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In this Supplemental material we provide a more de-
tailed description of the numerical simulation methods
that are used to demonstrate the density-dependent sup-
pression of optical pumping. We also explain the image
analysis we perform, and how we convert the optical den-
sity image to number of atoms.

SIMULATION DETAILS

In the experiment the atoms are confined in an array
of microtraps and occupy the (5S1/2) |F,mF 〉 = |2, 2〉
electronic ground state. An incident laser excites the
atoms to the (5P3/2) |F ′,mF ′〉 = |2, 1〉 state from which
the atoms decay to either the F = 2 manifold, with
mF = 0, 1, 2 (of which mF = 0 is untrapped), or to
untrapped states in the F = 1 manifold, with mF = 0, 1.
Reabsorption of light can take the atom to additional
levels in the F = 1, 2 and F ′ = 2 manifolds. The opti-
cal pumping rate is measured by detecting the remaining
trapped atoms in the F = 2 states.

Standard coupled-dipole model simulations [1] are for-
mulated for a single electronic ground level and for the
limit of low light intensity where the atoms respond to
light as linear harmonic oscillators. The system we are
studying involves more than one electronic ground level
that participate in optical transitions and the optical
pumping necessitates simulation approaches that go be-
yond the low light intensity limit, incorporating also the
excited state dynamics. In order to do this we apply a
recently proposed formalism [2] of coupled-dipole model
equations that specifically account for the internal level
dynamics. This leads to the stochastic electrodynamics
of radiatively coupled equations of motion for each atom.
We integrate the dynamics within a semiclassical approx-
imation, describing each atom by its own local density

matrix ρ
(j)
ab . All the elements for all different atoms ρ

(j)
ab

are radiatively coupled, but quantum entanglement be-
tween the atoms is neglected.

The procedure for solving for the optical response
of the stochastic electrodynamics of light and atoms
amounts to a Monte Carlo integration. In each stochastic
realization the discrete atomic positions {X1, . . . ,XN}
are randomly sampled from the appropriate spatial distri-
bution. For each such a realization, we solve the coupled
electrodynamics for light and atoms at fixed positions.
The optical response of the ensemble is then given by

averaging quantities of interest over many realizations.
The ensemble-averaging establishes spatial correlations
between the atoms due to resonant dipole-dipole interac-
tions. The methodology is detailed in Ref. [2].

We introduce a notation where ρ̂ab(r) denotes a single
particle density matrix with a, b = e, g referring to the
electronically excited e and ground g levels, where e and
g also run over the different Zeeman sublevels, and ρ̂ab(r)
corresponds to the annihilation of an atom in the level
b and the creation of an atom in the level a. We then
write ρ̂ab(r) for N atoms at fixed positions {X1, . . . ,XN}
(corresponding to one particular stochastic realization)
as the sum over the atoms j,

〈ρ̂ab(r)〉{X1,...,XN} =
∑
j

ρ
(j)
ab δ(r−Xj) . (1)

Then, e.g., the dipole amplitude for the transition |g〉 ↔
|e〉 is given by

d(j)
ge ρ

(j)
ge (t) = D

1∑
σ=−1

C(σ)
g,e êσρ

(j)
ge (t) , (2)

and the corresponding positive frequency component of
the atomic polarization density

〈P̂+〉{X1,...,XN} =
∑
j

∑
ge

d(j)
ge ρ

(j)
ge (t)δ(r−Xj), (3)

where C(σ)
g,e ≡ 〈1Fg;Fee|Fgg; 1σ〉 are Clebsch-Gordan co-

efficients for the corresponding dipole transition (Ff is
the total atomic angular momentum of hyperfine level f),
D is the reduced dipole matrix element, and σ = −1, 0, 1
is an index indicating the unit circular polarization vec-
tors.

Here and elsewhere in this paper we have assumed that
the atoms are illuminated by an incident laser with the
dominant frequency Ω, and that all the relevant quanti-
ties are expressed as slowly varying amplitudes by explic-
itly factoring out the laser frequency oscillations by writ-
ing P̂+ → e−iΩtP̂+, and similarly for electric displace-
ment D+ → e−iΩtD+ and electric field E+ → e−iΩtE+.

The electric field amplitude may be expressed as the
sum of the incident and the scattered fields

ε0E
+(r) = D+

F (r) +

∫
d3r′ G(r− r′)P+(r′) , (4)
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where the monochromatic dipole radiation kernel [3] G(r)
provides the radiated field at r from a dipole with the
amplitude d̂ residing at the origin (k = Ω/c):

G(r) d̂ =
k3

4π

{
(n̂×d̂)×n̂e

ikr

kr

+[3n̂(n̂ · d̂)− d̂]
[ 1

(kr)3
− i

(kr)2

]
eikr

}
− d̂ δ(r)

3
, (5)

where n̂ = r/r.
The light mediates strong interactions between the

atoms. Each atom is driven by the incident field and
the field scattered by all the other atoms in the ensem-

ble. This yields the coupled equations of motion for ρ
(j)
ab

for each atom j and internal levels a, b.
We introduce an abbreviated notation for the radiative

coupling coefficients between the atoms at the locations

Xj and Xl as G(jl)
σς that mediate the interactions between

dipoles of orientations êσ and êς ,

G(jl)
σς = ê∗σ · G(Xj −Xl)êς . (6)

We can then derive the equations of motion for the atomic
level density matrix elements for each atom j in the en-
semble to correspond to the experimental system with
one electronically excited level e, where the indices g run
over all the electronic ground states in the system

d

dt
ρ(j)
ge = (i∆ge − Γ)ρ(j)

ge + i
ξ

D
ρ

(j)
gg′C

(σ)
g′,eê

∗
σ ·D+

F (Xj)

− i ξ
D
ρ(j)
ee C(σ)

g,e ê
∗
σ ·D+

F (Xj)

+ iξ
∑
l 6=j

C(σ)
g′,eG

(jl)
σς C

(ς)
g′′,eρ

(l)
g′′eρ

(j)
gg′

− iξ
∑
l 6=j

C(σ)
g,e G(jl)

σς C
(ς)
g′′,eρ

(l)
g′′eρ

(j)
ee , (7a)

d

dt
ρ

(j)
gg′ = i∆gg′ρ

(j)
gg′ + 2ΓC(σ)

g′,eC
(σ)
g,e ρ

(j)
ee

− i ξ
D
ρ

(j)
eg′C

(σ)
g,e ê

∗
σ ·D+

F (Xj) + i
ξ

D
ρ(j)
ge C

(σ)
g′,eêσ ·D

−
F (Xj)

− iξ
∑
l 6=j

C(σ)
g,e G(jl)

σς C
(ς)
g′′,eρ

(l)
g′′eρ

(j)
eg′

+ iξ
∑
l 6=j

C(σ)
g′,e[G

(jl)
σς ]∗C(ς)

g′′,eρ
(l)
eg′′ρ

(j)
ge , (7b)

d

dt
ρ(j)
ee = −2Γρ(j)

ee − 2Im
[ ξ
D
ρ(j)
eg C(σ)

g,e ê
∗
σ ·D+

F (Xj)
]

− 2Im
[
ξ
∑
l 6=j

C(σ)
g,e G(jl)

σς C
(ς)
g′,eρ

(l)
g′eρ

(j)
eg

]
. (7c)

Here the repeated indices σ, ς and the ground state sym-
bols that do not appear on the left-hand-side are implic-
itly summed over, ξ = D2/(~ε0), Γ is the half linewidth

at half maximum (HWHM), and the detuning of the
incident light from the atomic resonances is given by
∆ge = Ω − ωge. In the case of a conserved total atom
population, one of the equations can be eliminated by

the relation
∑
g ρ

(j)
gg +

∑
e ρ

(j)
ee = 1. We have introduced

a semiclassical approximation to factorize internal level
two-body correlation functions. Due to this approxima-
tion, the ensemble average of many single realizations
does not reproduce the nonclassical correlations in the
system.

Instead of considering the full experimental configu-
ration of all the F = 1, 2 and F ′ = 2 electronic levels,
we approximate the system in the numerical simulations
by an effective three-level model where one of the ground
levels refers to the initial state |1〉 ≡ |F,mF 〉 = |2, 2〉, and
all the final electronic ground levels are approximated by
a single state |2〉. Resonant incident light then drives the
transition |1〉 ↔ |e〉 to an electronically excited state |e〉,
and the atoms can spontaneously decay to both levels |1〉
and |2〉. For instance, when the transition strengths are
equal for the two levels (and the atom can only decay for
the two ground levels studied), the equations of motion
then simplify to

d

dt
ρ

(j)
1e = (i∆1e − Γ)ρ

(j)
1e + i

ξ√
2D

ρ
(j)
11 ê
∗
1 ·D+

F (Xj)

− i ξ√
2D

ρ(j)
ee ê
∗
1 ·D+

F (Xj) + i
ξ

2

∑
l 6=j

G(jl)
g′g ρ

(l)
geρ

(j)
1g′

− i ξ
2

∑
l 6=j

G(jl)
1g ρ(l)

geρ
(j)
ee , (8a)

d

dt
ρ

(j)
2e = (i∆2e − Γ)ρ

(j)
2e + i

ξ√
2D

ρ
(j)
21 ê
∗
1 ·D+

F (Xj)

+ i
ξ

2

∑
l 6=j

G(jl)
g′g ρ

(l)
geρ

(j)
2g′ − i

ξ

2

∑
l 6=j

G(jl)
2g ρ(l)

geρ
(j)
ee , (8b)

d

dt
ρ

(j)
12 = i∆12ρ

(j)
12 + Γρ(j)

ee − i
ξ√
2D

ρ
(j)
e2 ê
∗
1 ·D+

F (Xj)

− i ξ
2

∑
l 6=j

G(jl)
1g ρ(l)

geρ
(j)
e2 + i

ξ

2

∑
l 6=j

[G(jl)
2g ]∗ρ(l)

eg ρ
(j)
1e , (8c)

d

dt
ρ

(j)
11 = +Γρ(j)

ee +
√

2Im
[ ξ
D
ρ

(j)
e1 ê
∗
1 ·D+

F (Xj)
]

+ Im
[
ξ
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l 6=j

G(jl)
1g ρ(l)

geρ
(j)
e1

]
, (8d)

d

dt
ρ

(j)
22 = +Γρ(j)

ee + Im
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l 6=j
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geρ
(j)
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, (8e)

d
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ρ(j)
ee = −2Γρ(j)
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√
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D
ρ
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where the ground state symbols are again summed over.

The result is a set of coupled equations (8) for inter-

nal level one-body density matrix elements ρ
(j)
ab , for each

atom j = 1, . . . , N . In the absence of the radiative cou-

pling terms G(jl)
gg′ , with g, g′ = 1, 2 the equations coincide

with standard Bloch equations. The terms G(jl)
gg′ repre-

sent the strong resonant dipole-dipole interactions that
depend on the relative positions between the atoms and
lead to spatial correlations in the optical response. In
the limit that the resonance frequencies of the different

transitions differ considerably, the cross terms G(jl)
gg′ , with

g 6= g′ – that couple the different transitions |1〉 ↔ |e〉
and |2〉 ↔ |e〉 – become negligible. The standard two-
level coupled dipole model approach [1, 4] is obtained
from Eq. (8b) by setting all the terms involving ρee to
zero and the indices g = g′ = 1.

In the simulations, we then stochastically sample the
set of discrete atomic coordinates {X1, . . . ,XN} from the
density distribution. For each realization we solve the
semiclassical electrodynamics equations of motion (8) for

all ρ
(j)
ab . Averaging over many such realizations allows the

expectation values of desired observables to be computed.
The simulations then incorporate all the recurrent scat-
tering events between the atoms in a semi-classical ap-
proximation for random positions of the atoms.

During each stochastic realization the atoms are sta-
tionary. There are two timescales that would need to
be taken into account. The first one, and the more im-
portant one, relates to light-mediated interactions and
is determined by the time a single photon spends inside
the sample, while undergoing multiple scattering events.
This can be anything up to a few scattering events times
the inverse resonance linewidth, and generally is less
than 100ns. The thermal motion of the atoms on that
timescale is negligible, and the atoms can be considered
stationary.

The second time scale relates to the pulse duration
and is significantly longer. It is possible that, due to the
thermal motion of the atoms, in a single pulse different
photons see different configurations of atomic positions.
However, it turns out that the ensemble-averaging of the
atomic positions between the different stochastic realiza-
tions of the pulse dynamics compensates for the atomic
motion, and the effect is negligible in the optical response.
We have explicitly tested this effect by interchanging the
order of averaging: Instead of simulating in a single real-
ization each pulse with one specific random configuration
of atomic positions and then ensemble-averaging over
many such pulses, we have also simulated the system by
stochastically sampling many random atomic positions
in regular intervals during each pulse, before ensemble-
averaging over many runs. In other words, we divided
the pulse over a number of time intervals after each of
which we randomised the atomic positions before contin-
uing the pulse dynamics. We found that interchanging

TABLE I. Simulated atom numbers for each trap volume and
the corresponding peak atom densities.

V/Ve N 10−3ρ/k3

1 12, 18, 25, 35 18, 27, 38, 53

0.35 8, 12, 15 34, 51, 63

0.072 3, 6, 9 62, 120, 190

0.023 3, 4, 5, 7 200, 270, 330, 470

the order of averaging had a negligible effect on the pop-
ulation decay (much less than 1%).

The quantitative comparison between the simulated
and experimental results is made via the saturation
parameter, defined as s = Ω2

R/2Γ2, with ΩR the
Rabi frequency and Γ = 2π × 3.03 MHz HWHM. In
Eqs. (8) above, the Rabi frequency is given by ΩR =
(ξ
√

2/D)
∣∣ê∗1 ·D+

F (Xj)
∣∣. The experimental value of s is

obtained as s = (1/12)I/Is, with Is = 1.67 mW/cm2.
The factor 1/12 is the product of three factors: 1/2 from
projection onto σ+ polarization component; 1/2 from the
(squared) reduced dipole moment of the F = 2 → F ′ =
2 hyperfine component; 1/3 from the squared Clebsch-
Gordan coefficient of the |2, 2〉 → |2′, 1′〉 transition.

Finally, in order to generate the results shown in the
figures of the main section, we calculate in the simula-
tions the remaining population in the initial state ρ11

as a function of time. This yields exponential decay
rates (calculated from the initial population and from the
t = 500/Γ results), or the pumping rates, each of which is
represented by a single data point in Fig. 4(a) of the main
text. The different data sets in Fig. 4 are obtained for
different cloud volumes, resulting in the variation of both
the atom density and optical thickness. Table I shows the
simulated atom numbers for atom clouds whose volumes
are smaller by the factor V/Ve than the experimental
value (the aspect ratios are the same in all cases).

NUMBER OF ATOMS CALCULATION

In this experiment we use absorption imaging in order
to measure the optical thickness of the atomic clouds.
The optical thickness is then converted to number of
atoms per pixel. This conversion depends on the camera
pixel size, the magnification, and the absorption cross
section σ. Our camera’s pixel size and magnification are
known (13µm and 13, respectively), but σ should be sim-
ulated. For an imaging laser with σ+ polarization driving
the |2, 2〉 → |3, 3〉 transition σ0 = 3λ2/2π. In our system,
however, the initial state is a distribution over the mF

states of the F = 2 ground state, and the imaging po-
larization is π. In addition, the atomic distribution in
the ground state changes during the imaging pulse. In
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order to find the effective cross section σeff (time aver-
aged over the imaging pulse) we solve the optical Bloch
equations (OBE) for the 12 relevant states (5 Zeeman
sublevels of the F = 2 ground state, and 7 for the F ′ = 3
excited state) using our experimental parameters (s� 1
and B = 5.4 G) with different initial conditions (initial
distribution). We find that

σeff = (0.15± 0.02)σ0. (9)

The error in σeff is due to the different initial distribu-
tions, and it is the main contribution to the error bars
in number of atoms in the figures (the other source of
error is shot-to-shot fluctuations). We would like to note
that σeff includes a factor 0.5 to compensate the retro-
reflecting imaging scheme we use.

In order to improve our image quality and lower the
noise in the image and the number of atoms we use two
more algorithms: fringe removal and deconvolution. The
fringe removal algorithm [5] takes an array of images of
the imaging laser with no atomic cloud and generates a
new image, which is a linear combination of these images,
that minimizes the fringe visibility in the optical density
image. This minimization is done in an area with no
atoms, and the linear combination has different weights
for each measurement. This algorithm deals with the
main noise contribution that comes from fringes due to
spurious reflections, which does not cancel well in the
optical density image. It assumes that if these fringes will
be canceled in the area near the atoms, this cancelation
will be valid also in the area with atoms.

The second algorithm, the deconvolution, is performed
because signal from one microtrap ‘leaks’ to neighboring
sites. This leakage is a convolution of the ‘real’ number
of atoms with a point-spread-function (PSF). Using a
second order correlation matrix g(2) we confirm that the
signal in each trap depends on its neighboring sites. We
also find, using a fitting algorithm, a PSF that creates the
same dependence of a site on it neighbors (the correlation
matrix). The last step is to deconvolute our images with
the fitted PSF. We would like to note that here we do
not use the single pixels of the CCD. We rather sum a
square around each microtrap [the square in Fig. 1] and
use it as a ‘pixel’ for the deconvolution algorithm. The
deconvoluted number of atoms is presented in figures 2
and 3 in the main text of the paper.

MICROTRAPS GROUPS

The analysis in this work was not done on a single
cloud level, but rather on groups of clouds. This was
done in order to reduce noise. The grouping was done
based on the initial number of atoms in each site, which
is averaged over 26 images. Figure 1 shows the area where
we perform our analysis, and the individual microtraps.
The pumping time is zero in the figure, and it shows
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FIG. 1. The analysis area. Each microtrap center is marked
with a red dot and a site index. The squares around the mi-
crotraps represent the area where we count the atoms, and the
colors indicate the groups (see Table II). Traps that appear
to be cut still use a full-size square to count the number of
atoms by counting the relevant area outside the image shown
here.

the initial microtraps densities. The color of the square
indicates the group, see Table II for site indexes for each
group. The sites marked with black squares are ignored
because of low atom number.
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TABLE II. Grouping of microtraps based on initial number
of atoms.

site index N0

group 1 1, 39, 40, 42 33± 5

group 2 3, 41 58± 8

group 3 4, 8, 15, 29, 34, 37 84± 11

group 4 18, 19, 23, 32, 35, 36, 38 103± 14

group 5 5, 6, 20, 24, 27, 30 131± 18

group 6 10, 13, 33 157± 21

group 7 17, 21, 22, 26, 31 181± 24

group 8 9, 12, 16, 25, 28 204± 27

group 9 11, 14 232± 31
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