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Abstract

In this article, weak convergence of the general non-Markov state transition probability estimator by

Titman (2015) is established which, up to now, has not been verified yet for other general non-Markov es-

timators. A similar theorem is shown for the bootstrap, yielding resampling-based inference methods for

statistical functionals. Formulas of the involved covariance functions are presented in detail. Particular ap-

plications include the conditional expected length of stay in a specific state, given occupation of another state

in the past, as well as the construction of time-simultaneous confidence bands for the transition probabilities.

The expected lengths of stay in the two-sample liver cirrhosis data-set by Andersen et al. (1993) are compared

and confidence intervals for their difference are constructed. With borderline significance and in comparison

to the placebo group, the treatment group has an elevated expected length of stay in the healthy state given an

earlier disease state occupation. In contrast, the Aalen–Johansen estimator-based confidence interval, which

relies on a Markov assumption, leads to a drastically different conclusion. Also, graphical illustrations of

confidence bands for the transition probabilities demonstrate the biasedness of the Aalen-Johansen estimator

in this data example. The reliability of these results is assessed in a simulation study.

Keywords: Aalen–Johansen estimator; conditional expected length of stay; confidence bands; Markov assump-
tion; multi-state model; right-censoring; weak convergence.

1 Introduction

Transition probabilities are essential quantities in survival analytic examinations of multi-state models. Under
independent right-censoring, for instance, the Aalen–Johansen estimator assesses these probabilities optimally
in nonparametric Markovian multi-state models; cf. Aalen (1978) and Section IV.4 in Andersen et al. (1993)
for more details. The Markov assumption is crucial for the validity of the Aalen–Johansen estimator. However,
in real world applications, it may be unrealistic to postulate such a structure: given the present patient’s state,
future developments are often not independent of a severe past illness history. There have been several attempts
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to circumvent the Markov assumption: State occupation probabilities in general models have been estimated
by Datta and Satten (2001), Datta and Satten (2002), and Glidden (2002) using the Aalen–Johansen estimator.
Pepe et al. (1991) and Pepe (1991) used a combination of two Kaplan–Meier estimators to assess the relevant
transition probability in an illness-death model with recovery. In illness-death models without recovery, Meira-
Machado et al. (2006) used Kaplan–Meier-based techniques and consecutive latent transition times to estimate
transition probabilities. More efficient variants of these estimators have been developed in de Uña-Álvarez and
Meira-Machado (2015). A Kendall’s τ -based test of the Markov assumption in this progressive illness-death
model was derived in Rodrı́guez-Girondo and Uña-Álvarez (2012). A competing risks-based estimator was
proposed by Allignol et al. (2014) which relies on strict censoring assumptions. Eventually, Titman (2015) and
Putter and Spitoni (2018) developed transition probability estimators in general non-Markov models by using
different transition probability decompositions and utilizations of the Aalen–Johansen estimator. However, weak
convergence properties of these estimators as elements of càdlàg function spaces have not been analyzed yet.

In the present paper, we focus on the non-Markov state transition probability estimator by Titman (2015)
and its weak convergence for the following reasons: the estimator has a simple, but intuitive structure and it
allows estimation of general transition probabilities between sets of states rather than single states. Finally, the
bootstrap is shown to correctly reproduce the weak limit distribution. Throughout the article, let (Ω,A, P ) be
the underlying probability space. To introduce the Titman (2015) estimator, we consider an independently right-
censored multi-state model with R + 1 ∈ N different states. That is, the data consists of independent copies
X1, . . . , Xn of a multi-state process which are indexed by time t ≥ s and which occupy the states 0, 1, . . . , R.
The right-censoring is modeled by independent random variables C1, . . . , Cn after which further observation of
the corresponding multi-state processes is not possible any more. Let I and J be subsets of {0, 1, . . . , R} for
which the transition probabilities

PIJ (s, t) = P (X(t) ∈ J | X(s) ∈ I)

shall be estimated. Here and below, irrelevant subscripts are removed for notational convenience. Introduce
the set of states AJ ⊂ J , that implies sure occupancy of J at all later points in time, and the set of states
RJ ⊂ {0, 1, . . . , R} \ J which prevents occupancy of J at all later points of time. Individual competing
risks processes, Zi, i = 1, . . . , n, are used in an intermediate estimation step. Zi(t) = 0 indicates whether the
multi-state process i is at time t in none of the absorbing subsets AJ or RJ . On the other hand, Zi(t) = 1

holds if the transition to AJ has been observed until time t and similarly Zi(t) = 2 for the transition to RJ .
Let Yi(t), i = 1, . . . , n denote the at-risk indicators of the competing risks processes and let δi, i = 1, . . . , n be
the corresponding censoring indicators, i.e., δi = 1 if the transition of Zi is eventually observed and δi = 0 if a
censoring comes first. The final data-set is χ = {Xi, Zi, Yi, δi : i = 1, . . . , n} whereof, in case of δi = 0, the
processes Xi and Zi are observable only until censoring occurs. Hence, incorporating random right-censoring,
the transition probability is decomposed into

PIJ (s, t) =P (Z(t) = 1 | Y (s) = 1, X(s) ∈ I)

+ P (Y (t) = 1 | Y (s) = 1, X(s) ∈ I)

× P (X(t) ∈ J | Y (t) = 1, X(s) ∈ I)
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=F1(t) + F0(t)pJ |I(t).

The first two components in this decomposition are estimated by the standard Kaplan–Meier estimator F̂0 for the
survival function and the Aalen–Johansen estimator F̂1 for the cumulative incidence function of the sub-group
of those individuals which were observed to occupy state I at time s. The remaining conditional probability is
estimated using the empirical proportion

p̂J |I(t) =
p̂JI(t)

p̂I(t)
=
n−1

∑n
`=1 1{X`(s) ∈ I, X`(t) ∈ J , Y`(t) = 1}
n−1

∑n
`=1 1{X`(s) ∈ I, Y`(t) = 1}

,

where 1{·} denotes the indicator function. Therefore, the overall transition probability estimator by Titman
(2015) is given as

P̂IJ (s, t) = F̂1(t) + F̂0(t)p̂J |I(t).

This article shall establish the weak convergence of
√
n(P̂IJ (s, ·)−PIJ (s, ·)) and of a bootstrap variant thereof

as n → ∞. Finally, implications to confidence interval construction for the conditional expected length of stay
and to time-simultaneous confidence bands for the transition probabilities are demonstrated. The proofs of all
Theorems and Lemmata as well as detailed derivations of all asymptotic covariance functions are given in the
appendix.

2 Main Results

We focus on the Titman (2015) estimator during [s, τ ] where τ ∈ (s,∞) is a terminal time satisfying F0(τ) > 0

and P (C > τ) > 0. The large sample properties of P̂IJ (s, ·) are derived from central limit theorems of its
individual components. To obtain such for the fraction process p̂J |I , we throughout assume the existence of
bounded one- and two-step hazard functions for transitions into J and J̄ = {0, 1, . . . , R} \ J , respectively,
which are approached uniformly:

lim
δ↓0

sup
t−t1=δ

∣∣∣P (X(t) ∈ J | X(t1) /∈ J )

t− t1
− λJ̄ J (t)

∣∣∣ = 0, (1)

lim
δ↓0

sup
t−t1=δ

∣∣∣P (X(t) /∈ J | X(t1) ∈ J )

t− t1
− λJ J̄ (t)

∣∣∣ = 0, (2)

lim
δ↓0

sup
t2−t=δ
t1<t

∣∣∣P (X(t2) ∈ J | X(t) /∈ J , X(t1) ∈ J )

t2 − t
− λJ̄ J |J (t2 | t1)

∣∣∣ = 0, (3)

lim
δ↓0

sup
t2−t=δ
t1<t

∣∣∣P (X(t2) /∈ J | X(t) ∈ J , X(t1) /∈ J )

t2 − t
− λJ J̄ |J̄ (t2 | t1)

∣∣∣ = 0. (4)

Here, t1, t, t2 ∈ (s, τ ]. In contrast to the standard choice in the literature, we let the at-risk indicators Yi, i =

1, . . . , n, that are involved in the estimator p̂J |I , be right-continuous. The typical reason for using the left-
continuous version is the applicability of martingale methods which do not matter in our analysis of the esti-
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mators. On top of that, this choice does not matter in the present article as all transition times are continuously
distributed. The definitions of the Kaplan–Meier and the Aalen–Johansen estimators remain unchanged. We
equip the càdlàg function space D[s, τ ] with the supremum norm and products thereof with the maximum-
supremum norm; see Chapter 3.9 in van der Vaart and Wellner (1996) for applications in survival analysis with
this choice. In order to state our main theorem, it is convenient to provide an auxiliary lemma:

Lemma 1 Under conditions (1) to (4) and as n → ∞, the following joint convergence holds in distribution on

D3[s, τ ]:

√
n(F̂0 − F0, F̂1 − F1, p̂J |I − pJ |I)→ (L0, L1, GJ |I)

Here, L0, L1, and GJ |I are zero-mean Gaussian processes. Denote their variance-covariance functions, ar-

ranged in a convenient (3× 3)-matrix, byΣ00 Σ01 Σ0G

Σ10 Σ11 Σ1G

ΣG0 ΣG1 ΣGG

 : [s, τ ]2 → R3×3.

Detailed formulas for these covariance functions are presented in the appendix. From the presentation therein it
is apparent that the covariances can be estimated straightforwardly.

Define r ∧ t = min(r, t) and r ∨ t = max(r, t). An application of the functional delta-method immediately
yields our main theorem:

Theorem 1 Under conditions (1) to (4) and as n → ∞, the following convergence holds in distribution on

D[s, τ ]:

√
n(P̂IJ (s, ·)− PIJ (s, ·))→ U (5)

where U is a zero-mean Gaussian process with covariance function ΓIJ given by

(r, t) 7→ pJ |I(r)pJ |I(t)Σ00(r, t) + Σ11(r, t) + F0(r)F0(t)ΣGG(r, t)

+ pJ |I(r)Σ01(r, t) + pJ |I(t)Σ10(r, t)

+ pJ |I(r ∨ t)F0(r ∧ t)Σ0G(r ∨ t, r ∧ t) + F0(r ∧ t)Σ1G(r ∨ t, r ∧ t).

To be able to use this result for time-simultaneous inference on PIJ (s, ·) or simply for improving the accurate-
ness of PIJ (s, ·)-based inference methods with a pivotal limit distribution, the classical bootstrap seems to be
a useful choice of a resampling method. To this end, a bootstrap sample χ∗ is obtained by randomly drawing
quadruples (Xi, Zi, Yi, δi) n times with replacement from the original sample χ. This bootstrap sample is used
to recalculate the transition probability estimator, resulting in

P ∗IJ (s, t) = F ∗1 (t) + F ∗0 (t)p∗J |I(t), t ∈ [s, τ ].

For this bootstrap counterpart, a central limit theorem similar to the main Theorem 1 holds:
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Theorem 2 Under conditions (1) to (4), as n → ∞, and given χ, the following conditional convergence in

distribution on D[s, τ ] holds in probability:

√
n(P ∗IJ (s, ·)− P̂IJ (s, ·))→ U (6)

where U is the same Gaussian process as in Theorem 1.

That is, the bootstrap succeeds in correctly recovering the limit distribution of the transition probability estimate
P̂IJ (s, ·), enabling an approximation of its finite sample distribution.

3 Inference Procedures

3.1 Conditional Expected Length of Stay

A practical application of both main theorems is a two-sample comparison of expected lengths of stay in the
state set of interest, J , given occupation of a fixed state set I at time s ∈ [0, τ ]. Considering temporarily the
above one-sample set-up, the conditional expected length of stay is

eIJ (s, τ) = E
[ ∫ τ

s

1{X(u) ∈ J }du | X(s) ∈ I
]

=

∫ τ

s

P (X(u) ∈ J | X(s) ∈ I)du;

see e.g. Grand and Putter (2016) for a pseudo-observation regression treatment. An R package for deriving the
change in lengths of stay, that relies on the Aalen–Johansen estimator, is described in Wangler et al. (2006). For
further literature on lengths of stay within multi-state models, see the articles cited therein. In the special case
of a simple survival model, the only expected length of stay of interest is the mean residual lifetime; see e.g.
Meilijson (1972). Here, however, the Markov assumption shall not be imposed such that estimation of the length
of stay is based on the Titman (2015) estimator.

Sample-specific quantities are furnished with a superscript (`), ` = 1, 2. For instance, P̂ (1)
IJ (s, t) is the first

sample’s transition probability estimate to switch into some state of J at time t given that a state of I is occupied
at time s. The sample sizes n1 and n2 may be different. We would like to test the null hypothesis

HJ |I : e
(1)
IJ (s, τ) ≥ e

(2)
IJ (s, τ) versus KJ |I : e

(1)
IJ (s, τ) < e

(2)
IJ (s, τ).

If J is a favourable set of states, then the rejection of HJ |I is an indication of the superiority of the second
treatment over the first. A reasonable estimator of e(`)

IJ (s, τ) is ê(`)
IJ (s, τ) =

∫ τ
s
P̂

(`)
IJ (s, u)du, ` = 1, 2,. Note

that, even under the boundary ∂HJ |I : e
(1)
IJ (s, τ) = e

(2)
IJ (s, τ), the underlying transition probabilities P (1)

IJ and
P

(2)
IJ are allowed to differ. Hence, we do not rely on the restrictive null hypothesis H̃ : P

(1)
IJ ≡ P

(2)
IJ but rather on

the hypothesis HJ |I of actual interest.
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Theorem 3 Under conditions (1) to (4) and if 0 < lim inf n1/n2 ≤ lim supn1/n2 < ∞ as n → ∞, the

following convergence in distribution holds:

√
n1n2

n1 + n2

ê
(1)
IJ (s, τ)− ê(2)

IJ (s, τ)

σ̂IJ
→ N(0, 1).

Here, σ̂2
IJ is any consistent estimator, e.g., found via plug-in, of the asymptotic variance

σ2
IJ = (1− λ)

∫ τ

s

∫ τ

s

Γ
(1)
IJ (u, v)dudv + λ

∫ τ

s

∫ τ

s

Γ
(2)
IJ (u, v)dudv

along subsequences of n1/(n1 + n2)→ λ ∈ (0, 1).

Replacing all estimators in the previous theorem by their bootstrap counterparts, where both underlying bootstrap
samples χ(1)∗ and χ(2)∗ are obtained by n1 and n2 times independently and separately drawing with replacement
from χ(1) and χ(2), respectively, a similar convergence in conditional distribution given χ(1) ∪ χ(2) holds in
probability. This result may be used for bootstrap-based and asymptotically exact confidence intervals for the
difference in the conditional expected lengths of stay, e(1)

IJ (s, τ)− e(2)
IJ (s, τ); see Sections 4 and 5 below.

3.2 Simultaneous Confidence Bands

Even though the bootstrap procedure is useful but not strictly necessary for inference on the expected length
of stay, it plays an essential role in time-simultaneous inference on the transition probabilities t 7→ PIJ (s, t).
This is due to the unknown stochastic behaviour of the limit process U which, again in the context of creating
confidence bands, is also the reason for the inevitableness of resampling procedures for Aalen-Johansen estima-
tors even if the Markov assumption is fulfilled; see Bluhmki et al. (2018) for theoretical justifications and their
practical performance.

For the derivation of reasonable time-simultaneous 1 − α ∈ (0, 1) confidence bands for PIJ (s, ·) on a time
interval [t1, t2] ⊂ [s, τ ] based on P̂IJ (s, ·) in combination with the bootstrap, we focus on the process

Bn : t 7−→
√
n · w(t) · (φ(P̂IJ (s, t))− φ(PIJ (s, t))), t ∈ [t1, t2],

where a transformation φ will ensure bands within the probability bounds 0% and 100%, and a suitable mul-
tiplicative weight function w will stabilize the bands for small samples. In particular, we use one of the log-
log transformations φ1(p) = log(− log(p)) or φ2(p) = log(− log(1 − p)) (Lin, 1997), depending on whether
we expect PIJ (s, t1) to be closer to 1 or 0. As weight function, for transformation k ∈ {1, 2}, we choose
w1k(t) = [φ′k(P̂IJ (s, t)) · σ̂IJ (t)]−1,

w21(t) = −
(
φ′1(P̂IJ (s, t)) · P̂IJ (s, t) ·

[
1 +

σ̂2
IJ (t)

P̂ 2
IJ (s, t)

])−1

= − log(P̂IJ (s, t))/
[
1 +

σ̂2
IJ (t)

P̂ 2
IJ (s, t)

]−1

,
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or w22(t) =
(
φ′2(P̂IJ (s, t)) · (1− P̂IJ (s, t)) ·

[
1 +

σ̂2
IJ (t)

(1− P̂IJ (s, t))2

])−1

= − log(1− P̂IJ (s, t))/
[
1 +

σ̂2
IJ (t)

(1− P̂IJ (s, t))2

]−1

.

With these choices, the resulting confidence bands will correspond to the classical equal precision (EP) bands
for w = w1k or the Hall-Wellner (H-W) bands for w = w2k if J is an absorbing subset of states; cf. p. 265ff.
in Andersen et al. (1993) for the survival case and k = 1 or Lin (1997) in the presence of competing risks and
k = 2.

The confidence bands are found by solving for PIJ (s, t) in the probability P (supt∈[t1,t2] |Bn(t)| ≤ q1−α) =

1 − α. Here, the value of q1−α is approximated by the (1 − α)-quantile q∗1−α of the conditional distribution of
the supremum of the bootstrap version B∗n(t) =

√
n ·w∗(t) · (φ(P ∗IJ (s, t))−φ(P̂IJ (s, t))) of Bn given the data,

where in the definition of w∗ all estimators P̂IJ (s, t) and σ̂IJ (t) are replaced with their bootstrap counterparts
P ∗IJ (s, t) and σ∗IJ (t).

Finally, the resulting 1− α confidence bands for t 7→ PIJ (s, t) are as follows:

CB1k = [φ−1
1 (φ1(P̂IJ (s, t))∓ q∗1−α/(

√
nw1k(t)))]t1≤t≤t2

= [P̂IJ (s, t)exp(∓q∗1−α/(
√
nw1k(t)))]t1≤t≤t2

and CB2k = [φ−1
2 (φ2(P̂IJ (s, t))∓ q∗1−α/(

√
nw2k(t)))]t1≤t≤t2

= [1− (1− P̂IJ (s, t))exp(∓q∗1−α/(
√
nw2k(t)))]t1≤t≤t2

The performance of these confidence bands as well as the confidence band obtained from not transforming or
weighting the transition probability estimator are assessed in a simulation study in the subsequent sections.

4 Simulation Study

4.1 Conditional Expected Length of Stay

To assess the performance of the conditional length of stay estimators for finite sample sizes a small simu-
lation study is conducted. Data are simulated from a pathological non-Markov model in which the subse-
quent dynamics of the process depend on the state occupied at t = 4. A three-state illness-death model
with recovery is used where the state 0 means “healthy”, 1 “ill”, and 2 “dead”. The transition intensities are
λ02(t) = 0.02, λ10(t) = 0.3, λ12(t) = 0.1, while

λ01(t) =

0.3 if X(4) = 1, t > 4

0.6 otherwise.
(7)

In the last part of the appendix we prove that the conditions (1)–(4) are satisfied in the present set-up. Subjects
are independently right-censored via an exponential distribution with rate 0.04. We focus on the expected length
of stay in the health state conditional on an earlier illness at time s = 5, i.e. I = {1} and J = {0}. For
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Table 1: Empirical bias and coverage of nominal 95% confidence intervals for simulated datasets

Bias Coverage %
n AJ NM Wald (AJ) Wald (NM) Naive bootstrap Bootstrap-t

50 -0.231 0.181 92.09 91.01 94.23 90.85
100 -0.268 0.085 89.95 94.54 94.08 94.43
150 -0.279 0.063 88.14 95.24 94.21 95.00
200 -0.297 0.033 86.34 95.56 94.54 95.43

each simulated dataset, e10(5, 30) is estimated and 95% confidence intervals are constructed via three methods;
a Wald interval using the plug-in variance estimator σ̂10 of σ10, in which the canonical estimators of p0|1, F0,
Σ00, Σ0G, and ΣGG are chosen, a classical bootstrap and a bootstrap-t procedure using the bootstrap-version of
σ̂10 to studentize the bootstrap samples. For each bootstrap, B = 1000 samples are generated.

In the present three-state model, the Titman (2015) transition probability estimator reduces to P̂10(5, t) =P̂IJ (5, t) =

F̂0(t)p̂J |I(t)= F̂0(t)p̂0|1(t) because the healthy state is non-absorbing. Thus, the asymptotic variance of each
sample-specific conditional expected length of stay estimator is∫ τ

s

∫ τ

s

(
p0|1(u)p0|1(v)Σ00(u, v) + F0(u)F0(v)ΣGG(u, v)

+ p0|1(u ∨ v)F0(u ∧ v)Σ0G(u ∧ v, u ∨ v)
)

dudv.

As a competing method, Aalen–Johansen estimator-based Wald-type confidence intervals are constructed for
the same expected length of stay. Standard arguments yield that the asymptotic covariance function of the
normalized Aalen–Johansen estimator for the 1→ 0 transition is (r, t) 7→

2∑
j=0

∑
k 6=j

∫ r∧t

s

P 2
1j(s, u)(Pk0(u, t)− Pj0(u, t))(Pk0(u, r)− Pj0(u, r))

αjk(u)

yj(u)
du;

cf. Section IV.4.2 in Andersen et al. (1993) for the corresponding particular variance formula. The expected
length of stay asymptotic variance again results from a double integral of this covariance function with integra-
tion range r, t ∈ (s, τ ].

We consider several different scenarios for the total sample size, n = 50, 100, 150, and 200. Note that
the non-Markov estimator only uses the subgroup of subjects satisfying Ci > 5, Xi(t) = 1 which corresponds
to only 0.367n subjects, on average. For each of the scenarios, 10000 datasets are generated. As a result the
empirical coverage percentages have approximate Monte-Carlo standard error of around 0.2.

The simulation results are shown in Table 1. Both the Aalen-Johansen and non-Markov estimator have
substantial bias when n = 50 leading to under coverage of all the nominal 95% confidence intervals. For larger
n, both of the bootstrap confidence intervals and the Wald-based interval for the non-Markov estimator give
close to nominal coverage. The coverage of the Aalen-Johansen based Wald confidence interval deteriorates
with increasing n due to the estimator being inherently biased.
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Table 2: Empirical coverage of nominal 95% simultaneous confidence bands for p21(5, t) for t ∈ (6, 7]. H-W =
Hall-Wellner, EP = Equal precision

Non-Markov Aalen-Johansen
n H-W EP Naive EP

50 0.9996 0.9972 0.9226 0.9154
100 0.9896 0.9846 0.9238 0.9188
150 0.9604 0.9542 0.9298 0.9230
200 0.9496 0.9496 0.9420 0.9124

4.2 Simultaneous Confidence Bands

To investigate the coverage probabilities of simultaneous confidence bands introduced in Section 3.2, datasets are
simulated under the same non-Markov model as above, again considering total sample sizes of n = 50, 100, 150,

and 200 patients. 95% simultaneous confidence bands are constructed for p21(5, t) for t ∈ (6, 7]. For the non-
Markov estimator, in addition to the Hall-Wellner and equal precision bands using the transformation φ2(p), a
naive confidence band based on a constant weight function, w(t) ≡ 1, and an identity transformation, φ(p) = p,
is also constructed. In addition, for the Aalen-Johansen estimates, EP bands based on φ2(p), are constructed via
the wild bootstrap using the R code which has been made available in the supplement to Bluhmki et al. (2018).
In all cases, for each bootstrap B = 1000 samples are generated.

Table 2 gives the empirical coverage probabilities of the simultaneous confidence bands based on 5000
simulated datasets. For the bands based on the Non-Markov estimator, the H-W and EP bands tend to over-
cover quite markedly for small sample sizes, while the naive bands under-cover. Adequate coverage is achieved
for the H-W and EP bands by n = 200. Since the Aalen-Johansen estimator is biased for this scenario we would
expect the coverage of the EP Aalen-Johansen bands to deteriorate with increasing sample size. However, it
appears this is counteracted by the estimated quantiles, q∗1−α increasing with n. As a consequence, the coverage
initially grows with increasing n before beginning to decrease.

5 Application to the Liver Cirrhosis Data-Set

As an illustrative example we consider the liver cirrhosis data set introduced by Andersen et al. (1993) and
also analyzed by Titman (2015). Patients were randomized to either a treatment of prednisone (251 patients)
or a placebo (237 patients). A three-state illness-death model with recovery is assumed where the healthy and
illness states correspond to normal and elevated levels of prothrombin, respectively. A potential measure of
the effectiveness of prednisone as a treatment is the expected length-of-stay in the normal prothrombin level
state, from a defined starting point. Specifically we consider ∆e10 = e

(1)
10 (s, τ) − e

(2)
10 (s, τ), the difference in

conditional expected length-of-stay in normal prothrombin levels, given the patient is alive and with abnormal
prothrombin at time s, for the prednisone and placebo groups, corresponding to ` = 1 and ` = 2, respectively.
Titman (2015) observed an apparent treatment difference with respect to the transition probabilities with respect
to s = 1000 days post-randomization. We consider the expected length-of-stay in state 0 up to time τ = 3000

days.
In this case, n1 = 26 patients in the prednisone group and n2 = 35 patients in the placebo group meet the
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Table 3: Estimated difference in conditional length-of-stay for liver cirrhosis data

Method ∆e10 95% CI

Wald 375.3 (-2.1, 752.8)
Naive bootstrap 375.3 (14.7, 740.0)
Bootstrap-t 375.3 (-5.1, 747.3)
AJ (Wald) 11.9 (-217.3, 241.1)

condition thatXi(1000) = 1 and Yi(1000) = 1. Bootstrap based confidence intervals are constructed using 1000

bootstrap samples within each group.
Table 3 shows the three constructed 95% confidence intervals, which are broadly similar, although the naive

bootstrap interval excludes 0, whereas the Wald and bootstrap-t intervals do not. The Aalen-Johansen based
estimate and a Wald confidence interval is also given. It is seen that there is a dramatic difference between the
non-Markov and Aalen-Johansen estimates, with the latter indicating no treatment difference. Potentially, the
apparent non-Markov behaviour in the data may be due to patient heterogeneity within the treatment groups.

To illustrate the construction of simultaneous confidence bands we construct 95% confidence bands for
P21(500, t), in the interval t ∈ (750, 1250]. Since it was seen in Section 4 that reasonable sample size is required
for good coverage an earlier start time is used here than for the estimate of the expected length of stay to ensure
sufficient numbers of patients are under observation. Since we expect P21(500, t) < 0.5, we chose the confidence
bands using the transformation φ2(p) = log(− log(1− p)).

Figure 1 shows the confidence bands for the placebo and prednisone groups using Hall-Wellner and equal
precision intervals using the non-Markov estimator and using the equal precision intervals for the Aalen-Johansen
estimator.

6 Discussion

To the best of our knowledge, our paper is the first to prove weak convergence properties of a general transition
probability estimator in independently right-censored non-Markov multi-state models while also providing ex-
plicit formulas of the asymptotic covariance functions. Similar proofs have been given for the classical bootstrap,
which finally allows the utilization of the Titman (2015) estimator in time-simultaneous inference procedures.
Unfortunately, when focusing on inference on the expected length of stay for single time points, both bootstrap
methods applied in Section 4 yielded a greater deviance of the nominal coverage level than the simple studenti-
zation method based on the asymptotic quantiles of the standard normal distribution. Even though the simulated
small sample coverage probabilities were more satisfying, other resampling procedures might improve the per-
formance in both, small and large samples. For example, the martingale residual multiplier methods of Lin
(1997), Beyersmann et al. (2013), or Dobler et al. (2017) are the method of choice in incomplete competing
risks data and they may be adapted for the present context in a future paper.

On the other hand, the time-simultaneous confidence bands derived in this paper cannot rely on a purely
asymptotic quantile finding approach. Instead, they truly require a resampling method such as the bootstrap
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Figure 1: Simultaneous confidence bands for the placebo and prednisone groups for the liver cirrhosis dataset
using the non-Markov estimator (left panels) and Aalen-Johansen estimator (right panels).
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method developed here. Furthermore, the simulation results in Section 4.2 and the application to the liver
cirrhosis data set in Section 5 demonstrate their practical usefulness: not only did they reveal reliable coverage
probabilities for relatively small sample sizes already. They were also only slightly wider than the confidence
bands based on the Aalen-Johansen estimator for which there is no guarentee of applicability.

Another field of possible future interest is the extension of the present methodology to quality-adjusted sums
of expected lengths of stay in a specific sub-set of states; cf. Williams (1985) who proposed such quality-
adjusted life years for operation considerations. For instance, the expected length of stay in a healthy state could
be weighted with a factor p ∈ (0.5, 1) whereas the length of stay in the illness state obtains the weight 1 − p.
The specific choice of p may be obtained from additional information on, e.g., the pain scores of patients in the
illness state and may be chosen individually by the patients themselves. This way, a comparison of treatments
could be achieved that more realistically accounts for the circumstances of a specific disease. However, one
should bear in mind the controversial debate on quality-adjusted life years as articulated by e.g. Harris (1987);
see also the discussion of the paper by Cox et al. (1992). Therein, G. W. Torrance appreciates the usefulness
of quality-adjusted life years for resource allocation if combined with other measures and advices: He states
that quality-adjusted life years “were never intended for clinical decision-making - they were developed for use
in resource allocation.” They should also be reported together with other important measures for reaching a
decision. Finally, one should add “a thorough sensitivity analysis and thoughtful discussion, including caveats”
to obtain an informative quality-adjusted life years analysis.

Finally, reconsider the data analysis in Section 5 where the Aalen–Johansen estimator yielded a difference of
expected lengths of stay which drastically deviates from the same quantity based on the Titman (2015) estimator.
This might be considered as a strong evidence against the Markov assumption. If, on the other hand, a formal
test of Markovianity does not find such evidence, the resulting estimated lengths of stay might be comparable
as well. Even more can be gained by means of such tests: as apparent from the mentioned liver cirrhosis data
example, the confidence intervals and simultaneous confidence bands based on the Aalen–Johansen estimator
are much narrower, resulting from the efficiency of this estimator in comparison to non-Markov transition prob-
ability estimates. Equivalently, test procedures based on the classical estimator are more powerful in detecting
deviances from null hypotheses. Therefore, formal tests for the applicability of the classical Aalen–Johansen
estimator shall be developed in future articles.
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A Asymptotic covariance functions and comments on their estimation

We begin by stating all covariance functions which are involved in the limit theorems. In particular, introducing
the following covariance functions will prove to be useful:

ΣJI(u, v) = P (X(s) ∈ I, X(u) ∈ J , X(v) ∈ J , Y (u ∨ v) = 1)− pJI(u)pJI(v)

ΣI(u, v) = pI(u ∨ v)− pJI(u)pJI(v)

ΩJI(u, v) = P (X(s) ∈ I, X(u) ∈ J , Y (u ∨ v) = 1)− pJI(u)pI(v).

With these abbreviations, we conveniently introduce the asymptotic covariance functions which appear in Lemma 1
of the manuscript. Their derivation in detail will be done in the next section.

cov(GJ |I(u), GJ |I(v))

=
ΣJI(u, v) + ΣI(u, v)pJ |I(u)pJ |I(v)− ΩJI(u, v)pJ |I(v)− ΩJI(v, u)pJ |I(u)

pI(u)pI(v)

cov(L0(r), GJ |I(u)) =
1{u < r}
pI(u)

(PIJ 0(s, u, r)− F0(r)pJ |I(u)),

cov(L1(t), GJ |I(u))

=
1{u < t}
pI(u)

(PIJ 1(s, u, t)− F1(u)− pJ |I(u)(F1(t)− F1(u))),

cov(L0(r), L1(t)) = −F0(r)

∫ r∧t

s

dF1(v)

pI(v)
.

The asymptotic variance-covariance functions of the Kaplan–Meier and the Aalen–Johansen estimator for differ-
ent time points are well-known and therefore not listed. The derivation of cov(L0(r), GJ |I(u)) and cov(L1(t), GJ |I(u))

will be made explicit in Section F below. In the display above, we used PIJ k(s, u, t) = P (Z(t) = k,X(u) ∈
J | X(s) ∈ I), k = 1, 2. Note that these functions may be decomposed into

P (Z(t) = k | X(u) ∈ J , X(s) ∈ I)PIJ (s, u)

of which the first probability is again estimable by Kaplan–Meier or Aalen–Johansen-type estimators based on
those individuals that are observed to satisfy X(u) ∈ J and X(s) ∈ I. Hence, consistent plug-in estimates of
the above covariance function are found easily. However, the number of individuals satisfying that X(u) ∈ J
and that X(s) ∈ I is observed might be quite small in practical applications. This could lead to a large variance
of the estimators of PIJ k(s, u, t).

B Proof of Lemma 1

The large sample properties concerning the conditional Kaplan–Meier estimator F̂0 and the conditional Aalen–
Johansen estimator F̂1 follow from standard theory. Their variance-covariance functions are obtained in the same
way. The asymptotic covariance functions between p̂J |I and F̂0 as well as F̂1 are derived in Appendix F below.
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For technical reasons, we consider weak convergence on the càdlàg space D[s, τ ] equipped with the supremum
norm instead of the usual Skorohod metric. In case of continuous limit sample paths, weak convergence on
the Skorohod and the supremum-normed càdlàg space are equivalent; cf. Gill (1989), p. 110 in Andersen
et al. (1993), or p. 137 in Pollard (1984). The advantage is that the functional delta-method is available on
the supremum-normed space. Additionally, the general Aalen–Johansen estimator is known to have continuous
limit distribution sample paths; cf. Theorem IV.4.2 in Andersen et al. (1993). However, this may not be true for
the weak limit of

√
n(p̂J |I−pJ |I) as n→∞ because the censoring distribution may have discrete components.

This problem is solved by an application of a technique as used by Akritas (1986): Each discrete censoring
components is distributed uniformly on adjacent, inserted small time intervals during which no state transition
can occur. Instead, all future state transitions are shifted by the preceding interval lengths. Write WJI =
√
n(p̂JI − pJI) and WI =

√
n(p̂I − pI), where pJI(t) = P (X(s) ∈ I, X(t) ∈ J , Y (t) = 1) and pI(t) =

P (X(s) ∈ I, Y (t) = 1). The resulting weak limit sample paths of the time transformed
√
n(p̂I − pI) and

√
n(p̂JI − pJI) will be continuous and the functional delta-method is applicable to obtain the corresponding

result for p̂J |I . Note that the values of none of these processes were modified outside the just inserted small time
intervals. Finally, the projection functional, which projects a time-transformed process to the original time line,
is continuous. Hence, the continuous mapping theorem eventually yields the desired central limit theorem for
the process

√
n(p̂J |I − pJ |I) as n→∞.

It remains to give a weak convergence proof of the finite-dimensional margins of the process
√
n(p̂J |I −

pJ |I) and to verify its tightness under the temporary assumption of continuously distributed censoring times.
Combining both properties, weak convergence on D[s, τ ] follows, as indicated above.

Finite-Dimensional Marginal Distributions

Weak convergence of the finite-dimensional margins is shown by applying the functional delta-method after
utilizations of the central limit theorem. The weak convergences of all finite-dimensional marginal distributions
are easily obtained by the multivariate central limit theorem: For m ∈ N points of time, s ≤ t1 < · · · < tm ≤ τ ,
consider (WJI(t1), . . . ,WJI(tm))′ → (G̃JI(t1), . . . , G̃JI(tm))′ ∼ N(0,ΣJI) in distribution, as n→∞, with
(j, k)th covariance entry

P (X(s) ∈ I, X(tj) ∈ J , X(tk) ∈ J , Y (tj ∨ tk) = 1)− pJI(tj)pJI(tk).

Similarly, (WI(t1), . . . ,WI(tm))′ → (G̃I(t1), . . . , G̃I(tm))′ ∼ N(0,ΣI) in distribution, as n → ∞, with
(j, k)th covariance entry

cov(WI(tj),WI(tk)) = pI(tj ∨ tk)− pI(tj)pI(tk).

The convergence of both vectors even holds jointly, implying that the (j, k)th entry of the covariance matrix ΩJI

of both limit vectors is given by

Ω
[j,k]
JI =cov(G̃JI(tj), G̃I(tk)) = cov(WJI(tj),WI(tk))

= P (X(s) ∈ I, X(tj) ∈ J , Y (tj ∨ tk) = 1)− pJI(tj)pI(tk).
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Denote by D>0[s, τ ] the subset of càdlàg functions with are positive and bounded away from zero, which is
equipped with the supremum norm. Note that φ : D[0, τ ]×D>0[s, τ ]→ D[s, τ ], (f, g) 7→ f

g
defines a Hadamard-

differentiable map with Hadamard-derivative φ′(f,g)(h1, h2) = h1
g
− h2

f
g2

, with h1, h2 ∈ D[s, τ ]. This of course
also implies Fréchet-differentiability on all finite-dimensional projections. Therefore, the multivariate delta-
method yields the convergence in distribution

√
n(p̂J |I(t1)− pJ |I(t1), . . . , p̂J |I(tm)− pJ |I(tm))′ → (GJ |I(t1), . . . , GJ |I(tm))′

=
(G̃JI(t1)

pI(t1)
− G̃I(t1)

pJ |I(t1)

p2
I(t1)

, . . . ,
G̃JI(tm)

pI(tm)
− G̃I(tm)

pJI(tm)

p2
I(tm)

)′
,

as n→∞. The asymptotic covariance matrix ΓJ |I has (j, k)th entry

Σ
[j,k]
JI

pI(tj)pI(tk)
+ Σ

[j,k]
I

pJI(tj)pJI(tk)

p2
I(tj)p

2
I(tk)

− Ω
[j,k]
JI

pJI(tk)

pI(tj)p2
I(tk)

− Ω
[k,j]
JI

pJI(tj)

pI(tk)p2
I(tj)

=
1

pI(tj)pI(tk)

(
Σ

[j,k]
JI + Σ

[j,k]
I pJ |I(tj)pJ |I(tk)− Ω

[j,k]
JI pJ |I(tk)− Ω

[k,j]
JI pJ |I(tj)

)
.

Tightness

We will show tightness on the Skorohod space D[s, τ ] of càdlàg functions by showing that a modulus of conti-
nuity becomes small in probability; see Theorem 13.5 in Billingsley (1999). Remember that this property will
imply weak convergence on the Skorohod space D[s, τ ] which, due to the temporary continuity of the limit
processes, is equivalent to weak convergence on the supremum-normed space.

Now, for the modulus of continuity, we consider for any small δ > 0 the expectation

sup
s≤t1≤t≤t2≤τ
t2−t1≤δ

E
(
|WI(t)−WI(t1)|2|WI(t2)−WI(t)|2

)
. (8)

We start by rewriting WI(t)−WI(t1) as

1√
n

n∑
`=1

(1{X`(s) ∈ I, Y`(t1) = 1, Y`(t) = 0} − P (X(s) ∈ I, Y (t1) = 1, Y (t) = 0))

=
1√
n

n∑
`=1

(ZI10;`(s, t1, t)− rI10(s, t1, t)).

Note that, in the product appearing in (8), the products of the above indicator functions with identical indices
vanish for unequal time pairs (t1, t) and (t, t2). Additionally, due to the independence of all individuals, all
terms with a single separate index ` vanish too. Hence, by an application of the Cauchy-Schwarz inequality, the
expectation in (8) is bounded above by

3E[(ZI10;1(s, t1, t)− rI10(s, t1, t))
2]E[(ZI10;1(s, t, t2)− rI10(s, t, t2))2]

+
1

n
E[(ZI10;1(s, t1, t)− rI10(s, t1, t))

2(ZI10;1(s, t, t2)− rI10(s, t, t2))2]
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=3rI10(s, t1, t)(1− rI10(s, t1, t))rI10(s, t, t2)(1− rI10(s, t, t2))

+
1

n
[r2
I10(s, t1, t)rI10(s, t, t2)(1− 2rI10(s, t, t2))

+ r2
I10(s, t, t2)rI10(s, t1, t)(1− 2rI10(s, t1, t)) + r2

I10(s, t1, t)r
2
I10(s, t, t2)]

≤4rI10(s, t1, t)rI10(s, t, t2)

for all n ≥ 3. Let SC(t) = pr(C > t) denote the survival function of the censoring times and let r1(t) =

P (Y (t) = 1) ≤ SC(t) denote the (unconditional) probability to be still under risk at time t. By the temporarily
continuous censoring distribution, r1 is a continuous and non-decreasing function and thus it is suitable for an
application of Theorem 13.5 in Billingsley (1999). Then the terms in the above display are not greater than

4(r1(t1)− r1(t))(r1(t)− r1(t2)) ≤ 4(r1(t1)− r1(t2))2.

Hence, tightness in the Skorohod space D[s, τ ] of the process
√
n(p̂I − pI) affiliated with the denominator of

p̂J |I follows.
It remains to prove tightness of the numerator process. At first, we rewrite for t1 < t < t2

WJI(t)−WJI(t1) =
1√
n

n∑
`=1

(ζI01;`(s, t1, t)− ζI10;`(s, t1, t)− ζI11;`(s, t1, t)

− qI01(s, t1, t) + qI10(s, t1, t) + qI11(s, t1, t))

=
1√
n

n∑
`=1

(1{X`(s) ∈ I, X`(t1) /∈ J,X`(t) ∈ J , Y`(t) = 1}

− 1{X`(s) ∈ I, X`(t1) ∈ J , X`(t) /∈ J , Y`(t) = 1}

− 1{X`(s) ∈ I, X`(t1) ∈ J , Y`(t1) = 1, X`(t) ∈ J , Y`(t) = 0}

− E(ζI01;1(s, t1, t)) + E(ζI10;1(s, t1, t)) + E(ζI11;1(s, t1, t))).

For later calculations, we derive products of the ζ-indicators for different points of time:

ζI01;`(s, t1, t)ζI01;`(s, t, t2) = 0,

ζI10;`(s, t1, t)ζI10;`(s, t, t2) = 0,

ζI11;`(s, t1, t)ζI11;`(s, t, t2) = 0,

ζI01;`(s, t1, t)ζI10;`(s, t, t2)

= 1{X`(s) ∈ I, X`(t1) /∈ J , X`(t) ∈ J , X`(t2) /∈ J , Y`(t2) = 1}

= ζI010;`(s, t1, t, t2),

ζI10;`(s, t1, t)ζI01;`(s, t, t2)

= 1{X`(s) ∈ I, X`(t1) ∈ J , X`(t) /∈ J , X`(t2) ∈ J , Y`(t2) = 1}

= ζI101;`(s, t1, t, t2),

ζI01;`(s, t1, t)ζI11;`(s, t, t2)
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= 1{X`(s) ∈ I, X`(t1) /∈ J , X`(t) ∈ J , X`(t2) ∈ J , Y`(t) = 1, Y`(t2) = 0}

= ζI011;`(s, t1, t, t2),

ζI11;`(s, t1, t)ζI01;`(s, t, t2) = 0,

ζI10;`(s, t1, t)ζI11;`(s, t, t2) = 0,

ζI11;`(s, t1, t)ζI10;`(s, t, t2) = 0.

Therefore, the expectation to be bounded for verifying tightness has the following structure:

E
(
|WJI(t)−WJI(t1)|2|WJI(t2)−WJI(t)|2

)
≤ 1

n
E
(

(ζI01;1(s, t1, t)− ζI10;1(s, t1, t)− ζI11;1(s, t1, t)

− qI01(s, t1, t) + qI10(s, t1, t) + qI11(s, t1, t))
2

(ζI01;1(s, t, t2)− ζI10;1(s, t, t2)− ζI11;1(s, t, t2)

− qI01(s, t, t2) + qI10(s, t, t2) + qI11(s, t, t2))2
)

+ 3E
(

(ζI01;1(s, t1, t)− ζI10;1(s, t1, t)− ζI11;1(s, t1, t)

− qI01(s, t1, t) + qI10(s, t1, t) + qI11(s, t1, t))
2
)

E
(

(ζI01;1(s, t, t2)− ζI10;1(s, t, t2)− ζI11;1(s, t, t2)

− qI01(s, t, t2) + qI10(s, t, t2) + qI11(s, t, t2))2
)
,

where the inequality follows from an application of the Cauchy-Schwarz inequality. The terms in the previous
display are not greater than

9

n
E
(

[(ζI01;1(s, t1, t)− qI01(s, t1, t))
2 + (ζI10;1(s, t1, t)− qI10(s, t1, t))

2

+ (ζI11;1(s, t1, t)− qI11(s, t1, t))
2][(ζI01;1(s, t, t2)− qI01(s, t, t2))2

+ (ζI10;1(s, t, t2)− qI10(s, t, t2))2 + (ζI11;1(s, t, t2)− qI11(s, t, t2))2]
)

+ 27E
(

(ζI01;1(s, t1, t)− qI01(s, t1, t))
2 + (ζI10;1(s, t1, t)− qI10(s, t1, t))

2

+ (ζI11;1(s, t1, t)− qI11(s, t1, t))
2
)
E
(

(ζI01;1(s, t, t2)− qI01(s, t, t2))2

+ (ζI10;1(s, t, t2)− qI10(s, t, t2))2 + (ζI11;1(s, t, t2)− qI11(s, t, t2))2
)
.

It remains to calculate and bound the single expectations.

E
(

(ζI01;1(s, t1, t)− qI01(s, t1, t))
2
)

= qI01(s, t1, t)(1− qI01(s, t1, t)) ≤ qI01(s, t1, t)

holds by the same reasons as above and a similar representation holds for the other second moments. By
conditions (1) to (4) in the manuscript, there is a global constant K > 0, that is independent of t1, t, t2, n,
such that qI01(s, t1, t) ≤ (λJ̄ J (t) + K)(t − t1). Similarly, qI10(s, t1, t) ≤ (λJ J̄ (t) + K)(t − t1) as well as
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qI11(s, t1, t) ≤ r1(t1)− r1(t).
The first expectation (involving fourth moments) contains the following terms:

e1 =E
(

(ζI01;1(s, t1, t)− qI01(s, t1, t))
2(ζI01;1(s, t, t2)− qI01(s, t, t2))2

)
,

e2 =E
(

(ζI10;1(s, t1, t)− qI10(s, t1, t))
2(ζI10;1(s, t, t2)− qI10(s, t, t2))2

)
,

e3 =E
(

(ζI11;1(s, t1, t)− qI11(s, t1, t))
2(ζI11;1(s, t, t2)− qI11(s, t, t2))2

)
,

e12 =E
(

(ζI01;1(s, t1, t)− qI01(s, t1, t))
2(ζI10;1(s, t, t2)− qI10(s, t, t2))2

)
,

e21 =E
(

(ζI10;1(s, t1, t)− qI10(s, t1, t))
2(ζI01;1(s, t, t2)− qI01(s, t, t2))2

)
,

e13 =E
(

(ζI01;1(s, t1, t)− qI01(s, t1, t))
2(ζI11;1(s, t, t2)− qI11(s, t, t2))2

)
,

e31 =E
(

(ζI11;1(s, t1, t)− qI11(s, t1, t))
2(ζI01;1(s, t, t2)− qI01(s, t, t2))2

)
,

e23 =E
(

(ζI10;1(s, t1, t)− qI10(s, t1, t))
2(ζI11;1(s, t, t2)− qI11(s, t, t2))2

)
,

e32 =E
(

(ζI11;1(s, t1, t)− qI11(s, t1, t))
2(ζI10;1(s, t, t2)− qI10(s, t, t2))2

)
.

For the expectation, first we obtain

e1 = 0− 2E(ζI01;1(s, t1, t)qI01(s, t1, t)q
2
I01(s, t, t2))

− 2E(ζI01;1(s, t, t2)qI01(s, t, t2)q2
I01(s, t1, t)) + q2

I01(s, t1, t)q
2
I01(s, t, t2)

= −3q2
I01(s, t1, t)q

2
I01(s, t, t2).

Similarly, we have e2, e3, e31, e23, e32 ≤ 0. It remains to consider e12, e13, and e21.

e21 = E(ζI10;1(s, t1, t)(ζI10;1(s, t1, t)− 2qI10(s, t1, t))

× ζI01;1(s, t, t2)(ζI01;1(s, t, t2)− 2qI01(s, t, t2)))− 3q2
I10(s, t1, t)q

2
I01(s, t, t2)

= E(ζI101;1(s, t1, t, t2))(1− 2qI01(s, t, t2)− 2qI10(s, t1, t))

− 3q2
I10(s, t1, t)q

2
I01(s, t, t2)

≤ P (X1(s) ∈ I, X1(t1) ∈ J , X1(t) /∈ J , X1(t2) ∈ J , Y1(t2) = 1)

≤ P (X1(t1) ∈ J , X1(t) /∈ J , X1(t2) ∈ J ).

Similarly, e12 ≤ P (X1(t1) /∈ J , X1(t) ∈ J , X1(t2) /∈ J ) and e13 ≤ P (X1(t1) /∈ J , X1(t) ∈ J , C1 ∈
(t, t2]) = P (X1(t1) /∈ J , X1(t) ∈ J )P (C1 ∈ (t, t2]) due to independent right-censoring.

Assume that e12, e13, e21 > 0. Otherwise, nothing needs to be shown. Thus,

e12 ≤P (X1(t2) /∈ J |X1(t) ∈ J , X1(t1) /∈ J )P (X1(t) ∈ J |X1(t1) /∈ J )

× P (X1(t1) /∈ J )

≤P (X1(t2) /∈ J |X1(t) ∈ J , X1(t1) /∈ J )P (X1(t) ∈ J |X1(t1) /∈ J ).
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Due to condition (4), there is a constant K > 0, which is independent of t1, t, t2, n, such that

e12 ≤ (λJ J̄ |J̄ (t2|t) +K)(t2 − t)(λJ̄ J (t) +K)(t− t1) ≤ K̃2(t2 − t1)2

for a global constant K̃ > 0. Similarly e12 ≤ K̃2(t2 − t1)2. Therefore, we conclude that

e13 ≤ (λJ̄ J (t) +K)(t− t1)(SC(t)− SC(t2)) ≤ K̃2(H(t2)−H(t1))2,

for the non-decreasing and continuous function H : x 7→ x+ 1− SC(x).
All in all, we conclude that

E
(
|WJI(t)−WJI(t1)|2|WJI(t2)−WJI(t)|2

)
≤ 27K̃2(t2 − t1)2 + 27(2K̃(t2 − t1) + (r1(t1)− r1(t2)))2

≤ (F (t2)− F (t1))2,

where F (x) = 9K̃(x+1−r1(x)) defines a continuous and non-decreasing function, independently of t1, t, t2, n.
Hence, tightness of the process WJI follows which in turn implies convergence in distribution on the Skorohod
space D[s, τ ]. Finally, proceed as indicated in the beginning of this Appendix section.

C Proof of Theorem 1

The proof of Theorem consists of an application of the functional delta-method applied to theD3[s, τ ]→ D[s, τ ]

functional (f0, f1, p) 7→ f1 + f0p which is Hadamard-differentiable at (F0, F1, pJ |I) with derivative

(h0, h1, k) 7→ h1 + h0pJ |I + kF0.

For the asymptotic covariance function, note that both terms cov(L0(t), GJ |I(r)) and cov(L1(t), GJ |I(r)) vanish
for r ≥ t.

D Proof of Theorem 2

First, the finite-dimensional, conditional marginal distributions of the estimator P̂ ∗ij given χ are shown to be
consistent, as n→∞ for the corresponding marginal distributions of the limit process L1 + L0pJ |I + GJ |IF0.
This is verified via empirical process theory: Let s ≤ t1 < · · · < td ≤ τ be finitely many time points. The
finite-dimensional marginals of the estimator P̂J |I(s, ·) are Hadamard-differentiable functionals of the empirical
process based on

(X`(s), X`(t1), X`(t2), . . . , X`(td), Y`(s), T`, Z`(T`), C` · 1{C` < T`}),

` = 1, . . . , n,
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where T` = inf{t ≥ s : Y`(t) 6= 1} ∧ τ . The empirical process is indexed by the family of functions

F = {f0, f1, . . . , fd, g0, g1t, h1, h2, kt : s ≤ t ≤ τ},

where the particular functions are defined as

f0(x0, x1, . . . , xd, y, t0, z, c) = 1(x0 ∈ I),

fj(x0, x1, . . . , xd, y, t0, z, c) = 1(xj ∈ J ), j = 1, . . . , d,

g0(x0, x1, . . . , xd, y, t0, z, c) = 1(y = 1),

g1t(x0, x1, . . . , xd, y, t0, z, c) = 1(t0 ≤ t),

h1(x0, x1, . . . , xd, y, t0, z, c) = 1(z = 1),

h2(x0, x1, . . . , xd, y, t0, z, c) = 1(z = 2),

kt(x0, x1, . . . , xd, y, t0, z, c) = 1(c ≤ t).

Certainly, F defines a Donsker class. The derivation of the Kaplan–Meier estimator based on parts of this
empirical process has been verified in Section 3.9 of van der Vaart and Wellner (1996). This similarly holds for
the Aalen–Johansen estimator under competing risks by another, final application of the Wilcoxon functional
and the use of the cause-specific Nelson–Aalen estimator; see Section F below for a more detailed derivation.
The proportion-type estimator p̂J |I(tj), j = 1, . . . , d, is given by a simple Hadamard-differentiable functional of
the empirical process indexed by the functions f0, fj, g1t. Therefore, combining again all separate estimators, the
functional delta-method is applicable to the bootstrap empirical process and the same Hadamard-differentiable
functional as well (in outer probability); see Chapter 3.6 in van der Vaart and Wellner (1996) for details. It
follows that the conditional finite-dimensional marginal distributions of

√
n(P ∗IJ (s, ·) − P̂IJ (s, ·)) converge

weakly to the limit distributions of the original normalized estimator.
Second, conditional tightness in probability needs to be verified. To this end, we utilize a variant of the tight-

ness criterion in Theorem 13.5 in Billingsley (1999), in which the involved continuous, non-decreasing function
F may depend on the sample size n and it need not be continuous, but only point-wise convergent and asymp-
totically continuous. See the Appendix A.1 in the PhD thesis by Dobler (2016) or the comment on p. 356 in
Jacod and Shiryaev (2003) for details. As in the first part of this appendix, we assume without loss of generality
that the censoring distribution is continuous. To verify tightness, we consider the conditional version of expec-
tation that we bounded accordingly for verifying tightness of the original, normalized estimator in the first part
of this appendix. All quantities with a superscript star are the obvious bootstrap counterparts of the quantities
introduced earlier. We again focus on proving tightness for the bootstrap counterparts W ∗

J I =
√
n(p∗J I − p̂JI)

and W ∗
I =
√
n(p∗I − p̂I) of WJI =

√
n(p̂JI − pJI) and WI =

√
n(p̂I − pI), respectively. Furthermore, the

normalized, bootstrapped Kaplan–Meier estimator is well-known to be tight and the same property is easily seen
for the normalized, bootstrapped Aalen–Johansen estimator under competing risks. Finally, we will apply the
continuous mapping theorem in order to conclude asymptotic tightness of

√
n(P ∗J I(s, ·)− P̂JI(s, ·)).

Let us abbreviate W ∗
J I(t)−W ∗

J I(t1) = 1√
n

∑n
`=1(m`−1)a` and W ∗

J I(t2)−W ∗
J I(t) = 1√

n

∑n
`=1(m`−1)b`,

where (m1, . . . ,mn) ∼ Mult(n, 1
n
, . . . , 1

n
) is independent of χ. Let s ≤ t1 ≤ t ≤ t2 ≤ τ . Denote by K > 0
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a constant which may become larger along the subsequent inequalities, but which is independent of n, t, t1, t2.
Then, by the Cauchy-Schwarz inequality,

E
(
|W ∗

ji(t)−W ∗
ji(t1)|2|W ∗

ji(t2)−W ∗
ji(t)|2 | χ

)
≤K
n2

[ n∑
`=1

a2
`b

2
`E(m1 − 1)4 +

∑
` 6=k

a2
`b

2
kE(m1 − 1)2(m2 − 1)2

+
(( n∑

`=1

a2
`

)3/2( n∑
k=1

b2
k

)1/2

+
( n∑
`=1

a2
`

)1/2( n∑
k=1

b2
k

)3/2)
E(m1 − 1)3(m2 − 1)

+
( ∑
6̀=k 6=h6=`

(a2
`bkbh + a`akb

2
h) +

n∑
` 6=k

a`bk

( n∑
`=1

a2
`

n∑
k=1

b2
k

)1/2)
× E(m1 − 1)2(m2 − 1)(m3 − 1)

+
( n∑
g=1

∑
h6=g

∑
` 6=g,h

∑
k 6=g,h,`

agahb`bk

)
E
( 4∏
`=1

(m` − 1)
)]

As shown in e.g. Dobler and Pauly (2014), we haveE
(∏4

`=1(m`−1)
)

= O(n−2) andE(m1−1)2(m2−1)(m3−
1) = O(n−1). Furthermore, it is easy to show thatE(m1−1)4, E(m1−1)2(m2−1)2, E(m1−1)3(m2−1) <∞.
Therefore, the expectation in the previous display is bounded above by

K

n2

[ n∑
`=1

a2
`b

2
` +

∑
6̀=k

a2
`b

2
k +

(( n∑
`=1

a2
`

)3/2( n∑
k=1

b2
k

)1/2

+
( n∑
`=1

a2
`

)1/2( n∑
k=1

b2
k

)3/2)
+

1

n

( ∑
6̀=k 6=h6=`

(a2
`bkbh + a`akb

2
h) +

n∑
`6=k

a`bk

( n∑
`=1

a2
`

n∑
k=1

b2
k

)1/2)
+

1

n2

n∑
g=1

∑
h6=g

∑
` 6=g,h

∑
k 6=g,h,`

agahb`bk

]
We apply the Cauchy-Schwarz inequality to

∑n
`=1 a` (and similarly for the bk’s) which is bounded above by

(n
∑n

`=1 a
2
`)

1/2. Therefore, the terms in the previous display are bounded above by

K

n2

[( n∑
`=1

a2
`

)( n∑
k=1

b2
k

)
+
(( n∑

`=1

a2
`

)3/2( n∑
k=1

b2
k

)1/2

+
( n∑
`=1

a2
`

)1/2( n∑
k=1

b2
k

)3/2)]
(9)

which we abbreviate by K/n2(AB + A3/2B1/2 + A1/2B3/2). Now, verifying the unconditional Billingsley
criterion implies conditional tightness in probability: Suppose ϑ∗n is a random element of D[s, τ ] for which
tightness in probability given some random element ϑn shall be shown and for which it hold that: For all
η, ε > 0 we have for the modulus of continuity w′′, using the notation of Billingsley (1999), that

pr(w′′(ϑ∗n, δ) ≥ ε) ≤ η.
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Then, by the Markov inequality,

pr(pr(w′′(ϑ∗n, δ) ≥ ε | ϑn) ≥ ε) ≤ E(pr(w′′(ϑ∗n, δ) ≥ ε | ϑn))/ε

≤ pr(w′′(ϑ∗n, δ) ≥ ε)/ε ≤ η/ε.

Therefore, we need to find a suitable upper bound for the expectation of (9). By the Cauchy-Schwarz
inequality we have the upper bound

K

n2

[
E(AB) +

√
E(A2 +B2)E(AB)

]
.

Here, we begin by looking for a bound of

E(AB) =
∑
` 6=k

E(a2
`b

2
k) +

n∑
`=1

E(a2
`b

2
`) = n(n− 1)E(a2

1)E(b2
1) + nE(a2

1b
2
1)

We note that each a` and b` are differences of indicator functions. In particular, we have that

a2
` =(1{X`(s) ∈ I, X`(t) ∈ J , C` > t} − 1{X`(s) ∈ I, X`(t1) ∈ J , C` > t1})2

=1{X`(s) ∈ I, X`(t) ∈ J , t ≥ C` > t1}

+ 1{X`(s) ∈ I, X`(t1) /∈ J , X`(t) ∈ J , C` > t}

+ 1{X`(s) ∈ I, X`(t1)J , X`(t) /∈ J , C` > t}.

Therefore, we can bound

a2
` ≤ 1{t ≥ C` > t1}+ 1{X`(t1) /∈ J , X`(t) ∈ J }+ 1{X`(t1) ∈ J , X`(t) /∈ J }.

A similar bound holds for b2
` . Thus, we have for the product

a2
`b

2
` =1{X`(t) /∈ J , X`(t2) ∈ J , t ≥ C` > t1}

+1{X`(t) ∈ J , X`(t2) /∈ J , t ≥ C` > t1}

+1{X`(t1) /∈ J , X`(t) ∈ J , t2 ≥ C` > t}

+1{X`(t1) ∈ J , X`(t) /∈ J , t2 ≥ C` > t}

+1{X`(t1) /∈ J , X`(t) ∈ J , X`(t2) /∈ J }

+1{X`(t1) ∈ J , X`(t) /∈ J , X`(t2) ∈ J }.

Similarly to the proof in Appendix B, we obtain the upper bound

E(AB) ≤ Kn2(H(t2)−H(t1))2

due to conditions (1) to (4) in the main article, where the function H was defined in Appendix B.
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Next, we find an upper bound for

E(A2) = E
[( n∑

`=1

a2
`

)2]
= n(n− 1)E(a2

1)2 + nE(a2
1) ≤ n2E(a2

1)

≤ Kn2(H(t2)−H(t1)),

which holds for the same reasons as before. Similarly, we obtain the same upper bound for E(B2). We finally
conclude that

E
(
|W ∗
J I(t)−W ∗

J I(t1)|2|W ∗
J I(t2)−W ∗

J I(t)|2
)
≤ K(H(t2)−H(t1))3/2.

As argued above, Theorem 13.5 in Billingsley (1999) now implies conditional tightness in probability given χ.
The same holds true for W ∗

I which, as was the case for the original estimator, is more easily shown than
for W ∗

J I and it is thus left to the reader. All in all, conditional convergence in distribution of
√
n(P ∗IJ (s, ·) −

P̂IJ (s, ·)) on D[s, τ ] given χ in probability follows by the functional delta-method. The Gaussian limit process
is the same as for the original estimator.

E Proof of Theorem 3

Consider subsequences of increasing sample sizes for which n1/(n1 + n2) → λ ∈ (0, 1). Due to the inde-
pendence of the eventual limit distribution on the specific value of λ, the convergence in distribution still holds
under the bounded lim inf-lim sup-condition. The proof follows from a two-fold application of the continuous
mapping theorem to the integration and the subtraction functional as well as from the independence of both
samples. If U is a zero-mean Gaussian process with covariance function ΓIJ , then

∫ τ
s
U(v)dv has a zero-mean

normal distribution with variance
∫ τ
s

∫ τ
s

ΓIJ (u, v)dudv.

F Detailed Derivation of the Covariance Function ΓIJ

As stated in Theorem 1, the covariance function ΓIJ consists of several simpler covariance functions of which
cov(L0(r), GJ |I(t)) and cov(L1(r), GJ |I(t)) still need to be determined. Note that, if L2 denotes the limit
Gaussian process of the normalized Aalen–Johansen estimator for the cumulative incidence function F2 of the
second risk, then

cov(L0(r), GJ |I(t)) = −cov(L1(r), GJ |I(t))− cov(L2(r), GJ |I(t))

due to F0 + F1 + F2 = 1 on [s, τ ]. It is therefore enough to focus on the covariance function which involves the
Aalen–Johansen limit. This may be derived based on the asymptotic linear representation of all three separate
estimators as Hadamard-derivatives φ′, ϕ′, and ψ′, which are continuous and linear functionals, applied to an
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empirical process Pn and to (p̂JI , p̂I), respectively. More precisely, we have

√
n(F̂0 − F0) =

√
nφ′(Pn − P) + op(1),

√
n(F̂1 − F1) =

√
nϕ′(Pn − P) + op(1),

√
n(p̂J |I − pJ |I) =

√
nψ′(p̂JI − pJI , p̂I − pI) + op(1).

Here Pn is the empirical process based on the censoring or event times T` = inf{t ≥ s : Y`(t) = 0}, the
censoring or competing risk indicator δ` = 1{T`1 < T`2}+ 2 · 1{T`1 > T`2}, and ε` = 1{X`(s) ∈ I} as well as
η` = 1{Y`(s) = 1}, where T`1 = inf{t ≥ s : Z`(t) = 1, Y`(t) = 1} and T`2 = inf{t ≥ s : Z`(t) = 2, Y`(t) = 1}.
Finally, P = P (T`,δ`,ε`,η`) is the distribution of each single observed quadruple. The empirical process is indexed
by f1z(t, d, x, y) = 1{t ≤ z, d = 1, x = 1, y = 1}, f2z(t, d, x, y) = 1{t ≤ z, d = 2, x = 1, y = 1}, and
gz(t, d, x, y) = 1{t ≥ z, x = 1, y = 1}, z ≥ s. This certainly is a Donsker class; see Example 3.9.19 in
van der Vaart and Wellner (1996) for a similar indexing leading to the (all-cause) Nelson–Aalen estimator. In
the following part, we calculate the exact structure of the above linear expansions for the case n = 1. This
suffices to determine the asymptotic covariance structure of the estimators as the covariances of the above linear
functionals are the same for all n.

As argued in the main article, it does not matter whether the left- or right-continuous versions of the at-
risk indicators Y` are considered. This is also true for the at risk functions involved in the Kaplan–Meier and
Aalen–Johansen estimators. For technical convenience, we choose the right-continuous at-risk functions. Let
pAJ ,RJ (t) = P (T1 ≤ t, δ1 ∈ {1, 2}, X1(s) ∈ I, Y1(s) = 1), pAJ (t) = P (T1 ≤ t, δ1 = 1, X1(s) ∈ I, Y1(s) =

1), and pRJ (t) = P (T1 ≤ t, δ1 = 2, X1(s) ∈ I, Y1(s) = 1). The above Hadamard-derivatives are given by

(φ′(P))(t) = (φ′1,−A0
◦ φ′2,pAJ ,RJ ,1/pI ◦ φ

′
3,pAJ ,RJ ,pI

)(P)(t).

Thereof, φ′1,−A0
is the Hadamard-derivative of the product-integral leading to the Kaplan–Meier estimator, i.e.

(φ′1,−A0
(h))(t) = − P

s<u≤t
(1− A0(du))

∫ t

s

dh(u)

1−∆A0(u)
= −F0(t)(h(t)− h(s));

cf. e.g. Lemma 3.9.30 in van der Vaart and Wellner (1996), but take notice of the additional minus sign. Here,A0

is the continuous cumulative (all-cause) hazard function for all individuals for which X(s) ∈ I. The functional
φ′2,pAJ ,RJ ,1/pI

is the Hadamard-derivative of the Wilcoxon functional, i.e.

(φ′2,pAJ ,RJ ,1/pI
(h1, h2))(t) =

∫ t

s

h2(u)dpAJ ,RJ (u) +

∫ t

s

1

pI(u)
dh1(u);

cf. e.g. Example 3.9.19 in van der Vaart and Wellner (1996). Finally, φ′3,pAJ ,RJ ,pI is the Hadamard-derivative
of (a, b) 7→ (a, 1/b), after indexing the distribution with (f1· + f2·, g·), i.e.

(φ′3,pAJ ,RJ ,pI
(P))(t) =

(
P(f1t + f2t),−

Pgt
p2
I(t)

)
.
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From the above derivations, we have that

(φ′(P1 − P))(t1) = F0(t1)
[ ∫ t1

s

1{Y (u) = 1, X(s) ∈ I} − pI(u)

p2
I(u)

dpAJ ,RJ (u)

−
∫ t1

s

1

pI(u)
(1{X(du) ∈ AJ ∪RJ , δ 6= 0, X(s) ∈ I} − pAJ ,RJ (du))

]
= F0(t1)

[ ∫ t1

s

1{Y (u) = 1, X(s) ∈ I}
p2
I(u)

dpAJ ,RJ (u)

−
∫ t1

s

1{X(du) ∈ AJ ∪RJ , δ 6= 0, X(s) ∈ I}
pI(u)

]
= εηF0(t1)

[ ∫ T∧t1

s

dpAJ ,RJ (u)

p2
I(u)

− 1{T ≤ t1, δ 6= 0}
pI(T )

]
We proceed similarly for the Aalen–Johansen estimator

F̂1(t) =

∫ t

s

F̂0(u−)dÂ1(u)

of F1(t) =
∫ t
s
F0(u−)dA1(u), where now A1 denotes the first cause-specific cumulative hazard of those indi-

viduals for which X(s) ∈ I. Define pAJ (t) = P (T ≤ t, δ = 1, X(s) ∈ I, Y (s) = 1). Thus, as the estimator
F̂1 consists of the Wilcoxon functional applied to the left-continuous version of a product integral and another
Wilcoxon functional (the Nelson–Aalen estimator), we have

(ϕ′(P1 − P))(t2) = (φ̃′2,A1,F0
◦ (φ′2,pAJ ,1/pI

◦ φ̃′3,pAJ ,pI , φ
′))(P1 − P)(t2).

The tilde on top of the first Hadamard-derivative shall express the slight variation of the original functional,
as we now use the left-continuous version of the integrand. Furthermore, φ̃′3,pAJ ,pI(P1 − P)(t) = (Pf1t −
pAJ (t),−Pgt−pI(t)

p2I(t)
). Hence, the previous display can be expanded to

∫ t2

s

φ′(P1 − P)(u−)dA1(u) +

∫ t2

s

F0(u−)d(φ′2,pAJ ,1/pI
◦ φ̃′3,pAJ ,pI)(P1 − P)(u)

=

∫ t2

s

F0(u−)
[ ∫ u−

s

1{Y (v) = 1, X(s) ∈ I}
p2
I(v)

dpAJ ,RJ (v)

−
∫ u−

s

1{X(dv) ∈ AJ ∪RJ , δ 6= 0, X(s) ∈ I}
pI(v)

]
dA1(u)

+

∫ t2

s

F0(u−)d
[
−
∫ ·
s

1{Y (v) = 1, X(s) ∈ I}
p2
I(v)

dpAJ (v)

+

∫ ·
s

1{X(dv) ∈ AJ , δ 6= 0, X(s) ∈ I}
pI(v)

]
= εη

(∫ t2

s

[ ∫ (T∧u)−

s

dpAJ ,RJ (v)

p2
I(v)

− 1{T < u, δ 6= 0}
pI(T )

]
dF1(u)

−
∫ T∧t2

s

F0(u−)

p2
I(u)

dpAJ (u) + 1{T ≤ t2, δ = 1}F0(T−)

pI(T )

)
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= εη
(
F1(t2)

∫ T∧t2

s

dpAJ ,RJ (u)

p2
I(u)

−
∫ T∧t2

s

F1(u)

p2
I(u)

dpAJ ,RJ (u)

− 1{T ≤ t2, δ 6= 0}
pI(T )

(F1(t2)− F1(T ))

−
∫ T∧t2

s

F0(u)

p2
I(u)

dpAJ (u) + 1{T ≤ t2, δ = 1}F0(T )

pI(T )

)
= εη

(∫ T∧t2

s

F1(t2)− 1 + F2(u)

p2
I(u)

dpAJ ,RJ (u) +

∫ T∧t2

s

F0(u)

p2
I(u)

dpRJ (u)

− 1{T ≤ t2, δ 6= 0}
pI(T )

(F1(t2)− F1(T )) + 1{T ≤ t2, δ = 1}F0(T )

pI(T )

)
Finally, we calculate the remaining linear functional applied to a pair of centered indicator functions that

appear in the estimator p̂J |I :

(ψ′(1{X(s) ∈ I, Y (s) = 1, X(·) ∈ J , Y (·) = 1},

1{X(s) ∈ I, Y (s) = 1, Y (·) = 1}))(t3)

=
1{X(s) ∈ I, Y (s) = 1, X(t3) ∈ J , Y (t3) = 1} − pJI(t3)

pI(t3)

− pJI(t3)

p2
I(t3)

(1{X(s) ∈ I, Y (s) = 1, Y (t3) = 1} − pI(t3))

= p−1
I (t3)(1{X(s) ∈ I, Y (s) = 1, X(t3) ∈ J , Y (t3) = 1}

− pJ |I(t3)1{X(s) ∈ I, Y (s) = 1, Y (t3) = 1})

=
εη 1{T > t3}

pI(t3)
(1{X(t3) ∈ J } − pJ |I(t3))

For later calculations we note that

P (T ∈ dt, δ = 1, X(s) ∈ I, Y (s) = 1) = SC(t)F1(dt)P (X(s) ∈ I),

that P (T,ε,η)(dt, 1, 1) = −pI(dt), and that

P (T ∈ dt, δ = 1, X(t3) ∈ J , X(s) ∈ I, Y (s) = 1)

= SC(t)PIJ 1(s, t3, dt)P (X(s) ∈ I),

where PIJ 1(s, t3, t) = P (X(t) = 1, X(t3) ∈ J | X(s) ∈ I).
After this preparation, we are now able to determine the asymptotic covariance. Because of the independen-

cies and the identical distribution structure in the asymptotic, linear representation,

cov(L1(t2), GJ |I(t3))

= n · cov((ϕ′(Pn − P))(t2), (ψ′(p̂JI − pJI , p̂I − pI))(t3))

= cov((ϕ′(P1 − P))(t2), (ψ′(1{X(s) ∈ I, Y (s) = 1, X(·) ∈ J , Y (·) = 1} − pJI ,

1{X(s) ∈ I, Y (s) = 1, Y (·) = 1} − pI))(t3))
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= E
(
εη

1{T > t3}
pI(t3)

[ ∫ T∧t2

s

F1(t2)− 1 + F2(u)

p2
I(u)

dpAJ ,RJ (u)

+

∫ T∧t2

s

F0(u)

p2
I(u)

dpRJ (u)− 1{T ≤ t2, δ 6= 0}
pI(T )

(F1(t2)− F1(T ))

+ 1{T ≤ t2, δ = 1}F0(T )

pI(T )

][
1{X(t3) ∈ J } − pJ |I(t3)

])
We begin by considering the case t2 ≤ t3 for which the covariance reduces to

E
(
εη

1{T > t3}
pI(t3)

[ ∫ t2

s

F1(t2)− 1 + F2(u)

p2
I(u)

dpAJ ,RJ (u) +

∫ t2

s

F0(u)

p2
I(u)

dpRJ (u)
]

×
[
1{X(t3) ∈ J } − pJ |I(t3)

])
=

1

pI(t3)

[ ∫ t2

s

F1(t2)− 1 + F2(u)

p2
I(u)

dpAJ ,RJ (u) +

∫ t2

s

F0(u)

p2
I(u)

dpRJ (u)
]

×
(∫ ∞

t3

P (T,1{X(t3)∈J},ε,η)(dv, 1, 1, 1)− pJ |I(t3)

∫ ∞
t3

P (T,ε,η)(dv, 1, 1)
)
.

The round bracket in the last line equals pJI(t3)−pJ |I(t3)pI(t3) = 0. Hence, asymptotic independence follows
in case of t2 ≤ t3.

We hence continue with the case t2 > t3. Let f and g be any suitable functions. The following side
calculation due to a decomposition will prove beneficial:

E
(

1{T > t3}
∫ T∧t2

s

f(u)dg(u)
)

=

∫ t2

t3

∫ v

s

f(u)dg(u)dP T (v) +

∫ ∞
t2

∫ t2

s

f(u)dg(u)dP T (v)

For a better presentation of the calculations, we split the covariance terms into two parts. First,

E
(
εη

1{T > t3}
pI(t3)

[ ∫ T∧t2

s

F1(t2)− 1 + F2(u)

p2
I(u)

dpAJ ,RJ (u) +

∫ T∧t2

s

F0(u)

p2
I(u)

dpRJ (u)
]

×
[
1{X(t3) ∈ J } − pJ |I(t3)

])
=

1

pI(t3)

(∫ t2

t3

∫ v

s

F1(t2)− 1 + F2(u)

p2
I(u)

dpAJ ,RJ (u)P (T,1{X(t3)∈J},ε,η)(dv, 1, 1, 1)

+

∫ t2

t3

∫ v

s

F0(u)

p2
I(u)

dpRJ (u)P (T,1{X(t3)∈J},ε,η)(dv, 1, 1, 1)

− pJ |I(t3)

∫ t2

t3

∫ v

s

F1(t2)− 1 + F2(u)

p2
I(u)

dpAJ ,RJ (u)P (T,ε,η)(dv, 1, 1)

− pJ |I(t3)

∫ t2

t3

∫ v

s

F0(u)

p2
I(u)

dpRJ (u)P (T,ε,η)(dv, 1, 1)

+

∫ ∞
t2

∫ t2

s

F1(t2)− 1 + F2(u)

p2
I(u)

dpAJ ,RJ (u)P (T,1{X(t3)∈J},ε,η)(dv, 1, 1, 1)
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+

∫ ∞
t2

∫ t2

s

F0(u)

p2
I(u)

dpRJ (u)P (T,1{X(t3)∈J},ε,η)(dv, 1, 1, 1)

− pJ |I(t3)

∫ ∞
t2

∫ t2

s

F1(t2)− 1 + F2(u)

p2
I(u)

dpAJ ,RJ (u)P (T,ε,η)(dv, 1, 1)

− pJ |I(t3)

∫ ∞
t2

∫ t2

s

F0(u)

p2
I(u)

dpRJ (u)P (T,ε,η)(dv, 1, 1)
)
.

Thereof, the sum of the last four terms can be summarized similarly as in the case t2 ≤ t3, i.e. it equals

1

pI(t3)

[ ∫ t2

s

F1(t2)− 1 + F2(u)

p2
I(u)

dpAJ ,RJ (u) +

∫ t2

s

F0(u)

p2
I(u)

dpRJ (u)
]

×
(
SC(t2)P (X(s) ∈ I)PIJ 0(s, t3, t2)− pJ |I(t3)F0(t2)SC(t2)P (X(s) ∈ I)

)
=
SC(t2)

pI(t3)

[
−
∫ t2

s

1

SC(u)

F1(t2)− 1 + F2(u)

F 2
0 (u)

dF0(u) +

∫ t2

s

1

SC(u)

dF2(u)

F0(u)

]
×
(
PIJ 0(s, t3, t2)− pJ |I(t3)F0(t2)

)
.

The sum of the remaining four terms equals, after integration by parts,

1

pI(t3)

(
−
∫ t2

s

F1(t2)− 1 + F2(u)

p2
I(u)

dpAJ ,RJ (u)PIJ 0(s, t3, t2)SC(t2)P (X(s) ∈ I)

+

∫ t3

s

F1(t2)− 1 + F2(u)

p2
I(u)

dpAJ ,RJ (u)PIJ 0(s, t3, t3)SC(t3)P (X(s) ∈ I)

+

∫ t2

t3

F1(t2)− 1 + F2(u)

p2
I(u)

PIJ 0(s, t3, u)SC(u)P (X(s) ∈ I)dpAJ ,RJ (u)

−
∫ t2

s

F0(u)

p2
I(u)

dpRJ (u)PIJ 0(s, t3, t2)SC(t2)P (X(s) ∈ I)

+

∫ t3

s

F0(u)

p2
I(u)

dpRJ (u)PIJ 0(s, t3, t3)SC(t3)P (X(s) ∈ I)

+

∫ t2

t3

F0(u)

p2
I(u)

PIJ 0(s, t3, u)SC(u)P (X(s) ∈ I)dpRJ (u)

+ pJ |I(t3)

∫ t2

s

F1(t2)− 1 + F2(u)

p2
I(u)

dpAJ ,RJ (u)pI(t2)

− pJ |I(t3)

∫ t3

s

F1(t2)− 1 + F2(u)

p2
I(u)

dpAJ ,RJ (u)pI(t3)

− pJ |I(t3)

∫ t2

t3

F1(t2)− 1 + F2(u)

pI(u)
dpAJ ,RJ (u)

+ pJ |I(t3)

∫ t2

s

F0(u)

p2
I(u)

dpRJ (u)pI(t2)− pJ |I(t3)

∫ t3

s

F0(u)

p2
I(u)

dpRJ (u)pI(t3)

− pJ |I(t3)

∫ t2

t3

F0(u)

pI(u)
dpRJ (u)

)
=

1

pI(t3)

(∫ t2

s

SC(t2)

SC(u)

F1(t2)− 1 + F2(u)

F 2
0 (u)

dF0(u)PIJ 0(s, t3, t2)
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−
∫ t3

s

SC(t3)

SC(u)

F1(t2)− 1 + F2(u)

F 2
0 (u)

dF0(u)PIJ 0(s, t3, t3)

−
∫ t2

t3

F1(t2)− 1 + F2(u)

F 2
0 (u)

PIJ 0(s, t3, u)dF0(u)

−
∫ t2

s

SC(t2)

SC(u)

1

F0(u)
dF2(u)PIJ 0(s, t3, t2) +

∫ t3

s

SC(t3)

SC(u)

dF2(u)

F0(u)
PIJ 0(s, t3, t3)

+

∫ t2

t3

PIJ 0(s, t3, u)

F0(u)
dF2(u)

− pJ |I(t3)

∫ t2

s

SC(t2)

SC(u)

F1(t2)− 1 + F2(u)

F 2
0 (u)

F0(du)F0(t2)

+ pJ |I(t3)

∫ t3

s

SC(t3)

SC(u)

F1(t2)− 1 + F2(u)

F 2
0 (u)

F0(du)F0(t3)

+ pJ |I(t3)

∫ t2

t3

F1(t2)− 1 + F2(u)

F0(u)
dF0(u)

+ pJ |I(t3)

∫ t2

s

SC(t2)

SC(u)

dF2(u)

F0(u)
F0(t2)− pJ |I(t3)

∫ t3

s

SC(t3)

SC(u)

dF2(u)

F0(u)
F0(t3)

− pJ |I(t3)(F2(t2)− F2(t3))
)

Comparing these terms with those four which we derived first, we see that all integrals from s to t2 are cancelled
out. Therefore, the following terms remain:

1

pI(t3)

(
−
∫ t3

s

SC(t3)

SC(u)

F1(t2)− 1 + F2(u)

F 2
0 (u)

dF0(u)PIJ 0(s, t3, t3)

−
∫ t2

t3

F1(t2)− 1 + F2(u)

F 2
0 (u)

PIJ 0(s, t3, u)dF0(u)

+

∫ t3

s

SC(t3)

SC(u)

dF2(u)

F0(u)
PIJ 0(s, t3, t3) +

∫ t2

t3

PIJ 0(s, t3, u)

F0(u)
dF2(u)

+ pJ |I(t3)

∫ t3

s

SC(t3)

SC(u)

F1(t2)− 1 + F2(u)

F 2
0 (u)

F0(du)F0(t3)

+ pJ |I(t3)

∫ t2

t3

F1(t2)− 1 + F2(u)

F0(u)
dF0(u)

− pJ |I(t3)

∫ t3

s

SC(t3)

SC(u)

dF2(u)

F0(u)
F0(t3)− pJ |I(t3)(F2(t2)− F2(t3))

)
Due to PIJ 0(s, t3, t3) = pJ |I(t3)F0(t3), this equals

1

pI(t3)

(
−
∫ t2

t3

F1(t2)− 1 + F2(u)

F 2
0 (u)

PIJ 0(s, t3, u)dF0(u) +

∫ t2

t3

PIJ 0(s, t3, u)

F0(u)
dF2(u)

+ pJ |I(t3)

∫ t2

t3

F1(t2)− 1 + F2(u)

F0(u)
dF0(u)− pJ |I(t3)(F2(t2)− F2(t3))

)
= A
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We continue by deriving the second half of the asymptotic covariance function also in case of t3 < t2, i.e.

E
(
εη

1{T > t3}
pI(t3)

[
− 1{T ≤ t2, δ 6= 0}

pI(T )
(F1(t2)− F1(T )) + 1{T ≤ t2, δ = 1}F0(T )

pI(T )

]
×
[
1{X(t3) ∈ J } − pJ |I(t3)

])
=

1

pI(t3)

(
−
∫ t2

t3

F1(t2)− F1(u)

pI(u)
P (T,δ,1{X(t3)∈J},ε,η)(du, {1, 2}, 1, 1, 1)

+ pJ |I(t3)

∫ t2

t3

F1(t2)− F1(u)

pI(u)
P (T,δ,ε,η)(du, {1, 2}, 1, 1)

+

∫ t2

t3

F0(u)

pI(u)
P (T,δ,1{X(t3)∈J},ε,η)(du, 1, 1, 1, 1)

− pJ |I(t3)

∫ t2

t3

F0(u)

pI(u)
P (T,δ,ε,η)(du, 1, 1, 1)

=
1

pI(t3)

(∫ t2

t3

F1(t2)− F1(u)

F0(u)
PIJ 0(s, t3, du)− pJ |I(t3)

∫ t2

t3

F1(t2)− F1(u)

F0(u)
dF0(u)

+ PIJ 1(s, t3, t2)− PIJ 1(s, t3, t3)− pJ |I(t3)(F1(t2)− F1(t3))
)

= B

We apply integration by parts to the first integral. Note that, if u is the variable of integration,

d
F1(t2)− F1(u)

F0(u)
= −F1(t2)dF0(u)

F 2
0 (u)

− dF1(u)

F0(u)
+
F1(u)dF0(u)

F 2
0 (u)

=
(−F1(t2) + F1(u))dF0(u)

F 2
0 (u)

+
dF0(u)

F0(u)
+

dF2(u)

F0(u)

Therefore, the first integral of B equals

− (F1(t2)− F1(t3))pJ |I(t3) +

∫ t2

t3

PIJ 0(s, t3, u)
F1(t2)− F1(u)

F 2
0 (u)

dF0(u)

−
∫ t2

t3

PIJ 0(s, t3, u)
dF0(u)

F0(u)
−
∫ t2

t3

PIJ 0(s, t3, u)
dF2(u)

F0(u)

All in all, the sum of both parts A and B equals

1

pI(t3)

(∫ t2

t3

F0(u)

F 2
0 (u)

PIJ 0(s, t3, u)dF0(u)− pJ |I(t3)

∫ t2

t3

F0(u)

F0(u)
dF0(u)

+ pJ |I(t3)(F0(t2)− F0(t3))−
∫ t2

t3

PIJ 0(s, t3, u)
dF0(u)

F0(u)
+ PIJ 1(s, t3, t2)

− PIJ 1(s, t3, t3)− pJ |I(t3)(F1(t2)− F1(t3))
)

=
1

pI(t3)

(
PIJ 1(s, t3, t2)− PIJ 1(s, t3, t3)− pJ |I(t3)(F1(t2)− F1(t3))

)
,

32



which, due to PIJ 1(s, t3, t3) = F1(t3), further simplifies to

1{t3 < t2}
pI(t3)

(
PIJ 1(s, t3, t2)− F1(t3)− pJ |I(t3)(F1(t2)− F1(t3))

)
.

G Conditions (1)–(4) in the Simulation Study

In this section we prove that the conditions (1)–(4) of the main manuscript are satisfied in the situation of
Section 4 therein. Recall that the stochastic development of the process X depends on the state occupied at time
s = 4. Hence, conditional on X(4) = 1 and after time s = 5, X is a Markov process with cumulative hazard
matrix

A(t− 5) =

−0.32 0.3 0.02

0.3 −0.4 0.1

0 0 0

 · (t− 5), t ≥ s.

Otherwise, if X(4) = 0, the process X subsequently is a Markov process with cumulative hazard matrix

B(t− 5) =

−0.62 0.6 0.02

0.3 −0.4 0.1

0 0 0

 · (t− 5), t ≥ s.

Write p = P (X(4) = 1) and q = 1 − p. In this conditionally homogeneous Markov set-up it follows that the
matrix P (5, t) of transition probabilities at time t ≥ 5 is given by

P (5, t) = p · exp(A(t− 5)) + q · exp(B(t− 5)),

where exp(D) =
∑∞

k=0
1
k!
Dk is the matrix exponential of a square matrix D. Now, it is obvious that t 7→ P (5, t)

is infinitely often continuously differentiable, hence (1) and (2) are satisfied. In the same way, (3) and (4) are
satisfied as well because X is a Markov process conditionally on X(4), so its state at an earlier intermediate
time t1 > s = 5 > 4 is irrelevant.
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