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Abstract

Magnetophonon resonance (MPR) oscillations are a valuable spectroscopic tool

for studying electron interactions in solids. This type of spectroscopy is performed by

applying a magnetic field to the solid, to quantise the energy of the charge carriers, and

inter-Landau level scattering transitions are observed as oscillations in magnetoresistance.

Since the transition energy is known, these oscillations can be used to identify phonons

responsible for the inter-Landau level scattering. These oscillations, which arise due to

scattering of Dirac fermions by transverse and longitudinal acoustic phonons, appear only

in large graphene Hall bars with dimensions in excess of 10µm (greater than the phonon

scattering mean free path). Here we apply large current-induced bias voltages (up to

1 mA) through a large graphene Hall bar and study the effect on the MPR oscillations.

We observe a splitting of these oscillations due to a spatial tilting of the Landau levels

induced by a strong Hall electric field. At sufficiently large Hall fields we also observe

‘phonon-less’ inter-Landau level scattering transitions which arise when the Landau level

states become parallel in energy. Finally, we observe an additional scattering process when

the drift velocity approaches the speed of the transverse acoustic phonon.
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Chapter 1

Introduction

This thesis reports my contribution to our recent discovery of magnetophonon

oscillations in graphene. The unique band structure of graphene was first explored theo-

retically by Wallace in 1947 [1]. This led to the experimental discovery that charge carriers

in graphene behave like relativistic Dirac fermions [2, 3], described by the Dirac equation

rather than the Schrödinger equation, with the speed of light, c, replaced with the Fermi

velocity, vF [4]. Due to the atomic thickness of graphene the carrier density, n, can be

tuned by a large extent (n ∼ 1012 − 1013 cm−2) by the electric field effect [5]. Graphene

has since been used to explore relativistic physics such as Klein tunnelling [6], and the

success and versatility of graphene led to families of 2D Van der Waals crystals arranged

in 2D heterostructures [7]. The electronic properties of these heterosctructures were found

to depend on both the stacking arrangement and the relative twist angle between different

layers. In particular, in 2018, superconductivity was discovered in bilayer graphene with a

specific twist angle of 1.1◦ between layers [8]. The precise mechanism for superconductivity

in twisted bilayer graphene is not yet understood [9, 10].

Despite extensive studies of electronic transport in graphene over the past 15 years

the magnetophonon effect, well known in other materials for over 50 years, has only

recently been discovered [11]. Electron interactions with high energy phonons in graphene

were only previously observed in Raman spectroscopy studies [12, 13]. This is because

MPR is only observable in high quality graphene with spatial dimensions in excess of
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10µm [11]. MPR has been used to measure the low energy acoustic phonon dispersion in

graphene. Although measurements of the full phonon dispersion curve have been made

with inelastic X-ray scattering in graphite [14], MPR oscillations give a far more precise

measurement of the low energy phonon dispersion [11]. In the experiment, we observed

MPR arising from both transverse acoustic (TA) and longitudinal acoustic (LA) phonons.

We also showed for the first time that Dirac fermions interact more strongly with the TA

phonon than the LA phonon. Here we extend this work by studying MPR in graphene

with large currents and thus large electric fields. We demonstrate that a strong Hall field

tunes the energy of the MPR transitions, thereby allowing access to lower energy modes

in the TA phonon dispersion. These low energy acoustic phonons might be relevant to the

superconductivity mechanism in twisted bilayer graphene [9, 10]

This thesis is comprised of four chapters. Chapter 1 introduces the magnetophonon

effect in graphene, building up from essential concepts of charge carrier and phonon trans-

port. Chapter 2 reports our fabrication and electrical measurement methods; i.e., the

alternating current (AC) and differential resistance measurements. Chapter 3 presents

magnetoresistance measurements of magnetic focussing peaks in graphene, as discussed in

our recent paper [11] (Supplementary Section 2)(see also a relevant theory paper by Green-

away et al. [15]). Finally, in Chapter 4, we present the new measurements of graphene

MPR in large electric fields. We begin by discussing the known electronic properties of

graphene.

1.1 Massless Dirac Fermions in Graphene

Graphene is a two-dimensional array of carbon atoms arranged in a hexagonal

lattice. Each atom has six electrons, two of which form a 1s2 closed shell and the other

four occupy hybridised 2s, 2px, 2py and 2pz orbitals [16]. The four valence electrons form a
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sp2 hybridised state with three strong in-plane carbon bonds and one free out-of-plane pz

orbital. Only the out-of-plane pz orbital contributes to electrical conduction in graphene.

Figure 1.1a shows the crystal structure of graphene. The unit cell consists of two

atoms arranged in a parallelogram, spanned by lattice vectors, ~a1 and ~a2, given by

~a1 = a

(
1

2
,

√
3

2

)
and ~a2 = a

(
1

2
,−
√

3

2

)
, (1.1)

where the interatomic distance a ≈ 1.42 Å and the lattice period |~a1| = |~a2| =
√

3a [4].

The corresponding reciprocal lattice vectors are given by

~b1 =
2π

a

(
1

3
,

√
3

3

)
and ~b2 =

2π

a

(
1

3
,−
√

3

3

)
. (1.2)

These are shown in Figure 1.1b. Special high-symmetry points K, K′, and M, lie at the

edge of the Brillouin zone. These points are special because they describe standing waves

with some special symmetry of the reciprocal lattice. Of particular interest are the K

and K’ points because they lie at the bottom of the K and K’ valleys in the electronic

dispersion.

Figure 1.2a shows the electronic dispersion of graphene calculated in the tight

binding model [1]. The conduction and valence bands touch at the K and K’ points, thus

forming a gapless semiconductor. Near these points the electronic dispersion, E(k), is

linear; i.e.,

E ≈ ±vF~|k|, (1.3)

where vF ≈ 1 × 106 ms−1 is a constant known as the Fermi velocity [4], and k is the

wavevector of the charge carrier. At low carrier densities (n < 1010 cm−2) vF is renor-

malised to almost three times this value [17]. This energy spectrum is analagous to the

photon dispersion, except with the speed of light, c, replaced with vF , therefore low energy
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Figure 1.1: (a) Crystal structure of graphene formed of two intersecting triangular sublattices,

A and B. Black coloured atoms represent the A sublattice and white coloured atoms represent

the B sublattice. A shaded paralellogram depicts the conventional unit cell spanned by lattice

vectors ~a1 and ~a2. (b) The first Brillouin zone of graphene, obtained from [4]. Reciprocal lattice

vectors ~b1 and ~b2 emanate from the Γ point at the centre of the Brilliouin zone and special high

symmetry points, K, K’ and M, are shown at the edges.
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electrons with wavevectors in the K and K’ valleys behave as massless Dirac fermions [4].

As stated previously, each carbon atom donates one electron to the lattice and

there are two atoms per unit cell. As a result there are two electrons per unit cell and

so the Fermi level lies at the top of the valence band, at the K and K’ points. This can

be tuned by applying a gate voltage to either add or deplete electrons from the graphene.

The K and K’ valleys are also non-equivalent. As a result electrons have a degeneracy

g = gsgv = 4, where gs = 2 is the spin degeneracy and gv = 2 is the valley degeneracy.

This means up to 4 electrons can occupy each energy state in the electronic dispersion.

In equilibrium the carrier density, n, at energy E, is governed by the Fermi-Dirac

distribution function, f(E), given by

f(E) =
1

e(E−EF )/kBT + 1
, (1.4)

where EF is the Fermi energy, kB is the Boltzmann constant, and T is the temperature.

This is plotted in Figure 1.2c. More specifically,

n =

∫ EF

−∞
N(E)f(E)dE, (1.5)

where N(E) ≡ dn/dE is the density of states. Electrons occupy energy states up to the

Fermi level EF . At finite temperature, electrons also occupy states of energies∼ kBT above

EF , and holes occupy states ∼ kBT below EF . Only electrons and holes with energies

∼ kBT above or below EF contribute to the electrical conductance in the graphene.

In graphene [16]

N(E) = gsgv
E

2π~2v2F
, (1.6)

since electrons occupy energy states E = ~vFk in a Fermi circle of radius k. In contrast

to conventional 2D semiconductors, where N(E) forms steps, the density of states in
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Figure 1.2: (a) The band structure of graphene, adapted from [19]. Two bands form valleys

with a linear energy dispersion E = ±~vF |k| close to the K and K’ points. (b) One of the

low-energy valleys from (a). A black cone and an orange cone represent electron and hole states

respectively. (c) The Fermi-Dirac distribution, f(E), at finite temperature, T . The distribution

f(E) changes from f(E) = 1 (below EF ) to 0 (above EF ) across EF in an energy range ∼ kBT .

graphene is linearly dependent on the energy.

In our recent publication [11] reporting MPR oscillations in graphene we measured

at low currents (∼1µA). Here we extend this work by applying large direct currents and

thus large electric fields. The large electric field essentially injects ‘hot’ charge carriers

with energies larger than the lattice temperature T ; i.e., larger than those predicted by

the Fermi-Dirac distribution at this temperature. Charge carriers then relax towards

the Fermi-Dirac distribution with a local temperature, T = T (~r), which depends on the

position vector ~r [18]. This idea is central to Chapter 4 of this thesis.
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1.2 Electron Dynamics in a Magnetic Field

1.2.1 Magnetoresistance in Two Dimensions

In this thesis we measure electrical resistance in the Hall bar configuration. This

configuration is depicted in figure 1.3. A current density, ~jx, is directed along the length

of the Hall bar and a magnetic field, B, is applied perpendicularly. In general, the current,

jx, is given by a linear combination of the applied field, Ex, and the resultant Hall electric

field, Ey:

jx = σxxEx + σxyEy, (1.7)

and

jy = σyxEx + σyyEy = 0, (1.8)

where σxx, σxy, σyx and σyy are components of the two dimensional conductivity tensor,

σσσ. In the Hall bar geometry current only flows in the x direction, thus jy = 0. Assuming

rotational symmetry, σxx = σyy and σxy = −σyx [20]; thus, equations (1.8) and (1.7) can

be written as

Ey

Ex

=
σxy
σxx

(1.9)

and

jx =

(
σxx +

σ2
xy

σxx

)
Ex, (1.10)

respectively. In our experiment we apply current and measure electric field. We study

the resistivity, ρρρ, given by ~E ≡ ρρρ~j. Conductivity, given by ~j ≡ σσσ ~E, is more useful when

applying ~E and measuring jx. From equation (1.10), the resistivity ρxx ≡ Ex/jx can be
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Figure 1.3: A schematic diagram of a longitudinal resistance (Rxx) and Hall resistance (Rxy)

measurement of a Hall bar. A current density, jx, is directed along the length of a Hall bar and a

magnetic field is applied perpendicularly, producing a Hall electric field, Ey, directed across the

width, W . Magnetoresistance, Rxx ≡ Vxx/I, where I = jxW is the current, is measured from a

voltage, Vxx, across a length L.

rewritten as

ρxx =
σxx

σ2
xx + σ2

xy

. (1.11)

If Ey � Ex, as is the case for carriers with high mobility in a strong magnetic field, B,

then, from equation (1.9), σxx � σxy. The resistivity can then be approximated as

ρxx ≈
σxx
σ2
xy

. (1.12)

Equation (1.12) is rather counter-intuitive. It states that the resistivity is proportional to

the conductivity. This apparent paradox is resolved by recognising that ρxx is typically

introduced with finite jy and zero Hall field (Ey = 0).

In the Drude model the force on a carrier is given by the Lorentz force minus a

momentum relaxation term:

d(m~v)

dt
= q( ~E + ~v × ~B)− m∗~v

τ
, (1.13)
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where ~v is the carrier velocity, m∗ is the effective mass, and τ is the relaxation time [21].

The relaxation time is a phenomenological parameter taken from experiment. In steady

state the left hand side of equation (1.13) is zero; thus

Ex

Ey

 =

 ρ0 B/ne

−B/ne ρ0


jx
jy

 , (1.14)

where ρ0 = σ−10 = m∗/ne2τ and (jx, jy) = −ne~vd, with a drift velocity ~vd. The mobility

µ ≡ |~vd|/| ~E| = eτ/m∗ [21]. From equation (1.14), ρxx ≡ Ex/jx and

ρxy ≡
Ey

jx
=
B

ne
. (1.15)

This is known as the Hall resistivity. Equation (1.15) is commonly used to calculate the

carrier density n. Equation (1.14) can be written as

Ex

Ey

 = ρ0

 1 ωcτ

−ωcτ 1


jx
jy

 , (1.16)

where ωc ≡ eB/m∗ is the cyclotron frequency. Comparing this with equation (1.9) gives

Ey/Ex = σxy/σxx = ωcτ = µB. This is equal to the number of cyclotron orbits completed

before a scattering event. The condition σxy/σxx = ωcτ = µB � 1 can therefore be

interpreted as saying charge carriers complete multiple cyclotron orbits before scattering.

This requires a high mobility and high magnetic field.

The longitudinal resistivity, ρxx, and Hall resistivity, ρxy, are calculated from the

measured longitudinal resistance, Rxx, and Hall resistance, Rxy, as

Rxx ≡
ρxxW

L
, (1.17)
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and

Rxy ≡ ρxy, (1.18)

where W is the width of the Hall bar and L is the distance between voltage probes. These

dimensions are shown in Figure 1.3.

1.2.2 Magnetic Focussing in Graphene

Transverse magnetic focussing (TMF) is the focussing of ballistic charge carriers

onto voltage probes in the TMF configuration, as shown in Figure 1.4 [22]. In this configu-

ration the current contact is perpendicular to the Hall bar and a positive voltage terminal

is placed at distance, L, from the injector, with the other voltage terminal much further

away. This is done so that it does not interfere with the voltage produced from TMF. If

charge transport is ballistic; i.e., if charge carriers do not scatter along their trajectory,

then they can be directed onto the voltage probe. This increases the carrier density in the

vicinity of the voltage probe, thereby generating a potential difference. If charge transport

is diffusive however; i.e., if charge carriers undergo diffusive motion, then their momen-

tum will be randomised as they travel, and they will not reach the voltage terminal; they

instead move down the applied potential gradient. A TMF voltage signal therefore indi-

cates ballistic charge carriers have travelled through a region relatively free from defect

scattering. At B = 0 T this information can be obtained in another configeration called

the bend geometry [23].

In the semiclassical approximation, the force on a charge carrier, in a magnetic

field ~B, is given by

~~̇k = −e(~v × ~B), (1.19)

where ~v is the carrier velocity. When integrated with respect to time, at EF = ~vFkF ,
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Figure 1.4: A transverse magnetic focussing measurement configuration. A current contact is

perpendicular to the channel and a positive voltage contact is at a distance L from the injector.

A perpendicular magnetic field B is applied. Three different magnetic focussing trajectories are

shown, with L = 2pRc in blue, purple, and pink, for p = 1, 2 and 3 respectively.

this gives an equation of motion that describes cyclotron orbits with a radius, Rc, given

by

Rc = kF l
2
B, (1.20)

where kF is the Fermi wavevector and lB ≡
√

~/eB is the magnetic length. The cyclotron

radius in real-space, Rc, is therefore equivalent to the cyclotron radius in k-space rescaled

by l2B. The Fermi wavevector kF =
√

4πn/gsgv =
√
πn can be increased by applying

gate voltage to increase Rc. This has important consequences for MPR (and magnetic

focussing) in graphene since Rc must be less than the lateral dimensions L and W to

observe these oscillations [11].

If electrons are incident on the walls of the channel then they are specularly re-

flected. This results in skipping orbits along the boundary, as depicted in Figure 1.4.

Ballistic charge carriers are focussed onto the voltage contact provided the distance be-

tween current and voltage probes L = 2pRc, where p is an integer. This occurs at a
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magnetic field, Bp, given by [24]

Bp =
2~
√
πn

eL
p. (1.21)

By varying n and B we can therefore measure Bp to find L. This can be compared with

the distance measured with optical microscopy and as such can be used to prove charge

carriers undergo ballistic motion.

1.2.3 Landau Levels in Graphene

At higher magnetic fields, when the cyclotron trajectories are closed (ωcτ & 1),

the carrier wavefunction is confined; thus, energy is seperated into discrete energy levels,

known as Landau levels. The associated wavefunctions are solutions to the 1D harmonic

oscillator [4]. In conventional semiconductors, the Landau levels are equidistant; i.e.,

∆EN = ~ωc, where ωc ≡ eB/m∗, and m∗ is constant around the bottom of parabolic

conduction bands. In graphene however m∗ is not a constant, but increases with energy

according to m∗vF = ~kF , since the momentum ~kF = m∗vg and vg = vF , where vg is

the group velocity in the graphene [25]. As a result, the inter-Landau level separation

decreases with energy in graphene. More specifically, the Landau level energies are given

by

EN = ~ωc

√
N, (1.22)

where ~ωc =
√

2~v2F eB. The Landau level energy separation, ∆EN , decreases with N .

As a consequence, the energy of inter-Landau level transitions in graphene can be tuned

by both EF and B.

In large enough B, when the energy spectrum separates into Landau levels, the

density of states in equation (1.6) splits into a series of delta functions (broadened by

scattering). As a result, the Landau levels are highly degenerate. The Landau level
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degeneracy, g, is given by g = gsgv/(2πl
2
B) = 4/(2πl2B) = 4eB/h; or equivalently, there are

four electrons occupying any circle of radius lB.

As energy is separated into Landau levels, the density of states forms peaks; these

peak positions oscillate as a function of B. And, as the conductivity depends on the den-

sity of states at the Fermi level, this also oscillates as a function of B. These conductivity

oscillations are known as Shubnikov-de Haas (SdH) oscillations. SdH oscillation maxima

arise when the highest Landau level is completely filled; i.e., when EF = EN , or equiva-

lently, when n = ins, where i is an integer and ns = 4eB/h is the number of electrons per

Landau level. SdH oscillation maxima therefore arise at magnetic fields, Bi, given by

Bi =
nh

4e

1

i
. (1.23)

As a result, the SdH oscillations are periodic as a function of 1/B, with a periodicity

given by ∆(1/Bi) = 4e/nh. These oscillations can therefore be used to measure the

carrier density, n. In reality the Landau levels are broadened by scattering, so the SdH

oscillations are only observed when the energy broadening from the uncertainty principle,

δE = ~/τ , is much less than the Landau level energy separation, ∆EN = ~ωc; i.e., when

ωcτ & 1.

At higher B, when the Fermi level is between largely separated Landau levels, ρxx

vanishes and σxy forms plateaus at

σxy = ν
e2

h
, (1.24)

where ν is the Landau level filling factor [3, 5]. In the usual quantum Hall effect, ν is

equally spaced; however, in graphene, ν = 2, 6, 10, 14... . As a result the quantum Hall

effect experimentally distinguishes graphene from other 2DEG’s such as bilayer graphene

[2, 3].
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Figure 1.5: (a) Rxy = Rxy(B) (black) and Rxx = Rxx(B) (red) of graphene measured with VG =

15 V and VG = −4 V (inset) at 30 mK, obtained from [3]. Horizontal lines mark the quantum Hall

plateaus and vertical arrows, labelled with ν = 2, 6 and 10 respectively, mark the corresponding

minima in Rxx. (b) Landau levels in graphene. Blue circles represent electron states and red

circles represent hole states in the linear electronic dispersion. A Fermi level, EF , is also shown.

Figure 1.5a shows the magnetoresistance of graphene measured by Zhang et al

in 2005 [3]. In low B, Rxy ∝ B and Rxx ≈ const. This is the classical Hall effect, as

described in Section 1.2.1. At higher B ρxx develops into SdH oscillations, as discussed in

this section. At higher B ≈ 3 T these oscillations develop into a vanishing ρxx and three

quantum Hall plateaus. This is the quantum Hall effect, as described by equation (1.24).

1.3 Phonons in Graphene

Figure 1.6 shows the phonon dispersion of graphene, calculated using atomic sim-

ulations [26]. Only the low momenta parts of the curves (near the Γ point) are relevant
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Figure 1.6: Phonon dispersion of graphene in units of cm−1 (1 cm−1 ≡ 0.124 meV), obtained

from [26]. The inset shows the high symmetry points Γ, K and M in the first Brillouin zone.
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for electron scattering processes contained within a valley. At such low momenta, optical

phonons are essentially non-dispersed and acoustic phonons have a linear dispersion,

E ≈ ~vsk, (1.25)

with a constant phonon velocity, vs. Flatter sections of the dispersion curve have a higher

density of states since N(E) = N(k)dk/dE. It is the transverse acoustic (TA) and longi-

tudinal acoustic (LA) phonons which cause the MPR oscillations in graphene [11].

Phonons are bosons, so they are distributed according to the Bose-Einstein distri-

bution function

f(E) =
1

eE/kBT − 1
. (1.26)

In contrast to fermions, which may only occupy one energy state at a time, many phonons

can occupy each energy state in the phonon dispersion. The total number of phonons

present depends on the temperature, T . At low T the higher energy modes ‘freeze out’,

since the majority of phonons occupy states of energy E . kBT .

1.4 Magnetophonon Oscillations

1.4.1 Magnetophonon Oscillations in 2DEG’s

Magnetophonon oscillations, also known as phonon-induced resistance oscillations

(PIRO), are oscillations in magnetoresistance due to phonon-induced inter-Landau level

scattering. Magnetoresistance oscillations arise due to increased electron-phonon scatter-

ing when the phonon energy, Ep, matches the inter-Landau level energy seperation, ∆EN .

These oscillations have been used extensively for studying the electron-phonon interaction

in semiconductors: see Nicholas et al [27] (1985) and Dimitreiv et al. [28] (2012) for a
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review.

Nicholas et al. [27] assumed MPR was induced only by optical phonons, at relatively

high T ∼ 100 K and highB ∼ 10 T. Optical phonons have an approximately flat dispersion

at low momenta (near the Γ point). This results in a fixed resonance condition at a fixed

phonon energy, Ep, given by

Ep = p~ωc, (1.27)

where p is an integer. MPR was also observed at lower temperatures (T < 5K) in large

electric fields. As discussed previously, large electric fields inject ‘hot’ carriers with en-

ergies greater than the lattice temperature. These carriers predominantly relax, thereby

enhancing the MPR oscillations. It is worth noting that this enhancement can also be

attributed to Joule heating. In addition, at such large electric fields, new scattering pro-

cesses were observed as a shift in the MPR peak positions, due to a shift in the MPR

condition.

The review by Dimitreiv et al. [28] in 2012 focussed on acoustic phonon-induced

MPR oscillations with a fixed momentum transfer q ≈ 2~kF . This type of oscillation is

only observed in materials with a high carrier mobility µ. Acoustic MPR arise at lower T

(T ∼ 10 K) and lower B (B ∼ 1 T) than optical phonon-induced MPR [29]. Since acoustic

phonon energy Ep = qvs = p~ωc and q ≈ 2~kF , acoustic MPR oscillations can be used to

measure the phonon speed, vs. Figure 1.7 depicts the MPR condition in graphene. Acous-

tic phonons of energy E = qvs = 2~kFvs backscatter the charge carriers, which results in

a momentum shift q ≈ 2~kF and thus a shift of the orbital guiding centre by a distance

∆y ≈ 2Rc ≡ 2kF l
2
B, from equation (1.20). This is the most likely transition, because, at

this distance, the initial and final harmonic oscillator wavefunctions have maximal overlap

[30]. A 2~kF momentum transfer is also argued as the transition with the most available

phase space. In graphene however, this leads to q ≈ ~kF rather than q ≈ 2~kF [31]. As

discussed by Dimitreiv et al [28], three types of magnetoresistance oscillations have been
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observed with a momentum shift q ≈ 2~kF , namely the phonon-induced resistance oscil-

lations (PIRO)(also known as MPR oscillations), Hall field-induced resistance oscillations

(HIRO), and microwave-induced resistance oscillations (MIRO). PIRO and HIRO are the

subject of this thesis.

Acoustic MPR oscillations were first observed by Zudov et al. in 2001 [30, 32].

These oscillations have been discovered in bulk Ga and Si [33] and 2DEG’s [34]. They

have previously been used to measure phonon velocities in these materials, however the

interacting phonon modes are not well established [35, 29]. A defining feature of MPR

oscillations is their amplitude as a function of temperature: the amplitude increases up to

a certain critical temperature (at around 90 K), and then decreases at higher temperatures.

This critical temperature increases with B [36]. At lower temperatures, the amplitude is

smaller due to a lack of available phonons and empty states to scatter into. At higher

temperatures, the amplitude decreases when the Landau level energy broadening, δE =

~/τ , becomes similar to the Landau level separation, ∆EN = ~ωc; or equivalently, when

ωcτ . 1.

HIRO are essentially a phonon-less analogue of PIRO. These oscillations arise when

Landau level energy states, tilted by the Hall field, become parallel in energy at q ≈ 2~kF .

The momentum transfer q ≈ 2~kF is provided by impurities in the lattice [28]. HIRO

have been used to measure both the quantum lifetime and backscattering rate in 2DEG’s

[37]. Surprisingly, the amplitude of HIRO have been shown to increase with density when

a new sub-band becomes populated. This is thought to be attributed to an enhancement

of the quantum lifetime due to impurity screening [38]. HIRO have been discovered in

many other 2DEG’s such as Si/GeSi [39] and MgZnO heterostructures [40], with a wide

range of carrier densities and mobilities.

In 2008, Zhang et al. [29] studied MPR with a large direct current passing through a

wide 2DEG Hall bar. They discovered that the resultant Hall electric field splits the MPR
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Figure 1.7: Diagram of the MPR condition in graphene. (a) A phonon of energy Ep incident

on a charge carrier induces a transition from an occupied Landau level (blue) with momentum

~ ~kF
(1)

to an unoccupied Landau level (red) with momentum ~ ~kF
(2)

. (b) Semiclassical diagram

of the MPR condition in real space. The MPR transition induces a shift from a cyclotron

orbit of radius R
(1)
c (blue) to a cyclotron orbit of radius R

(2)
c (red). Solid black lines depict the

associated harmonic oscillator wavefunctions and dotted black lines depict the corresponding

harmonic oscillator potential. Tails of the two harmonic oscillator wavefunctions overlap when

the cyclotron orbits touch in real-space.
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Figure 1.8: (a) HIRO in a GaAs quantum well from IDC = 0µA to IDC = 50µA at intervals

∆IDC = 10µA at 0.3 K; adapted from [41]. (b) A grayscale plot of dV/dI ≡ rxx = rxx(B, IDC)

of HIRO and PIRO in a GaAs quantum well, at 5 K; obtained from [29]. Yellow dotted lines

mark HIRO with integers q = 1, 2 and 3, where q is the change in Landau level index. [Note

1kG = 0.1T].

peaks, and also induces a zero resistance state. This MPR peak splitting is attributed to a

spatial tilting of the Landau levels in a strong Hall field Ey, which shifts the MPR condition

by energies ∆E = ±2eRcEy. This Landau level tilting is depicted in Figure 1.9. Zhang et

al. also observed HIRO embedded in the split MPR oscillations. Furthermore, at higher

current, they observe a new resistance peak arising when the drift velocity approaches the

speed of a phonon; i.e., when Landau levels become parallel to the phonon dispersion.

This opens up a new scattering channel as many phonons satisfying energy-momentum

conservation become available. These features are discussed in Section 4 of this thesis.

1.4.2 Magnetophonon Oscillations in Graphene

Acoustic MPR oscillations have only recently been discovered in graphene, despite

exceptionally high carrier mobilities. This is because, as we have shown in [11], they

require large Hall bars with dimensions greater than the phonon scattering mean free
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Figure 1.9: (a) Diagram of MPR transitions in real space, from a higher Landau level to a

lower one, with a momentum transfer ~q = ±2~ ~kF and energy E = vs|q|. (b) Diagram of

MPR transitions between Landau levels tilted by a Hall electric field, Ey, induced by a current

density, jx, directed into the page. The two transitions are shifted in energy by ±2eEyRc. (c) A

transition between Hall-field tilted Landau level states which are aligned in energy at q = 2~kF .

Black circles represent cyclotron orbits which touch in real space. The associated harmonic

oscillator wavefunction and harmonic oscillator potential are drawn in solid black and dotted

black, respectively.
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path. Previous to this discovery, Mori and Ando predicted optical phonon-induced MPR

due to both inter-valley scattering, by low-momentum phonons close to the Γ point, and

intra-valley scattering, by high-momentum phonons near the K point [42], however these

are yet to be measured.

Figure 1.10 shows MPR oscillations in graphene as a function of temperature, as

presented in our recent paper [11], at a fixed hole carrier density n = 3.2 × 1012 cm−2.

These oscillations are marked by p = 1, 2, 3, 4 and 5 respectively. There are also two

other types of oscillation present with a distinctly smaller frequency. These are the SdH

oscillations (at low T ≈ 5K) and magnetic focussing oscillations (at low B < 0.3 T). The

SdH oscillations were confirmed by comparing n calculated from the SdH oscillation period

(using equation (1.23)), to n calculated from the Hall voltage. The magnetic focussing

oscillations are confirmed in Section 3 of this thesis. As the temperature is increased,

both the SdH oscillations and magnetic focussing oscillations are supressed and the MPR

oscillations emerge, eventually fading again at T & 110 K, when ωcτ . 1. The Fermi

velocity, vF = (1.06 ± 0.05) × 106 ms−1, was extracted from the amplitude of the SdH

oscillations, as shown in [11], and the phonon speed vs = 13.6± 0.7 kms−1 was extracted

by fitting the MPR oscillation peak positions to the MPR resonance condition (shown in

equation (1.31)), using this value of vF . This is consistent with the theoretically calculated

TA phonon velocity vs ∼ 13 kms−1 [43, 44, 26]. The LA phonon was observed as a small

shoulder peak. These observations prove that MPR is predominantly due to TA phonons.

Greenaway et al. [15] produced a theoretical model to explain why Dirac fermions scatter

with TA phonons rather than LA phonons in graphene. They discovered it is, in part,

due to carrier screening of the deformation potential. We also studied MPR in graphene

with different lateral sizes, and found MPR oscillations are only observed in graphene with

lateral size L & 10 µm (greater than the phonon limited mean free path).
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Figure 1.10: (a) MPR oscillations of the graphene studied in this thesis with a small AC

excitation current IAC ∼ 1µA from 5 K to 100 K at intervals ∆T = 5K, at a hole carrier

density n = 3.2× 1012 cm−2. MPR oscillation peak positions are marked by p = 1, 2, 3, 4 and 5

respectively. (b) Extended dataset of (a) from 110 K to 250 K with intervals ∆T = 10 K.
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1.4.2.1 MPR in Graphene

In the semiclassical approximation, the cyclotron radius, Rc, of a charge carrier in

Landau-quantised graphene is given by [15]

Rc = lB
√

2N. (1.28)

As before, acoustic MPR transitions have a spatial displacement ∆Y = R
(1)
c +R

(2)
c ≈ 2Rc

and a momentum transfer q = ~|~k(1)N − ~k
(2)
N | ≈ 2~kF , where we have used equation (1.20)

to convert between real and momentum space. Landau level transitions occur when the

phonon energy, Ep = vsq, matches Landau level separation, Ep = ∆EN ; i.e. when

2~vskF = ±vF
√

2~eBp(
√
N ± p−

√
N), (1.29)

where p is the change in the Landau level index and Bp is the magnetic field at resonance.

Since n gives momentum transfer q = 2~kF = 2~
√
πn, and B gives ∆EN , we can tune n

and B to find Bp. MPR oscillations occur at a Landau level index, Np, given by [11]

Np =
pvs
4vF

(
vF
vs
− 1

)2

≈ pvF
4vs

. (1.30)

This is calculated from equation (1.29) using the approximation vF � vs. Since ∆EN

decreases with N , Np can be thought of as a critical Landau level index, below which MPR

cannot occur. For the observed MPR in graphene, Np ∼ 20 for p = 1 [11]. Furthermore,

since EF = EN , the Nth Landau level is filled, so n = 4NeB/h. Equation (1.30) is

therefore equivalent to

Bp =
nhvF
evs

(
vF
vs
− 1

)−2
1

p
≈ nhvs

evF

1

p
. (1.31)
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Electron-phonon scattering is maximal when equation (1.31) is satisfied, thus the MPR

oscillations are periodic as a function of 1/B, with a periodicity given by ∆(1/B) =

evF/nhvs.

1.4.2.2 MPR With a Large Direct Current

When a large direct current, IDC , flows through the graphene Hall bar, the Landau

level energy states are spatially tilted by a strong Hall electric field, Ey. This is depicted

in Figure 1.9b. The MPR energies are shifted as electrons travelling a distance 2Rc either

gain or lose an energy ∆E = 2eEyRc, by absorbing or emitting a photon from the Hall

electric field. The MPR condition in equation (1.29) therefore becomes

2~vskF = ±vF
√

2~eBp(
√
N ± p−

√
N)± 2eEyRc. (1.32)

We write Ey = ρxyjx = [ν(e2/h)]−1jx, where e2/h is the conductance quantum and ν =

gsgvN ≈ 4N is the Landau level filling factor at large N . In the vF � vs approximation,

equation (1.32) becomes

Bp ≈
(
nhvs
evf

± h

e2
IDC

vFW

)
1

p
, (1.33)

where W is the width of the device. This splitting of the resonance condition is observed

in Chapter 4.

At sufficiently large current, when Landau level states are aligned in energy at

q ≈ 2~kF , electrons make elastic inter-Landau level transitions using the Hall electric field

only; i.e., without absorbing or emitting a phonon. This situation is depicted in Figure

1.9c. The idea was discussed theoretically by Eaves and Sheard in 1986 [45]. In this case
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equation (1.32) becomes

2eEyRc = ±vF
√

2~eBq(
√
N ± q −

√
N), (1.34)

where Bq is the magnetic field at resonance, and q is the change in Landau level index.

Following the same analysis as above, we have

Bq =
h

e2
IDC

vFW

1

q
. (1.35)

Inter-Landau level scattering arises when equation (1.35) is satisfied; thus, the resul-

tant HIRO are periodic as a function of 1/B, with a periodicity given by ∆(1/B) =

e2vFW/hIDC .

In the MPR condition, given by equation (1.31), Bp is proportional to n and inde-

pendent of IDC ; whereas in the HIRO condition, given by equation (1.35), Bq is propor-

tional to IDC and independent of n. As a result, we can distinguish these two types of

oscillation by their dependence on n and IDC .



Chapter 2

Experimental Setup

2.1 Fabrication

The graphene Hall bar under test was fabricated by Piranavan Kumaravadivel [11].

This Hall-bar is shown in Figure 2.1e. It consists of hexagonal Boron Nitride (hBN) en-

capsulated graphene and has one dimensional gold contacts, where only the edge of the

graphene is in contact with the gold [46]. The bottom hBN layer serves as atomically

flat substrate for the graphene to rest on and the top hBN layer protects the graphene

from impurities and polymers used in fabrication. The fabrication process is described

as follows. First, a SiO2 substrate was cleaned by an O2 and Ar plasma. Graphene and

hBN were then mechanically exfoliated with low-tack sticky tape. The graphene and

hBN (of thicknesses 25 nm to 100 nm) were then identified using an optical microscope

with dark-field imaging. Next, polypropyl carbonate (PPC) was spin coated on a poly-

dimethylsiloxane (PDMS) stamp. Using a xyz micromanipulator, the PDMS stamp was

then used to pick up the hBN at a substrate temperature of 50◦C. This was then used to

pick up the graphene with a substrate temperature of 65◦C. Finally, the hBN-graphene

heterostructure was deposited on the bottom hBN layer at a substrate temperature 65◦C.

Next, the heterostructure was shaped into a Hall Bar using electron beam lithog-

raphy. A polymethyl methacrylate (PMMA) resist was patterned on the heterostructure

and the Hall bar region was exposed to an electron beam. Reactive ions (CHF3 + O2)
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were then used to etch regions outside the Hall bar region. Gold (Au) and copper (Cu)

(in the ratio 70:5 by thickness) was then deposited using physical vapour deposition to

create the contacts [46]. The rest of the Hall bar was then shaped using electron beam

lithography with a PMMA mask and reactive ion etching, as before.

2.2 Electrical Measurements

All of the electrical measurements presented in this thesis were performed in a CH

Series helium gas flow cryostat with a superconducting magnet capable of reaching fields of

15 T perpendicular to the graphene plane. First, the graphene Hall bar was placed on the

top of a long insert. This insert is shown in Figure 2.1d. The insert was then capped with

a metal cover, sealed with vacuum grease, and pumped to ultra high vacuum (∼ 10−5

mbar) to protect the graphene from contaminants in the helium. The insert was then

placed in the cryostat. Using a variable temperature insert (VTI) capable of operating

in a temperature range between 2 K and 400 K, helium-4 (4He) was pumped across the

device from the outer chamber of the cryostat to cool the graphene. A Mercury-iTC

temperature controller was then used to monitor and control the temperature of the 4He

gas. The helium flow rate was controlled with a needle valve and monitored with a vacuum

gauge. The helium level was monitored by resistance measurements of a superconducting

wire running down the length of the cryostat. A Mercury-IPS power supply was used to

generate the magnetic fields in the superconducting magnet.

After the graphene was cooled by He gas flow for approximately 1 hour we began

the electrical measurements. Voltage, V , was measured using a SR380 lock-in amplifier

operating at a frequency f ≈ 30 Hz, with a small AC excitation current i ∼ 1 µA. This

current was sourced by applying a voltage from the lock-in amplifier across a 1 MΩ resistor.

This resistor ensures an approximately constant current amplitude for typical graphene
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Figure 2.1: (a) A photograph of the cryostat and electrical equipment used to measure the device.

Arrows mark the location of the pump, helium recovery line, pressure sensor, and electrical

connection. (b) Schematic diagram of the flow cryostat in operation. Arrows show the direction

of helium flow, across the device and then to the recovery line. Green boxes show the position

of the superconducting magnet. (c) Photograph of the insert capped with a metal cover. (d)

Photograph of the insert. (e) Photograph of the graphene Hall bar under test taken with an

optical microscope.



30

resistances R . 1 kΩ. A gate voltage, VG, was applied across the bottom Si/SiO2/hBN

substrate to add charge carriers to the graphene: a positive VG was applied to add electrons

and a negative VG was applied to add holes. Figure 2.2a shows the configuration used to

measure resistances presented in Chapter 3. Figure 2.2b shows the configuration used to

measure differential resistances presented in Chapter 4. In this configuration a DC current,

IDC ∼ 100µA was added to a small AC current i = 2µA. DC current was sourced by

applying a DC voltage from a Keithley 2400 sourcemeter across a 100 kΩ resistor. The AC

voltage was measured with AC coupling to prevent large DC induced bias voltage from

overloading the lock-in amplifier. With a small AC current i � I, where I = IDC , the

voltage is given by

V (I + i sinωt) = V (I) +
dV

dI
i sinωt+ ...; (2.1)

i.e., a large DC voltage V (I) plus a small AC voltage. The AC voltage amplitude, idV/dI,

is measured with the lock-in amplifier operating at the same frequency as the applied

AC voltage. The differential resistance, dV/dI, is calculated from this by dividing by the

current amplitude, i. This is equal to the derivative of V (I). The AC voltage is induced

to provide a baseline for the lock-in amplifier to measure the derivative of V (I). The

differential resistance measurement is far more sensitive to small changes in resistance,

furthermore it is better to measure the slope of V (I) directly than to calculate the deriva-

tive, since taking the derivative of any measured data will amplify the noise and thus

hide the signal of interest. DC resistance can be calculated from any measured dV/dI by

integrating with respect to I = IDC .

2.3 Sample Characterisation

First we measured the resistance of the graphene at low current bias to check its

electronic quality. We calculated the carrier density n from the Hall resistance using equa-
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Figure 2.2: (a) The longitudinal resistance (Rxx) measurement configuration. (b) The differen-

tial resistance (dV/dI) measurement configuration, with AC coupling.

tion (1.15). Figure 2.3a shows the longitudinal resistance, Rxx, of the graphene measured

as a function of gate voltage, VG. Figure 2.3b shows the Hall resistance, Rxy = Rxy(VG).

Here Rxy was symmetrised with respect to B, Rxy = (Rxy(0.5T ) − Rxy(−0.5T ))/2, to

remove contributions from Rxx. The inset of Figure 2.3a shows the calculated conduc-

tivity σxx(VG) = 1/ρxx = W/RxxL and the inset of Figure 2.3b shows the carrier density

n(VG) = B/(eRxy). The sign of n changes and σxx → 0 at VG ≈ −0.5 V which indicates

a transition from holes to electrons across the charge neutrality point, at the tip of the

Dirac cone. We also observe an asymmetry in σxx. The conductivity, σxx, is almost twice

as large for hole conduction than for electron conduction at large |VG| & 30V . This asym-

metry is commonly observed in our graphene samples [47]. At high VG = ±60 V, for both

types of charge carrier, σxx ∼ 0.1Ω−1 which implies µ = ne/σxx ∼ 1 × 106 cm2V−1s−1.

This indicates the graphene is exceptionally high quality as compared with others in the

literature [48].

To further confirm the quality of the graphene we measured transverse magnetic

focussing (TMF) across a large length L = 20 µm. Figure 2.4b shows the resistance

R = R(B, n) of the graphene measured in the TMF measurement configeration, as shown

in Figure 2.4a. When the cyclotron radius, Rc, is such that the distance between current

and voltage contacts L = 2Rcp, where p is an integer, ballistic charge carriers are focussed



32

onto the positive voltage contact. This gives rise to a peak in resistance R ≡ V/I. The

peak positions were fitted to equation (1.21) with L = 20.6± 0.6 µm. This is comparable

with distance L = 20 µm measured with optical microscopy. This result proves these

peaks are due to magnetic focussing and suggests holes in our sample are not scattered

significantly by defects in the bulk.
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Figure 2.3: (a) Rxx of the graphene under test measured as a function of VG at 5 K. (inset)

σxx = 1/ρxx = 1/(RxxW/L) = σxx(VG), where W = 15µm and L = 20µm. (b) Rxy as a

function of VG at 5K, symmetrised with respect to B; i.e., Rxy = (Rxy(0.5T )−Rxy(−0.5T ))/2.

(inset) σxy = 1/Rasym
xy = σxy(VG). (c) Cross-section of the device under test. hBN-encapsulated

graphene is situated on SiO2 on Si. Source-drain voltage, VSD, is applied across one dimensional

gold contacts. A gate voltage, VG, is applied across one of the gold contacts and the Si/SiO2/hBN

layers.
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Figure 2.4: (a) A schematic diagram of the TMF configuration with an optical micrograph

image of the graphene Hall bar under test. Three magnetic focussing trajectories are shown

with L = 2Rcp for p = 1, 2, and 3, in green, cyan and pink, respectively. (b) Magnetoresistance,

R = R(B,n), of the graphene in the TMF measurement configuration, shown in (a), at 5 K. Solid

curves are described by equation (1.21) with L = 20.6 µm and p = 1, 2, 3, 4, 5 and 6, respectively.



Chapter 3

Magnetic Focussing inWide Graphene

Hall Bars

This section discusses my contribution to our recent paper [11] (supplementary

Section 2) reporting the first observation of magnetophonon oscillations in graphene. In

our widest samples, where the width is greater than the distance between the current

and positive voltage probe, we observed magnetic focussing peaks embedded in the mag-

netophonon oscillations. These magnetic focussing peaks had an unexpected phase shift

when fitted to equation (1.21). The work presented in this chapter confirms the origin of

the magnetic focussing peaks and shows how this phase shift follows from the longitudinal

resistance measurement configuration.

Figure 3.1b shows the longitudinal resistance, Rxx = Rxx(B, n), of the Hall bar

shown in Figure 3.1a, with low B < 0.2 T, at 5 K. We observe peaks in Rxx, labelled

p = 1/2, 3/2 and 5/2, respectively. These peaks are attributed to magnetic focussing;

i.e., the resistance Rxx = Vxx/I is maximal when ballistic charge carriers are focussed

a distance L = 2Rcp by the magnetic field B. The peak labelled p = 1/2 is at a field

Bp=1/2. This corresponds to a significant phase shift. The peak positions were fitted to

equation (1.21) with L = (6.0 ± 0.1) µm and p = 1/2, 3/2 and 5/2, respectively. The

magnetic field B was offset by 3.5 mT to symmetrise Rxx with respect to B. This offset is

justified from the symmetry of the measurement configuration and is likely due to trapped

35
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magnetic field. The measured value of L = (6.0 ± 0.1) µm is close to the distance L ≈

5µm measured with an optical microscope, thus proving the peaks are due to magnetic

focussing.

To explain the half integer shift from integer p we first note that carriers can be

injected from anywhere on the contact. For the magnetic focussing process the injection

point can be restricted however, since carriers injected at a distance dc > 2Rc from the

channel edge are focussed back into the injector. In magnetic focussing, charge carriers

must therefore have been injected at a distance dc < 2Rc from the channel edge. Each

injection point along this line has a different shift in p relative to equation (1.21). Injection

at the bottom corner gives rise to semicircular skipping orbits as shown figure 2.4, which

are described precisely by equation (1.21) with integer p. Injection halfway between this

line segment gives rise to a shift p → p − 1/2, which corresponds to a quarter circle

trajectory before the first reflection and a continuation on semicircular trajectories between

subsequent reflections. In this picture injected carriers are collimated perpendicular to the

contact surface. This can be explained by the tunnelling of Dirac fermions through a p-n

junction formed at the contact interface [49], and has previously been demonstrated in

graphene [50].

We have thus proved the origin of the magnetic focussing over a distance L ≈ 5 µm

and explained the unexpected phase shift as a natural consequence of parallel injection in

the longitudinal measurement configeration. We have also therefore shown that carriers are

propagating along the edge of the channel at the Fermi velocity. This presents a potential

problem because the characteristic frequency of skipping orbits, fskip = 1/τskip = vF/2Rc,

is greater than the characteristic frequency of MPR, fMPR = 1/τMPR = vMPR/2Rc, where

vMPR is the drift velocity associated with MPR scattering [11]. This suggests magnetic

focussing should dominate MPR. In our wide graphene Hall bar however, MPR oscillations

are prominent, because many MPR orbits fit into the bulk of width W > 2Rc, in contrast
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Figure 3.1: (a) A schematic diagram of a longitudinal resistance (Rxx) measurement configu-

ration with an optical micrograph image of the graphene Hall bar under test. Two magnetic

focussing trajectories (pink) are shown spanning a distance L = 2Rcp with p = 3/2, for B < 0 T

and B > 0 T, respectively. The white boundary shows all points at a distance dc < 2Rc from

the channel edge. Carriers injected outside this region are focussed back into the contact. (b)

Rxx = Rxx(B,n) of the graphene in the measurement configuration shown in (a), at 5 K. Solid

curves depict the function described by equation (1.21) with a fitting parameter L = 6.0 µm

and p = 1/2, 3/2 and 5/2. These curves are offset by Bp = −3.5mT to symmetrise the peak

positions with respect to B.
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to magnetic focussing trajectories, which are confined to a distance dc < Rc from the

channel edge.



Chapter 4

Magnetophonon Oscillations in Graphene

with a Large DC Bias

This chapter reports on MPR with large direct currents (up to 1 mA) passing

through the graphene Hall bar. Previous measurements of MPR oscillations in graphene

were performed at low currents and thus low electric fields [11]. Here we use a large current

to generate large electric fields in order to heat the charge carriers out of equilibrium with

phonons in the lattice, so that more phonons are emitted than absorbed. We observed

the MPR oscillations are split at a sufficiently large direct current due to a Hall-field

induced Landau level tilting. At IDC ≈ 1 mA we also observe maxima in the differential

resistance as the carrier drift velocity approaches the speed of the TA phonon (vs = 13

kms−1). Finally, we observed the fundamental (q = 1) Hall-induced resistance oscillation

(HIRO) arise when the Landau level states align in energy. We study this oscillation as a

function carrier density and show the amplitude is increased at low n. This observation is

consistent with the idea that HIRO is due to scattering off impurities in the lattice [28].

Figure 4.1a shows a greyscale map of the differential magnetoresistance, dV/dI =

rxx = rxx(IDC , B), with a hole carrier density n = 3.2× 1016 cm−2, at T = 40 K. At B <

0.2 T we observe peaks which appear independent of IDC . These are the magnetic focussing

peaks discussed in the previous chapter. Other peaks in dV/dI are marked by coloured

squares. Blue, red, and green squares represent MPR peak positions with p = 1, 2, and 3,
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respectfully. The squares at IDC = 0µA are obtained from the MPR oscillations in our

recent paper [11]. These peaks split into two with increasing IDC . The splitting of the blue

p = 1 peak is shown in Figure 4.1b and Figure 4.1c. Local maxima arise where the peaks

intersect with split peaks of different p. This peak splitting is attributed to a Hall field-

induced spatial tilting of the Landau levels, which modifies the energies of the q = 2~kF

MPR transitions. These peaks were fit to equation (1.33) with vF = (1.06 ± 0.04) × 106

kms−1 for p = 1 (blue), p = 2 (red), and p = 3 (green). This is consistent with the

measured vF = (1.06 ± 0.05) × 106 ms−1 obtained from the temperature dependence of

the SdH oscillations [11]. This result proves the MPR oscillations are splitting due to

Hall-field induced Landau level tilting.

At higher IDC ≈ 1000µA we observe a small peak as the drift velocity vd = j/ne

approaches the velocity of the TA phonon (vs ≈ 13 kms−1). These are marked by pink

squares. We attribute this peak to additional carrier-phonon scattering when the Landau

levels become parallel to the phonon dispersion. This new scattering channel arises because

the number of phonons satisfying energy-momentum conservation increases. The effect

was previously seen in conventional semiconductors by Zhang et al [29]. Interestingly, the

peak in our data is accompanied by an apparent shift of the magnetic focussing peaks (at

IDC & 800 µA). This could be explained by diffusive scattering of the collimated electron

beam as vd approaches vs. Further work is required to test this hypothesis.

Figure 4.2 shows the Hall voltage Vxy = Vxy(IDC) with B = 0.8 T, at 40 K (red)

and 5 K (blue) respectively. This was calculated by integrating the differential Hall re-

sistance, dVxy/dI, with respect to IDC . Red Vxy data was measured simultaneously with

rxx(IDC , B = 0.8T) in Figure 4.1 and blue Vxy data was measured simultaneously with

rxx(IDC , B = 0.8T) in Figure 4.3. The carrier density n = (3.25± 0.01)× 1012 cm−2 was

measured by fitting the blue Vxy data to Vxy = IDCRxy = IDCB/ne. This is comparable

with n = 3.2× 1012 cm−2 measured at low AC bias (IAC ≈ 1µA) in our recent paper [11].
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Figure 4.1: (a) dV/dI = rxx = rxx(IDC , B) at 40 K from B = 0 T to B = 2 T at intervals ∆B =

0.02 T; from 10 Ω (black) to 16 Ω (white). Blue, red, and green squares mark the position of

the p = 1, 2 and 3 MPR peaks respectively. Lines of the same colour show a fit of these peak

positions to equation (1.33) with vF = 1.06× 106 ms−1. (b) Waterfall plot of the data from (a)

from B = 1.1 T to B = 1.5 T at intervals ∆B = 0.1 T, and then B = 2.0 T. Curves are offset for

clarity. (c) Full waterfall plot of the data in Figure 4.1a. Curves are offset in intervals of 2 Ω.



42

The inset shows rxy = dVxy/dI measured as a function of IDC . Black lines show the fitted

Rxy = B/ne with n = (3.25±0.01)×1012 cm−2. The differential Hall resistance, dVxy/dI,

does not deviate significantly from the Hall resistance, Rxy = Vxy/I, which suggests the

MPR peaks are not shifting due to changes in n.

Figure 4.3a shows dV/dI = rxx(IDC , B) with a hole carrier density n = 3.2× 1012

cm−2, at 5 K. Magnetic focussing oscillations are observed at B < 0.2 T, as before. At

IDC ∼ 10µA we observe SdH oscillations. These fade at IDC & 50µA and split MPR

oscillations emerge at IDC & 100µA. The carrier density n = (3.32 ± 0.03) × 1012 cm−2

was calculated from the period of the SdH oscillations. This is in close agreement with

n = (3.25 ± 0.01) × 1012 cm−2 measured from the Hall resistance. The lines from Figure

4.1a are drawn on Figure 4.3a to confirm the origin of the split MPR peaks. The split

MPR peaks are aligned with these lines, albeit with a small offset. This offset could be

attributed to an energy shift in the resonance condition. Further work is needed to clarify

these effects.

At lower B . 0.5 T a new peak, marked by cyan triangles, emerges from B =

0 T with a position proportional to IDC , which intersects with the split MPR peaks. We

attribute this peak to Hall field-induced inter Landau-Level scattering. The cyan triangles

were fitted to equation (1.35) with vF = (1.05 ± 0.01) × 106 ms−1 and q = 1. This is

consistent with vF = (1.06±0.05)×106 ms−1 measured from the temperature dependence

of the SdH oscillations [11]. At higher IDC , a weak oscillation, described by equation (1.35)

with q = 2 and vF = (1.06± 0.05)× 106 ms−1, is also observed. These HIRO have never

before been observed in graphene. Our observations also demonstrate a more accurate

and far less labour intensive measure of vF than the SdH oscillation method used in our

recent publication [11]. This was the most significant source of error in the measured TA

phonon velocity vs = 13.6± 0.7 kms−1.

In Figure 4.4 we show dV/dI = rxx(B) at IDC = 250µA and 5 K, at different
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Figure 4.2: Hall voltage, Vxy, as a function of IDC at B = 0.8 T, measured at the same time

as dV/dI = rxx = rxx(0.8T) at 5 K (blue) and 40 K (red). (inset) Differential Hall resistance,

dVxy/dI = rxy, as a function of IDC , measured at the same time as rxx = rxx(0.8T) at 5 K (blue)

and 40 K (red). The black lines show Rxy = −B/ne with n = 3.25 ± 0.01 × 1012 cm−2. The

differential Hall resistance, rxy, does not deviate significantly from these lines which suggests n

is constant over this range of IDC .
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Figure 4.3: (a) dV/dI = rxx = rxx(IDC , B) at 5 K from B = 0.02 T to B = 1.2 T, at intervals

∆B = 0.01 T; ranging from 1.4 Ω (black) to 3.6 Ω (white). Solid lines from Figure 4.1 are also

shown. Cyan triangles mark the position of the q = 1 HIRO peak and the cyan dotted line shows

a fit of these to equation (1.35) with vF = 1.05× 106 ms−1 and q = 1. Yellow dotted lines show

the lines described by equation (1.35) with q = 2 and the same vF . (b) Traces from (a) from

B = 0.16 T to 0.56 T at intervals ∆B = 0.04 T. Curves are offset for clarity (c) Full waterfall

plot of the data in (a). The curves are offset in intervals of 0.5 Ω.
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carrier densities, n. These curves were obtained by sweeping B at fixed IDC = 250µA, in

contrast to previous measurements where B is fixed and IDC is swept. At B . 0.2 T we

observe the magnetic focussing peaks, as before. At B ≈ ±0.41 T we observe a pronounced

maxima in dV/dI for all measured carrier densities. We speculate that this maxima could

be the fundamental (q = 1) HIRO. Figure 4.5 shows the peak positions from Figure 4.4

together with the lines described by the p = 1 HIRO and split MPR oscillations. Error

bars are estimated from those expected after a subtraction of the background. Blue lines

depict HIRO, described by equation (1.35), with vF = (1.05 ± 0.01) × 106 ms−1 and

p = 1; green, red, and purple lines depict split MPR, described by equation (1.33) with

vF = (1.05± 0.01)× 106 ms−1 and vs = 13.7± 0.7 kms−1 for p = 1,2 and 3, respectively.

Apart from the peak at n = 1.5 × 1012 cm−2, the lines describing the split MPR peaks

do not intesect the peaks at B = ±0.41 T. This suggests the peaks are due to HIRO. In

addition, as shown in Figure 4.4, the amplitude of this HIRO is larger at lower n. We

speculate that this could be due to a decreased carrier screening of impurities providing

the 2~kF momentum transfer in the bulk.

In this chapter we have observed three distinct processes when a wide graphene

Hall bar is subject to strong electric fields. At sufficiently large Hall electric field, we

discovered a splitting of the MPR oscillations due to a spatial tilting of the Landau levels,

which modifies the energies of 2~kF transitions. At large IDC ≈ 1 mA, when the drift

velocity approaches the speed of the TA phonon (vs ≈ 13 kms−1), we observed a maxima

emerge when the Landau levels become parallel to the phonon dispersion. Finally, we

observed the fundamental (q = 1) HIRO arise when the Landau level states become

aligned in energy at q = 2~kF . This demonstrates a useful method for finding vF by

means of magnetotransport studies. Finally, our measurements as a function of n suggest

the HIRO amplitude is larger at lower n. We speculated that this might be due to a

decreased screening of scatterers at low n.
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Figure 4.4: Plot of dV/dI = rxx = rxx(B,n) at IDC = − 250µA, from a hole carrier density

n = 1 × 1012 cm−1 to n = 3.2 × 1012 cm−1 at intervals ∆n = 0.6 × 1012 cm−1, at 5 K. Dotted

lines show the position of the p = 1 HIRO at B = ±0.41 T. The curves are offset for clarity.
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Figure 4.5: Peak positions from figure 4.4 plotted with the lines described by HIRO and split

MPR. The blue lines are described by equation (1.35) for HIRO with vF = (1.05 ± 0.01) × 106

ms−1. The green, red and pink lines are described by equation (1.33) for split MPR with

vs = 13.7± 0.7 kms−1 and vF = (1.05± 0.01)× 106 ms−1, with p = 1, 2 and 3, respectively.



Chapter 5

Conclusion and Outlook

This thesis reports on magnetophonon oscillations in graphene. These oscillations

have previously been used to demonstrate, for the first time, that TA phonons (rather than

LA phonons) limit the temperature-dependent resistivity in graphene [11]. In this thesis

we prove that carriers are simultaneously skipping along the edge of the graphene channel

at the Fermi velocity. This gives rise to magnetic focussing peaks at low B . 0.2T, when

the distance between the current and voltage contacts L = 2Rcp, where p is an integer. We

attributed a phase shift of these peaks to a shift p→ p− 1/2, due to collimated injection

in the longitudinal measurement configuration. We also studied MPR oscillations with

large currents and thus large electric fields. We demonstrated a splitting of the MPR

oscillations due to a spatial tilting of the Landau levels in a strong Hall electric field. This

tunes the energy of the MPR transitions and thus allows access to lower energy modes in

the TA phonon dispersion. At larger IDC ∼ 1 mA, we also discovered additional differential

resistance maxima arising when the drift velocity approaches the speed of the TA phonon;

i.e., when Landau level states become parallel to the TA phonon dispersion. Finally, we

observed the fundamental (p = 1) HIRO arising when the Landau level states are aligned

in energy at q ≈ 2~kF . This provides a far less labour intensive measure of vF as compared

with the standard method of measuring the amplitude of SdH oscillations. We studied

the amplitude this peak over a range of carrier densities and observed the peak amplitude

is largest at lower n. We speculated that this could be due to a decreased screening of
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impurities at low n.

Our next step would be to use MPR oscillations to measure other types of phonon in

graphene heterostructures. We could use MPR oscillations (tuned by the Hall-electric field)

to see if these phonons are relevant for carrier scattering. For example, interlayer breathing

modes are thought to flatten the ZA phonon dispersion at low energies (∼ 100 meV),

leading to a large phonon density of states [51], which might give rise to significant phonon

scattering. We could also look for MPR oscillations due to intervalley scattering by higher

energy phonons, including optical phonons, as suggested by Mori and Ando [42]. Another

possibility could be to use MPR oscillations to measure the low-energy phonon dispersion

in twisted bilayer graphene. A better understanding of electron-phonon interactions in this

material could improve our understanding of the superconductivity mechanism in twisted

bilayer graphene [9, 10].
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