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Summary. We consider a control theory approach to adaptive dose allocation of antico-
agulants, based on an analysis of records of 152 patients on long-term warfarin treatment.
We consider a selection of statistical models for the relationship between dose of drug and
subsequent blood clotting speed, measured through the International Normalised Ratio.
Our main focus is on subsequent use of the model in guiding choice of the next dose adap-
tively as patient-specific information accrues. We compare a naive myopic approach with
a proportional integral plus method, with parameters estimated by either linear quadratic
optimisation or by stochastic resource allocation. We demonstrate advantages of the con-
trol approaches in comparison to naive in simulations and through calculation of robust
stability margins for the observed data.
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1. Introduction

Choosing the correct doseage for patients on long term anticoagulation is a delicate
problem as the dose-response relationship varies considerably both between patients
and within patients over time (Avery et al. 2011, Landefeld & Beyth 1993, Pirmohamed
et al. 2013, Schwarz et al. 2008, Wells et al. 2004). Blood clotting speed is usually
measured through the International Normalised Ratio (INR), which is a standardised
version of the prothrombin time, in turn the time taken for plasma from the patient to
clot. In a healthy population the average INR will be one, but for patients prescribed
anticoagulants the aim is to keep the INR higher and so reduce the risk of thrombosis.
However, if INR is too high there is significant risk of bleeding. Hence a target band is
usually specified, often the range 2 to 3, and during an initiation phase the clinician will
seek a dose which maintains the patient’s INR in that range. A difficulty is that blood
clotting speed has both long-term and short-term variation so the required dose is rarely
completely stable. Consequently clinicians regularly review doseage of patients on long
term medication and amend dose in response to changes in INR. Often computer-assisted
dosing algorithms are used to help guide the clinician, taking into account the patient’s
INR and dose history (Poller et al. 2008a,b). The algorithms are usually provided by
commercial organisations in properietary software and are not public.
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In this paper we describe an analysis of the records of 152 patients who were being
treated in Newcastle upon Tyne with the anticoagulant warfarin during December 2013,
which is the most recent date for which records have been made available. Warfarin is the
most commonly prescribed anticoagulant and the literature on warfarin use in practice
is rich. There have been attempts to apply to anticoagulation some recent statistical
developments in optimal dynamic treatment allocation (Rosthøj et al. 2006, Henderson
et al. 2010, Rich et al. 2014) but in this paper we will approach the problem from the
quite different perspective of control theory. An aim of the paper is to introduce to a
statistical audience some relevant concepts from modern control theory and to highlight
the importance of the decision rule in determining adaptive treatments. Our motivation
is that while sophisticated modelling, estimation and inference procedures are well known
and well understood in the statistical community, there has been little attention on
subsequent dynamic decision rules or controllers. In contrast in control theory this is
usually the main focus, often with robustness in mind. Robustness in this sense does
not mean the traditional robustness of estimators or inference under departures from
assumptions, but stability of uncertain systems under external perturbations. Given an
anticoagulant model and data, how best can we decide upon the dose to be prescribed
while recognising that the patient may not behave as expected?

In Section 2 we will introduce the data and describe our modelling approach. This will
be relatively brief as our main focus will be on the control interpretation introduced
in Section 3. We will investigate three approaches to control, namely deadbeat, lin-
ear quadratic optimal and stochastic robustness analysis (SRA). The first two of these
assume that the system parameters are known, whilst SRA recognises uncertainty by
specifying a probability distribution for their estimates (Stengel & Ryan 1991). Although
all three methods are well-known in the control systems literature, in this article we will
focus on their application to the anticoagulant model. More specifically, we will solve the
optimal and SRA control problems using a proportional-integral-plus framework (Young
et al. 1987, Taylor et al. 2013), chosen because of its straightforward design flexibility
and use of an integrated error term. This ensures that the output tracks the target INR
at steady state, despite modelling errors associated with patient to patient variability
and disturbances. The concept may have wide application to other optimal dynamic
treatment problems.

The potential advantages of such an approach will be illustrated in Section 4, in which
we will compare all three control strategies in simulations based on the anticoagulation
scenario. In Section 5 we will return to the Newcastle data and compare the dose
decisions that were actually taken with those that would have been recommended had
each of our three controllers been in place. We will also compare robustness in these data
for the three different controllers, using structured singular values to assess stability when
model parameters are subject to uncertainty. Extensions and further work are discussed
in the final Section 6.
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2. Data and Model

2.1. Overview
We will consider the anticoagulation records of m = 152 patients, who together made
9345 clinic visits. Over 97% of the clinic visits were within 1 week to 3 months of the
previous visit, and our preliminary analyses indicated little or no effect of the timing of
visits or the intervals between them, at least within this range. This is perhaps because
warfarin concentrations in the blood typically reach steady state within about 3 days of
a change in dose (Holford 1986) and fewer than 1% of our clinic visits are within such a
short interval of an earlier visit. Hence we will work in discrete time, indexed by clinic
visit t = 1, 2, . . .. The number of visits per patient ranged from 4 to 213, with median
45, corresponding to follow up times from 186 to 4568 days, with median 1128. In our
modelling, if a patient had more than 50 clinic visits we restricted attention to the first
50 visits only, to avoid too much weight being given to these long-term patients. This
resulted in data with between 4 and 50 visits ranging in length from 186 to 4275 days
with median 983. We randomly divided the data into a training sample of 100 patients
and a test sample of 52 patients.
For a generic patient, let yt be the logarithm of the International Normalised Ratio
(INR) measure of blood clotting speed, measured at clinic visit t. Let ut be the dose of
warfarin prescribed at that visit, measured in mg, and assume there are N clinic visits.
Dose ut and log(INR) yt are shown in Figure 1 for four illustrative patients. The usual
target range for INR is between 2 and 3, which is shown in the log scale as horizontal
bands in the plot. Patient A had variable INR and no stable dose was achieved. By stable
dose we mean a dose that varies by no more than 0.5mg over at least 10 observations.
Patient B on the other hand was quite easy to control and only a small number of
dose adjustments were made. We note the different mean dose levels required for these
patients in order to maintain INR near the target range, providing illustrations of the
highly patient-specific dosing needed for warfarin anticoagulation. Patient C, like Patient
A, was not maintained at a stable level at all within the sequence shown, and had one
very high INR value. Patient D was stable until a sudden drop in INR occurred, which
required a temporary large increase in dose of warfarin. Sudden unexplained increases
or decreases in INR, as seen for Patients C and D, are quite common and are one reason
why anticoagulation control can be challenging (Wells et al. 2004).

2.2. Model selection
We adopt a Bayesian approach, based on linear models of the form

yt+1 = α1yt + α2yt−1 + . . .+ αkyt−k+1 + β1ut + β2ut−1 + . . .+ β`ut−`+1 + εt

with εt ∼ N(0, σ2), independent from one visit to the next. We allowed the coefficients
{αj} and {βj} to be either common to all patients or patient-specific. The deviance
information criteria, DIC (Spiegelhalter et al. 2002), for a selection of models are shown
in Table 1. These were obtained using the MCMCglmm R package with default parameter
values except for the number of iterations in the Markov chains, where we used 20,000
(after a burn-in of 3000) rather than the default 10,000 iterations, so as to be sure that
our DIC values are reliable.
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Fig. 1. Anticoagulation for four example patients. The upper part of each panel shows the
prescribed warfarin dose and the lower part shows the logarithm of INR.
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Table 1. Selected model comparisons using Deviance
Information Criterion DIC. Terms included in a model are
indicated by p (patient-specific values allowed) or c (a
common value is assumed for all patients).

Model terms
Model yt yt−1 yt−2 ut ut−1 ut−2 DIC

I p p p p p p 214.7
II c c c c c c 646.5

III p p p p 203.8
IV c c c c 837.5

V p p p c 203.2
VI p p c p 449.4
VII p c p p 204.1
VIII c p p p 204.6

IX p p p 219.7
X p p p 513.8
XI p p p 215.7
XII p p p 321.6

XIII p p 1182.3
XIV c c 1282.7
XV p p 234.0
XVI c c 1197.7



6 C. James Taylor, Emma Wilson

The smallest DIC value in the table corresponds to Model V, for which k = ` = 2,
coefficients α1, α2 and β1 are patient-specific but coefficient β2 is common to all patients.
Allowing β2 to be patient-specific too leads to only a small increase in log-likelihood,
and so our preferred choice is model III. As mentioned previously, our main focus is on
the design of controllers rather than detailed modelling, and we are not overly concerned
by a little over-fitting.
Introducing subscript p to indicate patient number, the model we will assume for the
remainder of the paper is

yt+1 = αp1yt + αp2yt−1 + βp1ut + βp2ut−1 + εt. (1)

Letting θp = (αp1, αp2, βp1, βp2)T , we assume θp ∼ N(θ0,Σ). Taking vague priors for θ0,
Σ and σ leads to maximum a posteriori estimates of σ = 0.2076 and

θ0 =


0.2608
0.0901
0.1917
0.0158

 Σ =


0.0540 −0.0106 0.0201 −0.0317
−0.0106 0.0222 −0.0047 0.0033

0.0201 −0.0047 0.0410 −0.0356
−0.0317 0.0033 −0.0356 0.0423

 . (2)

The following gives the standard deviations of the elements of θp on the diagonal and
their correlations above the diagonal:

0.2324 −0.3058 0.4281 −0.6646
0.1491 −0.1571 0.1078

0.2025 −0..8561
0.2056

 .

Because θ0, Σ and σ are very precisely estimated in comparison with inter-patient vari-
ability and random noise terms, we will take them to be fixed and known from now on.
All of the results in the following sections can be adapted if necessary to allow θ0, Σ and
σ to have appropriate posterior distributions.

2.3. Adaptive estimation
We are most interested in learning about θp as information on patient p accrues. Before
any observations are available on patient p, we assume that θp is a draw of a four
dimensional N(θ0,Σ) random variable. Suppose now that k observations are available,
collected into a k-vector ypk. Let Xpk be the associated k × 4 design matrix based on
(1), and define

J1 = XT
pkXpk/σ

2 J2 = Σ−1.

Then (Turkman et al. 2019) the posterior distribution of θp is Normal with mean

θpk = (J1 + J2)−1 (J1(XT
pkXpk)

−1XT
pkypk + J2θ0

)
and variance

Σj,k = (J1 + J2)−1 .
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3. Control Design

In this section we discuss some ideas and methods developed in control engineering
that may be useful in anticoagulation control. Generalising from the anticoagulation
application, we will refer to ut and yt as inputs and outputs respectively. Given Ft =
(yt, yt−1, yt−2, . . . , ut−1, ut−2, . . .), our objective is to select the next input ut so as to
maintain output as close as we can to a target y∗t . Any algorithm to select ut will be
referred to as a controller. It is not physically possible to have a negative dose, therefore
ut is constrained to be non-negative. If an algorithm selects a negative dose this will be
set to zero to satisfy the constraint. When specifying the controllers, we assume that the
future desired trajectory y∗t+1 is available. This is the case for anticoagulation control
where the aim is to ensure that INR remains within a pre-defined range.
For the most part we will concentrate on a single generic patient, dropping the subscript
p to indicate patient number, using θ = (α1, α2, β1, β2)T for the true model coefficients

for the patient, and θ̂ = (α̂1, α̂2, β̂1, β̂2)T as estimated or assumed parameter values.

3.1. Transfer functions, linear controllers, and system performance
The performance of a controlled system is usually studied for deterministic models, as-
suming that general properties for a deterministic model will mirror those of a stochastic
model with additive zero-mean noise. Hence in this section we will temporarily drop εt
from (1) and work with

yt+1 = α1yt + α2yt−1 + β1ut + β2ut−1. (3)

More general and sophisticated models are of course used in many applications but this
is sufficient for our discussion. Introducing a backward shift operator z−1, such that for
example z−jyt = yt−j , equation (3) can be written as(

1− α1z
−1 − α2z

−2
)
yt+1 =

(
β1 + β2z

−1
)
ut,

or

yt+1 =

(
β1 + β2z

−1

1− α1z−1 − α2z−2

)
ut. (4)

The multiplier of ut on the right-hand-side is referred to as a transfer function (Taylor
et al. 2013). Properties of the transfer function, most importantly the poles, determine
the properties of the system: see for example Fadali & Visioli (2013). In our case the
poles are the roots of x2 −α1x−α2. If the poles are plotted in the complex plane, then
the distance from the origin gives the decay rate: poles at the origin imply that the
output reaches the target after just one sample, with increased time-to-target as poles
move towards the unit circle. Poles outside the unit circle are unstable. Complex poles
inside the unit circle can lead to oscillations in output, and oscillations are also possible
for poles on the negative real axis. If the poles are on the real positive axis, the output
does not oscillate.
A linear controller selects the input ut at time t as a linear combination of observed and
target values. An example for (3) might be

ut = k1y
∗
t+1 − f0yt − f1yt−1 − g1ut−1, (5)
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for which the coefficients k1, f0, f1 and g1 are sometimes called gains. An equivalent
form is

ut =
k1zy

∗
t −

(
f0 + f1z

−1
)
yt

(1 + g1z−1)
. (6)

The controller is stable if | g1 |< 1.
In a closed loop system the input is always selected algorithmically by the controller
rather than exogenously, so we can use (4) and (6) to write down a system which relates
yt+1 to earlier values {yt−j ; j = 0, 1, 2} and targets y∗t+1 and y∗t . In our case this is

yt+1 = γ1yt + γ2yt−1 + γ3yt−2 + η1y
∗
t+1 + η2y

∗
t , (7)

where

γ1 = α1 − g1 − β1f0,

γ2 = α2 + α1g1 − β1f1 − β2f0,

γ3 = α2g1 − β2f1,

η1 = k1β1,

η2 = k1β2.

An important measure of system performance is the steady state gain between output
and target, which is the long-term ratio between yt and y∗t . At steady state yt = yt−1 =
yt−2 and y∗t+1 = y∗t so that the steady state gain is (η1 + η2)/(1− γ1 − γ2 − γ3).

3.2. Deadbeat and PIP control
A simple way to choose input ut is to select it so that the expected value of the next
output is equal to the target value, assuming the true model parameters are equal to
the estimates. For the model given in (3), with estimated coefficients α̂1, α̂2, β̂1 and β̂2,
and assuming target y∗t+1, this leads to

ut =
y∗t+1 −

(
α̂1yt + α̂2yt−1 + β̂2ut−1

)
β̂1

, (8)

which is referred to as a deadbeat controller. It is a special case of (5), with appropriately
defined coefficients k1, f0, f1 and g1. In this case, the steady state gain between output
and target is

(β1 + β2)(
β̂1 + β̂2

)
(1− α1 − α2) + (α̂1 + α̂2) (β1 + β2)

, (9)

which is one when the estimated parameter values are equal to the true parameters.
There are a huge array of alternative controllers, commonly implemented using feedback
control, of which the most widely used is the proportional-integral-derivative (PID)
feedback controller (Franklin et al. 2013). We concentrate on one particular controller,
the so-called proportional-integral-plus or PIP controller (Young et al. 1987, Taylor et al.
2000, 2013). This is an extension of the PID controller and is selected due to its increased
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design flexibility and the fact that under certain constraints it becomes equivalent to the
special case of a deadbeat controller given in (8). In our case the PIP controller is

ut = k1y
∗
t+1 − f0yt − f1yt−1 − g1ut−1 − k2et, (10)

where et = et−1 + y∗t − yt, which is the cumulative error between output and target.
Inclusion of the extra term better allows the system to track the target in case of model
misspecification or parameter estimation error (and is a standard concept in most engi-
neering applications of feedback control).
Using (4), (10) and et = (yt − y∗t )/(1 − z−1) to determine the closed loop system rep-
resentation, we see that the steady state gain between the output and target is one,
regardless of parameter estimation error (Taylor et al. 2013). This contrasts with the
steady state gain associated with (5) or (8) which, as illustrated by (9), is only one when
the estimated parameter values are equal to the true parameters. In Section 4 we will
illustrate further advantages of the PIP controller in comparison to deadbeat. Before
that, we make some brief comment on how the coefficients k1, f0, f1, g1 and k2 might
be selected.

3.3. Design of controller
As mentioned previously, stability of the system and speed of convergence to steady-state
are determined by the positions of the poles of the transfer function. In pole placement,
the coefficients are selected so that the poles of the transfer function are in desired
locations, so as to ensure the system is well-controlled. Deadbeat is an example of this
approach, in which the coefficients are selected so that the poles lie at the origin of the
complex plane.
A more direct method is based on minimisation of an interpretable cost function. For
example, we might want to penalise both short-term and sustained deviations between
output and target, and between input and some nominal input level u∗. In that case we
might minimise

N∑
t=1

{
w1 (yt − y∗t )

2 + w2e
2
t + w3 (ut − u∗)2

}
, (11)

for chosen positive weights w1, w2 and w3. More involved cost functions might of course
be preferred. The minimisation of a quadratic cost function for a linear system model
is referred to as LQ optimisation. The given cost is equivalent to that minimised when
using a standard PIP-LQ controller design (Taylor et al. 2013)
Both pole placement and LQ optimisation and their variants assume that the system
parameter θ is known. An alternative, stochastic robustness analysis (SRA), recognises
uncertainty in θ by specifying a probability distribution for it, in our case N(θ0,Σ). SRA
was first demonstrated by Stengel and Ryan Stengel & Ryan (1991), with significant
further contributions from Marrison, Stengel and Wang (Marrison & Stengel 1995, 1997,
Wang & Stengel 2002). SRA is flexible and easy to implement for a range of systems.
However, a downside is that it can be computationally expensive.
To implement SRA we begin with a performance metric. Examples are

• Probability of instability, Pi: the probability that at least one closed loop root is
outside the unit circle.



10 C. James Taylor, Emma Wilson

• Probability of error exceedence, Pe: the probability that the root mean square error
between output and target exceeds a specified value.

• Probability of error exceedence after settling, Pr: the probability that the root mean
square error between output and target exceeds a specified value after a burn-in
period to allow settling.

• Probability of control-limit exceedance, Pg: the probability that the input signal
goes above a given amplitude.

A weighted average of these or other metrics may be preferred. Once the metric is
decided, we then numerically search for coefficients f0, f1, g1 and k2 that give acceptable
performance when integrated over the distribution of parameters θ, using Monte Carlo
integration.

4. Properties and Performance

In this section we will compare the performance of deadbeat and PIP controllers using
simulations based on the anticoagulation model. Although a range of possible controllers
could be developed from the algorithms and design methods introduced in Section 3, we
will focus our investigations on three cases, namely deadbeat using equation (8), and
PIP control (10) with the coefficients chosen by either LQ or SRA optimisation.

We re-introduce the noise term εt and work with (1). The results are based on 10000
simulated patients, each with an individual θp ∼ N(θ0,Σ), with θ0 and Σ given by (2).

The model for patient p is stable if the magnitude of the roots of x2 − αp1x − αp2 are
less than 1. For the test set of 10000 patients, 26 had simulated parameter values that
would give an unstable model. Without constraints each of the 10000 patients were
controllable, however, including the constraint that inputs must be positive meant that
these 26 unstable patients were not controllable (using test conditions provided in Evans
& Murthy (1977)). Therefore, these patients 26 were removed from the analysis.

In the remaining test data, there were 278 patients with negative values of the steady
state gain between output and input:

βp1 + βp2
1− αp1 − αp2

.

Patients with negative gains cannot be controlled without negative input values ut. With
the anticoagulation example in mind, we constrained the inputs to be non-negative in
the simulations to follow, and hence removed these patients too, as structurally non-
controllable. This left a test set of 9696 patients. As an aside we note that in antico-
agulation in practice a proportion of patients are indeed non-controllable or extremely
difficult to control (Razouki et al. 2014). In their study of 103897 patients Razouki et al.
(2014) found that 40% of patients spent less than 60% of the time with an INR in the
range 2-3, and of these patients with poor control, 30% (13226 patients and 12% of the
total patients) had neither a high or low tendency to be out of range so presumably had
erratic control.
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4.1. Known parameter values
To begin with we will assume that the parameters θp are fully known for each patient.
In simulations the output and inputs were initialised to zero and for each patient we
generated two series of N = 50 observation times. One series had inputs selected using
deadbeat control and the other used PIP with the coefficients chosen by LQ optimisation.
The aim in practical anticoagulation is often to maintain INR in the range 2–3. Hence
as target output we selected y∗t = log 2.5 for t = 1, 2, . . . , 50.

4.1.1. Deadbeat control

We consider first the series with deadbeat control. Choosing inputs by deadbeat control
resulted in unstable behaviour in 3151 of the 9696 simulated patients, even when the
model was correct and the parameter values fully known. Although there is an analytical
cancellation, the instability occurs due to the controller being unstable (see Eq. (6)) and
the numerical rounding errors and dose constraints that occur. The dose of the drug is
discrete, so similar stability issues are likely to occur in practice if an unstable controller
is used. Examples of patients with good and poor control are given in Figure 2. For the
patient with poor control, the input ocillates wildly between zero and extremely large
values outwith the range plotted. The output also oscillates unacceptably.
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Fig. 2. Deadbeat and PIP control responses for two simulated patients when the model pa-
rameters θp are known. a) Deadbeat input model stable for example patient, b) Deadbeat input
model unstable for example patient.
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Table 2. Summary of results when θp is known. The PIP results are for 9696
simulated patients. The deadbeat results are for the subset of 6545 simulated
patients who had stable inputs and outputs - note deadbeat results for the full
set of 9696 patients were RMSE values of the order of 1038 due to instabilities.
RMSE is root mean square error between output and target.

Controller RMSE t = 1 : 50 RMSE t = 21 : 50 Mean |ut − ut−1|
Deadbeat (subset) 0.2438 0.2084 0.4586
PIP 0.3283 0.2353 0.2574

4.1.2. PIP control
For the second set of series, we used PIP with the coefficients for each simulated pa-
tient chosen by LQ optimisation based on cost (11), with weights w1 = w2 = w3 = 1.
This gives equal weighting to the output error, cumulative error and input deviations.
Changing the weights varies the importance of each term in the cost being optimised.
Oscillations in the inputs do not occur when using a PIP controller, as demonstrated
in Figure 2 (in comparison the deadbeat input oscillates between the input constraints,
with the maximum outside of the plotted range).
Table 2 provides a performance comparison between the 9696 simulated patients con-
trolled using a PIP strategy and the 6545 with a stable deadbeat strategy. In general,
the PIP controller is slower, but more robust than the deadbeat controller. On average
the PIP controller suggests smaller changes in input doses. If the input model used
to determine the deadbeat inputs remains stable, and the model is correct, then the
deadbeat controller performs better in terms of minimising the errors in the output. As
we have seen however, even in the ideal case of a correctly specified model and known
parameter values, the deadbeat controller failed for about 30% of patients.

4.2. Uncertain parameter values
The response when θp is not known is now considered. Before any data are available for
the patient, our prior knowledge is simply that θp ∼ N(θ0,Σ). In the next subsection we
will briefly consider adaptive estimation as data accrue. In this subsection we suppose
that the control policy is fixed at the outset and not adapted as further data on the
patient become available.

4.2.1. Deadbeat control
Replacing the true model parameters by θ0 in the deadbeat controller gave a stable
response for all 9696 simulated patients in the test data. A performance summary is
given in Table 3.
A key problem with the deadbeat strategy when the model is not correct is that the
output does not track the desired output and there is a steady state error. This explains
the increased RMSE values given in the table. The response of two example patients
when using the deadbeat controller with model mismatch is given in Figure 3a. This
demonstrates that the control strategy does not work well and the output does not track
the desired output when the model is not correct.
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For perfect tracking we want yt close to y∗t , which is achieved at steady state if the
closed loop system has a steady state gain (9) of one. For the simulated set of patients
the mean steady state gain under deadbeat control was 0.9959, suggesting good model
calibration overall. But there was a large standard deviation of 0.3343, and hence for
many individual patients there was significant bias between mean output and target.

4.2.2. PIP with LQ coefficient choice and fixed θ

First, the PIP control coefficients were obtained using LQ optimisation of (11), with
weights w1 = w2 = w3 = 1, and assuming that the population mean parameter θ0

applied. As the target is time-fixed we set k1 = 0 and used the integral of error as the
tracking measure. The obtained coefficients were f0 = 0.4290, f1 = 0.1183, g1 = 0.0207
and k2 = −0.8562. The response for the two example patients is given in Fig 3b,
demonstrating the improvement from deadbeat control.

The performance of this PIP controller is summarised in Table 3. As pointed out in
Section 3.2, the steady state gain is one for each realisation. Nonetheless, for some
patients the controller works poorly, which is reflected in the relatively high root mean
square errors.

4.2.3. PIP with SRA coefficient choice and random θ

The previous PIP control design does not take into account the possible spread of pa-
rameters between patients. In order to achieve good performance over the range of
possible patients, the PIP coefficients can also be determined using SRA. This provides
a way of using the knowledge that θp ∼ N(θ0,Σ). We used the performance and stability
measures Pi, Pe, Pr and Pg defined in Section 3.3. For the probability of error excee-
dence, Pe, we flagged if the overall root mean square error between output and target
exceeded 0.3. For Pr, we used the root mean square error between yt and y∗t over the
range t = 15 : 50, with a flag if this exceeded 0.25. For the probability of control-limit
exceedance, Pg, we monitored the proportion of times the controller proposed an input
above 10mg. These probabilities are calculated as
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Table 3. Summary of results when θp is not known. All results are based
on 9606 simulated patients. The deadbeat and PIP LQ methods use θ0 in
place of θp in determining the controller. The PIP SRA method integrates
over θp ∼ N(θ0,Σ).

Controller RMSE t = 1 : 50 RMSE t = 21 : 50 Mean |ut − ut−1|
Deadbeat 0.4663 0.4298 0.3839
PIP LQ 0.4023 0.3763 0.2701
PIP SRA 0.3345 0.2469 0.2296

Pi =

∑N
j=1 ωj

N
ωj =

{
1 if ∃ |pcl| > 1

0 otherwise,

Pe =

∑N
j=1 φj

N
φj =

{
1 if

√∑50
t=1(yt−y∗t )2

50 > 0.3

0 otherwise,

Pr =

∑N
j=1 πj

N
πj =

{
1 if

√∑50
t=15(yt−y∗t )2

36 > 0.25

0 otherwise

Pg =

∑N
j=1 ρj

N
ρj =

{
1 if ∃ ut > 10

0 otherwise,

where pcl is used to define a closed loop pole and j indicates patient number. As overall
cost we used

wiP
2
i + weP

2
e + wrP

2
r + wgP

2
g

with weights wi = 10, we = 1, wr = 0.1 and wg = 1. We chose the quadratic form to
give increased importance to large probabilities.
The cost was calculated using a Monte-Carlo simulation with N=10000 realisations to
generate 10000 random patient models. The control gains that minimised the cost
function were calculated using the Matlab function patternsearch, with initial values
taken as the LQ estimates chosen in the previous subsection. The SRA method led
to f0 = 0.1165, f1 = 0.1534, g1 = 0.2204 and k2 = −0.9815. A controller with these
coefficients was then applied to the 9696 test simulated patients. Performance summaries
are presented in Table 3 and, for two example patients, in Figure 3c. The PIP strategy
with coefficients obtained by SRA gives very reasonable performance.

4.3. Adaptive parameter values
In Section 4.1 we looked at control in the hypothetical case that the parameters that
determine the input/output relationship for a patient are fully known. In Section 4.2 we
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Fig. 3. Simulated patient results when θp is not known: a) Deadbeat, b) PIP LQ, c) PIP SRA.

assumed that we knew nothing about the patient and based our controller on population
characteristics. In practice of course there will be an accrual of patient-specific knowledge
as time proceeds. In this section therefore we will use simulations to briefly investigate
the effect of dynamically adapting the controller as experience is gained. Our simulations
will be based on the parameter values for a fairly typical patient, Patient A in Figure 1.
We will compare controllers with coefficients determined at time zero for the patient,
after 25 observations are available, and after 50 observations are available. The true
parameters for the patient are the conditional mean values after 50 observations.
For Patient A the conditional parameter mean and variance matrix after 25 observations
are

θp25 =


0.2447
0.1677
0.1040
0.0241

 Σp25 =


0.0127 −0.0045 −0.0009 −0.0009
−0.0045 0.0098 −0.0017 0.0007
−0.0009 −0.0017 0.0049 −0.0041
−0.0009 0.0007 −0.0041 0.0040

 .

After 50 observations these are

θp = θp50 =


0.2579
0.1895
0.0769
0.0396

 Σp = Σp50 =


0.0096 −0.0038 0.0000 −0.0012
−0.0038 0.0076 −0.0015 0.0007

0.0000 −0.0015 0.0041 −0.0037
−0.0012 0.0007 −0.0037 0.0038

 .

These values were used to design PIP controllers based on the mean using LQ optimisa-
tion and based on the mean and variance using SRA with 10000 simulated patients as
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Table 4. PIP control coefficients for Patient A initially and after 25 and 50 observations.

PIP LQ PIP SRA
Observations f0 f1 g1 k2 f0 f1 g1 k2
None 0.4290 0.1183 0.0207 -0.8562 0.1781 0.1417 0.1349 -0.9187
25 0.5669 0.2460 0.0353 -0.9042 0.1919 0.7919 0.4572 -1.9042
50 0.6556 0.2922 0.0611 -0.9097 0.2806 1.2961 0.7329 -2.4097

described in the previous sections. The control coefficients are summarised in Table 4.
Each controller was then used to generate 10000 new sequences of 50 observations. Ta-
ble 5 presents a comparison of results, and an example response is given in Figure 4.
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Fig. 4. Example simulated response using SRA based on population and adaptive patient-
specific control coefficients.

Using LQ optimisation there is little change in the results for the different models because
only the mean parameter influences the controller and for this particular patient the
values of θp25 and θp50 are quite similar to θ0. When using SRA to determine the control
gains however, the overall root mean square errors are reduced once we have patient-
specific information. This is a consequence of the SRA controller becoming faster and
more aggressive when it does not need to be robust to such a wide spread of possible
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Table 5. Summary of results using PIP LQ and PIP SRA with coefficients determined
initially and after 25 or 50 observations.

Controller Observations RMSE t = 1 : 50 RMSE t = 21 : 50 Mean |ut − ut−1|
PIP LQ None 0.3456 0.2283 0.2587

25 0.3437 0.2272 0.2882
50 0.3452 0.2264 0.3030

PIP SRA None 0.3452 0.2294 0.2285
25 0.3143 0.2296 0.4053
50 0.3102 0.2291 0.5289

parameter values. The fact that the controller becomes more aggressive is also evident
in the increased changes to the inputs using SRA. The simulated example in Figure 4
illustrates these characteristics. In the plot, and also in Table 5, for SRA there is little
difference between conditioning on 25 or on 50 observations, which might be expected
since Σp25 and Σp50 are relatively similar for this patient.

5. Use of Control in Anticoagulation

5.1. Retrospective comparison
Returning now to the observed anticoagulation data, for each patient p in the test data
set we will compare the actual doses upt with those that would have been recommended
by the various controllers we have considered, generically cpt say. We classify the actual
doses upt as being good if INR at the next visit was in the target range of 2—3 units,
as being too low if the INR was below 2, and as being too high if it was above 3. Good
decisions are compared with controller values using the absolute relative difference

Gpt =
2|upt − cpt|
(upt + cpt)

log(2) ≤ yp,t+1 ≤ log(3). (12)

If upt proved to be too low, we used an indicator for the controller suggesting a higher
value:

Lpt = I(cpt > upt) yp,t+1 < log(2). (13)

We used the opposite if the actual dose was too high:

Hpt = I(cpt < upt) yp,t+1 > log(3). (14)

Mean values of these statistics are given in Table 6. Results are based on 2029 decisions
in total, of which 58% of doses were good, 27% too low and 15% too high. The adaptive
controller coefficients were updated after each observation. When the actual prescribed
dose was judged to be good, the two PIP methods clearly outperform deadbeat and
would usually recommend doses that are very close to that prescribed. When the actual
dose seemed to be too low, all three controllers would have prescribed a higher value for
a large majority of decisions. When the actual dose was too high the two PIP controllers
would have prescribed a lower dose in over 60% of the cases, whereas deadbeat would
have recommended a lower dose less often.



18 C. James Taylor, Emma Wilson

Table 6. Comparison of actual decisions and con-
troller recommendations for 52 test patients. Ḡ, L̄
and H̄ are the mean values of statistics (12)-(14)
over 2029 decisions.

Controller Ḡ L̄ H̄
Fixed Deadbeat 0.3472 0.7129 0.4967

PIP LQ 0.0684 0.6996 0.6283
PIP SRA 0.0615 0.7414 0.6447

Adaptive Deadbeat 0.3189 0.8916 0.3421
PIP LQ 0.0679 0.7034 0.6316
PIP SRA 0.0753 0.7529 0.6513

5.2. Robustness
We can examine also the robustness of the three controllers under consideration by
using the structured singular value, which is a device used to analyse the stability of
a system subject to perturbations. We consider a single generic patient and drop the
subscript p for notational convenience. We assume adaptive estimation and recall that
at time t we have θ ∼ N(θt,Σt). Our controllers are of the form ut = Kyet where
yet = (yt, yt−1, ut−1, et) is the extended observation vector and K is a matrix of design
coefficients and elements of θt. The state evolution of a closed-loop system can thus be
represented as

yet+1 = F (θt,4t,K)yet (15)

where 4t reflects the uncertainty caused by using the posterior mean θt in place of the
unknown true parameter θ.
The intention is to assess stablity of the system as θ varies over a feasible region. We
use pointwise 1− α credible regions

(θt)j ± zα/2
√

(Σt)jj

for each element j, where zα/2 is the upper α/2 quantile of the standard Normal distri-
bution. Further, we define 4α

t as the Cartesian product of these sets.
Since the model is uncertain, we are interested in the ability of a controller to stabilise
the state evolution for the largest set of parameter values around θt. To address this, we
compute the so-called robust stability margin R(K,4α

t ), which quantifies the percentage
of modelled departure in the uncertainty set4α

t for which the system (15) remains stable
for a given controller K. For example, R(K,4α

t ) = 0.3 means that (15) is stable for all
values of θ in

(θt)j ± 0.3zα/2

√
(Σt)jj),

but there is a value of θ in the complementary subset of 4α
t which renders (15) unstable.

The greater R(K,4α
p,t) is, the more stable the system, and R(K,4α

t ) > 1 indicates
there is no parameter corresponding to perturbations in4α

t which destabilises (15). This
robustness analysis method is rooted in the work of Doyle et al. (1982) then Doyle (1985),
Young et al. (1991) and Fan et al. (1991), where the problem of margin computation is
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Fig. 5. Stability margins t −→ R(K,4αp,t) for deadbeat, LQ and SRA control. The grey lines
are the margins for the individual patients in the test data, adapted as information accrues. The
bold lines are the means.

turned into the analysis of a matrix function called the structured singular value µ and
defined by:

µΛ(M) =
1

min {σ(λ) : λ ∈ Λ, det (I −Mλ) = 0}
.

Here σ(λ) is the largest singular value of λ and Λ is a matrix set having a particular
structure representing uncertainty: see Packard & Doyle (1993) for a clear introduction.
By denoting P the transfer function for (15) in the absence of perturbations, a small-gain
theorem tells us that (15) is stable for all perturbations in 4α

t if supw µ4αt (P (jw)) <
1/max {σ(λαt ) : λαt ∈ 4α

t } . Moreover, we can infer from supw µ4αt (P (jw)) the size of
perturbations that (15) is robustly stable against.

In practice, we use the Matlab function robstab to compute R(K,4α
t ) while avoiding

issues with µ discontinuities by considering only real uncertainty (Barmish et al. 1990,
Packard & Pandey 1993). The computation of µ is NP hard, so the Matlab function
robstab returns lower and upper bounds, which are easier to compute. In our com-
putations the differences between the lower and upper bounds were small, with mean
0.0014. We plot the lower bounds, as the exact stability margin is guaranteed to be no
smaller than this, guaranteeing stability for all modelled uncertainties with normalised
magnitude up to the lower bound.

For the three controllers considered in this work, we show in Figure 5 the values of
of R(K,4α

t ) as t increases and knowledge accrues, using α = 0.05. The grey lines
represent the uncertainty margins for individual patients in the test set, with the bold
lines showing the mean. We see that adaptive LQ and SRA controllers provide more
robustness than deadbeat. Moreover, the stability margins for the deadbeat controller
increase only slowly as we learn about the patient, whereas the LQ and SRA margins
increase more quickly.
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6. Discussion

Personalised anticoagulant dose selection is necessary given the heterogeneity in response
between and within individuals. Careful modelling of the dynamic and patient-specific
relationship between dose and response is of course necessary if dose-selection algorithms
are to be effective. We have tried to show in this work that it is equally important to pay
close attention to the dosing rule given the model. Hence we have not described modelling
in much detail in this work, other than the variety of simple transition models compared
in Table 1. We did, however, consider a much wider range of models in unreported
exploratory analyses of the warfarin data. For example we removed the discrete time
assumption and considered modelling in real time with a point process of clinic visits.
We included gender, age and time intervals between visits as covariates, and we used
mean-covariance modelling (Pourahmadi 1999, Liu et al. 2018) as implemented in the
jmcm R package of Pan & Pan (2017) to allow previous responses, doses and covariates
to affect not just the mean, but also (via a Cholesky decomposition) the variance of
responses. None of these more involved models brought substantial improvement over
the simple model (1) with patient-specific coefficients.

Genetic factors and other factors such as alcohol intake, BMI and interacting medicines
have been shown to influence the response to warfarin (Bader & Elewa 2016, Bourgeois
et al. 2016). In the hospital notes accompanying our data there are regular explanatory
comments on possible causes for unusual INR values (e.g. co-medication, alcohol in-
creases or decreases). However, there is not always any record of these additional factors
that could affect the output INR, or decisions on the input dose, and we did not have
any genetic data available. Additional factors therefore could not be included in the
models or dose selection algorithms. The methods can easily be extended to include
such information if it is available.

We have not concentrated on modelling and inference because these are of course familiar
to a statistical readership. Instead we have focused on design and performance of the
dose selection algorithm, given the model and parameters, and considered as a problem
in controller selection. Of the methods considered, adaptive SRA is perhaps the most
flexible in that it optimises customised performance measures, albeit at the cost of
modelling assumptions. Using SRA the PIP controller can be designed to maximise the
probability of an acceptable response for possible patient models. However, due to the
probabilistic nature an acceptable response cannot be guaranteed so constraints should
also be introduced to ensure that in practice unacceptable decisions are not made. For
the warfarin application the following constraints might be chosen.

• A maximum allowable change in dose at each time step can be specified. If the
controller suggests a larger change then the actual change can be capped.

• A maximum allowable dose at each time step can be provided. For example guide-
lines on warfarin dosing sometimes suggest a maximum dose of 10mg.

• If the recorded output is very high or very low then the subsequent input can be
constrained. For example we might force dose ut to be zero if INR exceeds some
limit.
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We investigated the PIP controller with LQ or SRA adaptive estimation and showed that
this brought substantial improvement over the naive deadbeat approach in respect of
stability and robustness. In future work we hope to compare PIP with other model based
controllers, in particular those designed using model predictive control, MPC (Camacho
& Alba 2013). MPC is a generalised control strategy in which: i) a model is used to
predict future outputs; ii) the set of future control signals that minimise some objective
and satisfy constraints are calculated; iii) the first of these control signals is applied to
the system and the process is repeated. The use of MPC is attractive, both due to its
ability to automatically handle constraints and because it allows non-myopic strategies
whilst keeping flexibility to react to unexpected responses.
In retrospective analysis, the PIP controllers led to similar or improved decisions in com-
parison to those actually made. We envisage that control algorithms could be embedded
in existing computerised dosing software, to help guide personalised treatment decisions
based on the individual’s history of inputs and outputs. Such algorithms would provide
guidance for INR dosing (and could also be used for other treatment applications), they
could improve performance by balancing the dose change so it is effective (accuracy),
but not too aggressive (robustness). The controller parameters can be tuned to account
for this performance–robustness trade off. Controllers can be designed to optimise dif-
ferent criteria; hence, they can be used to provide optimised treatment decisions that
are personal to individual patients. Controllers can also be used in closed loop systems
where the dose is automatically adjusted based on feedback. An example is closed loop
insulin delivery (artificial pancreas) (Steil et al. 2004). Here, a key issue is ensuring
patient safety which requires robust controllers.
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