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Abstract 

 

This editors’ introduction provides the background to the special issue. We first outline the rationale 

for bringing together, in a single volume, leading researchers from two distinct, yet related research 

strands, implicit learning and statistical learning. The aim of the special issue is to facilitate the 

development of a shared understanding of research questions and methodologies, to provide a 

platform for discussing similarities and differences between the two strands and to encourage the 

formulation of joint research agendas. We then introduce the new contributions solicited for this 

special issue and provide our perspective on the agenda setting that results from combining these two 

approaches.  
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Aligning implicit learning and statistical learning: Two approaches, one phenomenon 

 

The past 20 years have witnessed a particularly strong interest in our ability to rapidly extract 

information from complex stimulus environments (Armstrong, Frost & Christiansen, 2017; 

Rebuschat, 2015; Rebuschat & Williams, 2012). This fundamental aspect of cognition is widely 

believed to underpin many complex behaviors (language acquisition, music perception, social 

interaction, intuitive decision making, etc.), so it is not surprising that the interest spans practically all 

disciplines of cognitive science. Research on this topic can be found in two related, yet almost 

completely distinct research strands, namely “implicit learning” and “statistical learning.” Implicit 

learning research began with the artificial grammar experiments of Arthur Reber and colleagues (e.g., 

Reber, 1967, 1969; Reber & Millward, 1968) and developed into one of the major paradigms in 

cognitive psychology (Cleeremans et al., 1998; Perruchet, 2008; Reber, 1993; Shanks, 2005). 

Statistical learning research was rekindled by the work of Jenny Saffran, Elissa Newport, and Richard 

Aslin (Saffran, Aslin, & Newport, 1996) and rapidly developed into a particularly productive line of 

inquiry in developmental psychology (Armstrong et al., 2017; Gómez, 2007; Saffran, 2003). 

 Both lines of research focus on how we acquire information from the environment. They rely 

heavily on the use of artificial languages in their experiments (e.g. finite-state or phrase-structure 

grammars, pseudoword lexicons). In typical statistical learning and implicit learning experiments, 

participants are initially exposed to stimuli generated by an artificial system and then tested to 

determine what they have learned. Thus, both approaches share the same ancestry (see Christiansen, 

2019), and also share the perspective that artificial languages can tell us something valuable about 

how we learn natural language (Reber, 2015). Given these and other significant similarities, Perruchet 

and Pacton (2006) argued that these distinct lines of research actually represent two approaches to a 

single phenomenon, and Conway and Christiansen (2006) proposed combining the two in name: 

“implicit statistical learning.”1 Yet, despite frequent acknowledgements that researchers in implicit 

                                                        
1 In 2016, we organized a symposium on the theme of this topic at the annual meeting of the Cognitive Science 
Society. Gary Dell, who was a speaker at the event, proposed a further alternative name for the two approaches: 
“learning”. 
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learning and statistical learning might essentially be investigating the same phenomenon, there is 

surprisingly little alignment between the two strands. 

This special issue of Topics in Cognitive Science seeks to address this situation by bringing 

together leading researchers from the two research communities, implicit learning and statistical 

learning, in order to (i) develop a shared understanding of research questions and methodologies, (ii) 

discuss similarities and differences between the two strands, and (iii) formulate joint research 

agendas. The special issue is based on two events that the editors organized in 2016. The first event 

was the Fifth Implicit Learning Seminar, a three-day conference that took place at Lancaster 

University, UK, on June 23-25, 2016.2  The Implicit Learning Seminar is an international conference 

series that brings together leading researchers from a variety of disciplines (cognitive psychology, 

neuroscience, computer science, linguistics) who share an interest in the cognitive and neural bases of 

implicit learning. For the 2016 edition, we invited abstracts on any topic related to implicit learning or 

statistical learning, employing one or more of a variety of methods (artificial grammar learning, 

sequence learning, cross-situational learning, etc.), but particularly encouraged submissions that 

focused on the role of implicit statistical learning in language.3 The second event was a symposium at 

the 2016 meeting of the Cognitive Science Society (CogSci 38, Philadelphia) that focused specifically 

on the alignment between the two research communities, implicit learning and statistical learning.4 In 

both events, our main objective was to establish a dialogue between researchers from the two 

communities and to provide a platform for discussion. Ten years after the publication of Perruchet and 

Pacton (2006) and Conway and Christiansen (2006), how much closer were we to combining the two 

approaches to the same phenomenon? What challenges and opportunities lay ahead? 

                                                        
2 Please visit the conference website for more information: https://www.lancaster.ac.uk/implicit-learning-
seminar/. 
3 Both research communities refer to language acquisition as a prime example of implicit statistical learning in 
the real world. The idea of using artificial languages to investigate natural language acquisition was present 
from the beginning (e.g., Reber, 1967): “I hoped I was creating a mini-environment that could function as a 
platform to examine natural language learning. It was consciously crafted as a counterbalance to the Chomskyan 
Nativism which I felt, even then, was deeply flawed.” (Reber, 2015, p.VII) 
4 The abstracts can be accessed here: http://wp.lancs.ac.uk/rebuschat/files/2019/06/Symposium.pdf. 
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 The discussions at both events were positive and lively, and the idea of producing a special 

issue that reflected these interactions quickly took shape. All authors were involved in presentations at 

one or both of the events, with the exception of Pierre Perruchet, whose work we kept closely in mind 

during these events. We have asked our contributors to produce articles that engage with both 

literatures and that make explicit connections between them whenever possible. We have also 

requested that articles conclude with a reflection on future directions of research. 

In the first article, Morten Christiansen (2019) provides a “tale of two literatures”, comparing 

the implicit learning literature with the one on statistical learning. In his article, Christiansen first 

traces the history of both literatures before sketching a framework that provides a basis for 

understanding implicit learning and statistical learning as a unified phenomenon. Christiansen 

correspondingly advocates the use of the term “implicit statistical learning” (see also Conway & 

Christiansen, 2006). This article is based on Christiansen’s keynote at the Fifth Implicit Learning 

Seminar; the recorded keynote is available online and complements the article nicely5. In the second 

article, Laura Batterink, Ken Paller and Paul Reber (2019) provide a much-needed review of the 

neural bases of implicit statistical learning. Batterink and colleagues focus on the neural processes 

that underpin performance in experimental paradigms employed in implicit learning and statistical 

learning research. An important insight is that learning across all paradigms is supported by 

interactions between the declarative and nondeclarative memory systems of the brain. They conclude 

with a helpful discussion of future directions of research that will facilitate further alignment between 

the two lines of investigation. 

 The next four articles in the special issue closely examine the role of implicit statistical 

learning in the acquisition of a novel language. Inbal Arnon (2019) explores the link between implicit 

learning, statistical learning and language development. Are the learning processes observed in typical 

implicit statistical learning experiments likely to play a role in language learning in the wild? If so, 

how much of language acquisition can be accounted for by distributional learning? In her review, 

Arnon focuses on two central themes, namely the issue of age invariance (Is learning fully developed 

                                                        
5 To watch Morten Christiansen’s keynote, please follow 
https://www.youtube.com/watch?v=LH85UFsxjqA&t=17s. 
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in childhood or does it improve with age?) and the question of variation in learning outcomes (Does 

implicit statistical learning ability predict outcomes in language learning?). Arnon suggests that the 

two literatures are studying a fundamentally similar phenomenon and argues in favor of a closer 

alignment. However, she also argues for caution in our interpretation of current findings as concerns 

have been raised regarding the reliability of widely-used tasks (e.g., Siegelman, Bogaerts, 

Christiansen, & Frost, 2017; Siegelman, Bogaerts, & Frost, 2017). In the following article, Pierre 

Perruchet (2019) makes an important contribution to our understanding of word segmentation by 

evaluating contrasting theories derived from implicit learning and statistical learning research. The 

article represents an important follow-up to the seminal review paper published by Perruchet and 

Pacton (2006). As in the previous paper, the focus is on the formation of elementary cognitive units. 

Implicit learning and statistical learning research focus on the same phenomena, namely domain-

general learning mechanisms acting in incidental, unsupervised learning situations. However, as 

Perruchet points out, both approaches favor different explanations, focusing either on the selection of 

chunks or on the computation of transitional probabilities aimed at discovering chunk boundaries. In 

the article, Perruchet weighs up the evidence for both explanations. He concludes with a comparison 

of different computational models and with a helpful agenda for future research. 

In the fifth article of the special issue, Padraic Monaghan, Christine Schoetensack and Patrick 

Rebuschat (2019) focus on the implicit statistical learning of words and syntax. They introduce a 

novel paradigm that combines theoretical and methodological insights from the two traditions of 

learning – implicit and statistical. Their cross-situational learning task has been used in the statistical 

learning literature (e.g., Monaghan, Mattock, Davies, & Smith, 2015), while their measures of 

awareness (verbal reports and subjective measures) have widely been used in implicit learning 

research (e.g., Dienes & Scott, 2005; Reber, 1967; see Rebuschat, 2013, for review). Monaghan and 

colleagues show how the two literatures can be conjoined in a single paradigm to explore the 

phenomenological and learning consequences of statistical structural knowledge. In the sixth article, 

Michelle Peter and Caroline Rowland (2019) explore the role of implicit statistical learning in 

syntactic development. It is often accepted that the processes observed in classic implicit learning or 

statistical learning experiments play an important role in the acquisition of natural language syntax. 
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As Peter and Rowland point out, however, the results from neither research strand can be used to fully 

explain how children’s syntax becomes adult-like, in part due to important methodological 

shortcomings. (For example, artificial language studies typically lack semantic information, which is 

a clear difference from natural language acquisition.) They propose to address this shortcoming by 

using the structural priming paradigm (Bock, 1986). 

The special issue concludes with an article by Arnaud Rey, Laure Minier, Raphaëlle Malassis, 

Louisa Bogaerts and Joël Fagot (2019). One of the themes that has been widely addressed in both 

literatures is that of rule learning. While it is widely agreed that the extraction of regularities from the 

environment is a fundamental facet of cognition, there is still debate about the nature of rule learning. 

For example, could “rule” learning be reduced to the formation of chunks (e.g., Perruchet, 2019)? 

Does it require explicit (conscious) strategies, and how is it affected by prior (linguistic) knowledge? 

Rey and colleagues show that the comparison between human and non-human primates can contribute 

important insights to this debate. In their paper, they contrast the performance of humans and Guinea 

baboons (Papio papio) on the same experimental paradigm, a novel online measure of learning. They 

conclude with a discussion on how the comparative approach can be used to address theoretical 

questions that will foster the development of a general theory of regularity learning. 

 

The near and far horizons 

The future directions offered by the contributors to this special issue indicate that there is 

substantial benefit from aligning statistical and implicit learning approaches. 

The contributions highlight potential advances in understanding multimodal information 

integration. There is growing awareness that language learning is situated, and so multiple 

information sources can cohere to support learning. Better recognition of the multiple environmental 

sources of information that support learning, and advances in the interface between learning from 

different modalities (e.g., Frost et al., 2015; Milne, Wilson & Christiansen, 2018) is changing the way 

we study statistical learning (Monaghan, 2017), and broadening the remit of structures that are 

investigated. This expansion of structures aligns the statistical learning field with the implicit learning 

tradition, but issues remain about the awareness that participants have of the consequent learning, an 
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important theme which is currently understudied (Christiansen, 2019; Monaghan et al., 2019; 

Perruchet, 2019). Relatedly, there is growing interest in studying individual differences in providing 

refinement in our penetration of the cognitive processes involved in learning, memory, and language. 

There is now recognition of the insight that individual differences provide to the operation of different 

cognitive processes in sequence structure learning tasks (e.g., Kidd & Arciuli, 2016; Siegelman, 

Bogaerts, & Frost, 2017), indicating similarities and distinctions across structures, across modalities, 

as well as the role of working memory, perceptual abilities, and processing speed in acquisition 

(Christiansen, 2019; Perruchet, 2019).  

Future integration across the two literatures also promises advances in studies of the role of 

memory systems in learning. Distinctions in memory between declarative and procedural memory 

have typically been associated with implicit and explicit learning, respectively (Ullman, 2004). There 

are exciting future prospects for drawing together understanding of memory and development and the 

systems that are involved in language learning in infancy and childhood (Arnon, 2019; Gomez & 

Edgin, 2016; Kidd & Arciuli, 2016; Peter & Rowland, 2019; Romberg & Saffran, 2010). Relatedly, 

Batterink et al. (2019) shows how advances in our understanding of methods in neurophysiology, and 

cognitive neuropsychology, and the memory systems implicated in learning, can inform these fields, 

and illuminate (sometimes even literally) the shared resources on which tasks in the two literatures 

draw upon. 

Alignment of implicit and statistical research fields also promises advances in understanding 

and promoting language learning and instruction. Traditionally, second language learning has 

examined the role of implict versus explicit knowledge about language structure, and have tended to 

fall under the remit of implicit learning (see e.g. the contributions in Andringa & Rebuschat, 2015; 

Rebuschat, 2015). However, these second language learning studies have traditionally been 

segregated from studies of first language learning. One issue that is of current interest to the second 

language learning community, for instance, is the extent to which explicit awareness of different 

structures is available to the learner, and whether reaching a threshold of performance on statistical 

learning performance then results in explicit knowledge. Equally, the extent to which explicit 

knowledge about structure boosts statistical learning is also under scrutiny (e.g., Batterink et al., 2015; 
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Romberg & Saffran, 2013). The field is close to a systematic framework for this interface between 

implicit and explicit knowledge and statistical learning, and Monaghan et al. (2019) offer one possible 

means by which these approaches can be bridged with a single paradigm. 

Finally, there has been a rising tide of comparative studies of sequence learning that indicate 

the language-dependence of learning for certain grammatical, or statistical, structures (Beckers, 

Berwick, Okanoya, & Bolhuis, 2017; Heimbauer, Conway, Christiansen, Beran, & Owren, 2018), and 

the field is now poised to realise the constraints of learning not only within but across species. Central 

to this is the use of experimental procedures that generalise across species (see Rey et al., 2019, for 

examples and discussion) and the testing of structures that link between artificial grammar learning 

and statistical learning traditions. 

Across each of these themes, there is recent and innovative progress in both the implicit and 

statistical learning literatures. The future research landscape for the integrated approach advocated by 

the papers in this volume provides for advances in sharing and broadening the range of 

methodologically rigorous techniques, as well as ensuring deeper theoretical insights into learning 

behaviour. Alignment will enable these advances to avoid redundancy, draw on a wider research 

heritage, and harness research discoveries from both traditions.  
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