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Modelling Quintessential Inflation with Branes
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Abstract. I discuss why quintessential inflation model-building is more natural

in the context of brane cosmology and study a particular model as an example.

1 Introduction

To minimize its fine-tuning problems, such as initial conditions, there have
been attempts to unify quintessence with the inflaton field in a single scalar
[3, 9, 12, 13]. This way, introducing yet again another unobserved scalar field
is avoided. Also, a common theoretical framework can be used to describe
both inflation and quintessence. For quintessential inflation one needs a ster-
ile inflaton, with only minimal gravitational coupling to the standard model,
because the field should survive until today. The Universe reheats through
gravitational particle production [5]. The minimum of the potential (assumed
zero) is typically placed at infinity, because it should not have yet been reached.
This results in the so-called quintessential tail of the potential. Candidates for
the quintessential–inflation scalar field are moduli fields or the radion field.

2 Dynamics

The Universe is modeled as a collection of perfect fluids; the background fluid
with density ρB (comprised by matter and radiation) and the scalar field φ
with density ρφ = ρkin + V and pressure pφ = ρkin − V , where ρkin ≡ 1

2 φ̇2 is
the kinetic density of φ and the dot denotes derivative w.r.t. the cosmic time
t. For every component one defines the barotropic parameter as wi ≡ pi/ρi.
The Universe expansion accelerates when ρB < ρφ and wφ < − 1

3 . Energy-
momentum conservation demands d(a3ρ) = −p d(a3), which, for decoupled flu-
ids, gives ρi ∝ a−3(1+wi), where a is the scale factor. To study the dynamics of
the Universe, one also needs the Friedman equation and the φ field equation:
ρ̇kin + 6Hρkin + V̇ = 0, where H ≡ ȧ/a is the Hubble parameter. In spatially-
flat, FRW cosmology the Friedman equation is H2 = ρ/3m2

P , with mP being
the reduced Planck mass. This results in the evolution equations:

H =
2 t−1

3(1 + w)
a ∝ t

2
3(1+w) ρ =

4

3(1 + w)2

(mP

t

)2

(1)

where w corresponds to the dominant fluid component. In brane cosmology
the Friedman equation is modified for density above the string tension λ [11].
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Assuming a 5th dimension, the Friedman equation becomes H ≃ ρ/
√

6λmP ,
where λ = 3

4π (M6
5 /m2

P ), with M5 being the fundamental, 5-dim Planck mass.
Then the evolution equations are:

H =
t−1

3(1 + w)
a ∝ t

1
3(1+w) ρ =

√
6λ

3(1 + w)

(mP

t

)

(2)

The modified dynamics affect the inflationary era due to excessive friction on
the roll of the scalar field, which allows inflation with steep potential. Then,
the slow-roll parameters become: ǫ ≃ 2λm2

P (V ′)2/V 3 and η ≃ 2λm2
P V ′′/V 2,

where the prime denotes derivative w.r.t. φ. The modified slow-roll changes
the amplitude and spectral index of the generated density perturbations [11]:

δρ

ρ
≃ 1

2
√

6π

V 3

λ3/2|V ′|m3
P

and ns − 1 ≃ −4m2
P

λ

V

[

3

(

V ′

V

)2

− V ′′

V

]

(3)

Gravitational reheating creates a thermal bath of temperature Treh = α
2π Hend

[5], where α is the reheating efficiency and the subscript ’end’ denotes the end
of inflation. Due to the inefficiency of reheating, after the end of inflation
the Universe becomes dominated by ρkin, i.e. ρ ≃ ρkin ∝ a−6. As long as

ρkin > 2λ we have a ∝ t1/6 and φ(t) = φend + 2√
3

√

λ/Vend

(

√

t/tend − 1
)

mP .

However, when ρkin < 2λ the brane regime ends and one has a ∝ t1/3 and
φ(t) = φend + 1√

6
[2 + ln (t/tλ)] mP , where tλ = 1

2
√

6
mP /

√
λ is the crossover

time for which φλ = φend +
√

2/3 mP . The thermal bath eventually dominates
the density of the Universe and the Hot Big Bang begins at the temperature:

T∗ =
α3

96π2

√

g∗
15

V
5/2
end

λ3/2m3
P

(4)

where g∗ ∼ 102 is the number of relativistic degrees of freedom. In order not
to affect Nucleosynthesis (BBN) we require T∗ > 1 MeV. After the onset of
the Hot Big Bang ρkin rapidly decreases and the field freezes at the value:

φF = φend +
mP√

6

[

14 +
3

2
ln

(

30π2

g∗α4

)

− 4 ln

(

m4
P

λ

)

+ 5 ln

(

m4
P

Vend

)]

(5)

3 Why Branes

Standard–cosmology quintessential inflation needs a potential with two flat
regions: the inflationary plateau and the quintessential tail [3]. BBN and
coincidence demand that the density scale of the flat regions differs by ∼ 10100!
To prepare for this abysmal dive, V is strongly curved near the end of inflation.
As a result, the slow-roll parameter η is large, leading to spectral index ns

far from unity. This makes it difficult to construct single-branch models1

1Multi-branch models such as [9, 12, 13] are disfavoured in our minimalistic approach.



for quintessential inflation, although solutions do exist [3]. In contrast, this
η-problem does not appear when considering brane cosmology because the
modified Friedman equation allows for steep inflation [2, 8, 10, 11, 14]. Hence,
one may obtain successful quintessential inflation with a simple potential.

4 The exponential tail

String theory disfavours eternal acceleration [4, 7]. This immediately rules out
quintessential tails milder than exponential and also frozen quintessence (in
which φ = φF at present). In any case, coincidence is hard to achieve with
mild tails (e.g. inverse power-law type [8]) and frozen quintessence is virtually
indistinguishable from the cosmological constant alternative. On the other
hand steeper-than-exponential tails have disastrous attractors [3]. Thus, the
most reasonable approach is the exponential tail, V ≃ V0e

−bφ/mP , where b is a
positive constant. Then, the φ-field equation gives an exact attractor solution:

φattr =
2mP

b
ln

[
√

V0

2

(

1 + w

1 − w

)

b t

mP

]

and Vattr =
2

b2

(

1 − w

1 + w

)

(mP

t

)2

(6)

If ρφ < ρB then w = wB and ρφ/ρB = 3(1 + wB)/b2 = const., which means
wφ = wB ≥ 0 and b2 > 3(1 + wB). If, however, ρφ > ρB then w = wφ and
ρ = ρφ ∝ a−3(1+wφ). This time b2 = 3(1 + wφ). Therefore, dark energy dom-

inates without eternal acceleration when 2 < b2 < 3(1 + wB). Brief accelera-
tion is possible at the time when φ unfreezes to follow the attractor, due to
superfreezing [3]. In fact, superfreezing enlarges the range to 2 < b2 < 24 [1].

5 A toy-model example

Consider the potential (also studied in [6]):

V (φ) =
M4

cosh(bφ/mP ) − 1
⇒

{

V ≃ 2M4e−bφ/mP φ ≫ mP /b
V ≃ 2M4(mP /bφ)2 φ ≪ mP /b

(7)

The slow-roll parameters are: η = 2A[cosh(bφ/mP ) + 2] = ǫ + 2A. Thus, in-
flation ends when η(φend) ≡ 1, where A ≡ b2(λ/M4). The spectral index is

ns − 1 = −4A
3 +

(

1−6A
1−2A

)

exp(−4NdecA)

1 −
(

1−6A
1−2A

)

exp(−4NdecA)
(8)

where Ndec ≃ 69 is the number of e-folds of remaining inflation corresponding
to the scale of the horizon at decoupling. From the observations |ns − 1| ≤ 0.1,
which demands the constraint A < 1

148 . Using A ≪ 1 the above becomes



ns − 1 ≃ − 4
Ndec+1 , which gives ns ≃ 0.94. The density contrast with A ≪ 1 is:

δρ

ρ
≃ 2b2

√
6π

(

M

mP

)2 √
A (Ndec + 1)2 (9)

Similarly, for the inflationary scale we find Vend ≃ 2AM4 or, equivalently,

Vend ≃ 3π2

b4

(

δρ

ρ

)2
m4

P

(Ndec + 1)4
(10)

The field freezes at φF = φend + 1√
6
(61.7 − 4 ln b)mP . Then coincidence de-

mands: b ≃ 14.5, which is too large for brief acceleration. Further, Eq.(10)

gives V
1/4
end ≃ 2×1013GeV. Using Vend ≃ 2b2λ one finds λ1/4 ≃ 6×1012GeV

and so M5 ≃ 5×1014GeV. The bound on A suggests: M > 7×1013GeV, which
enables the identification M = M5. The Hot Big Bang begins at temperature:

T∗ =
α3

16b(Ndec + 1)4

√

2g∗
15

(

δρ

ρ

)2

mP (11)

which satisfies the BBN constraint if α >∼ 0.1. With α ∼ 0.1, the modified

Friedman equation gives Treh ∼ 107GeV, which satisfies the gravitino bound.

6 Conclusions

Quintessential-inflation model-building is easier in brane-cosmology because
the η-problem is overcome by considering steep inflation [2]. The dynamics
of the Universe from inflation through to the present have been analysed and
employed in the toy-model presented. This model incorporates two natural
mass-scales (mP and M5) and leads to a spectral index within observational
bounds. However, it fails to provide late-time accelerated expansion.
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