github), three
amigos (a meeting with the crew’s PM, BA and developers to discuss starting a task), coalition
meeting (opportunity to manage and review which crews are entering which code base) and generic
work meetings. Of relevance here is Boden’s [44] work in ‘The Business of Talk’ documenting the
‘skill’ routinely deployed in meetings that represents an accomplishment ‘turn by turn and topic by
topic’; whereby ‘people... talk their way to solutions, talk themselves into working agreements...
talk their organizational agendas ... create and recreate fine distinctions that actually make the
organization come alive’.

4.2.1 The Effectiveness of Stand Ups. Stand ups were standardized across the platform, inherited
from the platform’s prior Scrum methodology. They happened daily at around 10am, lasting around
10 minutes. Stand ups had around 6-10 attendees, usually every crew member and occasionally
additional attendees from management or other crews. Stand ups were designed for all crew
members to discuss task status and highlight any potential challenges. Depending on the crew, stand
ups were either chaired by rotating crew members or the PM. The chair would run through each
task on the board and decide which was going to be completed next. Stand ups also served as a
platform to have face-to-face discussion and seek clarity regarding comments left on digital boards.

 Occasionally, stand ups were attended by members from different crews. A PM (observation
participant 11) explained that attending other crews’ stand ups was encouraged, as it promoted
visibility across the platform and understanding of task status in short block of time. However,
developers expressed feeling that their stand ups became complex and lacked value as a result of
other crews and management attending them:

“Stand ups are management interference” – Observation participant 13

“Stand ups should be short and concise, there should be less emphasis on ceremonies and more
emphasis on doing work … be surgical about stand ups, they become useless to the crew as too
many people come” – Observation participant 3

 “Stand ups are not agile. If you have a specific time to communicate in a slot that is prescribed, it
shows you’re not communicating enough during the day” – Observation participant 15

A 6 minute stand up was observed with 19 attendees. A developer (observation participant 17) from
this crew stated that the size was due to merging 3 crews’ stand ups to promote visibility between
collaborating the crews. There was a tally chart on the physical board where members could vote
on their ideal stand up size. Out of 13 votes, 10 voted to split the stand up into 2 groups, 1 voted to
split into 4 groups and 2 voted to remain the same size. Crew members admitted that communicating
became much harder when stand ups were large and were subsequently too short to be productive.
 Observation participant 16 reflected on an old process where a group of 10 BAs and PMs would
observe each stand up, every day. Crews would have their stand ups when the BAs and PMs were
free to observe. This was a practice introduced as an experiment to promote visibility, but made
crews feel that they had to “perform” (observation participant 16) stand ups to management rather
than conducting them for their intended value. Crews ended up having their “real stand-ups”
(observation participant 16) at the start of the day and performing a second stand up for management
later that same day. This process was later dismissed as it was seen as time-consuming for both
crews and management, and also made stand ups futile for crews.

4.2.2 Impact of Meetings on Productivity. A meeting was observed that was called to discuss the
usefulness and quantity of meetings across the platform. There were 9 people in attendance. The
meeting was motivated by crew members feeling distracted and unproductive due to the number of
meetings that they had to attend. Developers and testers expressed their concerns:

“I’ve been to three meetings this week, with the same purpose, and the same people... No meetings
would be like music to my ears” – Observation participant 18

“On Thursday I had no meetings, my pair and I got so much done” – Observation participant 20

“I’ve had so many distractions this week, I want to put earphones in, but then I can’t pair program
… [My other crew members] are constantly in meetings... I feel I have little time to do work” –
Observation participant 19

It was observed that testers and developers felt distracted by the number of meetings and saw them
as interrupting work flow. Multiple meetings were in place to keep the platform aligned and
informed about the work of individual crews. Although each crew was independent, collectively
they were working towards shared goals and broader projects which must be aligned. A trial period
with fewer meetings for developers and testers was suggested at the meeting as a potential solution
to this issue. There was debate around the necessity of including management and BAs into this
trial, as “by nature they attend many meetings” (observation participant 18). A PM (observation
participant 22) then stated, “a few less meetings won’t mean much” to which a developer
(observation participant 3) responded that less meetings would “really help developers out”.
 A developer (interview participant 25) later stated that the usefulness of meetings for the
promotion of visibility and alignment in the large-scale environment depended on how crew
members’ viewed their job. They stated: “If you define my work as writing code then it’s really a

disruption to that, but if you define it as making valuable products and writing code is a byproduct
of that, then yeah, talking is good.”

4.2.3 Retrospective Meetings. Retrospectives were individual crew meetings that occurred
approximately once a month and lasted an hour. These meetings were also inherited from the
platform’s prior Scrum approach. They were open only to the individual crew and are conducted in
“quite a lively way … involving just a general congratulations” (interview participant 25). The aim
was to openly and honestly reflect on work and potential improvements, followed by ensuring their
work contributed to the shared goals of the wider platform. The meeting usually incorporated
several action points to be completed by the next retrospective. All crew members were encouraged
to use this meeting to share their opinions on processes and crew culture. Crews would keep
annotated post-it notes from the retrospective to review if targets have been met (see Fig. 3).
 A PM reflected on a discussion from a retrospective. They noted that demands from external
departments and other crews meant that their crew had to put some of their own work on hold:

“As soon as you have more than one team then the challenge of autonomy versus alignment is
significant, because when you’ve got a single team doing a single thing that doesn’t depend on
anything else, it doesn’t have to be aligned with anybody so you just kind of stand back and watch
the magic happen, if you are 7 trying to co-ordinate as we are, across 5 crews in my space, but also
across multiple crews, several on this floor, some in London, some in Cardiff, Glasgow, it becomes
a real balance between autonomy and alignment.” – Interview participant 14

This was echoed by a PM (observation participant 32) who revealed that he faced dependencies
from another department who practiced Scrum methodologies: “60% of my work depends on
getting stuff from [another department]”. For example if TVaMP (who operate using a hybrid
approach) requested a piece of work from ‘department X’ (who operated using Scrum), this request
is placed at the end of department X’s Scrum Product Backlog (a list of tasks which need to be
done) and is not placed according to priority level (as is typical with Kanban approaches). This
meant that TVaMP had to wait for other departments to finish their prior tasks before their request
was considered and fulfilled. The lack of interfacing techniques between collaborating departments
and crews created dependency and productivity challenges.

Fig. 3. Flipchart paper containing annotated post-it notes from previous retrospective meetings.

4.2.4 Demonstrations. A monthly demonstration or ‘demo’ was observed where each crew
presented their work from that month to the rest of the platform. They were typically organized by
management. The observed demo lasted 1 hour. A PM described the demo as a way to celebrate the
work of each crew while keeping motivation and morale high. PM (observation participant 32)
seemed excited and proud to have this activity observed. It was held on a Friday afternoon (the end
of the working day) on the platform floor, along with beverages. Each crew had 3 minutes to present

their work and their plans for the month ahead. The process was laid-back and crew members
seemed enthusiastic to present their work. There was an opportunity for questions and feedback
after each presentation. While demos were motivating for crews, they also provided a single space
to promote alignment and visibility across the platform. It was a chance for the whole platform to
come together and understand what each crew was working on during the prior month, which
ordinarily would have been difficult due to the number of crews on the platform. There were also
proposed opportunities for collaborations with certain tasks, providing a single space to reach all
crew members. Interview participant 1 discussed why they believed autonomy and collaboration is
important for crews: “You get people really invested in what they’ve done if they feel they’ve had
a chance to input into what the thing is, even if that input is limited”.
 These empirical findings illustrate how various meetings, combined with the use of different
boards form part of the overall management – the ‘phasing’ [41] of the project. As a range of CSCW
studies have illustrated [57, 58], such meetings involve reporting on progress, issues and concerns
and are a means whereby team members can orient to the project as a whole and keep informed of
both progress and problems. They chart the progress (or lack of) of the project; what tasks are
delayed or reallocated, what further work needs to be done in terms of coordination and the
allocation of responsibilities; and thereby provides some indication of how the team are doing and
what remains to be done. So, meetings become a mechanism for ordering, sequencing, allocating
managing and tracking progress.

5 DISCUSSION
The question posited by this study is how to balance this flexibility with standardization. We use
this question to frame a discussion below around how agile development is achieved at the large-
scale TVaMP, with a focus on the implications of both flexibility and the standardization.

5.1 Implications of Flexibility and Standardization
5.1.1. Customization and Overhead. Offering crews the choice to implement and customize their
own Kanban boards promoted flexibility. Dikert et al. [27] emphasizes the importance of
customization in agile implementation, with teams who customize and tailor their agile practices
performing better than those that do not. Customization also promotes a new way of thinking [27],
which can be central to development teams who are not used to possessing autonomy in software
development environments [53]. We observed that although crews had the flexibility to choose their
boards, there were notable drawbacks for crews who chose to implement digital boards or a
combination of board types. Discussions had around physical boards were documented on digital
boards to promote coordination and awareness across the platform. Similarly, hand-written tickets
were replicated onto digital boards, which often led to inaccuracies and misinformation being
projected due to the way these software tracking tools operated. This caused crews to spend time
attempting to capture the richness of their face-to-face discussions to be able to accurately reflect
their work, which effected time spent carrying out development duties. Bardram and Bossen [26]
discuss how physical artifacts that support work are only truly comprehensible by those in the team
in which the artifact belongs, with newcomers or onlookers finding it challenging to decipher
inscriptions on the artifacts. This coincides with the reasoning behind the adoption of digital boards
in our study – to attempt to standardize the way that task information was projected across the
platform, as physical boards were ‘too’ customized and personal to the crew. Increased flexibility
in the customization of physical boards subsequently made them less accessible or comprehensible
to the wider platform. We saw how the platform attempted to mitigate this: through duplicating
tickets and notes onto a more accessible and ‘consistent’ software tracking tool. In turn, this
replaced the prior problem of inaccessibility with the problem of increased time in replicating
information – often inaccurately or in the wrong order – for the purpose of visibility.
 It was important for crews to continually keep the remainder of the platform informed about
their work – without doing so would restrict knowledge sharing which was required for dependency
management. However, crews were burdened with the laborious task of ‘blending’ [26] the digital

and the physical artifacts to maintain coordination and visibility in the large-scale environment. In
this example, the flexibility to customize boards paired with the need for boards to work at scale
drew crew members into a challenging cycle of having to standardize their own customizations for
the rest of the platform. Crews were supporting the difficult maintenance of the two boards types,
rather than the boards supporting the cooperative work of the crews. The difficulties faced by crews
to capture the detail and customization offered by physical boards within digital boards resonates
with work by Bardram and Bossen [26], who note that annotations on physical artefacts cannot be
modelled by computer systems in the same way. One way to alleviate these challenges with aligning
physical and digital boards in this context is to not treat the boards as if they should be exact copies
of one another. Digital boards, used alongside physical boards solely for visibility, should not need
to capture the same level of richness and abstraction offered by physical boards – their differences
should be appreciated. Instead, differentiating the level of detail and required knowledge to be
shared within crews and between crews can help to realise what is necessary for digital boards to
contain and what can remain pertinent to the immediate crew on a physical board. This is one way
to help preserve flexibility, enabling crews to still take ownership and customize their physical
boards, while controlling and refining what is necessary for external presentation. Designers of
software tracking tools should incorporate the desire for customization with the requirement for
orderliness (allowing a more flexible way to input and order tickets, while attributing them to unique
identifiers) in their tool designs.

5.1.2. Boards Replacing Face-to-Face Communication. Crews did not always use boards which
they found effective. Maintenance, synchronization, documentation and duplication were examples
of overhead caused through digital board use (and a combination of using both digital and physical
boards). A notable issue with digital boards was the way they limited the amount of face-to-face
communication within crews. Prioritizing individuals and interactions over processes and tools is
core to agile development [1]. Using a combination of digital and physical boards forced crews to
spend time documenting verbal conversations onto digital boards to remain visible to the rest of the
crew and platform. Dikert et al. [27] noted the difficulty of striking a balance between self-
organizing agile teams focusing on their own goals and those of the broader organization. Lack of
respect for the wider organizational context can result in coordination challenges [27]. Here we see
an imbalance where some crews were choosing tools that would best suit the wider environment,
putting this before the benefit of the individual crew.
 Of importance here is Heath and Luff’s [38] finding on how information flow between colleagues
should complement information presented by technology, as relying on information presented
solely by the technology alone can leave room for misinterpretation. In our study, there was an
expectation that the larger environment should periodically check crews’ boards to see their
progress, with digital boards being viewed as more accessible. There is, however, a need to
welcome tools in the management of interactions in large-scale agile environments as noted by
Murphy et al. [49]. Furthering this, Layman et al. [47] note that tools are “only as useful as the users
make [them]” highlighting that it is essential that information displayed in project management
tools are accurate and up to date for the viewing of all stakeholders. Our findings showed crews’
desire to maintain near accurate documentation on digital boards had a negative effect on inter-team
communication. This demonstrates the burden placed on crews associated with ensuring that these
tools are constantly updated and reflect a degree of accuracy down to individual conversations.

5.1.3. Interfacing Different Agile Methods. Large-scale agile environments that encourage
flexibility require well though-out mechanisms to effectively interface different agile methods. The
difficulty of interfacing with non-agile teams has been noted by Begel and Nagappan [50], with
scheduling mutual deliverables being a major challenge. Here we discuss the lack of consistent
interfacing techniques between agile teams and departments, creating dependency and productivity
issues for inter-departmental collaborations when different agile flavors are mixed and matched.
Similar to this are the observations made by Hoda et al. [53] relating to task dependencies, where

cycles of work (known as ‘sprints’ in Scrum methodologies) result in cancellation due to too long
waits for dependencies from third parties.
 Some organizations create standards to overcome the problems of interfacing agile interpretations
[27]. This is necessary to mitigate against interpretations being too different, which can cause
friction when team members move to new teams [27], as experienced by observation participant 4
who was rotated into a crew that used Trello instead of Jira, causing difficulties for their testing
duties. However, cooperative protocols within the work place, for example Kanban boards,
inevitably encounter situations where the system becomes ‘beyond its bounds’ [37] and requires
flexibility to adapt to a given situation, presenting potential difficulties for such organizational
interfacing standards. Cooperative tools that are adapted to suit new situations may no longer
conform to the defined interfacing standards outlined by the organization. There is a clear need to
allow flexibility to adapt cooperative tools, whether for new contexts or a crew’s desire to
experiment and customize, but this must be balanced with an element of interfacing standardization
to manage dependencies and scale. This interoperability issue is a relatively underexplored area of
research which does not seem to be fully resolved in practice.
 In instances where agile methods are interfaced between crews, such as with Kanban boards, it is
important to note that the work visualized on these tools (both physical and digital) may not
accurately reflect what a crew is working on. We observed how some crews felt they could not
publish their progress on their boards, as they felt somewhat challenged by BAs and management
about what they were working on. Therefore, boards did not always reflect their current work,
creating a mismatch between what was presented on the board and what was being done in practice.
In this way, some crews were unable to effectively engage with their chosen tools, limiting true
crew autonomy and contributing to difficulties keeping the platform coordinated. Begel and
Nagappan [50] noted similar feelings of discomfort in reporting progress from developers in the
context of meetings, where they felt pressured to label a task as ‘done’. Hoda et al. [53] observed
the importance of trust between PMs in agile teams in order to successfully collaborate with
management activities. Trust is explicitly noted as a core principle of the Agile Manifesto [1]. Here
we see the negative effects that this discomfort and ‘lack of trust’ (as phrased by observant
participant 7) places on the development teams and wider platform: inability to fully engage with
their tools and projection of misinformation around task status.

5.1.4. Repurposing Practices to Manage Scale. Stand ups were enforced across the platform, carried
over from the platform’s prior pure Scrum approach. Dikert [27] observed that tensions that can
arise when old and new methods are used side by side. Short, concise stand ups were favored. Large
stand ups or having them observed in the name of coordination and awareness made them
ineffective – or even “useless” for developers. In this sense, standardizing and repurposing stand
ups as an activity to manage scale placed burden onto individual crews. The very description of
performing a stand up suggested that crews viewed them as a platform to demonstrate how they
were meeting the priorities and needs of management, rather than having a true discussion of the
needs and priorities of the crew. Observing different stand ups served as a way to navigate through
the progress of the large-scale environment. However, standardizing stand ups and the protocol of
observing them was not beneficial to standardization or flexibility – or even considered agile by
some participants. In much the same way as crews feeling uncomfortable publishing their progress
on their boards, similar levels of discomfort could be expected during observed stand ups. This can
lead crews to feeling that they cannot have the freedom to discuss their shared priorities and task.
In Layman et al.’s [48] empirical study of an XP environment (a type of agile software development
methodology), developers reported finding stand ups beneficial due to their contribution to project
understanding and visibility. Similarly in Begel and Nagappan’s study [50], daily stand ups were
viewed as instrumental to communication and coordination by testers and developers, providing a
platform for them to be brought together. However, interestingly in [48], the authors note that pair
programming activities were seen as valuable only when they were not enforced, in which they
were then perceived as an inefficient use of time, demonstrating how the enforcement of practices
can contribute to loss of value. This is mirrored through the enforcements of stand ups and their

conduct in our study. Crews felt a similar frustration noted by Dikert et al. [27], when agile is simply
perceived as the use of specific tools, with little understanding of the core concepts that bring value
to these tools. It was clear that the value behind stand ups became lost to individual crews.
Enforcement of practices and tools must be considered carefully, as this can lead to their over-use,
contributing to these practices being viewed as time-worn and losing effectiveness.

5.1.5. Meetings and Standardization. The effect that different definitions of ‘work’ had on crews’
attitudes towards meetings was notable. For instance, defining ‘work’ as “making valuable
products” made meetings more acceptable, whereas defining work as “writing code” had the
opposite effect. This demonstrates how language framing can deeply impact processes and their
outputs [25]. The use of the expression “autonomy and alignment” (interview participant 14) as an
alternative to ‘flexibility and standardization’ highlighted the juxtaposition of personal agency
versus institutional control. In other words, autonomy is conceptually linked to individuals or
groups, whereas flexibility is more related to processes and outputs.
 Multiple meetings that are in place to maintain alignment and visibility across the platform were
viewed as repetitive and impeding productivity by development teams. Previous empirical software
studies have noted the perceived problem of distraction with numerous meetings in agile
environments [27, 30, 50]. Particularly Begel and Nagappan [50], who noted that developers
perceived Scrum meetings as distracting and inefficient. In our study, meetings were viewed as
useful to those in BA and PM roles, linking with Murphy et al.’s [49] finding that PMs believed
‘awareness of other people’s work’ is the highest benefit of agile development. Although the
framing of language influenced developers’ perceptions of meetings, the consensus among
participants was that the quantity of meetings was the larger problem. Standardized meetings were
beneficial for scale management, as they periodically brought different crews and roles together to
discuss different topics, but this was at the expense of crew flexibility. The numerous meetings
enforced across the platform negatively affected the morale and productivity of those in
development roles. Hoda et al. [51] observed two instances of how agile teams dedicated a member
of their development team or BAs to act as a proxy to communicate with customers for requirements
and feedback, working particularly well for those with heightened communication skills. One
imagines how a crew member in this instance (possibly a PMs or BAs, who are most enthusiastic
about meetings) could serve as a proxy to communicate with the wider platform through the
frequent meetings aimed at managing scale. This should not mean that other crew members are
exempt from meetings, as they do show to be beneficial to development team members, and face-
to-face communication is important for understanding context and circumstances [48, 50, 34].
Furthering this, excluding developers and testers from meetings could affect their perception of
their own responsibility and autonomy within projects. However, a proxy can help to manage the
high frequency of meetings required for scale. It was clear from our findings that developers felt
that less meetings would “really help them out” whereas a decrease in meetings was thought to have
a minimal effect on PMs. Utilizing a dedicated proxy could help to promote face-to-face discussions
in preparing the proxy for these meetings, alleviating tensions around lack of face-to-face
communication within crews. Crew members may feel more comfortable discussing progress to
their within crew proxies, addressing discomfort around this progress [50].
 There were two examples of standardized meetings that were beneficial for flexibility in our
study. These were demonstrations and retrospectives. Retrospectives, a standardized meeting within
crews, successfully promoted flexibility through providing a dedicated time for crews to gather
independently and reflect honestly on their processes and culture. They also served as an
opportunity for crews to discuss how their work contributes to the overall shared goals of the
broader organization. These were closed meetings were not observed, which may have contributed
to their success. Realigning crew values and processes, followed by broader goals and values of the
platform through standardized retrospectives had a positive impact on standardization and
flexibility. Likewise, demonstrations proved to be an excellent opportunity to promote visibility
and coordination whilst boosting motivation across the large-scale platform in a flexible, relaxed

way. They were highly positive for standardization, providing a single platform for all crews to
present their work and gain feedback.

6 CONCLUSION
 Through 17 interviews and approximately 54 hours of direct observation, our study has shown
the tensions that manifest when balancing standardization and flexibility in the context of large-
scale agile development. It is known that software development at scale comes with a number
problems and challenges, and our work provides a detailed account of how and why these problems
arise from those directly embedded in the agile process. We highlight five key findings associated
with flexibility and standardization in this context, relating to: customization and overhead; Kanban
boards and communication; interfacing agile methods; repurposing agile methods to manage scale
and meetings and standardization. We argue large-scale organizations must strive to encourage
processes, tools and value that do not overlook the importance of flexibility with an eye to
increasing standardization. We demonstrate the specific difficulties that can arise as a result of an
imbalance of flexibility and standardization. Since work activities are inherently flexible, subtle and
contextual; technologies and systems to support work, CSCW technologies and systems, need to
possess similar qualities. One of the main achievements of CSCW has been to empirically document
the complexities of collaborative socio-technical work and thereby delineate what some regard as
the classic CSCW problems, ‘what to automate and what to leave to human skill and ingenuity’
[29]. The contrast and tension of ‘standardization’ versus ‘flexibility’ constitutes an extension of,
or complement to, this classic dilemma.
 To some extent the empirical work reported here is similar to that found in research on
development projects more generally – that is, it is a simple addition to a growing empirical research
corpus. It reinforces the idea that software development work is complicated and intricate, and
subject to negotiation and renegotiation. Development work is inevitably a ‘satisficing’ activity, it
requires the discovery and achievement of workable and acceptable compromises. However,
turning this into a ‘theory’ is beyond the remit of this paper, but we certainly believe it can
contribute to some of the conceptual developments noted by Hoda et al. [54, 53, 51] in particular
the concept of ‘balancing’. As they note, Glaser’s [59] notion of ‘balancing’ – “handling many
variables at once in order to start an action, keep an action going or achieve a resolution” - best
fitted their own findings concerning the practices of self-organizing agile teams. We believe the
concept of ‘balancing’ might also fit with some of our findings concerning flexibility and
standardization; and whilst far from being a ‘theory’ in any rigorous sense, may still contribute to
what Halverson [56] considers some of the attributes of theory, in particular in providing a useful
way of talking about and describing some phenomena, and thereby provoking some ideas or
‘implications for design’. As Wittgenstein [60] notes, “The difficulty – I might say – is not that of
finding a solution but rather as recognizing as the solution something that looks as if it were only a
preliminary to it… This is connected, I believe, with our wrongly expecting an explanation, whereas
the solution of the difficulty is a description, if we give it the right place in our consideration”.

ACKNOWLEDGEMENTS
We would like to thank Duncan Fortescue and all our participants at the BBC for their involvement
in our study. Also, we thank Mark Rouncefield for his valuable input into our work. This work has
received support from the ‘Values in Computing’ project funded by the Engineering and Physical
Sciences Research Council (EPRSC) UK, Grant number: EP/R009600/1).

REFERENCES
[1] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin Fowler, James

Grenning, Jim Highsmith, Andrew Hunt, Rob Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken
Schwaber, Jeff Sutherland and Dave Thomas. 2013. The Manifesto for Agile Software Development. Retrieved
March 26, 2018 from http://agilemanifesto.org

[2] Scott W. Ambler. 2007. Agile Software Development at Scale. In Balancing Agility and Formalism in Software
Engineering, Meyer B., Nawrocki J.R., Walter B. (Eds.) Lecture Notes in Computer Science, Vol 5082. Springer,
Berlin, Heidelberg. 1-12. DOI: 10.1007/978-3-540-85279-7_1

[3] Taghi Javdani Gandomani and Mina Ziaei Nafchi. 2015. An Empirically-Developed Framework for Agile Transition
and Adoption: A Grounded Theory Approach. Journal of Systems and Software, Benoit Baudry, Antonia Bertolino,
Daniela Damian, Kaushik Dutta, Helen D. Karatza, Patricia Lago (Eds.) Vol 107. Elsevier Science Inc, New York.
204-219. DOI: 10.1016/j.jss.2015.06.006

[4] Shventha Soundararajan, James D Arthur and Osman Balci. 2012. A Methodology for Assessing Agile Software
Development Methods. In Proceedings of Agile 2012 Conference (AGILE ’12). 51-54.

[5] Ipek Ozkaya, Michael J. Gagliardi and Robert Nord. 2013. Architecting for Large-scale Agile Software
Development: A Risk-Driven Approach. In Crosstalk Magazine, Brandon Ellis and Colin Kelly (Eds.) Vol 26.
Software Engineering Institute. 17-22.

[6] Jutta Eckstein. 2004. Agile Software Development in the Large: Diving into the Deep. Dorset House Publ. Co., Inc.,
New York, NY, USA.

[7] Torgeir Dingsøyr, Tor Erland Fægri and Juha Itkonen. 2014. What Is Large in Large-Scale? A Taxonomy of Scale
for Agile Software Development. In Product-Focused Software Process Improvement, Jedlitschka A., Kuvaja P.,
Kuhrmann M., Männistö T., Münch J., Raatikainen M. (Eds.) Lecture Notes in Computer Science, Vol 8892.
Springer, Cham. 273-276. DOI: 10.1007/978-3-319-13835-0_20

[8] Nirnaya Tripathi, Pilar Rodriguez, Muhammad Ovais Ahmad and Markku Oivo. 2015. Scaling Kanban for Software
Development in a Multisite Organization: Challenges and Potential Solutions. In Agile Processes in Software
Engineering and Extreme Programming (XP ’15), Lassenius C., Dingsøyr T., Paasivaara M. (Eds.) Lecture Notes
in Business Information Processing, Vol 212. Springer, Cham. 178-190. DOI: 10.1007/978-3-319-18612-2_15

[9] Peggy Gregory, Leonor Barroca, Katie Taylor, Dina Salah and Helen Sharp. 2015. Agile Challenges in Practice: A
Thematic Analysis. In Agile Processes in Software Engineering and Extreme Programming (XP ’15), Lassenius C.,
Dingsøyr T., Paasivaara M. (Eds.) Lecture Notes in Business Information Processing, Vol 212. Springer, Cham. 64-
80. DOI: 10.1007/978-3-319-18612-2_6

[10] Jo E. Hannay and Hans Christian Benestad. 2010. Perceived Productivity Threats in Large Agile Development
Projects. In Proceedings of the 2010 ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM ’10). Article 15. DOI: 10.1145/1852786.1852806

[11] Sallyann Freudenberg and Helen Sharp. 2010. The Top 10 Burning Research Questions from Practitioners. In IEEE
Software, Vol27. IEEE Computer Society Press Los Alamitos, CA. 8-9. DOI: 10.1109/MS.2010.129

[12] Lech Krzanik, Pilar Rodriguez, Jouni Simila, Pasi Kuvaja and Anna Rohunen. 2010. Exploring the Transient Nature
of Agile Project Management Practices. In 2010 43rd International Conference on System Sciences (HICSS ’10).
DOI: 10.1109/HICSS.2010.204

[13] Nilay Oza, Fabian Fagerholm and Jürgen Münch. 2013. How Does Kanban Impact Communication and
Collaboration in Software Engineering Teams? In Proceedings of the 6th International Workshop on Cooperative
and Human Aspects of Software Engineering (CHASE 2013). 125-128. DOI: 10.1109/CHASE.2013.6614747

[14] Dan Turk, Robert France and Bernhard Rumpe. 2002. Limitations of Agile Software Processes. In Third
International Conference on Extreme Programming and Flexible Processes in Software Engineering (XP ’02) 43-
46. Springer, Verlag.

[15] Eman A. Altameem. 2015. Impact of Agile Methodology on Software Development. In Computer and Information
Science. Canadian Center of Science and Education, Vol 8. 1-10. DOI: 10.5539/cis.v8n2p9

[16] Alan Koch. 2011. 12 Advantages of Agile Software Development. Retrieved March 26, 2018 from
https://www.globalknowledge.com/ca-en/resources/resource-library/white-paper/12-advantages-of-agile-software-
development/

[17] Elizabeth Whitworth. 2008. Experience Report: The Social Nature of Agile Teams. In Proceedings of Agile 2008
Conference (AGILE ’08). 3-6. DOI: 10.1109/Agile.2008.53

[18] Christiane Gresse von Wangenheim, Jean Carlo R. Hauck, Alessandra Zoucas, Clenio F. Salviano, Fergal McCaffery
and Forrest Shull. 2010. Creating Software Process Capability/Maturity Models. IEEE Software, Vol 27. 92-94.
DOI: 10.1109/MS.2010.96

[19] Torgeir Dingsøyr, Tore Dybå and Pekka Abrahamsson. 2008. A Preliminary Roadmap for Empirical Research on
Agile Software Development. In Proceedings of Agile 2008 Conference (AGILE ’08). 3-6. DOI:
10.1109/Agile.2008.50

[20] Dag I. K. Sjøberg, Tore Dybå and Magne Jørgensen. 2007. The Future of Empirical Methods in Software
Engineering Research. In Future of Software Engineering (FOSE ’07). 358-378 DOI: 10.1109/FOSE.2007.30

[21] Torgeir Dingsøyr and Nils Brede Moe. 2013. Research Challenges in Large-Scale Agile Software Development.
ACM SIGSOFT Software Engineering Notes. Vol 38, no 5. 38-39. DOI: 10.1145/2507288.2507322

[22] Virginia Braun and Victoria Clarke. 2006. Using Thematic Analysis in Psychology. In Qualitative Research in

Psychology. Vol 3. 77-101. DOI: 10.1191/1478088706qp063oa
[23] Saul McLeod. 2015. Observation Methods. Retrieved from May 25, 2017 from

www.simplypsychology.org/observation.html
[24] Craig Larman and Bas Vodde. 2010. Practices for Scaling Lean & Agile Development: Large, Multisite and Offshore

Product Development with Large-Scale Scrum. Addison-Wesley Professional.
[25] George Lakoff. 2010. Why it Matters How We Frame the Environment. Environmental Communication. Vol 4, no

1. 70–81. DOI: 10.1080/17524030903529749
[26] Jakob E. Bardram and Claus Bossen. 2005. A Web of Coordinative Artifacts: Collaborative Work at a Hospital

Ward. In Proceedings of the 2005 International ACM SIGGROUP Conference on Supporting Group Work (GROUP
'05). 168-176. DOI: 10.1145/1099203.1099235

[27] Kim Dikert, Maria Paasivaara and Casper Lassenius. 2016. Challenges and Success Factors for Large-Scale Agile
Transformations. A Systematic Literature Review. Journal of Systems and Software, Hans van Vliet, Benoit
Baundry, Antonia Bertolino, Daniela Damian, Juan C. Dueñas López, Kaushik Dutta, Helen D. Karatza, Patricia
Lago (Eds.) Vol 119. Elsevier Inc. 87-108. DOI: 10.1016/j.jss.2016.06.013

[28] Paul Hodgetts. 2004. Refactoring the Development Process: Experiences with the Incremental Adoption of Agile
Practices. In Agile Development Conference. 106-113. DOI: 10.1109/ADEVC.2004.17

[29] Dan Shapiro. 1994. The Limits of Ethnography: Combining Social Sciences for CSCW. In Proceedings of the 1994
ACM conference on Computer Supported Cooperative Work (CSCW ‘94). 417-428. DOI: 10.1145/192844.193064

[30] Andrew Begel and Nachiappan Nagappan. 2007. Usage and Perceptions of Agile Software Development in an
Industrial Context: An Exploratory Study. In Empirical Software Engineering and Measurement (ESEM ’07). 255-
264. DOI: 10.1109/ESEM.2007.12

[31] Paul Dourish and Victoria Bellotti. 1992. Awareness and Coordination in Shared Workspaces. In CSCW '92
Proceedings of the 1992 ACM Conference on Computer-supported Cooperative Work (CSCW ’92). 107-114. DOI:
10.1145/143457.143468

[32] Paul Dourish and Sara Bly. 1992. Portholes: Supporting Awareness in a Distributed Work Group. In CHI '92
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’92). 541-547. DOI:
10.1145/142750.142982

[33] Helen Sharp, Rosalba Giuffrida and Grigori Melnik. 2012 Information Flow within a Dispersed Agile Team: A
Distributed Cognition Perspective. In Wohlin C. (eds) Agile Processes in Software Engineering and Extreme
Programming. XP 2012. Lecture Notes in Business Information Processing, vol 111. Springer, Berlin, Heidelberg

[34] Elihu M Gerson. 2008. Reach, Bracket, and the Limits of Rationalized Coordination: Some Challenges for CSCW.
In Resources, Co-Evolution and Artifacts. Computer Supported Cooperative Work. Springer-Verlag, London 2008.
DOI: 10.1007/978-1-84628-901-9_8

[35] Kate Kuusinen, Peggy Gregory, Helen Sharp, Leonor Barroca, Katie Taylor and Laurence Wood. 2017. Knowledge
Sharing in a Large-Agile Organisation: A Survey Study. In Baumeister H., Lichter H., Riebisch M. (eds) Agile
Processes in Software Engineering and Extreme Programming. XP 2017. Lecture Notes in Business Information
Processing. Vol 283. Springer, Cham.

[36] Knut H. Rolland, Vidar Mikkelsen and Alexander Næss. 2016. Tailoring Agile in the Large: Experience and
Reflections from a Large-Scale Agile Software Development Project. In: Sharp H., Hall T. (eds) Agile Processes, in
Software Engineering, and Extreme Programming. XP 2016. Lecture Notes in Business Information Processing. Vol
251. Springer, Cham.

[37] Kjeld Schmidt and Carla Simone. 1996. Coordination Mechanisms: Towards a Conceptual Foundation of CSCW
Systems Design. In Computer Supported Cooperative Work: The Journal of Collaborative Computing. Vol 5. 155-
200. Kluwer Academic Publishers.

[38] Christian Heath and Paul Luff. 1992. Collaboration and Control Crisis Management and Multimedia Technology in
London Underground Line Control Rooms. In Computer Supported Cooperative Work (CSCW ‘92). Vol 1, no 1-2.
69-94. DOI: 10.1007/BF00752451

[39] Yvonne Dittrich. 2002. Doing Empirical Research on Software Development: Finding a Path between
Understanding, Intervention and Method Development. In Social Thinking-Software Practice. 243-262.

[40] Wes Sharrock and Kjeld Schmidt. 1996. Introduction: Studies of Cooperative Design. In Computer Supported
Cooperative Work: The Journal of Collaborative Computing. Vol 5. 337-339.

[41] Graham Button and Wes Sharrock. 1994. Occasioned Practices in the Work of Software Engineers. In Requirements
Engineering. 217-240. Academic Press Professional Inc.

[42] Rebecca E. Grinter. 1998. Recomposition: Putting it all Back Together Again. In Proceedings of the 1998 ACM
Conference on Computer Supported Cooperative Work (CSCW ’98). Vol 5. 337-339.

[43] Rob Procter, Mark Rouncefield, Meik Poschen, Yuwei Lin and Alex Voss. 2011. Agile Project Management: A
Case Study of a Virtual Research Environment Development Project. In Computer Supported Cooperative Work
(CSCW ‘11). Vol 2, no 3. 197-225. DOI: 10.1007/s10606-011-9137-z

[44] Deirdre Boden. 1994. The Business of Talk: Organizations in Action. Cambridge: Polity Press.

[45] Lucy A Suchman. 1987. Plans and Situated Actions: The Problem of Human-Machine Communication. Cambridge
University Press.

[46] John Hughes, Val King, Tom Rodden and Hans Anderson. 1994. Out of the Control Room: The Use of Ethnography
in Systems Design. In Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work (CSCW
’94). 22-26. DOI: 10.1145/192844.193065

[47] Lucas Layman, Laurie Williams, Daniela Damian and Hynek Bures. 2006. Essential Communication Practices for
Extreme Programming in a Global Software Development Team. Information & Software Technology 48(9): 781-
794. DOI: 10.1016/j.infsof.2006.01.004

[48] Lucas Layman, Laurie A. Williams and Lynn Cunningham. 2004. Exploring Extreme Programming in Context: An
Industrial Case Study. Agile Development Conference. 32-41. DOI: 10.1109/ADEVC.2004.15

[49] Brendan Murphy, Christian Bird, Thomas Zimmermann, Laurie Williams, Nachiappan Nagappan and Andrew
Begel. 2013. Have Agile Techniques been the Silver Bullet for Software Development at Microsoft? Proceedings of
the Seventh International Symposium on Empirical Software Engineering and Measurement. 75-84.

[50] Andrew Begel and Nachiappan Nagappan. 2007. Usage and Perceptions of Agile Software Development in an
Industrial Context: An Exploratory Study. First International Symposium on Empirical Software Engineering and
Metrics. 255-264.

[51] Rashida Hoda, Philippe Kruchten, James Noble, and Stuart Marshall. 2010. Agility in Context. Proceedings of the
ACM International Conference on Object Oriented Programming Systems Languages and Application. 74-88. DOI:
10.1145/1869459.1869467

[52] Philippe Kruchten. 2013. Contextualizing Agile Software Development. Journal of Software: Evolution and Process,
25(4). 351-361. DOI: doi.org/10.1002/smr.572

[53] Rashida Hoda and Latha K. Murugesan. 2016. Multi-level Agile Project Management Challenges: A Self-Organizing
Team Perspective. Journal of Systems and Software. 117. 245-257. DOI: 10.1016/j.jss.2016.02.049

[54] Rashida Hoda, James Noble and Stuart Marshall. 2012. Developing a Grounded Theory to Explain the Practices of
Self-Organizing Agile Teams. Empirical Software Engineering, 17(6) .609-639. DOI: doi.org/10.1007/s10664-011-
9161-0

[55] Jeffry S. Babb, Rashina Hoda, and Jacob Nørbjerg. 2014. XP in a Small Software Development Business: Adapting
to Local Constraints. In Scandinavian Conference on Information Systems. 14-29. DOI: doi.org/10.1007/978-3-319-
09546-2_2

[56] Christine A. Halverson. 2002. Activity Theory and Distributed Cognition: Or What Does CSCW Need to DO With
Theories? Computer Supported Cooperative Work (CSCW), 11(1-2). 243-267.

[57] Dave Martin, John Mariani, and Mark Rouncefield. 2004. Implementing an HIS project: Everyday Features and
Practicalities of NHS Project Work. Health Informatics Journal, 10(4). 303-313.

[58] John Bowers. The Work to Make the Network Work: Studying CSCW in Action. In Proceedings of the ACM
Conference on Computer Supported Cooperative Work 287–98. ACM Press, 1994.

[59] Barney G. Glaser. 2005. The Grounded Theory Perspective III: Theoretical Coding. Sociology Press.
[60] Ludwig Wittgenstein. 1967. Zettel Oxford: Blackwell, 1967. Quoted in Rowe, M.W., 1991. Goethe and

Wittgenstein. Philosophy, 66(257). 283-303.
[61] Kjeld Schmidt. 1997. Of Maps and Scripts - the Status of Formal Constructs in Cooperative Work. In Proceedings

of the International ACM SIGGROUP Conference on Supporting Group Work: the Integration Challenge (GROUP
'97). ACM, New York, NY, USA. 138-147. DOI: http://dx.doi.org/10.1145/266838.266887

