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Abstract: Topological photonic systems offer light transport that is robust against defects and 

disorder, promising a new generation of chip-scale photonic devices and facilitating energy-

efficient on-chip information routing and processing. However, present quasi one-dimensional 

designs, such as the Su-Schrieffer-Heeger (SSH) and Rice-Mele (RM) models, support only a 

limited number of nontrivial phases due to restrictions on dispersion band engineering. Here, 

we experimentally demonstrate a flexible topological photonic lattice on a standard silicon 

photonic platform that realizes multiple topologically nontrivial dispersion bands. By suitably 

setting the couplings between the one-dimensional waveguides, the lattice can therefore 

support the transition between multiple different topological phases, and allows the 

independent realization of the corresponding edge states. Heterodyne measurements clearly 

reveal the ultrafast transport dynamics of the edge states in different phases at a femto-second 

scale, validating the designed topological features. Our study equips topological models with 

enriched edge dynamics and considerably expands the scope to engineer unique topological 

features into photonic, acoustic and atomic systems. 
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1. Introduction 

The mathematical field of topology, which deals with quantities that preserve their values 

during continuous deformation, has firmly emerged as a new paradigm for describing new 

phases of matter since its first applications to condensed matter systems over three decades 

ago.[1-3] Due to the mathematical equivalence between the paraxial wave equation describing 

the propagation of light and the Schrödinger equation for the time-evolution of electrons [4], 

topological concepts seamlessly transfer into the realm of optics and photonics.[5] This 

realization has inspired a range of versatile topological photonic platforms based on optical 

resonator arrays,[6-8] waveguide array lattices,[5, 9, 10] photonic crystals,[11-17] and optical 

quasicrystals.[18, 19] Novel topological features such as symmetry-protected interface states 

promise a new generation of robust, defect-tolerant and scattering-free photonic circuits[20, 

21] with direction-dependent beam dynamics. More recently, a variety of topological lasers 

have been developed in both one-dimensional [22-24] and two-dimensional configurations[25, 

26], which provide robust and highly efficient lasing action. 

To date, the SSH Hamiltonian[27] serves as an archetypical model for describing 

topological physics and designing practical structures. However, the topological features of 

most conventional models are limited to only two dispersion bands, thereby permitting only a 

limited range of topological quantum numbers characterizing the bands and gaps, and 

consequently restricting the accessible nontrivial phases. Much can be gained from richer 

models with a larger range of nontrivial phases that can be manipulated systematically to 

realize the formation of independent topological states. While novel topological phases have 

been observed with time-periodic driving systems,[5] such systems require unique three-

dimensional fabrication techniques that are challenging to be applied for on-chip integrated 

photonics. Here, we successfully demonstrate the formation of topological edge states 

associated with multiple bandgaps in a discrete photonic lattice based on standard silicon 
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fabrication techniques. Our system consists of a versatile waveguide array requiring only a 

small number of fundamental components, and is guided by the concept of generating 

topological effects through strategic rearrangements that break some crystal symmetries.[28] 

By varying the design parameters of the waveguides, we observe a topological phase 

transition from a regime with a single edge state to a regime with two such states at the same 

edge. These phases are experimentally distinguished by their different localization and 

diffraction patterns, and further confirmed by their ultrafast transport dynamics at the 

femtosecond scale. The coexistence of multiple states at a single edge results in intriguing 

edge dynamics which allows it to be validated by a characteristic spatial beating effect. Based 

on the powerful universality of topological concepts, these findings can be directly transferred 

to a wide range of platforms, such as quantum-optical, acoustic, polaritonic and atomic 

systems. 

 

2. Bowtie Lattice 

The conceptual basis of our investigation starts with a two legged ladder system with 

two sites per unit cell as shown in top panel of Figure 1(a). While such a system possesses 

two dispersion bands with only a single band gap in between, the associated topological 

features can be further enriched by taking a nontrivial square root[28] of the orignal system to 

expand the two dispersion bands into four. This transforms the two bands  into four bands 

arranged symmetrically at positive and negative energies, which become associated with a 

symmetry-reduced tight-binding system with four sites per unit cell. The latter can be 

represented as a linear bowtie chain with nearest-neighbor couplings, as shown in the bottom 

panel of Figure 1a. This bowtie structure can be interpreted as a variant of the ubiquitous Su-

Schrieffer-Heeger (SSH)[27] and Rice-Mele (RM)[29] models. To experimentally probe the 

topological features of the proposed structure, we investigate a photonic implementation 
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based on an array of coupled waveguides where each waveguide represents a site in the 

bowtie chain, fabricated on a silicon on insulator (SOI) platform as illustrated in Figure 1(b). 

In our waveguide photonic lattice system, the weak coupling results in a discrete 

diffraction length (the length that light couples completely from one waveguide to the 

adjacent waveguide) of tens of μm, which is much larger than the operation wavelength of 

approximately 1550 nm. As a result, the paraxial approximation is valid here[30]. Together 

with the absence of reflection in the propagation direction and orthogonality of all waveguide 

modes, the Hamiltonian formalism can be safely applied to our system. In anticipation of our 

experimental results we use notations from coupled-mode theory, where the propagation 

constants of the waveguides are denoted by 𝛽𝑛 , precisely controlled by designing the 

dimensions of the cross section of the waveguide, and the coupling of adjacent waveguides is 

denoted by coefficients 𝜅𝑛 , effectively tuned by the distances between the adjacent 

waveguides. Each waveguide supports only a single fundamental quasi-TM mode. The loss of 

the Si waveguides is negligible at the operation wavelength compared to the site energy and 

coupling strength, so that we can safely assume the propagation constants to be real. The 

lattice structure can then be viewed as a collection of coupled dimers, where �̃� and 𝜅 indicate 

the coupling between two sites in a dimer and the coupling between dimers, respectively. The 

dimers are arranged in an alternating fashion in two orientations that we denote as R and L 

(Figure 1(a)). The lattice chain is designed to be (𝑅𝐿)𝑛𝑅  , with (𝑅𝐿)  the unit cell. The 

dynamics of the bowtie chain is then described by the evolution equations  

 𝑖
𝑑�⃗� 𝑛

𝑑𝑧
= 𝐻𝑎 𝑛 + 𝑇𝑎 𝑛−1 + 𝑇†𝑎 𝑛+1, (1) 

where 𝑧 is the propagation distance along the waveguides and the vectors 𝑎 𝑛 correspond to 

the field amplitudes of the four waveguides (sites) within the 𝑛th unit cell. The coupling of 

two sites in each dimer is described by the intra-cell matrix H and the adjacent dimers are 

connected by the inter-cell matrix T. The nonvanishing elements of the intra-unit cell matrix 
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𝐻 are given by 𝐻11 = 𝐻44 = 𝛽1, 𝐻22 = 𝐻33 = 𝛽2, 𝐻12 = 𝐻21 = 𝐻34 = 𝐻43 = �̃�, and 𝐻23 =

𝐻32 = 𝜅, while the inter-cell coupling matrix 𝑇 has only one non-zero entry 𝑇14 = 𝜅. Without 

any loss of generality, we assume that 𝛽1 > 𝛽2 and take all the coupling coefficients to be real. 

The topological bowtie lattice provides control to design different Bloch eigenstates 

formed through hybridization of the supermodes associated with the dimers/waveguides. As 

shown in Figure 1(b), for a nonvanishing detuning Δ𝛽 of the propagation constants between 

the large and small waveguide in each of the dimer, the supermodes are highly localized in the 

large (base) or small (vertex) waveguides. Two supermodes each are close to resonance, 

experiencing effective coupling strengths alternating between strong and weak. This effect 

can be viewed as two SSH Hamiltonians (SSH 𝐼 and SSH 𝐼𝐼) occupying the same space yet 

having independent topological quantum numbers as shown in the lower panel of Figure 1(b).  

As each SSH model creates two eigenvalues 𝜆±, the designed bowtie lattice is expected to 

demonstrate four dispersion bands, which is indeed borne out by direct modelling (Figure 

1(c)). The coupling strengths and propogation constants are engineered to demonstrate 

different topological phases and thus realize the related edge states. In the top panel of Figure 

1c, the design parameters were chosen to be �̃� = 0.127 𝜇𝑚−1, 𝜅 = 0.5�̃� and 𝛽1 = −𝛽2 = �̃�. 

As expected from the previous discussion, the system resembles two separate SSH 

Hamiltonians giving rise to two upper (SSH  𝐼 ) and two lower (SSH  𝐼𝐼 ) bands. The two 

isolated eigenvalues in the spectrum (one in the upper and another in the lower band gaps) 

correspond to states localized at the left and right edge. This is in contrast to the conventional 

SSH model, for which the two edge states would lie in the same gap. The middle and lower 

panels of Figure 1(c) highlight a crucial additional feature of this model—the existence of a 

third, central gap that separates the two effective SSH models. The design parameters are the 

same as used in the top panel, but for 𝜅 = √2�̃� and 2�̃�, respectively. The central gap closes at  

𝜅 = √2�̃� while in the lower panel the gap is again opened. This band inversion gives rise to 
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an additional pair of isolated eigenvalues, which are accompanied by the emergence of two 

new edge states. These edge states are associated with the spectral symmetry of the bowtie 

chain, which induces an additional topological quantum number. In an infinite long chain, the 

two low-energy solutions near 𝑘 = 0  give rise to two slowly varying fields that can be 

grouped into a spinor 𝜑. Its evolution takes the form of a Jackiw-Rebbi model 𝑖𝑑𝜑/𝑑𝑧 =

𝐻e𝑓𝑓𝜑 with an effective Hamiltonian 𝐻e𝑓𝑓 = 𝑚𝜎𝑧 + 𝑣𝐹𝜎𝑦�̂�𝑥,[33] again in complete analogy 

with the SSH model.[34] All three effective models are therefore associated with a chiral 

symmetry 𝜎𝑥𝐻e𝑓𝑓𝜎𝑥 = −𝐻e𝑓𝑓 guaranteeing topological physics in each gap.  

The detailed edge features of the complete system can be understood by inspecting the 

Zak phase[31] and Witten index[32] associated with each bulk band and each bandgap, 

respectively. The Witten index is related to the reflection phase at a spectral symmetry point 

and can be calculated form the associated Zak phase of the bulk bands, which determine the 

reflection phases at the band edges. A detailed calculation for our setup [28] results in the 

relations 𝑊1 = −(𝑍1 − 𝑍4) for the upper band gap, 𝑊2 = (𝑍2 − 𝑍3) for the lower band gap, 

and 𝑊 = −(𝑍2 + 𝑍3) for the central band gap, where 𝑍𝑖 are the Zak indices ordered from the 

top to the bottom band, as listed in Table 1. With the designed termination of the unit cell, we 

expect to find edge states in each gap when the corresponding Witten index takes the value 

−1, corresponding to fulfillment of the effective hard-wall boundary conditions. For the 

experiment, we exploit that the Witten index 𝑊 determining the existence of a topological 

edge state in the central bandgap can be controlled by solely tuning the intra-dimer coupling. 

 

3. Experimental implementation 

3.1 Design and fabrication 

 

A straightforward way to demonstrate the topological features is to excite the system at its 

edge. In our photonic lattice design, the initial state is set up as the mode of the outmost 
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waveguide where its propagation constant is fixed. By coupling light to one edge of the 

topological photonic lattice, all existing edge states at that edge will be excited because of the 

large overlap with the input state. We aim to identify the different topological phases through 

the discrete diffraction, localization and interference signatures of light transport. This is 

greatly facilitated when the light transport dynamics becomes directly visualized over the 

whole propagation distance, revealing the evolution of the transverse light distribution for a 

propagation distance z. To measure the light transport in the far field, we intentionally 

introduced periodic hole patterns on top of the waveguide lattice, satisfying a phase matching 

condition to coincide with the effective wavelength of the guided mode propagating inside of 

the waveguides and to efficiently couple the well-confined guided light into the upward 

direction, as illustrated in Figure 2(a). For the experiments, we fabricated three different 

samples of the photonic lattice with controlled physical parameters corresponding to different 

configurations I, II and III as defined in Table 2. On an SOI platform, the samples were 

patterned using electron beam lithography, followed by reactive ion etching to form the 

bowtie waveguides lattice with the hole patterns. The diameter of each hole was chosen to be 

150 nm, which provided a good balance between the upward coupling efficiency and the 

insertion loss. The SiO2 cladding layer was subsequently deposited using plasma enhanced 

chemical vapor deposition (PECVD), which ensures symmetric confinement of the light field 

inside the waveguides and increases the efficiency of upward coupling. Each sample consisted 

of 18 guiding channels. The scanning electron microscope pictures before deposition of the 

SiO2 cladding are shown in Figure 2(b). 

 

3.2 Results 

The effective realization of the edge states in different topological phases was both 

experimentally and numerically validated through the imaging of the light transport at the 

sample plane in three different configurations. A tunable continuous-wave fiber laser 
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(adjusted to operate at the free space wavelength of 1555 nm) was directly connected to a 

polarization-maintaining tapered fiber that efficiently delivered a TM polarized laser beam 

into the right-most edge waveguide of the on-chip bowtie waveguides lattice to carry out the 

averaged power measurement. Figure 3(a) corresponds to configuration I (  𝜅 = 0.5�̃� =

0.064𝜇𝑚−1), where our theoretical model predicts a single edge state confined in the bottom 

waveguide, originating from the Witten index 𝑊1 = −1 for the upper finite-energy bandgap; 

this ensures a single topological edge state in that gap. Meanwhile, the Witten indices in the 

central and lower bandgaps are designed to be 𝑊 = 𝑊2 = 1, leading to no topological edge 

state in these gaps. The optical intensity remains well confined to the launching channel (i.e. 

the bottom waveguide), while close inspection shows the absence of any appreciable intensity 

fluctuations. For configuration II (𝜅 = √2�̃� = 0.180𝜇𝑚−1) (Figure 3(b)), light localization at 

the edge persists as the Witten index for the finite energy gaps remains the same as that in 

configuration I. However, a clear signature of discrete diffraction across all the waveguides in 

the transverse direction is also observed, conforming with the general expectations for the 

closure of the central bandgap, which results in a nearly linear band-dispersion [30] that 

facilitates the observed secondary emission. From our modelling, the overlap between the 

input states and the bulk states becomes maximal at this point in Figure 3(d). Increasing the 

coupling 𝜅 to the value in configuration III (𝜅 = 2�̃� = 0.255𝜇𝑚−1) leads to a reopening and 

inversion of the central bandgap. The Witten index of the central bandgap switches from +1 

to −1, and fulfills the boundary condition [28] to form an edge state also inside of this 

bandgap. Since the Witten indices 𝑊1  and 𝑊2  for the finite energy bandgaps remain 

unchanged, the system now support two edge states located in different bandgaps, and the 

distinct propagation constants of these two states leads to interference beating along the 

launch waveguide (Figure 3(c)). Since the reopened central bandgap is not as wide as that in 
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configuration I, the corresponding edge state resides close to the band edge, such that there 

also exists pronounced diffraction into the bulk.  

In the experiment some small intensity fluctuations are also observed in configurations 

I and II (but much smaller if compared with case III). This is due to the small overlaps 

between the input state and the extended bulk states (Figure. 3(d)) as well as some disorder 

(see supporting information for details). Some of these fluctuations result from the resolution 

of approximately 1 μm in our far-field imaging system, which thereby also captures light from 

the adjacent waveguides. To address this issue, we applied the time-resolved spatial-

heterodyne imaging technique [35], which provides the spatial distribution of the EM 

amplitude versus time. Thus, we could characterize the ultrafast transport dynamics in the 

observed edge states. Instead of the CW laser, we used a femto-second pulsed laser source 

with pulse width of 160fs centered at 1550nm. A modified Mach-Zehnder interferometer with 

a variable delay line was built to perform the ultra-fast time resolved test. Consistent with the 

average power measurements, the temporal evolution of the wave packet in the bowtie lattice 

further confirms the topological transition among the three designed configurations (Fig. 4). 

For configuration I, the launched wave packet couples mainly into a single edge state. Since 

the edge state is localized within the wide central bandgap, the pulse propagation is robust 

against variations of the neighboring couplings and thus remains confined in the right-most 

waveguide (see Movie S1 in Supporting Information). The intensity variations in the 

neighboring waveguides can be understood to result from the mismatch between the 

excitation in a single waveguide and the actual modal profile of the edge state, which extends 

over a few waveguides. These ultrafast temporal measurements provide access to quantitative 

characteristics of the edge state [36].  

All the edge states are associated with distinct dynamical properties encoded in the 

effective group and phase index, which provide additional quantitative assessments of each 
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state. In configuration I, the group index  𝑛𝑔 = 3.30 ± 0.012 (calculation details can be found 

in supporting information) can be retrieved through pulse positions traveled at different time 

delays, corresponding to an effective index of 𝑛𝑒𝑓𝑓 = 1.67 ± 0.012 that agrees well with the 

simulation 𝑛𝑒𝑓𝑓 = 1.72. For configuration II, it is clearly demonstrated that the dynamical 

transport of the single edge state is accompanied by a secondary emission, revealing the 

closure of the central bandgap. Their interference, while weak, slightly distorts the field 

distribution and the propagation of the wave packet in the launching channel (see Movie S2 in 

Supporting Information). The measured group index is consistently lower, 𝑛𝑔 = 3.23 ± 0.011 

with 𝑛𝑒𝑓𝑓 = 1.66 ± 0.011. For configuration III, the dynamical evolution of the wave packet 

is revealed by the interference beating [37-39] due to the co-propagation of two edge states 

with distinct propagation constants (see also Movie S3 in Supporting Information). The 

measured group index  𝑛𝑔 = 3.18 ± 0.015  in this case is the averaged group index of the two 

edge states.  Their respective effective indices are 𝑛𝑒𝑓𝑓,1 = 1.70 ± 0.015  and 𝑛𝑒𝑓𝑓,2 =

1.65 ± 0.015. In contrast, a uniformly arranged trivial waveguide array shows a diffraction 

pattern corresponding to free spreading and reflection of the wave across the whole array. 

This is distinct from the topological edge modes observed in the previous 3 configurations. 

(See Movie S4 in the Supporting Information.) 

While the samples are designed for excitation at the outmost waveguide, observation 

of the diffraction from the edge to the bulk state also provides convincing evidences to judge 

if a band gap is closed or open. Meanwhile, the appearance of the beating patterns directly 

reveals the engagement of a second edge mode, which arises in the newly opened second 

topological bandgap. This configuration with multiple topological bandgaps is in contrast 

with recent work where two topological edge states emerge through band folding in the same 

bandgap.[40] In our case, both the time-averaged and the temporally resolved experimental 



  

11 

 

results confirm that the multiple quantum numbers of out photonic lattice offer more flexible 

control over the topological states.  

 

 

4. Conclusion 

In summary, by considering the non-trivial square root of a two legged ladder system, 

we designed and experimentally demonstrated a versatile photonic lattice with multi-band 

topology. Compared with the conventional Su-Schrieffer Heeger and Rice-Mele models, the 

lattice offers additional spectral symmetries that enrich the topological features and enable to 

induce independently tuned edge states. We experimentally investigated the ultrafast beam 

transport dynamics to validate the supported topological characteristics. Through 

systematically manipulating the couplings in the lattice, the topological nature of multiple 

dispersion bands can be effectively engineered with a desired Witten index in different energy 

bandgaps, enabling the versatile realization of topologically-induced edge state dynamics. 

 

Supporting Information  

Additional supporting information may be found in the online version of this article at the 

publisher’s website. 
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Figure 1. Bowtie topological lattice. (a) Two-legged ladder model having identical sites (top 

panel). Single and double lines represent couplings of different strength; the dashed lines 

signify couplings of opposite sign from the solid lines. Taking the square root and a Z2 gauge 

transformation of this model results in the bowtie chain shown in the lower panel, with 

alternating couplings 𝜅 , �̃�  and staggered sequence of onsite energies 𝛽1, 𝛽2, 𝛽2, 𝛽1, … . As 

indicated, this can be interpreted as a sequence of oppositely orientated dimers, labelled by L 

and R. The left edge of the chain is marker as LE and the right edge is marked as RE. (b)  

Implementation of the bowtie lattice using silicon waveguides embedded in silica cladding, 

where fundamental 𝑇𝑀00  mode hybridizations are formed for an isolated unit cell. The 

waveguide array consists of two different types of waveguides, having the same height ℎ =

230nm but different widths: 𝑤1 = 300nm and 𝑤2 = 350nm, corresponding to propagation 

constants 𝛽1 = 6.713𝜇m−1  and 𝛽2 = 6.968𝜇m−1 , respectively. These parameters translate 

into an onsite detuning of Δ𝛽 = 0.255𝜇𝑚−1. In our design, different waveguides are arranged 
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in pairs with having 𝛽1 and 𝛽2, with a fixed separation �̃� = 475nm that corresponds to an 

intra-dimer coupling �̃� = 0.127𝜇𝑚−1. The inter-dimer distances between the two types of 

waveguide are denoted by 𝑑1,2, and are tuned to yield an identical coupling of 𝜅. Lower panel 

shows the formation of two independent SSH Hamiltonians as a result of the eigenstate 

hybridization between the local modes of the R and L dimers. In SSHI, the states are more 

localized at the bases giving rise to alternating strong and weak coupling at the bases/vertices 

respectively, and the converse for SSHII.  (c) Band structures of bowtie arrays of the form 

(𝑅𝐿)100𝑅  with the designed parameters. For 𝜅 = 0.5�̃�  (top pannel), the upper and lower 

bandgaps each support a single defect edge state, one on each edge. As the coupling reaches 

𝜅 = √2�̃� (middle panel), the two inner bands merge, closing the central bandgap. Further 

increasing the coupling to 𝜅 = 2�̃� (bottom panel) the central gap is open again, which results 

in the emergence of two new edge states associated with an effective SSH model for the 

central gap. Edge states are marked with LE or RE to indicate their residence edge. 
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Figure 2. Experimental implementation of bowtie topological photonic lattices. (a) 

Configuration of the bowtie waveguide array with periodic hole patterns on an SOI platform, 

designed to measure the beam propagation dynamics across the length of the device. The on-

top holes with a diameter of 150 nm are designed to couple light out of the waveguides, which 

extract light to free space to reveal the propagation of the light inside the structure in far field. 

(b) Scanning electron microscope pictures of the device (configuration III) before deposition 

of the SiO2 cladding. The fabricated device consists of 18 waveguides. The periodicity of the 

holes is matched to the effective wavelength of the quasi-TM mode inside the waveguides 

(934 nm for the base waveguides and 901 nm for the vertex waveguides), which results in 

vertical light extraction. Inset zoom in the picture shows the cross section of the bowtie 

waveguides structure in configuration III. 
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Figure 3. Experimental and EM simulation beam transport in the bowtie 

topological waveguide lattices and modal overlap of initial state (delta excitation 

at the bottom waveguide)  with the different supermodes of the system (edge-

defect and bulk states). (a)-(c) Light field intensity images under TM polarized 

continuous wave incidence at a wavelength of 1555 nm for configurations I, II and III 

(top to bottom panels), clearly demonstrating the transition between different 

topological phases. Due to the insertion loss arising from the hole array, the total 

propagating power across the bowtie waveguides lattice slightly decreases as a function 

of the propagation distance. Normalizing the recorded images with respect to the total 

power across every propagation cross section, so that the total power at any distance z 

remains a constant, enables a fair comparison between the experimental results (left 

panels) and simulations (right panels). (d) Predicted modal overlap of the initial input 

state with the edge states and the bulk states for the 18 waveguides experimental 

system, as a function of the hopping amplitude. |𝑎1|
2  describes the modal overlaps 

between the input and excited states. The modal overlap between the input mode and 

the bulk mode, while weak compared to the overlap with edge states, leads to discrete 

diffraction into bulk and small intensity fluctuations observed in (a)-(c). Note that the 

same set of samples are used as for Figure 4. Images are zoomed in to show the details. 
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Figure 4. Measured ultrafast transport dynamics in the bowtie topological waveguide 

lattices. Temporal evolution of spatial intensity of the wave packet is captured with a time 

delay of ~66.6 fs for configurations I, II and III (top, middle, and bottom panels, respectively). 

Images are normalized with the same input power, assuming a lossless propagation in the z 

direction. Field intensity spatial maps in left, middle, and right colums correspond to different 

time delays at ∆𝑇 = 0, 666, and 1333 fs, respectively, showing the wave packet entering the 

lattice, the formation of the edge states at the beginning of the lattice, and the transport of the 

edge states in the lattice. More detailed information can be found in Movies S1, S2, and S3 in 

Supporting Information.   
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Table  1. Zak phase and Witten index of 3 configurations in different topological phases. 

 

Band/Gap Upper 
Band 1 

Z1 

Upper 
Gap 
W1 

Upper 
Band 2 

Z2 

Central 
Gap 
W 

Lower 
Band 1 

Z3 

Lower 
Gap 
W2 

Lower 
Band 2 

Z4 

Config.I Z1 = 0 W1 = −1 Z2 = 0 W=1 Z3 = −1 W2 = 1 Z4 = −1 

Config.II Z1 = 0 W1 = −1 Z2 = 0 N.A. Z3 = −1 W2 = 1 Z4 = −1 

Config.III Z1 = 0 W1 = −1 Z2 = 1 W=-1 Z3 = 0 W2 = 1 Z4 = −1 
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Table  2. Design parameters of 3 configurations in different topological phases. 

Edge to edge 

separation 

Configuration I 

𝜅 = 0.5�̃� = 0.064𝜇𝑚−1 

Configuration II 

𝜅 = √2�̃� = 0.180𝜇𝑚−1 

Configuration III 

𝜅 = 2.0�̃� = 0.255𝜇𝑚−1 

𝑑1 

𝑑2 

700nm 

610nm 

430nm 

365nm 

345nm 

290nm 
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