
A Novel 3D Game API for
Symbian OS Smartphones

Fadi Chehimi
Infolab21

Lancaster University, Lancaster
LA1 4WA, UK

+44 (0)7731395946

f.chehimi@lancaster.ac.uk

Paul Coulton
Infolab21

Lancaster University, Lancaster
LA1 4WA, UK

+44 (0)1524 510393

p.coulton@lancaster.ac.uk

Reuben Edwards
Infolab21

Lancaster University, Lancaster
LA1 4WA, UK

+44 (0)1524 510392

r.edwards@lancaster.ac.uk

ABSTRACT
Mobile phones are becoming one of the major personal
entertainment devices amongst the general public. We are
currently seeing a paradigm shift from the traditional voice-
centric applications to those that incorporate music, pictures,
video, games, internet browsing, etc. Although mobile games
represent a significant portion of the mobile entertainment market,
they still have some way to go before they reach the revenues
generated form the downloads of ringtones, music, and
wallpapers. This is due to a number of factors such as the wide
ranging demographic of mobile phone users and restrictions of the
mobile platforms. Of these platform restrictions is the lack of
adequate support for 3D games development which is one of the
most problematic issues for many game developers. To alleviate
this situation and provide a unified framework we introduce in
this paper a novel 3D mobile games API that simplifies the
development of 3D games on Symbian mobile phones and allows
the production of more feature-rich titles.

Categories and Subject Descriptors
J. Computer Applications, J.7 Computers in Other Systems-
Consumer.

General Terms
Design, Experimentation.

Keywords
Mobile 3D Games, Mobile Phones, Symbian OS, OpenGL ES,
3D Game Engines, 3D Game API, Game Design, Game Structure.

1. INTRODUCTION
The console and PC games industry is expected to reach a
worldwide figure of $47 billion by 2010 [1] with an anticipated
customer base of over 126 million gamers [2]. If this number is
compared to the 3 billion expected mobile users in the same time

frame [3], and the $11 billion to be generated from mobile games,
we notice an obvious disparage. The minimal proliferation of
mobile games is relied to a number of factors including audience
demographic and technical challenges. Whilst a number of
challenges can be identified in this paper we are concerned with
those technical issues that affect 3D mobile games in particular.
And in the following paragraphs we shall explore some that
particularly affect games development.

One factor is the limited-resources nature of mobile phones
compared to those experienced on PC’s and game consoles.
Amongst these restrictions the following are the most significant:

• Limited memory;
• Relatively slow processors speed;
• Lack of dedicated graphics processors;
• Small screen sizes and resolutions;
• Limited user input/output interfaces;
• Short-operation battery life.

These limitations have a direct correlation to why many current
mobile games being merely 2D ports of old arcade games. This
has led to many traditional gamers being disappointed with the
perceived poor quality, features, and limited 3D experience
available in these games.

A second contributing factor affecting development has been the
absence of 3D-graphics-dedicated APIs that are tailored to
address these limited devices. Some highly experienced
developers and game houses have developed their own 3D APIs
[4] but these have not been open or standardized for the general
community of mobile game developers. This has recently and
partially been resolved by the introduction of the following APIs
[3]:

• OpenGL ES; for Symbian OS, Binary Runtime
Environment for Wireless BREW, Mobile Linux and
Windows Mobile

• Mobile 3D Graphics M3G; for Java 2 Micro Edition
J2ME

A final factor to consider is that having more than 20 different
mobile platforms and operating systems makes it very difficult for
game publishers to port their games and engines/APIs across all
platforms; thus, limiting the potential revenue for a game.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
The 4th International Conference in Computer Game Design and
Technology, November 15–16, 2006, Liverpool, UK.
Copyright 2006 ACM 1-58113-000-0/00/0004…$5.00.

HARDWARE

Symbian OS

OpenGL ES

WSERV

Syga-PI3D UI

Applications/Games

Figure 1. Integration of Syga-PI3D with Symbian OS
Platform and OpenGL ES API

In this paper we introduce a novel 3D gaming API as a solution to
this portability problem which will provide a common upper layer
interface for the Symbian platforms and OpenGL ES 1.0
(Embedded Systems). The Symbian OS has been chosen for this
games API as it is the leading mobile platform in the market [5]
with more than 70 million devices shipped by March 2006 [6].
OpenGL ES 1.0 is the graphics API selected as it is native to the
operating system and supported by most new Symbian phones.
Whereas, the latter versions of this API, 1.1 and 2.0, are currently
still limited to laboratory devices. Nokia has recently released its
multimedia phone the N93 which is the first to support OpenGL
ES 1.1 specification [7], and many forthcoming models will
undoubtedly utilise this standard.

The API developed, which has been termed Syga-PI3D (Symbian
Game API 3D), is still under development and in this paper we
present the first stage which is of a three-stage development cycle.
In the next section we shall introduce Syga-PI3D and its features
before section 3 discusses its design and external supporting tools.
In section 4 we present the API’s implementation whilst sections
5 and 6 will identify its features indicating those that are
completed and those still to be implemented. In section 7 we draw
our overall conclusion and discuss the future evolution of Syga-
PI3D.

2. SYGA-PI3D IN A NUTSHELL
Syga-PI3D is an application programming interface (API) that
enables mobile game developers to develop 3D games for
Symbian smartphones without the need to consider:

• the particular coding conventions of the operating
system,

• the different user interface frameworks,

• and the syntax of OpenGL ES.

It acts like an upper-layer interface on top of Symbian OS and
OpenGL ES providing API facets and functions that will help in
creating feature rich 3D games.

To aid developers in addressing phone limitation issues several
offline supporting tools have been implemented for Syga-PI3D to
help in constructing 3D game environments. These tools are
specifically aimed at minimising the excessive processing on
these power-hungry devices. The tools are responsible of tasks
like building optimized data files, for game objects and
characters, partitioning game world spaces, and enabling selective
scene rendering.

Syga-PI3D implements many game-design requirements that
would be expected for any 3D game. For instance, the API
provides implementations for: collision detection algorithms,
texturing and textures controlling, space partitioning procedures,
rendering management systems, various 3D effects, models
loading and optimization, and networking facilities for
multiplayer games. The programmer need only instantiate objects
of these systems in his/her game and the API will do their
specified tasks with minimal input required from his/her side. For
example, when a game environment is set up, a spaces-tree object
of the game world, or level, is instantiated automatically.
However, the object still needs to be constructed by the
programmer as a lineartree, quadtree or octree and parameterized
with its dimensions and representing data file(s).

3. THE DESIGN OF THE API
Syga-PI3D is still in its evolution and this paper presents the work
completed for the first development stage. Two more stages will
follow which will be highlighted in subsequent sections. This first
stage includes the implementation of the core structure of the API
with its main functional features alongside some external help
tools. The other stages will include the artefacts and the
performance optimisations in addition to an expansion of the
building blocks. In this section we discuss the overall design of
the API and explain how the external tools cooperate within its
framework.

3.1 Design Overview
As mentioned previously, Syga-PI3D is designed to interface
Symbian OS and OpenGL ES hiding their implementation and
providing abstract layer for programmers independent from any
UI framework, as shown in Figure 1. As we will expand upon in a
latter section Syga-PI3D uses the Window Server (WSERV) of
Symbian OS directly, without any specific UI-dependencies to
build game environments (GameEnv). GameEnv sets the screen
size, enables/disables full screen drawing, selects screen colour
mode (maximum 64K including alpha channel), sets game pop-up
menu options, and handles user input and events. It also
instantiates under-the-hood OpenGL ES environment
(OGLESEnv) and the game spaces-tree, associates manually
added game objects and models, and manages scene rendering
with collaboration between the programmer (manually) and
GameEnv (Automatically).

OGLESEnv initializes OpenGL states by the programmer calling
GameEnv API functions to set up lighting properties, shading
modes, material colours, perspective frustum, hidden face
removal, clipping, culling and other 3D effects. Default settings
are used if no values are specified by the programmer. An
alternative way to set up these states is by coding OpenGL
commands in one of the pure virtual functions that need to be
implemented in any Syga-PI3D game, as we will elaborate
further.

OGLESEnv always enables a camera which has a default position
at origin (0,0,0) and orientation towards the negative z-axis (0,0,-
100). Note that the right-hand coordinate system is used where the
positive x-axis is the thumb, positive y-axis being the index finger
and positive z-axis being the middle finger outwards the page.
The camera API has been added to Syga-PI3D since cameras are
required features in any 3D game. It is implemented to facilitate
different viewing options for various game genres. It enables

panning view in single plane, the third-person view, in Doom-like
games, and a character-following view whereby the camera
follows the main character in game, such as driving games.

GameEnv instantiates a spaces-tree structure to manage polygon
distribution in a game for use by rendering and collision detection
systems. The game space dimension is specified by the
programmer and the partitioning process will be performed by the
API automatically. There are three different types of space
partitioning supported:

• lineartree where the space is partitioned into linearly
linked spaces as an array of spaces,

• quadtree where the space is divided into four subspaces
recursively until a specific depth is met,

• and octree where the space is split in the same manner
as for quadtree but into eight subspaces instead.

Only lineartree and quadtree have been implemented in stage I.
Octree structure will be made available in stage II. Note that
programmers using linear partitioning have to construct each
space node individually and add it to the linear tree. A node could
be located anywhere in the game world without neighbouring
specifications, as for quad and octree. The API will only construct
the tree's root which will connect all floating nodes.

The data required to partition a space and distribute its polygons,
for collision detection and scene rendering, is maintained from the
.sgd (Symbian Game Data) data file generated by the Space
Partitioning Collision Detection (SPCD) tool. This file is parsed
in the construction phase of the spaces-tree. The file has to be
passed to GameEnv in order to associate it with the global tree.

Another design feature implemented by Syga-PI3D, and managed
by GameEnv, is the rendering management system. It includes
occlusion and scene division and requires interaction with space
partitioning. Feasible rendering is a crucial and intricate process
that requires intensive research into possible solutions that are
optimal for mobile phones. It has not been implemented in stage I
and thorough research is being conducted to select an appropriate
model.

Last but not least, any game must have characters and objects to
create premise for the game play. Syga-PI3D’s design provides
support for importing objects and models. “Objects” refer to static
objects in a game like elements of a level such as bridges, statues,
weapons lying on the ground and power-ups scattered throughout
the level. Whilst “models” refer to animated game characters such
as the main game characters, competitive characters for other
players or even non-player character(s).

Similar to space-partitioning, objects and models are represented
with data files and textures generated by external API tools.
Objects use the .sod (Symbian Object Data) data file format and
models use .smd (Symbian Model Data). The developer needs
only to instantiate an object, or a model, and pass its particular
data file to its constructor, then associate it to GameEnv. This will
allow the API to manage the object/model throughout the game.
The loading will start behind the scene without the programmer
needing to initiate parsing and data manipulation. All loading
processes are performed asynchronously and optimised against
failure.

Figure 2 summarizes this general description of the Syga-PI3D
API and identifies how its components integrate with each other
for any Syga-PI3D-based 3D mobile game.

3.2 External Tools

Syga-PI3D facilitates the management of game assets with the
support of four offline help tools. The first tool, called Symbian
Object Data (SOD), creates static objects’ data files in the .sod
format. This format is extracted from Wavefront OBJ format with
optimized contents such as fitting an object’s data arrays into byte
or short types in order to minimize the memory required. It also
adds header information such as the sizes of these arrays to
eradicate the need to calculate them at runtime. Once created, a
.sod file need only be associated with its appropriate object
instance in the game in that object’s constructor.

The second tool termed SPCD (Space Partitioning-Collision
Detection) deals with a more critical game structure feature: space
partitioning. It divides the game world into spaces in a tree
structure with four nodes (quadtree) or eight nodes (octree) in a
.sgd file. Should this division be performed at runtime it would
be computationally expensive requiring many levels of recursion,
which would put a heavy burden on mobile phones’ dynamic
memory and processor cycles. Thus, off-loading this requirement
from the device is a good practice since it lessens the power drain
of the battery.

Each space node in the tree, linear, quad or octree, contains the
objects, or models, that belong to it and a set of polygons of the
world design that intersect with it. Adding polygons is performed
by SPCD which utilises the game world model data file(s)
generated by SOD. The SPCD then extracts the world’s polygons
and spreads them in the tree spaces (nodes) they optimally belong
to. However, adding objects and models is done in their
construction phase. The GameEnv instance in the game is passed
as a parameter to the constructor of the object or model which
then traverses the environment's spaces-tree to find where it
should add itself. This division of the game world into spaces and
distributing polygons and objects helps with collision detection.
The player, or the main character in the game, will need to test

Symbian Application

Syga-PI3D API

Objects/Models

Attributes

Model data

Texture(s)

Virtual functions
implementation

GameEnv

Symbian OS
 WSERV OpenGL ES Container Class

OGLESEnv

OGL States

Camera
Spaces Division

Space data

Collision

Partitioning

Rendering

Texture

Occlusion

Figure 2. Syga-PI3D API Underlying Design.

Used by programmer Used by API OS level App level API level

collision only with polygons and objects/models that exist in its
same game subspace.

The third and forth tools have yet to be implemented but their
functionalities have been identified. The Symbian Model Data
(SMD) tool will generate the .smd data files for in-game
animated models. The particular format has not been finalized but
most likely it will be an optimized version of Quake III MD3
format. The last tool, the OCC, will be used to manage occlusion,
occluding objects, scene rendering and scene texturing in games.
Both tools will be introduced in stage II of Syga-PI3D.

The external tools are all console-based at the moment and will be
associated with graphical user interface (GUI) in stage II.

4. SYGA-PI3D IMPLEMENTATION
Syga-PI3D has been developed with object-orientation in mind. In
order to write efficient and reliable games on Symbian platform
using Syga-PI3D or any other framework, certain operating
system dependent considerations have to be retained. In this
section we cover the implementation structure of Syga-PI3D and
introduce critical Symbian-dependent issues and how these are
addressed in the API.

4.1 Implementation Structure
To utilise all features mentioned in Section 3.1, programmers
have to instantiate objects of each API feature class. Figure 3
shows the structure and relations of all API classes that have been
implemented in stage I. The figure identifies the classes in generic
terms without reference to their data types. However, each class,
except TVertex3D, has floating-point and fixed-point
implementations.

The game entry point starts in CApplicationContainer
class, for a particular application called “Application” thus the
name CApplicationContainer, where CGameEnv should
be instantiated by the programmer. With the aid of functions in
CGameEnv he can set game timer, represented in CPeriodic

which is a timer API of Symbian OS, set OpenGL states via
COGLESEnv which communicates with OpenGL ES API in the
operating system level (Figure 1), and selects which tree structure
to use, either CQuadSpacesTree or CLinearSpacesTree.
The appropriate game space data file created by SPCD will be
used here and CParser will generate its data structure. As
mentioned earlier, if CLinearSpacesTree is chosen the
programmer has to instantiate as many CSpace3D objects as is
required in the game.

At this point the game world is ready for action but the particular
game objects and models have to be loaded to initiate this action.
Each space has a reference to all objects/models that belong to it
in a linked list structure. The list is obtained by the spaces base
class CBaseSpaces3D which includes other space-specific
information like dimension and position each represented with
TVector3D objects. (The math in TVector3D has been
optimized to meet the mobile platform requirements). From this
list objects in any space can track which other objects to detect
collision with efficiently. Loading animated models is not
supported in this stage but should behave similar to loading static
objects when addressed in stage II.

In CApplicationContainer, the programmer has to
instantiate CObject3D for each object in the game. The .sod
data files are used here for CParser to construct the objects. It
has to be noted that objects must adhere to certain complexity
limitations to retain performance of games on mobile phones. The
maximum number of faces allowed for any object in a game is
2000, but 200 is recommended to maximise speed and memory
benefits. Due to the small physical screen sizes on mobile phones
this level of details should be sufficient without sacrificing any
visual quality.

A distinctive feature in CObject3D API is the ability for its
instances to detect collision automatically within games. There
exist collision detection routines in this class that are managed by
Syga-PI3D to prevent objects from colliding with each others in
their space or for characters to walk through walls (polygons) in
that space. Each space, linear, quad or octree, has a linked list
structure (CPolysList) holding all the polygons
(CPolygon3D) that belong to it. A CPolygon3D object is
composed of three vertices of TVertex3D type. The reason for
having a different class for vertices and not using TVector3D is
relied to the size of a TVector3D object. TVector3D contains
three float or fixed (32bit: s15.16) members giving a size of
12bytes for each vertex. This size is not convenient for the low-
memory mobile phones since it will result a large size of
geometry data arrays. Therefore, TVertex3D was introduced
with short type members with a size of 6byte per vertex
reducing by this the total size into the half. Add tot his that
short types will always be used as SOD generates files with
arrays of bytes or short integers.

As shown in Figure 3, MS3DGame is an interface that must be
inherited by any Syga-PI3D game’s container class. All events
handling, game initializations, and game loop are manipulated via
pure virtual functions of this interface and have to be
implemented. The GameInit() function will initialise OpenGL
states with default values. However the programmer can amend
these values via the helping functions provided by CGameEnv or
by hard-coding OpenGL ES commands in GameInit(). The

Figure 3. UML Model of Syga-PI3D Classes

CBaseSpaces3DCSpace3D CQuadSpacesTree

TVector3

CObject3D

CPolysList

CLinearSpacesTree

CLeafSpace

CPolygon3D

TVertex3D

CGameEnv

COGLESEnv

OpenGL ES

CPeriodic

«interface»
MS3DGame

CApplicationContainer

CParser

later method is a flexible design feature of Syga-PI3D which
enables experienced developers to set the states that are not
addressed by the API, and which opens the door for future
compatibility with new versions of OpenGL ES.

GameLoop() is another pure virtual function which controls the
execution of game components and its CPeriodic timer. Here
the programmer will set the number of frames sought after in the
game and the API will synchronize its operations to meet that
frame rate. If meeting the target is unsuccessful, the default of 25
frames/sec will be used.

The last virtual function has not been developed as yet but must
be implemented in games for future use.
GameEventHandler() handles user events and sends them to
the API for processing. This functionality is already implemented
elsewhere in the operating system level and the programmer must
use it instead. Abstracting and directing this function to Syga-
PI3D has to be resolved and it will require implementing a
customised and optimized windowing system that is expected to
improve game performance.

4.2 Symbian-Dependent Considerations
Just like any modern multitasking operating system, Symbian
OS’s architecture uses many advanced, but classical, constructs
including pre-emptive multitasking threads, processes,
asynchronous services, and internal servers for serializing access
to shared resources [8]. However, Symbian OS has some
particular features that have to be considered in order to write
effective and robust mobile applications. In this section we
highlight some of the major issues and explain how Syga-PI3D
implements them

4.2.1 Error Handling
At the time of development of the Symbian OS, C++ conventional
exception handling was not part of C++ standard. When it was
introduced, it was found to add substantial overhead to the size of
compiled code and to runtime RAM. Thus, Symbian has
implemented a different handling approach represented in Traps
and Leaves [8]. This error handling mechanism has been
considered in the design of Syga-PI3D and implemented in all its
classes. This means that programmers will be safe using the API
functions without concern for code crashing. However, if
programmer-defined, non-API functions cause an error, or
“leave” in Symbian terms, programmers will have to handle these
themselves.

4.2.2 Memory Management
Memory leakage is a serious problem on mobiles phones with the
limited memory available as it is not possible to simply reboot the
mobile phone to mop up any memory leaks [8]. The Symbian OS
is practically designed to manage its memory resources if a failure
or leave occurs [8]. This is done by implementing a Clean-up
Stack which keeps a reference to heap memory used in order to
delete it in the case of leaves and prevent it being orphaned. As
for error handling, memory management is systematically
implemented in Syga-PI3D to provide the appropriate and secure
ground for building high quality mobile games.

4.2.3 Event Handling and Windowing System
One of the most critical learning curves in developing
applications for mobile phones is the effectiveness and accuracy
in handling a large number of events. The presence of radio,
shared recourses, asynchronous operations, operating system
management and third-party applications all create a rich pool of
events to handle. This in not limited to Symbian OS only but it is
a common denominator for all mobile platforms.

In Symbian OS, event handling is part of the windowing system,
which Syga-PI3D uses natively. This means the operating system
already implements functions to handle user events. Such
functions have not been abstracted by our API meaning that
programmers have to use them and know where to place event-
prone code. However, they would appear in stage II.

4.2.4 Synchronous vs. Asynchronous Operations
Symbian OS allows the usual context switching between threads
and its distinctive cooperative multitasking technology: Active
Objects. Explaining what and how Active Objects work is beyond
the scope of this paper but in a nutshell, Active Objects provide a
multi-threading-like behaviour in a process but within a single
thread in that process instead of many. Active Objects will share
the time-slice of the processor assigned to their thread, or process,
by cooperating between themselves in performing a single or set
of tasks. They cooperate asynchronously in an event-driven
manner where the operating system searches through the
outstanding Active Objects until it finds a completed one and runs
its handler function, while the others keep running in the
background. This reduces the overhead incurred by threads
context switching on the kernel scheduler, memory management
unit (MMU) and hardware cache. This is required as the state of
the running thread and its memory in use at the time of pre-
emption has to be saved in order to start from that point once the
thread’s execution is resumed. Last but not least, the context
switching mechanism drains a lot of power and this should be
avoided in battery-powered devices like mobile phones [8].
Active objects are used in all loading and parsing functions in the
API. For instance, LoadOBJ() function in CObject3Df class
is implemented using asynchronous Active Objects where the
game would not block waiting object data to be loaded from
.sod data files.

5. FEATURES IMPLEMENTED
As stressed throughout the paper, Syga-PI3D is in its first stage of
development. The features of the API are scattered in its three
phases allowing the opportunity of testing and bullet-proofing
each stage components individually in order to build a solid and
robust game API. The features that have been completed in this
stage are as follows:

I. Space partitioning, where a game’s world is subdivided
into smaller spaces recursively to enable more advanced
features.

II. Collision detection, which is empowered by space
partitioning.

III. Environment set-up, including Symbian-related and
OpenGL ES properties.

IV. API core implementation, with integration between it and
Symbian OS.

V. Basic 3D effects, like shading, lighting, skybox, camera,
transparency, blending, fog, etc.

VI. External support tools; which will offload memory and
processing overhead from mobile phones.

VII. Materials and texture mapping; limited to 2D texture of
JPEG format only. More formats may be supported in the
latter stages.

VIII. Loading objects; OBJ-format used at the current time.

IX. Integrated abstract interfaces, allowing easier use of
Symbian’s and OpenGL ES’ functionalities.

6. FUTURE FEATURES
The next two development phases of Syga-PI3D will focus on the
visual artifacts in a game and performance optimizations of the
API. Stage II will implement the following eye-candy effects:

I. Mip-map texturing, but without the ability to control
textures’ level of detail (LOD) as it is excluded from the
specification of OpenGL ES 1.0 [9].

II. Animated models loading, which adds realism and
interactivity to games.

III. Lens-flare, blur and reflection effects; the last two will
implement stencil buffers.

IV. Rendering APIs, for scene management including
occlusion systems, occluders detection, height mapping
and scene partitioning.

V. SMD and OCC tools.

VI. Octree structure, the last space partitioning criteria.

VII. GUI for the external tools.

VIII. 2D and text display, for sprites and game counters.

IX. Playing audio.

X. Networking facilities for multiplayer games, including
APIs for Bluetooth, General Packet Radio Service
(GPRS), and probably Session Initiation Protocol (SIP)
when it becomes available on Symbian phones.

Stage III will concentrate on performance issues, testing and
optimizations. We have not included in this paper any testing or
performance figures due to the absence of facilitating API. These
and the following points are to be covered in stage III:

I. Testing APIs; will be added to help programmers debug
their games and monitor the used/abused resources.
These APIs will have on-phone and off-phone testing
modules to enable testing games’ real-time performance
and assets production/integration.

II. Benchmarking APIs for performance monitoring.

III. Math optimizations, by implementing look-up tables for
sin, cos and tan math operations used in games. Their
software-only implementations by the operating system
are slow. Look-up tables may enhance performance

when used instead. Also, the square root operation for
fixed point will be implemented to speed up
calculations.

IV. LOD for models and objects; this is very crucial
enhancement since it will reduce the number of
polygons to render on each frame resulting on less
possible flickering displays.

V. Customized windowing system; rather than using robust
Symbian’s windowing framework which contains
plenty of useful and effective operations but unneeded
in Syga-PI3D, we will implement our customized
version with support to the only used operations.

VI. Texture caching, to limit the load of data transfer
through the limited bus bandwidth.

It is worth noting here that “Particle Systems” which provide
effects for fire, rain and water have been excluded from the
current design of Syga-PI3D because of their relative limitations
and complexities, although they are vital graphics systems to any
modern 3D game. Supporting such features on mobile phones
would drain battery, memory and processing resources quickly
since they will be dealt with only in the software level. Some
graphics processors like the new PowerVR MBX from
Imagination Technologies provide hardware support for these
effects [10] but they are not yet widely available on commercial
phones. An implementation for a particle system will appear in a
future version of Syga-PI3D once it proves feasibility and
optimality for mobile phones.

7. CONCLUSION
Revenues in the mobile sector are very high in mature markets
like in Japan and South Korea where dedicated platforms and
sophisticated solutions are widely available. Both mobile service
aggregators and mobile manufacturers work together to create the
right environment and tools for mobile entertainment services to
explode. We have studied the lessons and learnt from these
leading markets and thus produced Syga-PI3D to be the adequate
solution for developing feature mobile 3D games in the European
market. It will enable developing 3D games more quickly and
efficiently, and will facilitate embedding commercial messages
and content in games for marketing purposes [11]; thus, opening
new doors in front of not only game publishers but also
innovative marketers to use the most innovative medium: Mobile
Phones.

8. REFERENCES
[1] Hatfield D., “Game Industry Set to Explode”, IGN, News,

June 21, 2006, http://uk.pc.ign.com/articles/713/713784p1.
html, accessed September 2, 2006

[2] Wegert T., “Gaming 101”, ClickZ News, September 22,
2005, http://www.clickz.com/showPage.html?page=3550216
accessed September 1, 2006

[3] Chehimi F., Coulton P., and Edwards R., Advances in 3D
graphics for mobile phones, Proceeding of the 2nd IEEE
International Conference on Information & Communication
Technologies from Theory to Application, Damascus, Syria,
April 2006

[4] Chehimi F., Coulton P., and Edwards R., Evolution of 3-D
games on mobile phones, Proceeding of the IEEE Fourth
International Conference on Mobile Business, Sydney,
Australia, 11-13 July 2005

[5] Evers J., “Symbian Threats Multiply”, ZDNet UK, January
23, 2006, http://news.zdnet.co.uk/internet/security/
0,39020375,39248514,00.htm, accessed September 3, 2006

[6] Symbian Ltd, http://www.symbian.com, accessed August 20,
2006

[7] Nokia, http://www.nokia.com, accessed August 23, 2006

[8] Stichbury J., Symbian OS Explained, John Wiley & Suns
Ltd, West Sussex, 2005, pp: XII, 13, 29, 111-126

[9] Astle D. and Durnil D., OpenGL ES Game Development,
Thomson Course Technology, Boston MA, 2004, pp: 45-49

[10] PowerVR MBX Demos, Imagination technologies,
http://www.imgtec.com, accessed September 1, 2006

[11] Chehimi F., Coulton P., and Edwards R., Mobile advertising:
practices, technologies and future potential, Proceeding of
the IEEE Fifth International Conference on Mobile Business,
Copenhagen, Denmark, June 2006

