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Abstract

Backtesting provides the means of determining the accuracy of risk forecasts and

the corresponding risk model. Given that the actual return generating process is un-

known, the evaluation methods rely on various assumptions in order to quantify the

models inefficiencies and proceed with the model evaluation. These method specific

assumptions, in conjunction with the regulatory policies can introduce distortions

in the evaluation process, which affect the reliability of the evaluation results. To

investigate such effects from a practitioner’s perspective, this paper reviews the ma-

jor Value at Risk and Expected Shortfall forecast evaluation methods and evaluates

their performance under a common simulation and financial application framework.

Our findings suggest that focusing on specific individual hypothesis tests provides

a more reliable alternative than the corresponding conditional coverage ones. In

addition, selecting a two year out-of-sample period provides a significantly better

power to relevance ratio than the more relevant but powerless regulatory one-year

specification.
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1 Introduction

Driven either by the regulations or its own utility, an institution needs to distinguish

the accurate risk forecasting methods from a large pool of proposed specifications. To

this end, evaluation or backtesting of risk models provides the means for determining

the accuracy of the candidate models. Although backtesting is a crucial component of

the internal model approach, there are no specific regulatory recommendations for the

type of tests that should be used. On the contrary, the evaluation methodology is freely

chosen by the implementing institution. With respect to the evaluation of the candidate

risk models, there is a large body of literature proposing two major approaches. The

density evaluation approach was established by the results of Diebold et al. (1998) and

Berkowitz (2001). It evaluates the fit of the model’s implied density, or specific regions

of it, to the historical data. On the other hand, the forecast evaluation approach tests a

model’s accuracy by assessing the properties embedded in the forecasts. This approach is

the industry benchmark as it provides intuitive motivation, ease of implementation and

small demand for sensitive information.

Despite its advantages and appeal, the forecast evaluation approach suffers from

small sample inefficiencies. The scarcity of extreme events reduces the amount of avail-

able/testable information. Furthermore, model risk emerges also as another major source

of unreliability since it can distort the results in two possible ways. First, Escanciano

and Olmo (2010) and Escanciano and Olmo (2011) suggest that the forecast inherited

model risk affects the asymptotic variance of the test statistics. Second, the test statistics

specifications and assumptions evaluate a predefined structure that accounts only for a

small portion of the actual return dynamics. Finally, with respect to risk measure selec-

tion there is a large debate regarding the risk measure selection and whether it can be

evaluated or not. Some academics suggest that ES forecasts can not be evaluated given

the measure’s lack of elicitability (see, for example Ziegel (2014)). On the other hand,

there is new evidence that elicitability is not necessary for forecast backtesting (see, for
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example Emmer et al. (2015)).

In a recent paper, Nieto and Ruiz (2016) survey the VaR forecasting and backtest-

ing literature, however without evaluating the performance of the backtesting methods.

Specifically, the authors evaluate the performance of various VaR forecasting methods at

the 1% coverage level. Their empirical exercise includes different setups designed to look

into the effects of various in-sample and out-of-sample periods. Their findings suggest

that there is significant variation in the accuracy of the forecasting methods. In addition,

the authors conclude that simpler methods with asymmetric volatility dynamics and error

distributions are the most competitive. Our work also relates to Campbell (2007) as it

focuses on the performance of the backtesting methods. Specifically, through a simulation

study we evaluate various VaR and ES coverage level series and out-of-sample lengths

in order to assess the sample properties of the forecast evaluation approach methods.

Finally, we use the S&P 500 returns to evaluate the forecasts on real financial data.

Our findings suggest that selecting an intermediate out-of-sample length increases sig-

nificantly the reliability of the methods since the high coverage levels in conjunction with

small out-of-sample periods (one year) leads to distorted size and low power. Specifically,

the tests are oversized for almost all the cases under investigation and the corresponding

power is low. Simple tests that focus directly on the quantitative perspective of the risk

forecast evaluation fail to perform adequately in a small information set environment,

while more elaborate specifications suffer in a rich information set environment. Under

our simulation and financial application exercise, we find that three individual hypothe-

ses testing specifications are more robust and almost equally powerful to the respective

conditional coverage counterparts.

The rest of the paper is structured as follows. In Section 2 we introduce the VaR

and ES definitions/notions and main backtesting approaches. Section 3 describes the

simulation results and the small sample properties of the methods. In Section 4 we

conduct an empirical implementation on the S&P returns and Section 5 concludes.
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2 Backtesting

Regardless of the forecasting methodology, the forecaster needs to prove the model’s

ability to approximate the actual, but unknown, distribution of returns. This can be

done by either evaluating each model’s implied density fit (density evaluation) or the

accuracy of the produced forecasts (forecast backtesting). In the following sections we

describe the methods and underlying ideas for the forecast evaluation approach as the

density evaluation is beyond the scope of this paper.

2.1 VaR Backtesting

Forecast evaluation methods, or Event Probability Approach methods (Campbell (2007)),

examine if the properties implied by the correctly specified model are showed by the

forecasts. To set up ideas, let V aRt (q) be the time t q-conditional quantile of a long

position with a continuous return distribution. Given the information set Gt−1 , VaR is

mathematically defined as:

P (rt ≤ −V aRt (q) |Gt−1) = q. (1)

Emanating from equation (1), the probability of losses “violating” an accurate VaR mea-

sure is q% almost surely. In addition, this result should remain independent of the

information set. The rationale of such properties boils down to the model capacity to

produce an acceptable number of exceedances/violations of VaR, in absence of depen-

dency on the past information set. Specifically, let the violation sequence be a series of

random variables defined below:

It(q) =


1, if rt < −V aRt(q)

0, if rt > −V aRt(q).

(2)

Given an accurate risk model the following holds:

P (rt ≤ −V aRt (q) |Gt−1) = q =⇒ E [It(q)|Gt−1] = q. (3)
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Equation (3) dictates that the number of losses exceeding the VaR are not in excess/less

than the one dictated by the confidence level. Equally important, the violations of VaR

should be independent of the past information set. In other words, the exceedances

should be random events, not derived from the model inadequacy to interpret or adapt

to the evolving information set.

2.1.1 Violation Tests

Kupiec (1995) proposes the Percentage of Failure (POF ) test, a straightforward method

of evaluating the number of exceedances in relation to the expected ones. The null

hypothesis of unconditional coverage is defined as LRPOF,0 : E [It(q)] = q and tested

via a simple test statistic. Following Kupiec (1995), Christoffersen (1998) proposes a

complete methodology of evaluating the number of exceedances and their independence.

The author states that in order to examine the validity of a VaR model, an implication

of equation (3) should be put to the test. This implication consists of examining whether

the violation sequence is iid Bernoulli(q) which is formally stated as:

E[It(q)|It−1(q), It−2(q), It−3(q), ...] = q.

The latter can be partitioned to the Unconditional Coverage (UC) hypothesis where the

null hypothesis H0,uc:E[It(q)] = q is tested against the alternative H1,uc:E[It(q)] 6= q,

and the iid property which is tested through a first order Markov structure. The inde-

pendence test rationale dictates that, if the violations are dependent then the transition

probabilities would not be equal. Finally, Christoffersen (1998) proposes a joint test that

combines both hypotheses (Conditional Coverage CC hypothesis). In order to test for the

aforementioned hypothesis, the author proposes the following Likelihood Ratios (LR):

LRuc = −2ln(
(1− q)T0qT1

(1− T1

T
)T0(T1

T
)T1

) ∼ χ2
1, (4)

LRind = −2ln((1− T1

T
)T0(

T1

T
)T1) + 2ln((1− π01)T00πT01

01 (1− π11)T10πT11
11 ∼ χ2

1, (5)
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LRcc = LRuc + LRind ∼ χ2
2, (6)

where T is the number of out-of-sample observations, T0 the number of non violations,

T1 the number of violations and Tij with i, j = 0 (no violation), 1(violation) is the

number of observed events with the j event following the i event. The estimates of the

probabilities of Tij are marked as π01 and π11. Berkowitz et al. (2011) unify and extend

the aforementioned tests by redefining equation (3) on the basis of a martingale difference

sequence:E [(It(q)− q)⊗ Zt−1] = 0, where Zt−1 is the variable describing the information

test available at the formulation of the VaR forecast. For the cases of Zt−1 = It−k, k ≥ 1,

the authors propose a Portmanteau test in order to evaluate whether the autocorrelations

of the violations sequence are zero.

Engle and Manganelli (2004) propose the Dynamic Quantile (DQ) approach, focusing

directly on the correlation of VaR forecasts with the available information set. The

corresponding evaluation method is based on a quantile regression model, which associates

the observed violations with the past violations and any past information according to

the following structure:

Hitt(q) = δ +
K∑
j=1

βjHitt−j(q) +
K∑
j=1

γjζt−j + εt, (7)

where Hitt(q) = It(q)− q denotes the modified violations sequence, δ is a constant term

and ζt−j corresponds to any information derived from the existing information set. The

null hypothesis of independence, DQind, dictates that βj = γj = 0, ∀j = 1...K, while the

null hypothesis, DQuc, for the number of violations dictates that δ = 0. The DQ test

expands the information set for the independence evaluation by including explanatory

variables and higher orders lags.

With respect to the DQ approach, Dumitrescu et al. (2012) juxtapose the inconsis-

tency of implementing a linear specification model on binary dependent variables, arguing

that it will distort the respective hypothesis testing. This is due to the discrete nature

of the distribution of linear model errors and their consequent heteroskedasticity. To

alleviate these shortcomings, the authors propose a non-linear-Dynamic Binary (DB)
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regression model, aiming to improve the finite sample properties through the usage of a

more appropriate link function. The proposed model is given below:

E [It(q)|Gt−1] = P [It(q) = 1|Gt−1] = F (πt) , (8)

πt = c+
K∑
j=1

βjπt−j +
K∑
j=1

δIt−j(q) +
K∑
j=1

ψjlt−j(ζt−j) +
K∑
j=1

γjlt−j(ζt−j)It−j(q), (9)

where F () is an arbitrary CDF and πt is an index that relates the information set with the

violation sequence. Dumitrescu et al. (2012) propose seven specifications for πt ranging

from the simple autoregressive case to the one that introduces asymmetric effects to the

violation history.1 The estimation of the above coefficients is conducted using maximum

likelihood methods. Under the null hypotheses, equation (3) holds and leads to the

following result:

H0,DBCC
: βj = δj = ψj = γj = 0 and c = F−1 (q) , ∀j ∈ {1, 2, 3, ..., K} , (10)

H0,DBIND
: βj = δj = ψj = γj = 0 , ∀j ∈ {1, 2, 3, ..., K} . (11)

Finally, within the quantile regression framework, Gaglianone et al. (2011) propose a

random coefficient test linking the conditional quantile of the return distribution with

VaR forecasts.

1The link function specifications are the following:

1. πt = c+ β1πt−1

2. πt = c+ β1πt−1 + δ1It−1

3. πt = c+ β1πt−1 + δ1It−1 + δ2It−2

4. πt = c+ β1πt−1 + δ1It−1 + δ2It−2 + δ3It−3

5. πt = c+ β1πt−1 + ψ1V aRt−1

6. πt = c+ β1πt−1 + δ1It−1 + ψ1V aRt−1

7. πt = c+ β1πt−1 + δ1It−1 + ψ1V aRt−1 + γ1V aRt−1It−1
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2.1.2 Duration Tests

While the violations tests focus directly on the violations of the VaR threshold, the du-

ration approach takes into account the time interval between two violations. It evaluates

the independence and conditional coverage hypotheses by testing the distribution prop-

erties of the sequence of time intervals between violations. The duration approach is

based on the idea of dependence causing violations to cluster. In more detail, let dv be

the time interval between the v− 1 and the v violation. In the conditional coverage case,

the evaluated forecast series should produce exactly q violations equally spread across

the out-of-sample period. Therefore, the violation sequence will be characterized by a

distribution with no memory.2 This entails that the dv sequence will follow the geometric

distribution, i.e.

f(dv, q) = q(1− q)dv−1, dv ∈ N. (12)

Thus the probability of a violation at time t does not depend on the elapsed days since

the previous violation. The only continuous distribution characterized by the lack of

memory is the exponential distribution:

f(dv, q) = qe−qdv .

Christoffersen and Pelletier (2004) formulate a duration test by considering the Weibull

distribution with parameters a, b for the alternative hypothesis;3, 4

w(dv, a, b) = abbdb−1
v e−ad

b
v . (13)

Consequently the Independence null hypothesis (DurInd) is not rejected if b = 1 while

the conditional coverage (Durcc) hypothesis is not rejected if b = 1 and a = q.

Drawing on the duration approach literature, Candelon et al. (2011) propose a test

which utilizes the GMM approach to test for the Geometric distribution directly. Specif-

2Haas (2005) argues that the duration approach provides a clear cut interpretation of parameters while
on the other hand it requires specific distributional assumptions for the alternative case of dependence.

3The authors also considered the Gamma distribution as it encapsulates the exponential. However
the results reported by Haas (2005) lean towards the Weibull distribution as the alternative.

4The Exponential distribution can be derived from the Weibull distribution for b = 1.
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ically their test employs the orthonormal polynomials associated with the geometric dis-

tribution. This enables the separate evaluation of the unconditional coverage and in-

dependence hypothesis. Furthermore, there is no need to specify a distribution as an

alternative. Specifically the orthonormal polynomials related to the geometric distribu-

tion are defined below:

Mj+1 (dv, β) =
(1− β) (2j + 1) + β (j − d+ 1)

(j + 1) 2
√

1− β
Mj (dv, β)−

(
j

j + 1

)
Mj−1 (dv, β) , (14)

with M−1 (dv, β) = 0 and M0 (dv, β) = 1. Evaluating the unconditional coverage hypoth-

esis is straightforward. Under the null hypothesis, the expected value of the duration vari-

able should be equal to 1/q. Thus the null hypothesis can be stated asH0,Juc:E[M1 (di, q)] =

0. In order to evaluate the null hypothesis the authors propose the following test:

Juc (p) =

(
1

2
√
N

N∑
i=1

M1 (di, q)

)2

→ χ2
1. (15)

Independence testing consists of testing the duration sequence for a geometric distribution

with a parameter q′ not necessarily equal to q. This enables the testing of the independence

property separately. The null hypothesis can be stated as H0,Jind:E[Mj (di, q
′)] = 0,

j ∈ {1, 2, 3, ..., p}, with the corresponding test defined as:

Jind (p) =

(
1

2
√
N

N∑
i=1

M (di, q
′)

)T (
1

2
√
N

N∑
i=1

M (di, q
′)

)
→ χ2

p, (16)

whereM (di, q) is the vector of the orthonormal polynomialsMj (di, q) and j ∈ {1, 2, 3, ..., p} .

For the conditional coverage property, the corresponding null hypothesis with respect to

the aforementioned polynomials is defined as H0,cc:E[Mj (dv, q)] = 0, j ∈ {1, 2, 3, ..., k} .

This implies that the duration sequence {d1.d2, d3, ..., dN} follows a geometric distribu-

tion with q% success rate. In order to evaluate this hypothesis the authors propose the

following test:

Jcc (p) =

(
1

2
√
N

N∑
i=1

M (di, q)

)T (
1

2
√
N

N∑
i=1

M (di, q)

)
→ χ2

p, (17)
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whereM (di, q) is the vector of the orthonormal polynomialsMj (di, q) and j ∈ {1, 2, 3, ..., p}.

Within the duration approach literature, Berkowitz et al. (2011) propose a LR test

based on a the hazard function of the duration sequence. The authors state that under

the null hypothesis of conditional coverage, the duration hazard function should be flat

and equal to q. Pelletier and Wei (2016) expand the aforementioned method by including

the vector of VaR forecasts. The underlying reasoning suggests that if VaR forecasts

are misspecified they might be the cause of the upcoming violation. In other words,

the authors expand the information set by including also VaR forecasts. Finally, Santo

and Alves (2012) propose an independence testing procedure on the concept of exact

distribution. In more detail, the authors propose the max−duration
median−duration ratio as a means of

testing the independency property. Specifically, if the model is accurate the duration

sequence would be equally spread and consequently the ratio would be equal to a specific

value. If the empirical value of the ratio deviates (is larger) from the theoretical one,

then there is strong evidence against the independence hypothesis.

Commenting on the aforementioned methods, Ziggel et al. (2014) argues that the

unconditional and independence properties, as stated and tested, suffer from severe re-

strictions. In order for the unconditional coverage null hypothesis to hold there must be

P [It(q) = 1] = q ∀t. Implicitly this result imposes a stationary condition for the violation

sequence, which is counterintuitive. For instance, in high volatility periods the probabil-

ity of a violation is higher even if the total empirical number is equal to the expected

one. Furthermore, the authors argue that evaluating the autocorrelations of the violation

sequence may not be sufficient. On the contrary, there is a possibility of violation clus-

tering despite the violation sequence iid property. In order to mitigate these distortions,

the authors redefine the UC and IND properties as follows:

H0,MCSuc : E[
1

n

n∑
t=1

It(q)] = q

{It(q)} iid Bernoulli(q̃) ∀t,
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where q̃ is an arbitrary probability. In order to test the aforementioned hypothesis the

authors propose the following test statistics:

MCSuc =
n∑

t=1

It(q) + ε, ε ∼ 0.001N (0, 1) , (18)

MCSind = t21 + (n− tm)2 +
m∑
t=2

(ti − ti−1)2 + ε, ε ∼ 0.001N (0, 1) , (19)

where {t1, t2, t3, ..., tm} are the exact times of violations.5 The introduction of the random

variable ε enables the tests to keep their size through infinite Monte Carlo simulations,

which is essential for the calculation of the critical values. With respect to the inde-

pendency test, the main goal is to quantify the distances between the violations. If the

violations cluster, the sum part of MCSind statistic will generate larger values in com-

parison to the case of non clustering violations. On the other hand, if the violations are

equally spread out in the sample, the sum part would acquire its minimum value. Finally,

for the conditional coverage case they propose a weighted function of the MCSuc and

MCSind tests:

MCScc = af (MCSuc) + (1− a) g (MCSind) , 0 ≤ a ≤ 1,

f (MCSuc) =

∣∣∣∣MCSuc/ (n− q)
q

∣∣∣∣ =

∣∣∣∣(∑n
t=1 It(q) + ε) / (n− q)

q

∣∣∣∣ ,
g (MCSind) =

MCSind − r̂
r̂

,

where r̂ is an estimator of the expected value of MCSind under the null hypothesis.

Contrary to the LRcc test described in equation (6), the components of the MCScc

test are both positive which prohibits any offsetting effects. Finally, the authors waive

a formal asymptotic distribution for the test and instead calculate the critical values

through Monte Carlo simulations.

5The formulation of the H0,MCSuc enables the testing of under or over estimating the risk in the form
of the alternatives H0,MCSuc : E[ 1n

∑n
t=1 It(q)] > q or H0,MCSuc : E[ 1n

∑n
t=1 It(q)] < q respectively. In

addition the authors state that the power of the one sided test is significantly higher.
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2.1.3 Multilevel Tests

Given that an accurate model should describe correctly the whole tail of the distribution,

evaluating the performance on a single coverage level may be misleading. Hurlin and

Tokpavi (2007) propose a multilevel approach by considering multiple coverage levels

and their cross-correlations. The authors suggest that extending the Portmanteau test to

the multilevel case would increase the information set and thus provide a more powerful

test. More in detail, the martingale difference sequence property of the Hitt(q) = It(q)−q

series dictates that E [Hitt(q)|Gt−1] = 0, thus E [Hitt(q)Hitt−k(q)] = 0 for every k ∈ N

and E [Hitt(q)Hitt−k(q′)] = 0 for every q 6= q′ and k ∈ N. Based on this result, Hurlin

and Tokpavi (2007) propose a multivariate extension of the Portmanteau tests in order

to evaluate the null hypothesis H0,Qcc:E[Hitt(qi)Hitt−k(qj)] = q, k = 1, 2, 3, .., K and

qi 6= qj:
6

Qm (K) = T
K∑
k=1

(
vecR̂k

)T (
R̂−1

0 ⊗ R̂−1
0

)(
vecR̂k

)
→ χ2

km2 , (20)

where R̂k = D ĈkD , Ĉk is the empirical covariance matrix of the Hitt vector and D is the

diagonal matrix containing the standard deviations associated to the Hitt(q). In terms

of VaR confidence levels, the authors consider the 1%, 5% and 10% level of coverage

and up to the fifth violation lag. This is done in order to ensure that the matrix of

hit sequences would not be singular. Drawing on the multilevel VaR testing literature,

Leccadito et al. (2014) propose two methods of conditional coverage testing in order to

deal with the cases of singular VaR forecasts matrices. The first consists of the expansion

of the Christoffersen (1998) approach to the multilevel case by incorporating multiple

VaR coverage levels in the transition matrix. The second method detects whether each

coverage level produces the expected violations, while at the same time it evaluates the

dependency structure through a Pearson type test.

Focusing on the unconditional coverage case, Perignon and Smith (2008) propose a

6This test can be considered as a multivariate extension of the Berkowitz et al. (2011) proposed
methodology.
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multilevel generalization of the Kupiec (1995) test. The authors define a series of violations

sequences that schematically determine the magnitude of the violations. In the same vein,

Colletaz et al. (2013) propose a test which takes into account the severity of each violation.

Specifically, a second violation sequence is defined as follows:

Jt =


1, if rt < −V aRt(q

′)

0, if rt > −V aRt(q
′), q′ < q,

(21)

where q′ is a stricter coverage level. The second violations or super exemptions sequence

aims at measuring the number of initial violations that exceed the second threshold

VaRt(q
′). Thus, if the risk model produces an acceptable number of violations in con-

junction with an increased number of super exemptions (losses of extreme severity) the

null hypothesis will be rejected. To perform the test, three indicator functions are intro-

duced:

g0,t = 1− g1,t − g2,t = 1− It,

g1,t = It − Jt =


1, if − V aRt(q

′) < rt < −V aRt(q)

0, if rt < −V aRt(q
′),

g2,t = Jt =


1, if rt < −V aRt(q

′)

0, if rt > −V aRt(q
′).

The above random variables follow the Bernoulli distribution with 1− q, q− q′, q′ param-

eters respectively. The joint null hypothesis of the test is defined as H0,muc: E[It(q)] = q

and E[Jt(q
′)] = q′ and the test is performed via the following likelihood ratio:

LRmuc = −2ln((1− q)N0(q − q′)N1 (q′)
N2) + 2ln((1− N0

T
)N0(

N1

T
)N1(

N2

T
)N2) ∼ χ2

2, (22)

where Ni,t =
T∑
t=1

gi,t, i = 0, 1, 2.
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2.2 ES Backtesting

Contrary to VaR, backtesting ES can be characterized as a more elaborate process. Ac-

cording to Embrechts et al. (2014), VaR as a frequency oriented measure can be evaluated

directly by a hit and miss process. On the other hand, ES as a severity measure requires

the specification of the underlying DGP process or at least an assumption about it. To

make matters worse, Ziegel (2014) argues that only elicitable risk measures can be mean-

ingfully compared, while Gneiting (2011) proves that although VaR is generally elicitable,

ES in not.7 However, the results of Emmer et al. (2015) and Fissler and Ziegel (2016)

suggest that the pair of VaR and ES is jointly elicitable, paving the way for a meaningful

comparison of competing ES forecasts.

Contrary to the ranking of ES forecasts, Acerbi and Szekely (2014) and Emmer et al.

(2015) question the elicitability as a necessary condition for the statistically adequacy

of a risk measure. According to Acerbi and Szekely (2014) backtesting ES should not

be confused with ranking and comparing a series of competing ES forecasts. Similarly,

Kerkhof and Melenberg (2004) and Du and Escanciano (2017) argue that backtesting ES

is feasible and not more difficult than backtesting VaR.8

Drawing on the early VaR backtesting methods, Christoffersen (2011) proposes (for

the continuous case of return distributions) an adaptation of the Christoffersen (1998)

method. Specifically, he proposes a regression based test where the deviations from the

ESt(q) during the violations of V aRt(q) are linked with the vector of variables Xt which

correspond to the information set Gt−1. The idea is to evaluate whether the risk model

utilizes all the available information efficiently in order to forecast ES. The test is based

7Consider the loss function S : (T (F̂j), rt) → R where T (F̂j) → R is a functional of a competing

distribution F̂i. If g is the true distribution and we assume a non-negative representation of the loss
functions, S is a consistent loss function for a specific functional T if E(S(T (g), R)) ≤ E(S(T (F̂i), R)).

It is strictly consistent if E(S(T (g), R)) = E(S(T (F̂i), R))→ T (g) = T (F̂i). In other words, a consistent
scoring function would ensure that the most accurate forecast is selected. Furthermore, a functional T
is called elicitable if and only if there is a loss function that is strictly consistent for it.

8Acerbi and Szekely (2017) debate the theoretical notion of backtestability and concludes that in a
strict sense, ES can not be backtested. However, the authors suggest that ES forecasts can be evaluated
statistically in conjunction with an auxiliary statistic since there is a model independent mechanism that
guarantees small sensitivity on the auxiliary statistic predictions.
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on the predictive ability of the vector series to explain the deviation of the tail losses

from the expected ones. If the forecasts are accurate, then there should be no predictive

ability from the vector of variables.

Focusing on the properties of the exceedances, McNeil and Frey (2000) define the

respective residuals as:

rest =
rt − ÊSt(q)

σ̂t
, (23)

where σ̂t is the conditional standard deviation of the utilized model. Under the null

hypothesis of correct fit of the model, the residual series {rest}nt=1 should have a zero

mean distribution. The testing of the null hypothesis is conducted through a bootstrap

technique in order to avoid assumptions about the {rest}nt=1 series distribution. In the

same vein, Righi and Ceretta (2014) propose an adaptation where the dispersion of the

exemptions are used in order to standardize the test statistic. Colletaz et al. (2013) utilize

the fact that both risk measures are produced by the same model/underlying distribution.

Therefore, the authors consider a higher threshold q0 such that V aRt(q0) = ESt(q). The

underlying idea is to evaluate the performance of the risk model on describing the tail of

the distribution via the magnitude of the losses.

Although the aforementioned tests are intuitive, they do not tackle the ES forecast

accuracy directly. Emmer et al. (2015) focus on the tail area under consideration and

suggest the evaluation of the VaR forecasts that represent the quartiles of that specific

area. If these four VaR forecasts are accurate, the corresponding ES would be accurate.

Kratz et al. (2018) extend this methodology and develop a multinomial VaR threshold

approach where multiple coverage level forecasts are jointly evaluated. Acerbi and Szekely

(2014) propose a more straightforward ES evaluation approach. The authors consider only

the unconditional coverage case since they assume that the independence of tail events is

tested separately. Specifically, the null is defined as P [q] = F [q] where P [q] and F [q] are the

distribution tails of the model and actual returns respectively. They propose three non

parametric specifications in order to evaluate the validity of the ES forecasts. The first

test is similar to McNeil and Frey (2000) and it averages the losses at the violations of VaR.
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In addition, it requires the testing of the underlying VaR threshold. The second test is

more straightforward as it relies on the unconditional definition of ES, while the third test

consists of a modification of the density evaluation approach proposed by Diebold et al.

(1998) and Berkowitz (2001). More in detail, the authors utilize the ranked probabilities

to estimate the ES and compare them against the theoretically correct ones, according

to the null hypothesis of Berkowitz (2001). In principle, the critical values of the tests

are computed through simulations.

With respect to direct ES forecast evaluation, Du and Escanciano (2017) propose

the first conditional coverage testing methodology based on the notion of cumulative

violations. To fix up ideas, let

Ht(q) =
1

q

∫ q

0

It(u)du (24)

be the cumulative violation process which accumulates the violations across the distribu-

tion’s tail. From equations (1) and (2) the following holds:

It(u) = 1(rt < V aRt(q)) = 1(ut < u), (25)

where ut = F−1
t−1(rt), Ft−1 is the model imposed conditional CDF and 1() is the indicator

function. Thus, equation (24) can be rewritten as:

Ht(q) =
1

q
(q − ut)1(ut < u). (26)

Equation (26) provides a better insight on the notion of cumulative hits which mea-

sures the distance of the returns from the corresponding q quantile during the violations.

The authors prove that if {1(rt <VaRt(q)) − q}∞t=1 is a martingale difference sequence

(mds) then {Ht(q) − q
2
}∞t=1 is also an mds. This enables the constructions of tests that

would evaluate the accuracy of the ES forecasts by evaluating the mds property. Thus

the null unconditional coverage hypothesis is defined as H0,UES
: E[Ht(q)] = q

2
. The

conditional coverage hypothesis is defined as H0,CES
: E[Ht(q)|Gt−1] = q

2
. In order to

evaluate the aforementioned hypotheses the authors propose the following sample test
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statistics:

UES =
2
√
n(Ht(q)− q

2
)

2
√
q(1/3− q/4)

→ N(0, 1), (27)

CES = n
m∑
j=1

ρ̂nj → χ2
m, (28)

where Ht(q) =
∑n

t=1 Ĥt(q) is the sample mean of the empirical cumulative violation

sequence and ρ̂nj is the j-th lag of the of the empirical cumulative violation sequence

sample autocorrelation. For the CC case the autocovariances of the cumulative violation

hits are evaluated.9 Following Du and Escanciano (2017), we also calculate the similar

Box Pierce VaR Conditional test CV aR.

3 Small Sample Properties

In this section we use Monte Carlo simulations to evaluate and compare the small sample

properties of the tests described in Section 2. We assume the following GARCH(1, 1)−t7

model for the daily returns’ Data Generating Process (DGP):

rt = µ+ εt, εt = σtzt(
5

7
), zt ∼ t7,

σt = ω + 0.1ε2
t−1 + 0.85σ2

t−1.

(29)

The model specification is similar to the simulation setup of Du and Escanciano (2017)

while in our case µ and ω are estimated on the daily log returns of S&P500 covering the

9Loser et al. (2018) improve the Unconditional Coverage test for the cases of finite out of sample
periods. Specifically, for finite out-of-sample periods and no estimation error, they generalize the null
hypothesis of the ES unconditional coverage based on the concept of the cumulative violation as a product
of a Bernoulli and a Uniform random variables. Furthermore, they derive the actual distribution of the
respective UES test which leads to improved small sample properties. Their simulation results suggest
that under estimation error the size properties.
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period of 2/1/1985-15/10/2008.10 The estimates of µ and ω are 2.8× 10−4 and 7.528×

10−6. The daily variance persistence is equal to 0.95 and the annualized unconditional

standard deviation is equal to 0.195.

For each simulation sample we calculate the 1%, 2.5%, 5%, 10% GARCH −Normal,

GARCH(1, 1)−t7 and Historical Simulation (HS) VaR and ES forecast series of length

R ∈{1000, 750, 500, 250}, which we compare with the respective out-of-sample returns

of the simulated sample. This enables the computation of the test statistics described

in Section 2. With respect to the estimation process, for the GARCH − Normal and

GARCH(1, 1)−t7 risk forecasts we use a rolling estimation window of length T = 10000.11

Contrary to the in-sample specifications of the parametric models, we calculate the HS

risk forecasts with a rolling window of 250 daily observations. In this way, we ensure that

the HS risk forecasts are relatively responsive to small changes in the returns volatility

levels. The aforementioned process is repeated 10000 times in order to calculate the

rejection rates of the forecast series for each coverage level and out-of-sample period.

For the size properties, we use the GARCH(1, 1) − t7 forecasts rejection cases in order

to calculate the false rejection rate. For the power properties, we use the HS forecasts

results to calculate the correctly rejected cases and produce the main rsults of our analysis.

Furthermore, we complement our analysis with the respective rejections cases against the

GARCH −Normal forecasts, which we report in the on-line appendix.

By definition, the non-parametric and unconditional estimation process of HS, creates

forecasts that react to the underlying volatility fluctuations rather than anticipate them.

In other words, an increasing pattern of the underlying volatility could lead to a suc-

cessive underestimation of risk. Similarly, a switch from a high to low volatility period,

or a numnber of extreme losses embeded in a low volatility period, will not be identified

immediately by the HS risk forecasts, which could lead to an extended period of risk over-

10Du and Escanciano (2017) utilize an AR(1)−GARCH(1, 1)− t5 with the following parameter vector
θ = (a0, ω, a, β) = (0.05, 0.05, 0.1, 0.85).

11The T = 10000 in-sample specification targets aR/T < 10% ratio and therefore makes any estimation
risk effects on the asymptotic properties of the implemented tests negligible (see, for example Du and
Escanciano (2017), Escanciano and Olmo (2011)).
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estimation. Hence the HS forecasts are efficiently violating the conditional coverage and

independence properties (Candelon et al. (2011), p.326) without imposing estimation er-

ror on the forecasts. Contrary to the HS forecasts, the GARCH−Normal forecasts share

the same conditional variance specification with the underlying returns’ DGP. Hence, we

expect the risk forecasts to adapt faster to the changes of the underlying volatility levels

and consequently alleviate, to some extent, the impact of the method’s misspecification

to the risk forecasts adequacy. On the other hand, the GARCH −Normal forecasts will

suffer from the distributional mismatch between the DGP and the forecasting method.

The lack of density at the tails of the Normal distribution will lead to an underestima-

tion of the risk, especially for the more extreme coverage levels. On the other hand, the

increased density at regions closer to the middle part of the distribution will produce an

increased standardised quantile and therefore a possible overestimation of risk.

Table 1 summarizes the evaluated specifications alongside their abbreviations as these

are reported in the following sections and figures.

[Table 1 around here]

3.1 Violations Distribution

Implementing an evaluation process may include risks and limitations that influence the

final results. For example, the LR tests can not be calculated for cases of no violations.

Similarly, the Dur tests needs more than one violation in order to create the duration se-

quence. Figures 1 and 2 describe the empirical distribution of the number of violations per

simulated sample and forecasting method under the {10000, R}, R ∈ {1000,750,500,250}

in-sample/out-of-sample specifications. As expected, the GARCH − t number of vio-

lations distribution (Figure 1) have an almost symmetrical distribution which, for each

case of coverage level and out-of-sample length, is located approximately around the ex-

pected number of violations. However, for the more extreme coverage levels and smaller

out-of-sample periods the zero and one violation bins seem to increase in size. This effect
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is more pronounced for the one-year out-of-sample period and 1% coverage level, where

the zero and one violation bins account for over 25% of the simulated samples.

[Figure 1 around here]

The HS VaR forecasts (Figure 2) results suggest that for 10% and 5% coverage levels,

the zero and one violation bins remain unpopulated for almost all the out-of-sample

specifications. The 2.5% coverage level results suggest that for the four- and three-year

out-of-sample periods the zero and one violations bins are unpopulated while for the two-

and one-year cases the number of samples yielding zero or one violation are increasing.

For the 1% coverage level the probability of a sample with a zero or one violation is

significantly increased for all the out-of-sample specifications, with the one-year period

rendering more than 40% of the simulated samples with zero or one violation.

[Figure 2 around here]

These results have an immediate impact on the implementation of the evaluation

methods. The shape of the distribution of the number of violations suggest that the

high coverage levels combined with short out-of-sample periods may hinder the seamless

implementation of the evaluation methods that focus directly on the number of viola-

tions. This outcome is sensitive to the underlying leptokurtic DGP and the fact that

small out-of-sample periods leave no margin to smooth out the length of the confidence

interval of the expected number of violations. Consequently, there is a direct impact to

small sample properties of such methods since most of the high coverage level rejections

will be attributed mostly to the right tail of the violation number empirical distribution

(underestimation of risk).12 Therefore, high coverage levels and small out-of-sample pe-

riods will impact directly such methods since their implementation is not feasible. On

12This finding is supported by the distribution of violations of the GARCH − Normal forecasts for
the 1% coverage level. Specifically, the underestimation of risk by the GARCH − Normal forecasts
creates a more symmetrical violation distribution, located above a larger than the expected number of
violations. Since there is not physical restriction by the violations zero bin, there are rejection cases due
to a small number of violations. Please refer to Figure 1 of the on-line appendix and the accompanying
text for a more detailed analysis.
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the other hand, methods that focus more on the properties of the violations sequence

may not be directly impacted. However, the lack of testable information may harm the

validity of their results since there will be no adequate amount of violations to test for

any structure and properties.

3.2 Size Properties

Figure 3 reports the empirical size of the tests for the 5% notional size. The size properties

are calculated as the rejection rates of the GARCH(1, 1) − t7 risk forecasts series over

the total number of the simulated samples. Ideally, we would expect the “perfect” test to

deliver false rejection rates equal to the notional size for each of the out-of-sample periods

and coverage levels. This is the case for the lower coverage levels and most of the tests

considered. However, for the higher coverage levels the size of the tests depends mainly

on the length of the evaluation period.

The 10% coverage level size results (Figure 3 Part A) suggest that most of the VaR

unconditional coverage tests (LRuc −MCSuc) have size properties close (less than 1.5%

distortion) or equal to the notional size regardless of the out-of-sample period. The only

exception is the LRmuc test as its size distortions are quite large and positively correlated

with the length of the out-of-sample period. The 10% coverage level in conjunction with

the larger out-of-sample period may lead to an increased amount of DGP-related super

exemptions. The likelihood of a loss violating both the 10% and 1% coverage level is

larger than the likelihood of a loss violating the 1% and the 0.5% coverage levels. The

independence tests (LRind−MCSind) false rejection rates are similar to the unconditional

coverage case as most of the tests’ size is close or equal to the notional size. For the LRind

specification the one-year out-of-sample period leads to an increased size. This can be

attributed to a large number of consecutive violations of the moderate 10% VaR threshold

during periods of increased volatility. For the Durind test, the size of the test seems to

have extreme distortions for all the out-of-sample periods. The abundance of violations

leads to a misestimation of the Weibull parameters and therefore to the false rejection of
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the correct method.

Turning to the conditional coverage tests (LRcc−CV aR10), the rejection rates suggest

that simple specifications seem to benefit from the abundance of violations. Specifically,

the LRcc and DQcc1−DQcc3 tests’ size is close to the notional size for all the out-of-sample

specifications. The 10% coverage level allows for an adequate amount of violations that,

even for the case of risk underestimation will provide a testable information set. On the

other hand, the Durcc results imply that the independence test distortions persist. This

is expected since both Durind and Durcc test statistics share the same estimation process

and assumptions. Similarly, the elaborate DB specifications fail to perform adequately

on the rich violation samples of the 10% coverage level. This is possibly attributed to the

method’s implied relationship which may be too restrictive for the abundance of data at

hand. Finally, the density based CV aR1 method seems to produce small size distortions

which are eliminated as the information included in the test expands.13

Turning to the ES evaluation methods, the unconditional coverage results suggest

that the res method is significantly oversized while the UES has minor distortions. This

is expected since the res test statistic is dependent on the magnitude of the difference

between the ES and the returns during a violation of VaR. Given that the risk forecasts

model specification is identical with the DGP’s specification, random outliers will lead the

violation sequence which in turn will render the res test statistic significantly different

from zero. Contrary to the res method, the UES statistic is related to the density of the

model and therefore it is more robust to possible extreme losses. Finally, as expected,

the results of the CES1 − CES10 tests are similar to the CV aR1 − CV aR10 ones since both

tests rely on the density of the evaluated model.

Turning to the 5% coverage level (Figure 3 Part A), the results suggest that the size

properties of the tests change slightly in comparison to the 10% coverage case. Specifically,

the simple specifications’ size is either equal or very close to the notional size. In addition,

the distortions of the LRmuc, although large, are significantly smaller than the 10%

13The Q2 methods results are not valid for the 10% case since the secondary threshold is also set equal
to 10% and remains constant for the remaining simulation exercise.
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coverage level with the one-year out-of-sample test being undersized. This is in support

of the excessive amount of super exemptions produced by the low coverage VaR. Turning

to the independence tests (LRind −MCSind), the LRind specification is undersized for

the smaller out-of-sample periods while for the larger periods the test is oversized. On

the other hand, the Durind test seems to perform better than the 10% coverage level

case, although still oversized. Interestingly, the DQind approach seems to be slightly

undersized while for the 10% coverage level the tests are always slightly oversized.

For the conditional coverage tests (LRcc − CV aR10) the results suggest that there are

increased size distortions for the majority of the tests, while there are less size distortions

for the more elaborate DB specifications. In addition, it must be noted that the size

distortions are negatively correlated to the out-of-sample length. Finally, the Q2 method

is significantly oversized. This is due to augmented volatility periods that cause violations

at the 10% VaR level which, given the simulation set up, will probably cause violations

at the higher 5% coverage level. Hence the likelihood of detecting a linear dependency is

quite large. Similarly to the VaR backtesting methods results, the ES methods produce

similar to the 10% size results with slightly more pronounced distortions for the UES and

CES5 methods. Finally, the res method’s size remains extremely distorted.

[Figure 3 Part A around here]

Moving towards the deeper parts of the returns distribution increases the size distor-

tions of the tests. For the 2.5% case (Figure 3 Part B), the LRuc and DQUC1 −DQUC3

tests’ size seems to be more distorted in comparison to the previous cases. These dis-

tortions are more pronounced for the one-year out-of-sample period than the rest pot-

of-sample periods. On the other hand, the LRmuc test’s size performs better than the

previous 10% and 5% coverage case since for the deeper parts of the tail the number of

super exemptions is smaller. Interestingly, the J and MCS test maintain their size at

the notional size level for all out-of-sample periods. This result is consistent with the

10% and 5% results where their size is again equal or very close to the nominal size. For
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the independence tests, the distortions of the LRind and DQind1−DQind3 test are larger

when compared with the 5% and 10% cases. Specifically, the LRind test is undersized

for all out-of-sample periods indicating that the first order Markov property may not

be suitable for higher coverage levels and the scarce violations produced by the accu-

rate forecasts. Similarly, the sightly increased distortions of the DQind1 − DQind3 tests

suggest that the methods linear assumption may not be appropriate when the focus is

turned to more extreme and not consecutive losses since the distortions are higher for the

augmented DQ specifications. On the other hand, the Durind test is still oversized but

within the same range of the aforementioned 5% coverage level. Finally, for the J and

MCS methods the results suggest that their size is at the notional size level.

The results of the conditional coverage tests have a similar pattern to the 5% results.

However, the distortions are increasing for the simpler specifications such as the LRcc

and DQcc test while they decrease for the more elaborate ones such as the DB and Q

methods. Specifically, due to the independence tests reduced rejection rates the LRcc

test is undersized. On the other hand, the DQ and CV aR tests seem oversized with

the distortions increasing when the linear dependency of violations is expanded to the

second and third lag. Contrary to the aforementioned methods, the Durcc, DB and

Q2 methodologies seem to produce less distortions when compared to the 5% and 10%

coverage levels. In addition, the results for the DB4 − DB7 specifications suggest that

increasing the information set may not be beneficial for the test’s performance since

the size results are more sensitive to the out-of-sample length. Finally, the results of

the ES evaluation methods suggest that the decreased amount of information have a

direct impact on the U and C methods’ size properties as the size distortions increase in

comparison to the 5% coverage level. Contrary, the res method size results suggest that

although significantly oversized, the smaller sample of violations reduces slightly the false

rejection rates.

For the 1% coverage level (Figure 3 Part B) the size distortions are more pronounced

and more sensitive to the out-of-sample period. The unconditional coverage tests that

24



focus directly on the violations (LRuc, DQUC1−DQUC3, LRmuc and MCS ) have a more

pronounced profile in comparison to the previous coverage levels. Specifically, the LRuc is

significantly undersized for the one-year out-of-sample specification while the three- and

four-year specifications are closer to the notional size. Similar results are reported for the

DQUC1−DQUC3 tests with the corresponding size being within a 1.5% interval from the

notional size. In the same vein, the LRmuc and MCS tests are significantly undersized

for the one-year out-of-sample case while the J method’s distortions are insignificant.

The independence tests results suggest that the distortions for the LRind and DQind1

specifications are larger than the previous cases. However, the DQind2 and DQind3 spec-

ifications seem to keep their size within a 1.5% interval over and under the 5% notional

size. Finally, the J and MCSind test keep their size almost equal to the notional size.

The results for the conditional coverage tests suggest that the LRcc, DQcc1 −DQcc3

tests have significant distortions which seem to depend on the specification at hand and

the out-of-sample period. On the other hand, the DB7 specification seems to produce

small distortions within a 1% interval around the notional size while the Q2 tests remain

significantly oversized. With respect to the ES tests, the res method remains significantly

oversized while the density related specifications are dependent on the size of the out-of-

sample period.

[Figure 3 Part B around here]

To sum up, the size properties of the tests reveal that simple tests such as the LR

method perform adequately only when there is an adequate amount of data available

to test. On the other hand, methods with elaborate specifications such as the DB, or

methods that approximate the required testable property such as the Dur may be too

restrictive for the cases with large number of violations. Furthermore, the conditional

coverage tests reveal larger distortions than the tests that focus on the single hypothesis

which have a more robust profile. Out of the full set of methods evaluated, only the J and

MSC methods produce rejection rates equal to the notional size for each of the considered
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coverage levels and out-of-sample periods while the DQ method revealed extended size

distortions at the 1% coverage level and the conditional coverage test. In the same spirit,

the ES tests revealed increasing distortions as the coverage level increased.

3.3 Power Properties

Figure 4 reports the power of the tests for the 5% notional size. Since the practition-

ers are facing the raw test results and not the size corrected, the power properties are

calculated as the raw rejection rates of the misspecified HS risk forecasts. For the 10%

coverage level, the power of the evaluation methods varies with the specification of the

test and the out-of-sample length. For the unconditional coverage tests, the most con-

sistent performing methods are the LRuc, Juc and MCSuc ones, with the largest power

achieved by the Juc3 specification for each out-of-sample period (<69%). For the Juc2,

Juc3 and LRmuc methods, the power of the tests is positively correlated with the length

of the out-of-sample period while for the rest of the methods the differences between the

out-of-sample periods are minimal. Contrary, the results of the DQ specifications suggest

that expanding the information set will decrease the power of the test. The latter can be

attributed to the nature of HS’s non responsive violation sample.14

For the independence evaluation methods, the Jind and MCSind specifications produce

the larger rejection rates with the latter being marginal superior to the Jind3 method’s

ones (<67%). Contrary to the unconditional case, the DQind specifications’ power is an

increasing function of the information set tested with, however, an inferior power profile

than the top performing methods. With respect to the Durind method, the results suggest

that it produces the smallest rejection rate than all the alternative testing specifications.

For the conditional coverage tests, the LRcc and DQcc specifications share the same power

properties for the one-year out-of-sample length while for the rest out-of-sample lengths

the power is increasing with the information set and the length of the out-of-sample

14Consecutive violations during persistent augmented volatility and isolated violations caused by non
persistent moderate losses could possibly lead to misestimation of the β of theDQ test linear specification.
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periods. Interestingly, the Durcc test’s power is higher than the independence test case

but still inferior to the aforementioned tests’ power. For the DB tests, the DB2−DB4

specifications have a higher power profile than their linear counterparts DQ2−DQ4 while

the DB5−DB7 specifications have a significantly lower power especially for the one-year

out-of-sample period. The CV aR approach seems to produce the largest power results

(CV aR3 < 0.78).15 Finally, for the ES case the UES results are expected since the HS

cannot approximate correctly the tail parts of the DGP’s density. On the other hand, the

res methods power is robust to the out-of-sample period length and for each case larger

than 24%.

For the 5% coverage level, the unconditional coverage results are quite similar since

minor differences are reported when compared to the previous coverage level. For the

unconditional coverage case, the Juc seems to improve marginally its power for each

out-of-sample period (Juc3<73%). Similarly, slightly increased power is reported for the

remaining specifications especially for the larger out-of-sample periods. This is expected

since the 10% coverage level makes it easier for HS, possibly through overestimation of

risk, to produce the “expected” number of violations. On the other hand, the larger

out-of-sample specifications and stricter coverage levels require a more responsive nature,

which HS can not provide.

The rejection rates for the independence tests follow the same pattern with the Jind3

and MCSind specifications providing the most powerful tests for each out-of-sample pe-

riod(<67%). The Jind3 test seems to have a marginal advantage for the larger out-of-

sample periods while the MCSind seems to perform better for the one-year out-of-sample

period. Interestingly, the Dur method seems to increase significantly its power especially

for the large out-of-sample periods. As discussed earlier, the 5% coverage level requires

a more responsive risk estimation method. Hence, the Durind can pick-up easier cluster

of violations. The results for the conditional coverage paint the same picture with minor

differences from the 10% coverage level. The largest power is reported by the Q method

15For the HS density estimation we use a normal kernel estimator.
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(Q2(3) < 0.99) followed by the larger CV aR specifications(CV aR10 < 0.74). Finally, for

the unconditional coverage of the ES forecasts, the U method delivers the highest power

while the res methods power is significantly lower but again robust to the out-of-sample

periods length.

[Figure 4 Part A around here]

The results for the 2.5% and 1% coverage levels (Figure 4 Part B) do not suggest

a change of the relationship between the methods’ power and the out-of-sample period.

However, the more extreme coverage levels reduce the level of the rejection rates especially

for the one-year out-of-sample period. For the 2.5% unconditional coverage level, the LRuc

rejections rates are almost similar to the previous coverage level. The same outcome

holds for the DQuc approach but only for the larger out-of-sample specifications. For

the two-year out-of-sample period the results suggest a small decrease in the power of

the test while for the one-year out-of-sample period the power of the test is significantly

diminished especially for the larger information sets. This is an indication of the reduced

amount of violations impact on the power of the test. For the J method the rejection

rates suggest that it is again amongst the most powerful ones (Juc3 < 0.63). Finally the

LRmuc reveals a less powerful profile for the larger out-of-specifications while the MSCuc

has diminished rejection rates for the one-year out-of-sample specifications.

The results for the independence tests suggest a diminished power profile for the J and

MCSind methods and all but the one-year out-of-sample case of the LRind, Durind2 and

Durind3 specifications. Interestingly, the results of the DQind1 and Durind tests suggest

that there is a slight increase of their power. This is indicative of the restrictive nature of

the methods specification since they increase their ability to reject a misspecified method

when a more sparsely populated violation sequence is available. Finally, the conditional

coverage tests have equal or reduced power for most of the methods. However, the Durcc

results suggest a diminished power for the one-year out-of-sample case and increased

power for the rest of the sample lengths. Similar results are reported for the ES testing
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process where the power of the test is reduced significantly for every specification under

consideration.

For the 1% coverage level, all the methods reveal a diminished power. For instance,

the one-year out-of-sample results suggest that the rejection rates fluctuate between the

5% and 20% if we don’t account for the Q method. Overall, for the unconditional

coverage tests Juc3 specification classifies as the most powerful while the LRuc shares the

smallest power alongside the LRmuc. For the independence case, the results also reveal a

diminished power with the DQ, Dur and J methods having the most powerful profile for

all the out-of-sample lengths. Similar decreases are observed for the conditional coverage

case where again the DQ method provides the most powerful specification (DQcc3) for all

but the largest out-of-sample length. For the four-year out-of-sample length the results

suggest that the CV aR10 is slightly more powerful. Finally, for the ES case the results

suggest a diminished power. Interestingly, the small out-of-sample period provides the

largest power for the res method. This is due to the fact that for the small out-of-

sample period the chances are for more extreme violations if there are any. Therefore,

the corresponding statistic will have increased probability of being non-zero on average.

[Figure 4 Part B around here]

To sum up, the power results suggest that the methods’ reliability to detect a mis-

specified series of forecasts is positively correlated to the amount of data inserted into

the evaluation process. Therefore, for larger out-of-sample periods we expect the power

of the test to be larger especially for the higher coverage levels. The significance level

affects the amount of data included in the evaluation process given the specification of the

risk model. As with the size case, the DQ, J and MCS methods reveal a superior and

more robust profile across the different specifications.16 There are no major differences

between the conditional coverage tests and their individual hypotheses testing counter-

16The superiority of these methods is robust to the risk forecasts specification. The power results
against the GARCH − Normal forecasts reveal a qualitatively similar result as the DQ, J and MCS
are superior to the remaining methods. Please refer to the on-line appendix for a more detailed analysis
of the power properties against the GARCH −Normal forecasts.
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parts, although the conditional coverage tests seem to be slightly more powerful. Finally,

the ES tests provide similar results with the exception of the UES test which, as expected,

rejects constantly the non responsive HS forecasts.

4 Application To Financial Data

In this section we examine the performance of the backtesting methods on real financial

data. Specifically, we use the the HS−250, GARCH−N , GARCH−T and RiskMetrics

methods and a rolling estimation sample of R ∈{1000, 750, 500, 250} in order to calculate

the series of 5%, 2.5% and 1% VaR and ES forecasts. We exclude the 10% case since

it is of rather small empirical importance. The estimation sample length is 1000 for

the parametric models and 250 for the HS. We estimate 1000 out-of sample forecasts

corresponding to the S&P500 returns for the 07/01/2011-31/12/2014 period. For the

evaluation of the methods, we use the full 1000 observation period and three sub periods

of three-, two- and one-year length. All the evaluation periods share a common sample

of the last 250 observations.

Figure 5 reports the backtesting results for all methods. For the HS 1000 out-of-sample

period (Figure 5 Part A), most of the unconditional coverage tests do not reject the null

with the exception of the J method’s larger specifications. The non responsive nature of

HS leads to more rejections for the independence tests where with the exception of the

first lag specifications (LRind,DQind1,Jind1) the rest are rejecting the null hypothesis of

independence. Similar results are reported for the conditional coverage case where the

majority of the methods reject the HS forecasts for every coverage level. Regarding the

ES tests, the results are mixed since the res test does not reject the ES forecasts series

while the remaining ones do.

The results for the three-year out-of-sample period are in line with the full sample

results since there is still strong evidence against the suitability of HS’s forecasts. In

addition to the previous case, for the three-year out-of-sample period the unconditional
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tests also reject the null hypothesis since the produced violations are significantly lower

than the expected. However, the lower number of violations have some implications for

the independence tests where, for the extreme coverage levels, the independence tests do

not always reject the null hypothesis (i.e. DQ, Jind). Interestingly, the extreme coverage

cases are not rejected by the conditional coverage tests. The results for the two- and

one-year out-of-sample periods suggest that even fewer tests reject the misspecified HS.

Figure 5 Part B reports the results for the Riskmetrics forecasts. The tests reveal a

robust profile against the unconditional coverage of both VaR and ES across the out-of-

sample specifications and the high coverage levels. Interestingly, the independence test

and the methods focusing on the density do not seem to reject the method. That is

expected since the explosive nature of the IGARCH dynamics can cope with the fat-

tailed distribution of the actual returns. Similar results are reported for the GARCH-N

forecasts (Figure 5 Part C) although the rejection cases for the smaller out-of-sample

specifications are less than the Riskmetrics ones. Interestingly, for the smaller out-of-

sample periods and higher coverage levels the conditional coverage methods rarely reject

the forecasts while the Juc and DQuc do.

Figure 5 Part D reports the backtesting results for the GARCH-t forecasts which

according to the violation profile seems to fit better the dynamics of the S&P500 returns.

For the large out-of-sample specifications only the density focused tests seem to reject

consistently the respective forecasts series while the rest of the methods provide small

evidence against the forecasts. As with the previous cases, the smaller the out-of-sample

period the fewer the rejection cases. Interestingly, for the one-year out-of-sample period

the only methods rejecting the respective forecasts are the Dur method the Q methods.

[Figure 5 around here]

To sum up, our empirical findings are indicative of the inefficiencies of the VaR/ES

evaluation methods. This is particularly true for the one-year out-of-sample period where

almost none of the methods reject the misspecified ones especially for the high coverage
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levels. Furthermore, using only the individual hypothesis testing seems more reliable than

using directly the conditional coverage test as there are cases where the unconditional

or independence hypothesis are rejected while the conditional hypothesis does not reject

the misspecified methods.

5 Conclusions

This paper reviews several risk forecast backtesting methods and their performance in

detecting misspecified models. The regulatory directives require the validation of the

selected risk model for both internal and external reporting reasons. In order to assess

the performance of the forecast evaluation methods, we create a simulation exercise where

returns are generated according to a specific DGP and the corresponding VaR and ES

forecasts are evaluated under various out-of-sample and coverage level specifications.

The simulation results provide three major findings. First, for the higher coverage

levels and smaller out-of-sample periods the backtesting methodologies are physically

restrained and detect mainly the underestimation of risk. Second, the size findings suggest

that the individual hypothesis tests have a more robust profile than the conditional

coverage ones. The latter produce significant distortions for almost each case under

consideration. Third the power results suggest that the one-year out-of-sample period

reduces the power of the tests especially for the higher coverage level. On the other

hand, the difference in power between the lower 10% and intermediate 5% coverage levels

is quite small.

To complement our simulation results we implement a financial data application where

under the same out-of-sample specification a subset of the simulation coverage levels

are utilized. The results confirm the simulation findings since the tests fail to reject

the misspecified methods for the high coverage levels and small out-of-sample periods.

The combination of the simulation and financial data application findings suggest that

implementing a couple of individual hypothesis testing specifications for intermediate
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coverage levels and two-year out-of-sample periods provides the best trade-off between the

low power of the high coverage and small out-of-sample specification and the unimportant

low coverage level and large out-of-sample one. Furthermore, implementing the whole set

of size accurate evaluation methods and setting the zero rejections as an accuracy criterion

can lead to a robust evaluation strategy. Alternatively, all evaluation methods can be

utilized with the accuracy threshold set at a specific and small number of total rejections.
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Notes to Figures

Figure 1 reports the empirical distribution of the number of violations per simulated

sample for the accurate GARCH(1, 1)− t7 (DGP) forecasts series. Each row represents

an out-of-sample period and each column represents a coverage level.

Figure 2 reports the empirical distribution of the number of violations per simulated

sample for the HS forecasts series. Each row represents an out-of-sample period and each

column represents a coverage level.

Figure 3 reports the empirical size of the each evaluated method. The empirical size has

been calculated as the rejection cases of the accurate GARCH(1, 1)− t7 (DGP) forecasts

series over the number of simulated samples. Part A of figure 3 reports the rejection rates

for the 10% and 5% coverage level and each out-of-sample period. Part B reports the

rejection rates for the 2.5% and 1% coverage level and each out-of-sample period. When

necessary, the maximum observed rejection rates are reported in the parenthesis.

Figure 4 reports the empirical power of the each evaluated method. The empirical power

has been calculated as the rejection cases of the misspecified HS forecasts series over the

number of simulated samples. Part A of figure 4 reports the rejection rates for the 10%

and 5% coverage level and each out-of-sample period. Part B reports the rejection rates

for the 2.5% and 1% coverage level and each out-of-sample period. When necessary, the

maximum observed rejection rates are reported in the parenthesis.

Figure 5 reports the evaluation methods p-value for each forecasting method and out-

of-sample period the p-values of the 1%, 2.5% and 5% coverage levels.
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Table 1: Abbreviations Table

VaR Unconditional Coverage Tests

Abbreviation In-Text Equation Notes Refference

LRuc Equation 4 Christoffersen (1998)
DQuc1 Equation 7 K=1, ,γj = 0 Engle and Manganelli (2004)
DQuc2 Equation 7 K=2, γj = 0 Engle and Manganelli (2004)
DQuc3 Equation 7 K=3, γj = 0 Engle and Manganelli (2004)
Juc1 Equation 15 M1 Candelon et al. (2011)
Juc2 Equation 15 M2 Candelon et al. (2011)
Juc3 Equation 15 M3 Candelon et al. (2011)
LRmuc Equation 22 Colletaz et al. (2013)
MCSuc Equation 18 Ziggel et al. (2014)

VaR Independence Tests

Abbreviation In-Text Equation Notes Refference

LRind Equation 5 Christoffersen (1998)
DQind1 Equation 7 K=1, ,γj = 0 Engle and Manganelli (2004)
DQind2 Equation 7 K=2, γj = 0 Engle and Manganelli (2004)
DQind3 Equation 7 K=3, γj = 0 Engle and Manganelli (2004)
Durind Equation 15 Christoffersen and Pelletier (2004)
Jind1 Equation 16 M1 Candelon et al. (2011)
Jind2 Equation 16 M2 Candelon et al. (2011)
Jind3 Equation 16 M3 Candelon et al. (2011)

MCSind Equation 19 Ziggel et al. (2014)

VaR Conditional Coverage Tests

Abbreviation In-Text Equation Notes Refference

LRcc Equation 6 Christoffersen (1998)
DQcc1 Equation 7 K=1, ,γj = 0 Engle and Manganelli (2004)
DQcc2 Equation 7 K=2, γj = 0 Engle and Manganelli (2004)
DQcc3 Equation 7 K=3, γj = 0 Engle and Manganelli (2004)
Durcc Equation 13 Christoffersen and Pelletier (2004)
DB1 Equation 9 Footnote 1, Specification 1 Dumitrescu et al. (2012)
DB2 Equation 9 Footnote 1, Specification 2 Dumitrescu et al. (2012)
DB3 Equation 9 Footnote 1, Specification 3 Dumitrescu et al. (2012)
DB4 Equation 9 Footnote 1, Specification 4 Dumitrescu et al. (2012)
DB5 Equation 9 Footnote 1, Specification 5 Dumitrescu et al. (2012)
DB6 Equation 9 Footnote 1, Specification 6 Dumitrescu et al. (2012)
DB7 Equation 9 Footnote 1, Specification 7 Dumitrescu et al. (2012)
Q2(1) Equation 20 K=1, 10% baseline coverage level Hurlin and Tokpavi (2007)
Q2(2) Equation 20 K=2, 10% baseline coverage level Hurlin and Tokpavi (2007)
Q2(3) Equation 20 K=3, 10% baseline coverage level Hurlin and Tokpavi (2007)
CV aR1 Equation 28 m=1 Du and Escanciano (2017)
CV aR5 Equation 28 m=5 Du and Escanciano (2017)
CV aR10 Equation 28 m=10 Du and Escanciano (2017)

ES Tests

Abbreviation In-Text Equation Notes Refference

res Equation 23 McNeil and Frey (2000)
UES Equation 27 Du and Escanciano (2017)
CES1 Equation 28 m=1 Du and Escanciano (2017)
CES5 Equation 28 m=5 Du and Escanciano (2017)
CES10 Equation 28 m=10 Du and Escanciano (2017)

Note: Table 1 summarizes the abbreviations and specifications of each evaluated method reported in sections 3 and 4
and in the respective figures.
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