
FOUR VARIANTS OF THE FOURIER-ANALYTIC TRANSFERENCE
PRINCIPLE

SEAN PRENDIVILLE

Abstract. We survey four instances of the Fourier analytic ‘transference principle’
or ‘dense model lemma’, which allows one to approximate an unbounded function
on the integers by a bounded function with similar Fourier transform. Such a result
forms a component of a general method pioneered by Green to count solutions to a
single linear equation in a sparse subset of integers.
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1. Introduction

1.1. Aim. There has been much recent work on counting arithmetic configurations
in a sparse set of integers, such as the set of primes [Gre05, GT08, GT10], smooth
numbers [Har], random sets [CG, Sch], pseudorandom sets [CFZ], or dense subsets
thereof. Given such a sparse set, it is often useful to be able to construct a dense
subset of integers whose arithmetic properties resemble those of the sparse set, the
theory being much more developed in the dense regime, with recourse to powerful
results such as Szemerédi’s theorem and affiliated techniques.

When counting solutions to a single linear equation, the arithmetic closeness of
the dense model set to our original sparse set can be measured by the level of
similarity in their Fourier transform, provided that we weight the characteristic
function of our sparse set suitably. The sparseness of our set forces this weight
function to grow asymptotically, so we are left with the problem of approximating
an unbounded function by a bounded function, with the closeness of approximation
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measured by the L∞-norm of their Fourier transform. The purpose of this note is to
survey four variants of such a bounded approximation lemma, also called a transference
principle or dense model lemma in the literature: the original found in Green [Gre05],
a quantitative improvement due to Helfgott–De Roton [HDR11], a further quantita-
tive refinement due to Naslund [Nas15], and finally a much more general technique
due (independently) to Gowers [Gow10] and Reingold et al. [RTTV]. Our focus is
on the quantitative strength of each of these results. We give a complete account of
the required background in the appendices.

The Fourier-analytic transference principle is particularly powerful when com-
bined with the Hardy–Littlewood circle method. Traditionally, the circle method is
performed with respect to a function defined on the integers, whose Fourier trans-
form is then defined on the circle group T = R/Z. In the majority of the references
we survey, the Fourier analysis is performed with respect to functions defined on
the integers modulo a large prime number. This has the expositional advantage that
both physical and phase space are discrete, and in fact isomorphic. However, we
believe this reduction is artificial, and in order to highlight the utility of the trans-
ference principle within the traditional number-theoretic circle method, we opt to
give all proofs with respect to Fourier analysis on the integers.

1.2. Motivation: a sparse version of Roth’s theorem. A theorem of Roth [Rot53,
Rot54] quantifies the density required of a set of integers to ensure that it contains
a non-trivial solution to a single linear equation

c1x1 + · · ·+ csxs = 0. (1)

Assuming the coefficients sum to zero, a variant of this theorem due to Bloom
[Blo12] states that for any δ > 0 there exists c(δ) > 0 such that if A is a subset of [N]
of density at least δ (i.e. |A| ≥ δN), then A contains many solutions to the equation,
in that

∑
c·x=0

1A(x1) · · · 1A(xs) ≥ c0(δ)Ns−1, (2)

where one may take

c0(δ)�c exp
(
−C/δ

1
s−2−ε

)
(3)

for some absolute constant C = C(s, ε) and any ε > 0.
Roth’s method for proving such a result proceeds by exploiting the orthogonality

relation

∑
c·x=0

1A(x1) · · · 1A(xs) =
∫

T
1̂A(c1α) · · · 1̂A(csα)dα, (4)

where we define the Fourier transform of a function f : Z→ C of finite support by

f̂ (α) := ∑
n

f (n)e(αn). (5)

If we know the distribution of A in arithmetic progressions, then the classical circle
method allows us predict the behaviour of 1̂A. Roth’s argument says that either A
is equidistributed in arithmetic progressions, in which case we can calculate 1̂A and
therefore (4), or alternatively A is biased towards at least one arithmetic progression.
Exploiting this bias then forms the so-called ‘density increment’ argument. We
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refrain from the details here, but hope to convey to the reader the sense that if one
knows how the Fourier transform 1̂A behaves, then one can count solutions to a
linear equation in A.

Suppose that we wish to prove an analogue of Roth’s theorem for subsets of the
integers which are not dense in the interval [N], but are dense in some fixed sparse
subset S ⊂ [N], so that |S| = o(N). For example, one may take S to be of arithmetic
nature, such as the set of primes or the set of squares, or even the set of squares of
primes. Alternatively, one could take S to be a random subset of [N].

Given a subset A of our sparse set S which is relatively dense, in the sense that
|A| ≥ δ|S|, we wish to prove a lower bound of the form (2). Notice that if we could
construct a dense subset B ⊂ [N], with |B| ≥ δcN say, and such that we have the
Fourier approximation

1̂A ≈ 1̂B, (6)

then we can employ Roth’s theorem to obtain a lower bound for the number of
solutions to (1) in A as follows

∑
c·x=0

1A(x1) · · · 1A(xs) =
∫

T
1̂A(c1α) · · · 1̂A(csα)dα

≈
∫

T
1̂B(c1α) · · · 1̂B(csα)dα

= ∑
c·x=0

1B(x1) · · · 1B(xs)

≥ c(δc)Ns−1.

(7)

Obtaining an approximation such as (6) is the strategy of the Fourier-analytic
transference principle, or dense model lemma, originating in Green [Gre05]. How-
ever, as stated, such an approximation is too much to hope for. Looking at the
Fourier transform evaluated at α = 0, we would deduce that

|S| ≥ |A| = 1̂A(0) ≈ 1̂B(0) ≥ δcN. (8)

This would then imply that S is itself a dense subset of the interval [N]. To get
around this, we weight the indicator function of A in order to ensure that we have
some hope of approximating its Fourier transform by the Fourier transform of a
dense set. In order to deal with arbitrary relatively dense subsets of S, it makes
sense to choose this weighting independently of the set A itself.

Definition 1.1 (Majorant). Given S ⊂ [N] define a majorant on S to be a non-negative
function ν : Z→ [0, ∞) with support contained in S and such that

∑
n

ν(n) =
(
1 + o(1)

)
N. (9)

Given a majorant ν on S and A ⊂ S with relative density |A| ≥ δ|S|, define

f := 1Aν.

Provided that we choose our majorant sensibly, we should be able to prove that

∑
n

f (n) ≥ δcN (10)
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for some c > 0. We therefore hope to obtain a Fourier approximation of the form

f̂ ≈ 1̂B,

for some B ⊂ [N] which is suitably dense |B| ≥ δcN. In fact, we do not need
our dense approximant to be the characteristic function of a set; it suffices for the
function to have bounded L2-norm, an observation first recorded by Helfgott and
De Roton [HDR11].

Lemma 1.2 (L2-boundedness suffices). Let c1 + · · · + cs = 0. Then for any δ > 0
and any constant C there exists c(δ, C) > 0 such that the following holds. Suppose that
g : Z→ [0, ∞) is a non-negative function supported on [N] which has bounded1 L2-norm

∑
n

g(n)2 ≤ CN. (11)

Then the density assumption
∑
n

g(n) ≥ δN (12)

implies that
∑

c·x=0
g(x1) · · · g(xs) ≥ c(δ, C)Ns−1.

In fact, one may take
c(δ, C) = (δ/2)sc0(δ

2/(4C)), (13)
where c0(δ) is the constant appearing in Roth’s theorem (2).

Proof. Define
B := {x ∈ [N] : g(x) ≥ δ/2} .

Then, employing the Cauchy–Schwarz inequality, we have

δN ≤∑
x

g(x) = ∑
x/∈B

g(x) + ∑
x∈B

g(x)

≤ 1
2 δN + |B|1/2

(
∑
x

g(x)2

)1/2

≤ 1
2 δN + (|B|CN)1/2 .

(14)

Therefore

|B| ≥ δ2

4C
N. (15)

Applying Bloom’s variant of Roth’s theorem, we deduce that

∑
c·x=0

1B(x1) · · · 1B(xs) ≥ c0(δ
2/(4C))Ns−1.

Hence

∑
c·x

g(x1) · · · g(xs) ≥ (δ/2)s ∑
c·x

1B(x1) · · · 1B(xs) ≥ (δ/2)sc0(δ
2/(4C))Ns−1.

�
1Although this estimate for the L2-norm appears to grow with N, it is the same estimate one

would obtain for a bounded function on [N].
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Let us sketch how this result, when combined with a transference principle, al-
lows one to extract a quantitative bound on the relative density of a subset A ⊂ S ⊂
[N] lacking non-trivial solutions to (1). Write δ := |A|/|S| for the relative density
of A in S. Then provided that one has made a sensible choice for the weighted
majorant ν on S, one should have

∑
n

1A(n)ν(n) ≥ δcN,

for some absolute c > 0. Applying a transference principle to the function f = 1Aν,
one obtains an approximant g supported on [N] with bounded L2-norm of the form
(11) and such that f̂ ≈ ĝ uniformly on T. Performing an approximation similar to
(7) and applying Lemma 1.2 yields

∑
c·x=0

f (x1) · · · f (xs) ≥ c(δc, C)Ns−1. (16)

Yet if A contains only trivial solutions to (1), we have

∑
c·x=0

f (x1) · · · f (xs) ≤ ∑
c·x=0

x trivial

ν(x1) · · · ν(xs). (17)

There are various possible candidates for what should constitute a trivial solution
to (1), one such choice being that x belongs to one of a finite collection of proper
subspaces of the hyperplane c · x = 0. Whatever choice of triviality one makes,
one would expect that the trivial solutions should be a sparse subset of the solution
space, so that

∑
c·x=0

x trivial

1[N](x1) · · · 1[N](xs) ≤
Ns−1

ω(N)

for some function ω(N) → ∞. Moreover, a sensible choice of majorant should
respect this sparseness, so that

∑
c·x=0

x trivial

ν(x1) · · · ν(xs)�
Ns−1

ω(N)
.

Combining this with (16) and (17) yields

c(δ, C)� 1
ω(N)

.

Using the lower bounds (3) and (13) then allows us to extract an upper bound on δ
in terms of ω(N)−1. For instance, if C = O(1) then one has

c(δ, C)�c exp(−Cs,εδ
− 2

s−2−ε ),

which implies that
δ�c,ε (log ω(N))−

s
2+1+ε . (18)

In view of Lemma 1.2 and the discussion which precedes it, our aim in the re-
mainder of this note is to provide sufficient conditions a majorant ν should satisfy
to ensure that if 0 ≤ f ≤ ν with ∑n f (n) ≥ δN then there exists a function g
which is dense (as in (12)), which has bounded L2-norm (as in (11)), and such that
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‖ f̂ − ĝ‖∞ is small. By comparing Fourier transforms at the zero frequency, one sees
that non-negative functions which are close in the L∞-Fourier norm are also close in
the L1-norm (an observation previously employed in (8)), so that

∑
n

g(n) = ∑
n

f (n) + O
(∥∥ f̂ − ĝ

∥∥
∞

)
.

Hence the density of f automatically implies the density of g. We may therefore
drop the requirement that our approximant g is dense, as this follows from the
Fourier approximation. Our aim is therefore to answer the following question.

Question. What conditions does a majorant ν on [N] need to satisfy in order to ensure that
any function 0 ≤ f ≤ ν has a non-negative approximant g with bounded L2-norm and such
that the difference ‖ f̂ − ĝ‖∞ is small?

Any result which provides conditions answering this question we call a bounded
approximation lemma, since we are attempting to approximate our unbounded func-
tion f by a function g which exhibits less growth, as measured by the L2-norm.

1.3. Notation. In order to be consistent with the normalisation of our Fourier trans-
form (5), we define the Lp-norm of a function on the integers f : Z→ C with respect
to counting measure, so that

‖ f ‖p :=

(
∑
n
| f (n)|p

)1/p

.

For functions on T, all Lp-norms are taken with respect to the Haar probability
measure, so that for finitely supported f : Z→ C we have∥∥ f̂

∥∥
2 = ‖ f ‖2

Notice that if ν is a majorant then we also have the identity

‖ν̂‖∞ = ‖ν‖1 . (19)

2. Green’s L∞-bounded approximation lemma

In this section we give a proof of perhaps the simplest bounded approximation
lemma, originating in Green [Gre05]. Not only does this yield an approximant with
bounded L2-norm, but also bounded L∞-norm, so in some sense this approximant
has the best possible boundedness properties. The price to be paid for such good
boundedness is the quality of our final Fourier approximation f̂ ≈ ĝ.

Definition 2.1 (Fourier decay). We say that a majorant ν on [N] has Fourier decay of
level θ if ∥∥∥ν̂− 1̂[N]

∥∥∥
∞
≤ θN.

Notice from (19), that if a majorant has Fourier decay of level θ then

‖ν‖1 = N + O(θN).
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Definition 2.2 (Restriction at p). We say that a majorant ν supported on [N] satisfies
a restriction estimate at exponent p if

sup
|φ|≤ν

∫
T

∣∣φ̂(α)∣∣p dα�p ‖ν‖p
1 N−1.

Theorem 2.1 (Green [Gre05]). Suppose that the majorant ν has Fourier decay of level θ
and satisfies a restriction estimate at exponent p. Then for any 0 ≤ f ≤ ν there exists
0 ≤ g� 1[N] such that ∥∥ f̂ − ĝ

∥∥
∞ �p log(θ−1)

− 1
p+2 N.

As the function g delivered by this theorem is genuinely bounded, we call this an
L∞-bounded approximation lemma.

We begin the proof of Theorem 2.1 by defining the large spectrum of f to be the
set

Spec( f , η ‖ν‖1) :=
{

α ∈ T : | f̂ (α)| ≥ η ‖ν‖1

}
.

Define the Bohr set with frequency set S := Spec( f , η ‖ν‖1) and width ε ≤ 1/2 by

B(S, ε) := {n ∈ [−εN, εN] : ‖nα‖ ≤ ε (∀α ∈ S)} . (20)

In this definition we have used ‖·‖ to denote the distance to the nearest integer (not
to be confused with the plethora of norms employed in this paper). Write σ for the
normalised characteristic function of B := B(S, ε), so that

σ := |B|−11B.

Then we define

g := f ∗ σ ∗ σ, (21)

where, for finitely supported fi, we set

f1 ∗ f2(n) := ∑
m1+m2=n

f1(m1) f2(m2).

We first estimate | f̂ − ĝ|. The key identity is

f̂1 ∗ f2 = f̂1 f̂2.

If α /∈ Spec( f , ηN) then we have

| f̂ (α)− ĝ(α)| = | f̂ (α)||1− σ̂(α)2| ≤ 2η ‖ν‖1 � ηN.

If α ∈ Spec( f , ηN), then for each n ∈ B we have e(αn) = 1 + O(ε). Hence σ̂(α) =
1 + O(ε), and consequently

| f̂ (α)− ĝ(α)| = | f̂ (α)||1 + σ̂(α)||1− σ̂(α)| � ‖ν‖1 ε� εN.

Combining both cases gives ∥∥ f̂ − ĝ
∥∥

∞ � (ε + η)N. (22)
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It remains to show that g is bounded. By positivity and orthogonality, we have

g(n) = ∑
x+y+z=n

f (x)σ(y)σ(z) ≤ ∑
x+y+z=n

ν(x)σ(y)σ(z)

=
∫

T
ν̂(α)σ̂(α)2e(−αn)dα.

It therefore suffices to show that∫
T

ν̂(α)1̂B(α)
2e(−αn)dα� |B|2. (23)

Inserting our Fourier decay assumption and using Parseval, we have∫
T

ν̂(α)1̂B(α)
2e(−αn)dα ≤

∫
T

1̂[N](α)1̂B(α)
2e(−αn)dα + θN

∫
T
|1̂B(α)|2dα

= ∑
x+y+z=n

1[N](x)1B(y)1B(z) + θN|B|

≤ |B|2 + θN|B|.
We therefore obtain (23) provided that

θN � |B|. (24)

By Lemma A.2 we have |B| ≥ εOp(η−p−1)N, so (24) follows provided that θ ≤
εCpη−1−p

. In view of (22), let us take ε = η with θ = εCpη−1−p
. Then

log(θ−1) ≤ Cp log(ε−1)ε−1−p �p ε−2−p.

This implies that ∥∥ f̂ − ĝ
∥∥

∞ � εN �p

(
log(θ−1)

)− 1
2+p N,

which completes the proof of Theorem 2.1.

3. Helfgott and De Roton’s L2-bounded approximation lemma

For quantitative applications, a drawback of Green’s bounded approximation
lemma is the dependence of the final Fourier bound ‖ f̂ − ĝ‖∞ on the level of Fourier
decay θ exhibited by the majorant ν. Typically our majorant satisfies a Fourier decay
assumption of the form

‖ν̂− 1̂[N]‖∞ � N(log N)−c. (25)

This results in a final Fourier bound of the form

‖ f̂ − ĝ‖∞ � N(log log N)
− 1

p+2 . (26)

Notice that this approximation is one logarithmic iteration worse than our assumed
Fourier bound (25), even when f = ν, where we may take g = 1[N].

In the process of improving Green’s bound [Gre05] for Roth’s theorem in the
primes, Helfgott and De Roton [HDR11] developed a new variant of the bounded
approximation lemma which removes this logarithmic loss from the final Fourier
bound. There is a price to be paid for this improvement. The first is that the
approximant may no longer be an L∞-bounded function, but instead has the weaker
property of being bounded in the L2-norm. However, as Helfgott and De Roton
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observed in Lemma 1.2, this is not really an impediment. A more serious price
must be paid in making a stronger assumption on their majorant ν than Fourier
decay.

Definition 3.1 (Two-point correlation estimate). Let us say that a majorant satisfies
a two point correlation estimate if for any non-zero m we have

∑
n

ν(n)ν(n + m)� N. (27)

Definition 3.2 (L2-boundedness of level θ). We say that a majorant ν on [N] has
L2-boundedness of level θ if

∑
n

ν(n)2 ≤ θN2. (28)

Notice that if a majorant satisfies the L∞-bound ν ≤ θN, then the L1-assumption
(9) gives L2-boundedness of level θ.

Theorem 3.1 (Helfgott and De Roton [HDR11]). Suppose that the majorant ν satisfies a
restriction estimate at exponent p, a two-point correlation estimate and has L2-boundedness
of level θ. Then for any 0 ≤ f ≤ ν there exists g ≥ 0 such that ∑n g(n)2 � N and∥∥ f̂ − ĝ

∥∥
∞ �p log(θ−1)

− 1
p+2 N.

In applications the θ parameter resulting from the level of L2-boundedness (31) is
of the form N−c for some absolute constant c > 0. In practice, this is much smaller
than the Fourier decay parameter θ that one might hope to obtain for ν, which is
usually of the form (log N)−c. This results in a final Fourier approximation of the
form

‖ f̂ − ĝ‖∞ � N(log N)
− 1

p+2 ,
which saves a logarithm over the estimate given in (26).

The proof of Theorem 3.1 is similar to that given in §2. Adopting the notation of
§2, we define g as in (21), albeit with one less convolution

g := f ∗ σ.

The same argument given in §2 gives the Fourier bound

‖ f̂ − ĝ‖∞ � (ε + η)N,

so we take ε = η to yield ‖ f̂ − ĝ‖∞ � εN.
Now our treatment departs from that given previously as we are aiming to prove

the L2-bound ∑n g(n)2 � N, which is equivalent to

∑
n1−n2=m1−m2

f (n1) f (n2)1B(m1)1B(m2)� N|B|2.

Utilising f ≤ ν, this equals

∑
m

(
∑

m1−m2=m
1B(m1)1B(m2)

)(
∑
n

ν(n)ν(n + m)

)
.

Incorporating our assumptions (27) and (31), this is at most

θN2|B|+ O(N|B|2).
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We have therefore obtained L2-boundedness provided that θN � |B|. Recalling
Lemma A.2, it suffices to have

θ ≤ εOp(ε−p−1),
or equivalently

Cp log(θ−1)
− 1

p+2 ≤ ε.
Taking the smallest permissible value of ε then yields Theorem 3.1.

4. Naslund’s Lk-bounded approximation lemma

As is apparent in the deduction of the density bound (18), if one is interested in
quantitative bounds for sets lacking solutions to (1), then the quantitative depen-
dence in (13) is important. Ideally, one would hope not to lose too much by passing
from the constant c(δ) available for the characteristic function of a dense set, to the
constant c(δ, C) available for a function with bounded L2-norm. In a perfect world,
this loss would take the form, say

c(δ, C) = c
(

δ
100C

)
,

whereas the proof of Lemma 1.2 yields

c(δ, C) = (δ/2)sc
(

δ2

4C
)
.

The occurrence of the factor δs in (13) seems unavoidable. Fortunately, this factor
is not too costly, since it is much larger than the lower bound (3) for c(δ). A more
significant loss is the appearance of δ2 within the function c

(
δ2

4C
)
, which ultimately

stems from the lower bound (15).
As observed by Naslund [Nas15], one may replace the use of Cauchy–Schwarz in

(14) by Hölder’s inequality in order to replace the occurrence of δ2 by, essentially,
δ1+ε. This improvement ultimately stems from aiming for an Lk-bounded approxi-
mant for some large k (depending on ε), rather than the weaker L2-approximant of
Helfgott and De Roton. Since the Lk-norm of a finitely supported function tends to
the L∞-norm with k, one may think of Lk-boundedness as a half-way house between
the weak notion of L2-boundedness and the strong L∞-notion.

Lemma 4.1 (Lk-boundedness suffices). Let c1 + · · ·+ cs = 0. Then for any δ > 0, any
constant C and any k ≥ 2 there exists c(δ, C, k) > 0 such that the following holds. Suppose
that g : Z → [0, ∞) is a non-negative function supported on [N] which has bounded
Lk-norm

∑
n

g(n)k ≤ CN.

Then the density assumption ∑n g(n) ≥ δN implies that

∑
c·x=0

g(x1) · · · g(xs) ≥ c(δ, C, k)Ns−1,

Moreover, one may take

c(δ, C, k) = (δ/2)sc0

((
δ

2C

)1+ 1
k−1
)

, (29)

where c0(δ) is the constant appearing in Roth’s theorem (2).
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Proof. We proceed as in Helfgott and De Roton’s argument for Lemma 1.2, albeit
using Hölder’s inequality to give the upper bound

∑
x∈B

g(x) ≤ |B|1− 1
k

(
∑
x

g(x)k

) 1
k

.

This results in the lower bound

|B| ≥
(

δ

2C

)1+ 1
k−1

N,

from which (29) follows. �

The price to paid for obtaining an approximant with the stronger notion of Lk-
boundedness is that one’s majorant must now satisfy a more stringent correlation
condition.

Definition 4.2 (k-point correlation estimates). Let us say that a majorant satisfies the
k-point correlation estimates if for any distinct m1, . . . , ml with l ≤ k we have

∑
n

ν(n + m1) · · · ν(n + ml)� N. (30)

Definition 4.3 (L∞-boundedness of level θ). We say that a majorant ν on [N] has
L∞-boundedness of level θ if for all n we have

ν(n) ≤ θN. (31)

By assumption a majorant satisfies ∑n ν(n) = (1 + o(1))N, so that the level of
L∞-boundedness is at worst O(1), and unless ν is concentrated on a bounded set,
will be o(1) in applications.

Theorem 4.1 (Naslund [Nas15]). Suppose that ν is a majorant on [N] satisfying a re-
striction estimate at exponent p, with L∞-boundedness of level θ and satisfying the k-point
correlation estimates with

k ≤ 1
2

√
log(θ−1). (32)

Then for any 0 ≤ f ≤ ν there exists g ≥ 0 such that ∑n g(n)k � N and∥∥ f̂ − ĝ
∥∥

∞ �p log(θ−1)
− 1

p+2 N.

In order to employ this result in conjunction with Lemma 4.1, one might hope,
in view of (29), to take k =

⌈
1 + ε−1⌉. As mentioned previously, in applications we

expect to be able to obtain L∞-boundedness of level N−c. Hence (32) certainly fol-
lows if N ≥ exp(Cε−2). Provided that one can prove the (1 + ε−1)-point correlation
estimates, one may then deduce a lower bound in (29) of the form

c(δ, C)�ε (δ/2)sc
((

δ
2C

)1+ε
)

.
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Proof. The construction is the same as in the proof of Theorem 3.1. Just as in that
proof we take η = ε to obtain an approximant g ≥ 0 with ‖ f̂ − ĝ‖∞ � εN. Our task
then reduces to determining a permissible value of ε which allows one to show that

∑
n

(
∑
m

ν(n−m)1B(m)

)k

� N|B|k.

Expanding out the kth power and noting that (by definition (20) of the Bohr set)
B = −B, this is equivalent to the estimate

∑
m1,...,mk∈B

∑
n

ν(n + m1) · · · ν(n + mk)� N|B|k. (33)

Fix a choice of (m1, . . . , mk) ∈ Bk and let (m′1, . . . , m′l) denote the distinct values
occurring in this choice, written in the order in which they appear in the tuple, and
with respective multiplicities k1, . . . , kl. Then by the level of L∞-boundedness and
the k-point correlation estimate, we have

∑
n

ν(n + m1) · · · ν(n + mk) = ∑
n

ν(n + m′1)
k1 · · · ν(n + m′l)

kl

≤ (θN)k−l ∑
n

ν(n + m′1) · · · ν(n + m′l)

� (θN)k−l N.

By choosing one of the symbols ‘=’ or ‘ 6=’ for each pair of indices 1 ≤ i < j ≤ k,
we see that for each choice of tuple (m′1, . . . , m′l) ∈ Bl with distinct entries, there are

at most 2(
k
2) choices of (m1, . . . , mk) ∈ Bk giving rise to (m′1, . . . , m′l). It follows that

∑
m1,...,mk∈B

∑
n

ν(n + m1) · · · ν(n + mk)�
k

∑
l=1

2(
k
2)|B|l(θN)k−l N

≤ |B|kN max
1≤l≤k

(
k2(

k
2)θN
|B|

)l

The required bound (33) then follows on ensuring that |B| ≥ k2(
k
2)θN, which from

Lemma A.2, follows if

εOp(ε−p−1) ≥ k2(
k
2)θ.

This in turn follows if

log(θ−1) ≥ log k +
(

k
2

)
log 2 + Cpε−p−2.

By (32) and the inequality log k + (k
2) log 2 ≤ k2, it suffices to take

ε =

(
2Cp

log(θ−1)

) 1
p+2

.

�
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5. The Hahn–Banach approach

The fact that a majorant satisfies a restriction estimate at some exponent p is
essential in applications of the transference principle to the circle method, see for
instance [GT06, Har, BP]. In general, if a function f is efficiently bounded by a
majorant ν, one can count solutions to a linear equation in s variables weighted by
f provided that one can obtain a restriction estimate for ν for some p < s.

The limited use of the restriction estimate in the proof of theorems 2.1, 3.1 and 4.1
suggests that it may not be necessary for a majorant ν to satisfy such an estimate
in order for f ≤ ν to have a bounded approximation. This was first shown by
Gowers [Gow10] and, independently, by Reingold et al [RTTV]. It turns out that
removing the quantitative dependence of the final Fourier approximation on the
restriction parameter gives a marginally stronger bound. Their method extends to
give a bounded approximation lemma for norms other that the L∞-Fourier norm,
giving an alternative derivation of the transference principle found in [GT08, TZ08],
and which is essential for applications to systems of linear equations such as [GT10,
Mat12]. In this section we give an exposition of their argument limited to the simpler
Fourier-analytic context.

In common with Green’s transference principle, the approximation theorem as-
sumes some level of Fourier decay. Although quantitatively weaker than the as-
sumption of a correlation condition, this is in some sense a more useful assumption
for applications, such as Roth-type theorems in kth powers [BP, Cho], where the
correlation estimates (27) and (30) do not necessarily hold.

Theorem 5.1 ([Gow10, RTTV]). Suppose that the majorant ν has Fourier decay of level θ.
Then for any 0 ≤ f ≤ ν there exists a bounded function 0 ≤ g ≤ 1[N] such that∥∥ f̂ − ĝ

∥∥
∞ � log(1/θ)−3/2N.

Both [Gow10] and [RTTV] follow similar lines in proving this result, employing
either the supporting hyperplane theorem or the minimax theorem to give the ex-
istence of g, rather than the explicit construction of §§2–4. Both of these subsidiary
results are closely related to the finite dimensional Hahn–Banach theorem. We give
a complete account of the necessary background in the appendices.

We identify the set of functions f : Z → C whose support is contained in [N]
with the finite dimensional space CN. Then the functional

‖ f ‖ :=
∥∥ f̂
∥∥

∞

forms a norm on this space. Recall that we define the dual norm by

‖φ‖∗ := sup
‖ f ‖≤1

|〈 f , φ〉| ,

where

〈 f , φ〉 :=
N

∑
n=1

f (n)φ(n).
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One can check that this is itself a norm on CN, and it follows directly from the
definition that for any f , φ ∈ CN we have the inequality

|〈 f , φ〉| ≤ ‖ f ‖ ‖φ‖∗ . (34)

Lemma 5.1 (Properties of the dual of
∥∥ f̂
∥∥

∞).
(i) (Algebra property)

‖φ1φ2‖∗ ≤ ‖φ1‖∗ ‖φ2‖∗ . (35)

(ii) (L∞–compatibility)
‖φ‖∞ ≤ ‖φ‖

∗ .

(iii) (Real compatibility)
‖Re φ‖∗ ≤ ‖φ‖∗ .

(iv) (Duality) For any f ∈ CN there exists φ ∈ CN with ‖φ‖∗ = 1 such that

‖ f ‖ = Re 〈 f , φ〉 .

Proof. Let f ∈ CN with ‖ f ‖ ≤ 1. Then by (34) we have

|〈 f , φ1φ2〉| =
∣∣〈 f φ1, φ2

〉∣∣ ≤ ∥∥ f φ1

∥∥∥∥φ2
∥∥∗.

For α ∈ T write eα(n) := e(αn). Then∣∣ f̂ φ1(α)
∣∣ = |〈 f eα, φ1〉|
≤ ‖ f eα‖ ‖φ1‖∗ .

By a change of variables we have ‖ f eα‖ = ‖ f ‖ ≤ 1. Thus
∥∥ f φ1

∥∥ ≤ ‖φ1‖∗, which
establishes (i).

To prove (ii) it suffices, by homogeneity, to show that the ball B∗ :=
{

φ ∈ CN : ‖φ‖∗ ≤ 1
}

is contained in the ball B∞ :=
{

φ ∈ CN : ‖φ‖∞ ≤ 1
}

. By equivalence of norms on
finite dimensional spaces, B∗ is a bounded subset of CN. Suppose that φ is an ele-
ment of B∗ \ B∞, so that |φ(n)| > 1 for some n ∈ [N]. By the algebra property (35),
φk ∈ B∗ for all k ∈N. Yet |φk(n)| → ∞ as k→ ∞, contradicting boundedness.

For (iii), we first note that ‖·‖ is invariant under complex conjugation, since∥∥∥ f
∥∥∥ = sup

α

∣∣∣∣∣∑n
f (n)e(αn)

∣∣∣∣∣ = sup
α

∣∣∣∣∣∑n
f (n)e(−αn)

∣∣∣∣∣ = ‖ f ‖ .

It follows that∥∥φ
∥∥∗ = sup

‖ f ‖≤1

∣∣〈 f , φ
〉∣∣ = sup

‖ f ‖≤1

∣∣∣〈 f , φ
〉∣∣∣ = sup

‖g‖≤1
|〈g, φ〉| = ‖φ‖∗ .

Hence by the triangle inequality and homogeneity

‖Re φ‖∗ =
∥∥∥∥φ + φ

2

∥∥∥∥∗ ≤ ‖φ‖∗ + ‖φ‖∗2
= ‖φ‖∗ .

To prove (iv) it suffices to prove that for f 6= 0 there exists φ 6= 0 such that
Re 〈 f , φ〉 ≥ ‖ f ‖ ‖φ‖∗, as the reverse inequality follows from (34), and (iv) then
follows by homogeneity. Consider the convex set C = {g : ‖g‖ ≤ ‖ f ‖}. Since
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f /∈ int (C), the complex supporting hyperplane theorem (Corollary B.8) gives the
existence of φ 6= 0 such that for any ‖g‖ ≤ ‖ f ‖ we have

Re〈 f , φ〉 ≥ Re〈g, φ〉.
For each g with ‖g‖ ≤ ‖ f ‖ there exists |θ| = 1 such that

| 〈g, φ〉 | = θ 〈g, φ〉 = 〈θg, φ〉 = Re〈θg, φ〉.
Notice that ‖θg‖ ≤ ‖ f ‖ also, therefore

Re〈 f , φ〉 ≥ Re〈θg, φ〉 = | 〈g, φ〉 |.
Hence by homogeneity

Re 〈 f , φ〉 ≥ sup
‖g‖≤‖ f ‖

| 〈g, φ〉 | = ‖ f ‖ sup
‖g‖≤1

| 〈g, φ〉 | = ‖ f ‖ ‖φ‖∗ .

�

Proof of Theorem 5.1. We prove the contrapositive, supposing there exists 0 ≤ f ≤ ν
such that for any 0 ≤ g ≤ 1[N] we have∥∥ f − g

∥∥ > εN.

Our aim is to deduce that
∥∥∥ν− 1[N]

∥∥∥ > exp
(
−Cε−2/3)N. If

∥∥∥ν− 1[N]

∥∥∥ > N we are

done, so we may assume that
∥∥∥ν− 1[N]

∥∥∥ ≤ N. In particular, it is useful to note for
later that

‖ν‖1 = ‖ν̂‖∞ ≤
∥∥∥1̂[N]

∥∥∥
∞
+
∥∥∥ν̂− 1̂[N]

∥∥∥
∞
≤ 2N. (36)

By Lemma 5.1 (iv), for each 0 ≤ g ≤ 1[N] there exists φg with
∥∥φg

∥∥∗ = 1 such that

Re
〈

f − g, φg
〉
> εN. (37)

Consider the subsets of CN given by

A :=
{

g− f : 0 ≤ g ≤ 1[N]

}
and B :=

{
φ : ‖φ‖∗ ≤ 1

}
.

One can check that both A and B are convex, compact and non-empty. Moreover,
A is the convex hull of the finite set {1S − f : S ⊂ [N]}. Applying the minimax
theorem (Corollary C.2), there exists 0 ≤ g0 ≤ 1[N] and ‖φ0‖∗ ≤ 1 such that for any
0 ≤ g ≤ 1[N] and ‖φ‖∗ ≤ 1 we have

Re 〈g0 − f , φ〉 ≥ Re 〈g− f , φ0〉 .

In particular, using (37) we see that for any 0 ≤ g ≤ 1[N] we have

Re 〈 f − g, φ0〉 ≥ Re
〈

f − g0, φg0

〉
> εN.

Set ψ := Re φ0 and write ψ+ for the positive part of ψ. Taking g := 1ψ≥0, non-
negativity gives that

〈ν, ψ+〉 ≥ 〈 f , ψ+〉 ≥ 〈 f , ψ〉 = Re 〈 f , φ0〉 > Re 〈g, φ0〉+ εN =
〈

1[N], ψ+

〉
+ εN.

Therefore 〈
ν− 1[N], ψ+

〉
> εN.
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By L∞–compatibility (Lemma 5.1 (ii)) we have

‖ψ‖∞ ≤ ‖φ0‖∞ ≤ ‖φ0‖∗ ≤ 1.

Hence by the Weierstrass polynomial approximation theorem (Lemma D) there ex-
ists a polynomial P of degree at most Cε−2/3 and height at most exp(Cε−2/3) such
that

‖P ◦ ψ− ψ+‖∞ ≤ 1
4 ε

Using this and the observation (36), we see that〈
ν− 1[N], P ◦ ψ

〉
=
〈

ν− 1[N], ψ+

〉
+
〈

ν− 1[N], P ◦ ψ− ψ+

〉
≥ εN −

∥∥∥ν− 1[N]

∥∥∥
1
‖P ◦ ψ− ψ+‖∞

≥ 1
2 εN.

By (34) it follows that ∥∥∥ν− 1[N]

∥∥∥ ‖P ◦ ψ‖∗ ≥ 1
2 εN. (38)

By real compatibility (Lemma 5.1 (iii)), we have ‖ψ‖∗ ≤ ‖φ0‖∗ ≤ 1. Hence by the
algebra property (Lemma 5.1 (i)) and the triangle inequality, we deduce that

‖P ◦ ψ‖∗ � exp(Cε−2/3).

Combining this with (38) finally yields the required bound. �

Appendix A. The large spectrum and Bohr sets

As in §2 we define the (η ‖ν‖1)-large spectrum of f to be the set

Spec( f , η ‖ν‖1) :=
{

α ∈ T : | f̂ (α)| ≥ η ‖ν‖1

}
.

Notice that this set is empty unless η ≤ 1, which we assume throughout what
follows.

Lemma A.1. Suppose that ν is a majorant on [N] satisfying a restriction estimate at expo-
nent p. Then for any 0 ≤ f ≤ ν we have

meas
(
Spec( f , η ‖ν‖1)

)
�p η−pN−1.

Proof. We have

meas (Spec( f , ηN)) ≤ (η ‖ν‖1)
−p
∫

Spec( f ,ηN)
| f (α)|pdα

≤ (η ‖ν‖1)
−p
∫

T
| f (α)|pdα.

By the restriction estimate we have∫
T
| f (α)|pdα�p ‖ν‖p

1 N−1.

�

Define the Bohr set with frequency set S ⊂ T and width ε ≤ 1/2 by

B(S, ε) := {n ∈ [−εN, εN] : ‖nα‖ ≤ ε (∀α ∈ S)} .
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Lemma A.2. Suppose that ν is a majorant on [N] satisfying a restriction estimate at expo-
nent p. Then for 0 ≤ f ≤ ν and S = Spec( f , η ‖ν‖1) we have

|B(S, ε)| ≥ εOp(η−p−1)N.

Proof. Set

M :=
⌈

4πNη−1
⌉

and partition T into M half-open intervals of length M−1. Let I1, . . . , Ir denote those
intervals which intersect S = Spec( f , ηN). We claim that

r⋃
i=1

Ii ⊂ Spec( f , 1
2 η ‖ν‖1).

To see this, let us fix a choice of αi ∈ Ii ∩ S for each i. If α ∈ Ii then ‖α− αi‖ ≤
η/(4πN) so that

| f̂ (α)| ≥ | f̂ (αi)| − | f̂ (α)− f̂ (αi)|
≥ η ‖ν‖1 − ‖ f ‖1 N2π ‖α− αi‖
≥ 1

2 η ‖ν‖1 .

By Lemma A.1 we therefore have

rη/N � meas
( r⋃

i=1

Ii
)
�p η−p/N,

so that
r �p η−1−p.

One can check that
B({α1, . . . , αr} , ε/2) ⊂ B(S, ε).

Therefore
|B(S, ε)| ≥ |B({α1, . . . , αr} , ε/2)|.

Set T := d2/εe and partition Tr into Tr half-open cubes of side-length T−1. By
the pigeon-hole principle, some such cube C contains the point n(α1, . . . , αr) for at
least 1

2 εNT−r values of n ∈ [0, 1
2 εN]. Then C − C ⊂ [−T−1, T−1]r contains at least

1
2 εNT−r values of n ∈ [−1

2 εN, 1
2 εN]. In conclusion, we have shown that

|B({α1, . . . , αr} , ε/2)| ≥ 1
2 εN d2/εe−r ≥ d2/εe−(r+1) N.

The lemma now follows. �

Appendix B. The supporting hyperplane theorem

In this appendix we give an account of the supporting hyperplane theorem, em-
ployed in §5, and also needed in the proof of the minimax theorem given in Ap-
pendix C. The result is itself a weak version of the finite dimensional Hahn–Banach
theorem and is standard. However, we have not found a satisfactory reference for
the version of the result we require.
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Definition B.1 (Affine independence). We say x0, x1, . . . , xk ∈ Rn are affinely depen-
dent if there exist λi ∈ R not all zero such that

k

∑
i=1

λixi = 0 and
k

∑
i=1

λi = 0.

Equivalently, the differences x1 − x0, . . . , xk − x0 are linearly dependent.

Lemma B.2. If x0, x1, . . . , xn ∈ Rn are affinely independent, then the simplex{
n

∑
i=0

λixi : λi > 0,
n

∑
i=0

λi = 1

}
(39)

is a non-empty open set.

Proof. The set

∆ :=

{
µ ∈ Rn : µi > 0,

n

∑
i=1

µi < 1

}
is the finite intersection of n + 1 open sets each containing (1/2, . . . , 1/2), so is itself
a non-empty open set.

The simplex (39) is equal to{
n

∑
i=1

µi(xi − x0) : µi > 0,
n

∑
i=1

µi < 1

}
,

which is the image of ∆ under a map with continuous inverse. Hence (39) is open
and non-empty. �

Given x ∈ Rn, write

|x|∞ := max
i
|xi| and B∞

ε (x) := {y ∈ Rn : |x− y|∞ < ε} .

Lemma B.3. For x0, x1, . . . , xn ∈ Rn affinely independent, there exists ε > 0 such that for
any y ∈ B∞

ε (xn) the vectors x0, . . . , xn−1, y are also affinely independent.

Proof. Let T denote the invertible linear map λ 7→ ∑i λi(xi − x0). Then there exists
C = C(xi) > 0 such that for any v ∈ Rn we have∣∣∣T−1v

∣∣∣
∞
≤ C |v|∞ .

Suppose that x0, . . . , xn−1, xn + v are affinely dependent. Then there exist λi with
λn = 1 such that

n

∑
i=1

λi(xi − x0) = −v.

Therefore |T−1v|∞ ≥ 1, which in turn implies that |v|∞ ≥ C−1. The lemma now
follows on taking ε = C−1. �

Given a subset C of a topological space, write C for its closure and int (C) for its
interior.

Lemma B.4. Let C ⊂ Rn be a convex set. Then int (C) = ∅ if and only if int (C) = ∅.
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Proof. It suffices to prove the contrapositive of the ‘only if’ direction. Let x ∈ int (C),
so that there exists ε > 0 such that

B∞
ε (x) ⊂ C.

Taking x0 = x and xi = x + (ε/2)ei, one sees that the set B∞
ε (x) contains n + 1

affinely independent points.
By Lemma B.3 there exists δ > 0 such that B∞

δ (xn) ⊂ B∞
ε (x) and for any y ∈ Bδ(xn)

the vectors x0, x1, . . . , xn−1, y are affinely independent. Since xn ∈ C, there exists
x′n ∈ Bδ(xn) ∩ C, so that x0, x1, . . . , xn−1, x′n are affinely independent elements of
B∞

ε (x).
Repeating the above argument with xi in place of xn, we see that we can find

affinely independent x′0, x′1, . . . , x′n ∈ B∞
ε (x) ∩ C. It then follows from convexity and

Lemma B.2 that the set {
n

∑
i=0

λix′i : λi > 0,
n

∑
i=0

λi = 1

}
is a non-empty open subset of C.

�

Lemma B.5. Let C be a convex subset of Rn with x ∈ int (C) and y ∈ C. Then int (C)
contains the line segment

[x, y) := {(1− λ)x + λy : λ ∈ [0, 1)} .

Proof. Since x ∈ int (C) there exists an open set U ⊂ C with x ∈ U. Let z ∈ (x, y), so
that there exists λ ∈ (0, 1) with

z = (1− λ)x + λy.

Taking µ = λ−1 we have
y = µz + (1− µ)x,

so that y is an element of the open set

V :=
⋃

µ>1

(µz + (1− µ) ·U) .

Since y ∈ C, there exists y1 ∈ V ∩C. Hence there exists µ1 > 1 and u1 ∈ U such that

y1 = µ1z + (1− µ1)u1.

Taking λ1 = 1
µ1

, we have
z = λ1y1 + (1− λ1)u1,

so that z is an element of the open set

W :=
⋃

0≤λ<1

(λy1 + (1− λ) ·U) .

By convexity W ⊂ C, hence z ∈ int (C). �

Lemma B.6. If C ⊂ Rn is convex then

int (C) = int (C).
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Proof. By Lemma B.4 we may assume that int (C) is non-empty. It suffices to show
that if Bε(x) ⊂ C for some ε > 0 then x ∈ int (C). Let x0 ∈ int (C). Choosing δ > 0
sufficiently small, one can ensure that

y := x + δ(x− x0) ∈ Bε(x) ⊂ C.

Hence by the previous lemma [x0, y) ⊂ int (C). Taking λ = 1
1+δ we see that

x = (1− λ)x0 + λy ∈ (x0, y) ⊂ int C.

�

In order to distinguish between the complex inner product on Cn and the real
inner product on R2n, we write 〈x, y〉 for the former and x · y for the latter.

Lemma B.7 (Supporting hyperplane theorem). Let C be a convex subset of Rn and
x /∈ int C. Then there exists a non-zero vector φ ∈ Rn \ {0} such that for all y ∈ C we have

y · φ ≤ x · φ.

Proof. Let us first prove the result under the assumption that x /∈ C. The result is
trivial if C = ∅, so we may assume that C 6= ∅. Using absolute values to denote the
L2-norm on Rn, it follows that there exists y0 ∈ C such that

|y0 − x| = inf
y∈C
|y− x|.

Heuristically, we expect that for any y ∈ C, the angle formed in the plane between
x− y0 and y− y0 should be obtuse. If this angle were acute, then there should exist
a point y1 on the line segment between y and y0 such that x is closer to y1 than y0
(draw a picture). Since C is convex we have y1 ∈ C and we have contradicted our
choice of y0.

More rigourously, we show that for any y ∈ C we have

(x− y0) · (y− y0) ≤ 0. (40)

Suppose this is not the case. Then we claim that there exists t ∈ (0, 1] such that

|(1− t)y0 + ty− x| < |y0 − x|,
and hence obtain our desired contradiction. Write (1− t)y0 + ty − x = y0 − x +
t(y − y0), then square, expand out and divide through by t to deduce that this is
equivalent to the existence of t ∈ (0, 1] such that

t|y− y0|2 < 2 (x− y0) · (y− y0) .

Since we are assuming that (40) does not hold, we may take

t := min
{

1,
(x− y0) · (y− y0)

|y− y0|2

}
.

Assuming that x /∈ C, we may take φ := x− y0 6= 0 to deduce that for any y ∈ C
we have

y · φ ≤ y0 · φ ≤ x · φ,
the latter inequality following from the fact that (x · φ)− (y0 · φ) = (φ · φ) ≥ 0.
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It remains to prove the result when x ∈ C \ int (C). Since C is convex, it follows
from Lemma B.6 that x /∈ int (C), so that for any m ∈ N there exists xm /∈ C such
that

|x− xm| ≤ 1/m.

By our previous argument, there exists φm 6= 0 such that for any y ∈ C we have

y · φm ≤ xm · φm. (41)

Normalising so that |φm| = 1, we have a sequence in a compact set, so there exists
a convergent subsequence φk(m) → φ with |φ| = 1. Taking limits in (41) then gives
the desired inequality. �

Corollary B.8 (Complex supporting hyperplane theorem). Let C be a convex subset of
Cn and x /∈ int (C). Then there exists φ ∈ Cn \ {0} such that for all y ∈ C we have

Re 〈y, φ〉 ≤ Re 〈x, φ〉 .

Proof. This follows from the observation that for x, y ∈ Cn ∼= R2n we have

Re 〈x, y〉 = x · y.

�

Appendix C. The semi-finite minimax theorem

We have not been able to find a reference for the variant of the minimax theorem
employed in §5.

Proposition C.1 (Semi-finite minimax). Let A and B be non-empty compact convex sub-
sets of Rn at least one of which is equal to the convex hull of finitely many points. Then
there exist a0 ∈ A and b0 ∈ B such that for any a ∈ A and any b ∈ B we have

a · b0 ≤ a0 · b.

Proof. We may assume that A is the convex hull of finitely many points, otherwise
we re-label, taking A′ := −B and B′ := A to obtain b0 ∈ B and a0 ∈ A such that for
any b ∈ B and a ∈ A we have

−b · a0 ≤ −b0 · a,

which yields the claimed result.
Define

L := sup
a∈A

inf
b∈B

(a · b) and U := inf
b∈B

sup
a∈A

(a · b).

In order to prove the proposition, it suffices to establish that

(i) There exists a0 ∈ A and b0 ∈ B such that

L = inf
b∈B

(a0 · b) and U = sup
a∈A

(a · b0).

(ii) U ≤ L.
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We begin by showing that

−∞ < L ≤ U < ∞. (42)

For any a1 ∈ A and b1 ∈ B we have

inf
b∈B

(a1 · b) ≤ a1 · b1 ≤ sup
a∈A

(a · b1).

Since a1 and b1 are arbitrary, it follows that L ≤ U. Since B is non-empty, there
exists b1 ∈ B. Thus

U ≤ sup
a∈A

(a · b1)

By compactness, there exists a1 ∈ A such that

sup
a∈A

(a · b1) = a1 · b1 < ∞.

We conclude that U < ∞. Similarly, compactness of B and non-emptiness of A yields
L > −∞. This establishes (42).

Since U is finite, for any k ∈N there exists bk ∈ B such that

U ≤ sup
a∈A

(a · bk) ≤ U +
1
k

.

By compactness of B, there exists a convergent subsequence bkm → b ∈ B. Continu-
ity of the map (a, b) 7→ a · b then ensures that for any a ∈ A we have

a · b = lim
m→∞

a · bkm ≤ U.

Thus supa∈A(a · b) ≤ U, which by definition of U implies that supa∈A(a · b) = U. A
similar argument holds for L. This proves (i).

Finally, we show that for any α ∈ R we either have L ≥ α or U ≤ α. Combining
this with the fact that L ≤ U, it follows that L = U (if not, any α ∈ (L, U) leads to a
contradiction).

Since A is the convex hull of finitely many points, there exist a1, . . . , ak ∈ A such
that

A =

{
k

∑
i=1

λiai : λi ≥ 0 and ∑
i

λi = 1

}
.

Given b ∈ B let us write

vb :=
(
(a1 · b)− α, . . . , (ak · b)− α

)
∈ Rk.

Define C to be the convex hull of the set

{vb : b ∈ B} ∪ {e1, . . . , ek} .

Let us first suppose that 0 ∈ C. Then there exist b1, . . . , bm ∈ B, λ1, . . . , λm, µ1, . . . , µk ≥
0 such that 1 = ∑i λi + ∑j µj and

0 = ∑
i

λivbi + (µ1, . . . , µk). (43)
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It follows that for each j = 1, . . . , k we have
m

∑
i=1

λi
(
(aj · bi)− α

)
≤ 0. (44)

By (43) we cannot have all λi equal to zero. We may therefore re-normalise, to
conclude that there exist λi ≥ 0 with ∑i λi = 1 satisfying (44). We deduce that for
each j = 1, . . . , k we have

aj ·
m

∑
i=1

λibi ≤ α.

Convexity then shows that for b = ∑i λibi ∈ B and for any a ∈ A = ConvexHull(a1, . . . , ak)
we have a · b ≤ α. Hence U ≤ α.

Next suppose that 0 /∈ C. By the supporting hyperplane theorem (Lemma B.7, and
the remark which follows it), there exists φ ∈ Rk \ {0} such that for all b1, . . . , bm ∈ B
and λ1, . . . , λm, µ1, . . . , µk ≥ 0 with ∑i λi + ∑j µj = 1 we have(

∑
i

λivbi + ∑
j

µjej

)
· φ ≥ 0.

In particular, we have

φj = ej · φ ≥ 0 (j = 1, . . . , k),

and for each b ∈ B we have
vb · φ ≥ 0.

Since φ 6= 0 we may re-normalise to conclude that there exists φj ≥ 0 with ∑j φj = 1
such that for any b ∈ B we have ( k

∑
j=1

φjaj

)
· b ≥ α.

Convexity of A then gives the existence of a = ∑j φjaj ∈ A such that for all b ∈ B
we have a · b ≥ α, so that L ≥ α. �

Recall that in order to distinguish between the complex inner product on Cn and
the real inner product on R2n, we write 〈x, y〉 for the former and x · y for the latter.

Corollary C.2 (Complex minimax). Let A and B be non-empty compact convex subsets
of Cn at least one of which is equal to the convex hull of finitely many points. Then there
exist a0 ∈ A and b0 ∈ B such that for any a ∈ A and any b ∈ B we have

Re 〈a, b0〉 ≤ Re 〈a0, b〉 .

Appendix D. The Weierstrass polynomial approximation theorem

Given a real number x write

x+ := max {x, 0} = 1
2(x + |x|).

Online Journal of Analytic Combinatorics, Issue 12 (2017), #05



Lemma D.1 (Weierstrass polynomial approximation). There exists an absolute constant
C > 0 such that for any ε ∈ (0, 1) there exists a polynomial P of degree at most Cε−2/3 and
height at most exp(Cε−2/3) such that

sup
|x|≤1
|P(x)− x+| ≤ ε.

Proof. By the Taylor series theorem, for any t ∈ [0, 1) we have

(1− t)1/2 = −
N

∑
n=0

cntn + O (cN+1) , (45)

where

cn =
(2n)!

(2n− 1)22n(n!)2

Using Stirling’s formula, one can check that there exists a constant C such that

cn ∼ Cn−3/2 as n→ ∞.

In particular, by absolute convergence and continuity, the approximation (45) is
valid for t ∈ [0, 1].

For any x ∈ [−1, 1] we see that

|x| =
(
1− (1− x2)

)1/2
=

N

∑
m=0

(−1)m

(
N

∑
n=m

cn

(
n
m

))
x2m + O(N−3/2).

Using the crude bound ∣∣∣ N

∑
n=m

cn

(
n
m

)∣∣∣ ≤ 2N,

we deduce that for any N ∈ N there exists a real polynomial PN of degree at most
2N and height at most C exp(N) such that

sup
x∈[−1,1]

|PN(x)− |x|| � N−3/2.

The result now follows on taking P(x) := 1
2(PN(x) + x) and ensuring that N ≥

C/ε2/3 for some absolute constant C. �
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