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Abstract—In this paper, we propose an elegant solution that
is directly addressing the bottlenecks of the traditional deep
learning approaches and offers a clearly explainable internal
architecture that can outperform the existing methods, requires
very little computational resources (no need for GPUs) and
short training times (in the order of seconds). The proposed
approach, xDNN is using prototypes. Prototypes are actual
training data samples (images), which are local peaks of the
empirical data distribution called typicality as well as of the
data density. This generative model is identified in a closed
form and equates to the pdf but is derived automatically and
entirely from the training data with no user- or problem-
specific thresholds, parameters or intervention. The proposed
xDNN offers a new deep learning architecture that combines
reasoning and learning in a synergy. It is non-iterative and
non-parametric, which explains its efficiency in terms of time
and computational resources. From the user perspective, the
proposed approach is clearly understandable to human users.
We tested it on some well-known benchmark data sets such as
iRoads and Caltech-256. xDNN outperforms the other methods
including deep learning in terms of accuracy, time to train
and offers a clearly explainable classifier. In fact, the result
on the very hard Caltech-256 problem (which has 257 classes)
represents a world record [1].

I. INTRODUCTION

Deep learning has demonstrated ability to achieve highly
accurate results in different application domains such as
speech recognition [2], image recognition [3], and language
translation [4] and other complex problems [5]. It attracted
the attention of media and the wider public [6]. It has
also proven to be very valuable and efficient in automat-
ing the usually laborious and sometimes controversial pre-
processing stage of feature extraction. The main criticism
towards deep learning is usually related to its ‘black-box’
nature and requirements for huge amount of labeled data,
computational resources (GPU accelerators as a standard),
long times (hours) of training, high power and energy
requirements [7]. Indeed, a traditional deep learning (e.g.
convolutional neural network) algorithm involves hundreds
of millions of weights/coefficients/parameters that require
iterative optimization procedures. In addition, these hundreds
of millions of parameters are abstract and detached from the
physical nature of the problem being modelled. However,
the automated way to extract them is very attractive in
high throughput applications of complex problems like image
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processing where the human expertise may simply be not
available or very expensive.

Feature extraction is an important pre-processing stage,
which defines the data space and may influence the level
of accuracy the end result provides. Therefore, we consider
this very useful property of the traditional deep learning and
step on it combined with another important recent result in
the deep learning domain, namely, the transfer learning. This
concept postulates that knowledge in the form of a model
architecture learned in one context can be re-used and useful
in another context [8]. Transfer learning helps to considerably
reduce the amount of time used for training. Moreover, it also
may help to improve the accuracy of the models [9].

Stepping on the two main achievements of the deep
learning - top accuracy combined with an automatic approach
for feature extraction for complex problems, such as image
classification, we try to address its deficiencies such as the
lack of explainability [7], computational burden, power and
energy resources required, ability to self-adapt and evolve
[10]. Interpretability and explainability are extremely impor-
tant for high stake applications, such as autonomous cars,
medical or court decisions, etc. For example, it is extremely
important to know the reasons why a car took some action,
especially if this car is involved in an accident [11].

The state-of-the-art classifiers offer a choice between
higher explainability for the price of lower accuracy or vice
versa (Figure 1). Before deep learning [12], machine-learning
and pattern-recognition required substantial domain expertise
to model a feature extractor that could transform the raw data
into a feature vector which defines the data space within
which the learning subsystem could detect or classify data
patterns [4]. Deep learning offers new way to extract abstract
features automatically. Moreover, pre-trained structures can
be reused for different tasks through the transfer learning
technique [8]. Transfer learning helps to considerably reduce
the amount of time used for training, moreover, it also may
helps to improve the accuracy of the models [9]. In this paper,
we propose a new approach, xDNN that offers both, high
level of explainability combined with the top accuracy.

The proposed approach, xDNN offers a new deep learning
architecture that combines reasoning and learning in a syn-
ergy. It is based on prototypes and the data density [13] as
well as typicality - an empirically derived pdf [14]. It is non-
iterative and non-parametric, which explains its efficiency in
terms of time and computational resources. From the user
perspective, the proposed approach is clearly understandable
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Fig. 1. Trade-off between accuracy and explainability.

to human users. We tested it on some well-known benchmark
data sets such as iRoads [15] and Caltech-256 [16] and xDNN
outperforms the other methods including deep learning in
terms of accuracy, time to train, moreover, offers a clearly
explainable classifier. In fact, the result on the very hard
Caltech-256 problem (which has 257 classes) represents a
world record [1].

The remainder of this paper is organized as follows:
The next section introduces the proposed explainable deep
learning approach. The experimental data employed in the
analysis and results are presented in the results section.
Discussion is presented in the last section of this paper.

II. EXPLAINABLE DEEP NEURAL NETWORK

A. Architecture and Training of the proposed xDNN

The proposed explainable deep neural network (xDNN)
classifier is formed of several layers with a very clear
semantic and functional meaning. In addition to the internal
clarity and transparency it also offers a very clear from the
user point of view set of prototype-based IF...THEN rules.
Prototypes are selected data samples (images) that the user
can easily view, understand and appreciate the similarity to
other validation images. xDNN offers a synergy between
the statistical learning and reasoning bringing both together.
In most of the other approaches there is a dichotomy and
preference of one over the other. We advocate and demon-
strate that both, learning and reasoning can work together in
a synergy and produce very impressive results. Indeed, the
proposed xDNN method outperforms all published results
[15], [1], [17] in terms of accuracy. Moreover, in terms of
time for training, computational simplicity, low power and
energy required it is also far ahead. The proposed approach
can be described as a feedforward neural network which has
an incremental learning algorithm that autonomously self-
develops and evolves its structure adding new prototypes
to reflect the possibly changing (dynamically evolving) data
pattern [10]. As shown in Figure 3, xDNN is composed of
the following layers–

1) Features descriptor layer;
2) Density layer;
3) Typicality layer;

4) Prototypes layer;
5) MegaClouds layer;

1) Features descriptor layer: (Defines the data space)
The Feature Descriptor Layer is the first phase of the
proposed xDNN method. This layer is in charge of ex-
tracting global features vector from the images. This first
layer can be formed by more traditional ‘handcrafted’
methods such as GIST [19] or HoG [20]. Alternatively,
it can be formed by the fully connected layer (FCL) of
the pre-trained convolutional neural network approaches
such as AlexNet [21], VGG–VD–16 [18], and Inception
[22], residual neural networks such as Resnet [3] or
Inception-Resnet [23], etc. Using pre-trained deep neural
network approach allows automatic extraction of more
abstract and discriminative high-level features. In this
paper, pre-trained VGG–VD–16 DCNN is employed
for feature extraction. According to [24], VGG–VD–
16 has a simple structure and it can achieve a better
performance in comparison with other pre-trained deep
neural networks. The first fully connected layer from
VGG–VD–16 provides a 1× 4096 dimensional vector.
a) The values are then standardized using the following
equation (1):

x̂i,j =
xi,j − µ(xi,j)

σ(xi,j)
(1)

where x̂ denotes a standardized features vector x of the
image I (x are the values provided by the FCL), i =
1, 2, ..., N denotes the time stamp or the ID of the image,
j = 1, 2, ..., n refers to the number of features of the
given x in our case n = 4096.
b) The standardized values are normalised to bring them
to the range [0;1]:

x̄i,j =
x̂i,j −min

i
(x̂i,j)

max
i

(x̂i,j)−min
i

(x̂i,j)
(2)

where x̄ denotes the normalized value of the features
vector. For clarity in the rest of the paper we will use
x instead of x̄.
Initialization:
Meta-parameters for the xDNN are initialized with the
first observed data sample (image). The proposed algo-
rithm works per class; therefore, all the calculations are
done for each class separately.

P ← 1; µ← xi; (3)

where µ denotes the global mean of data samples of
the given class. P is the total number of the identified
prototypes from the observed data samples (images).
Each class C is initialized by the first data sample of
that class:

C1 ← x1; p1 ← x1;

Support1 ← 1; r1 ← r∗; Î1 ← I1
(4)



Fig. 2. Pre-training a traditional deep neural network (weights of the network are being optimized/trained). Using the transfer learning concept this
architecture with the weights are used as feature extractor (the last fully connected layer is considered as a feature vector). Adapted from [18].

Fig. 3. xDNN training architecture (per class).

where, p1 is the vector of features that describe the
prototype Î of the C1; Î is the identified prototype;
Support1 is the corresponding support (number of
members) associated with this prototype; r1 is the
corresponding radius of the area of influence of C1.
In this paper, we use r∗ =

√
2− 2cos(30o) same as

[13]; the rationale is that two vectors for which the
angle between them is less than π/6 or 30o are pointing
in close/similar directions d. That is, we consider that
two feature vectors can be considered to be similar if
the angle between them is smaller than 30 degrees.
Note that r∗ is data derived, not a problem- or user-
specific parameter. In fact, it can be defined without

prior knowledge of the specific problem or data through
the following equation (5).

d(xi, pi) =

∥∥∥∥ xi
‖xi‖

− pi
‖pi‖

∥∥∥∥ . (5)

2) Density layer:
The density layer defines the mutual proximity of the
images in the data space defined by the features from
the previous layer. The data density, if use Euclidean
form of distance, has a Cauchy form (6) [13]:



D(xi) =
1

1 + ||xi−µN ||2
σ2
N

, (6)

where D is the density, µ is the global mean, and σ is the
variance. The reason it is Cauchy is not arbitrary [13].
It can be demonstrated theoretically that if Euclidean or
Mahalanobis type of distances in the feature space are
considered, the data density reduces to Cauchy type as
referred in equation (6). Density can also be updated
online [25]:

D(xi) =
1

1 + ||xi − µi||2 +
∑
i−||µi||2

. (7)

where µi and the scalar product,
∑
i can be updated

recursively as follows:

µi =
i− 1

i
µi−1 +

1

i
xi, (8)

∑
i

=
i− 1

i

∑
i−1

+
1

i
||xi||2

∑
1

= ||x1||2. (9)

Data samples (images) that are closer to the global mean
have higher density values. Therefore, the value of the
data density indicates how strongly a particular data
sample is influenced by other data samples in the data
space due to their mutual proximity.

3) Typicality layer:
Typicality is is an empirically derived form of proba-
bility distribution function (pdf). Typicality τ is given
by the equation (10). The value of τ even at the point
x = pi is much less than 1; the integral of

∫∞
−∞ τdx = 1

[13].

τ(xi) =

∑c
i=1 SupportiD(xi)∑c

i=1 Supporti
∫∞
−∞D(xi)dx

(10)

4) Prototypes layer:
The prototypes identification layer is the core of the
proposed xDNN classifier. This layer is responsible
to provide the clearly explainable model. The xDNN
classifier is free from prior assumptions about the data
distribution type, as well as the random or deterministic
nature of the data. In contrast, it extracts the actual
distribution empirically form the data samples (images)
bottom up [13]. The prototypes are independent from
each other. Therefore, one can change the structure by
adding a new prototype without influencing the other
already existing prototypes. In other words, the proposed
xDNN is highly parallelizable and suitable for evolving
form of application where new prototypes may be added
(if the data pattern requires this). The proposed xDNN
method is trained per class forming a set of prototypes
per class. Therefore, all the calculations are done for
each class separately. Prototypes are the local peaks
of the data density (and typicality) identified in the
previous layers/ stages of the algorithm from the images
of the corresponding class based on their feature vectors.

The prototypes can be used to form linguistic logical
IF...THEN rules of the following form:

Rc: IF (I ∼ ÎP ) THEN (class c)
where ∼ stands for similarity, it also can be seen
as a fuzzy degree of membership; p is the identified
prototype; P is the number of identified prototypes; c
is the class c = 1, 2, ..., C, I denotes an image.
One rule per prototype can be formed. All rules per class
can be combined together using logical OR, also known
as disjunction or S-norm:

Rc: IF (I ∼ Î1) OR (I ∼ Î2) OR ... OR (I ∼ ÎP )
THEN (class c)

Figure 4 illustrates the area of influence of the identified
prototypes. These areas around the identified prototypes
are called data clouds [13]. Thus, each prototype defines
a data cloud.

Fig. 4. Identified prototypes – Voronoi Tesselation.

We call all data points associated with a prototype data
clouds, because their shape is not regular (e.g., hyper-
spherical, hyper-ellipsoidal, etc.) and the prototype is
not necessarily the statistical and geometric mean , but
actual image [13]. The algorithm absorbs the new data
samples one by one by assigning then to the nearest (in
the feature space) prototype:

j∗ = argmin
j=1,2,...,P

(||xi − pj ||2) (11)

In case, the following condition [13] is met:

IF (D(xi) ≥ max
j=1,2,...,P

D(pj))

OR (D(xi) ≤ min
j=1,2,...,P

D(pj))

THEN (add a new data cloud (P ← P + 1))

(12)

It means that xi is out of the influence area of pj .
Therefore, the vector of features xi becomes a new



prototype of a new data cloud with meta-parameters
initialized by equation (13). Add a new data cloud:

P ← P + 1; CP ← xi; pP ← Ii; SupportP ← 1;

rP ← ro; ÎP ← Ii;
(13)

Otherwise, data cloud parameters are updated online by
equation (14). It has to be stressed that all calculations
per data cloud are performed on the basis of data points
associated with a certain data cloud only (i. e. locally,
not globally, on the basis of all data points).

Cj∗ ← Cj∗ + 1;

pj∗ ←
Supportj∗

Supportj∗ + 1
pj∗ +

Supportj∗

Supportj∗ + 1
xi;

Supportj∗ ← Supportj∗ + 1;

r2j∗ ←
r2j∗ + (1− ||pj∗ ||2)

2
.

(14)

The xDNN learning procedure can be summarized by
the following algorithm.

xDNN: Learning Procedure

1: Read the first feature vector sample xi representing
the image Ii of the class c;

2: Set i ← 1;n ← 1;P1 ← 1; p1 ← xi;µ ←
x1;Support← 1; r1 ← r0; Î1 ← I1;

3: FOR i = 2, ...
4: Read xi;
5: Calculate D(xi) and D(pj) (j = 1, 2, ..., P )

according to equation (9);
6: IF Equation (12) holds
7: Create rule according to Equation (13);
8: ELSE
9: Search for pj according to Equation (11);

10: Update rule according to Equation (14);
11: END
12: END

5) MegaClouds layer:
In the MegaClouds layer the clouds formed by the
prototypes in the previous layer are merged if the
neighbouring prototypes have the same class label. In
other words, they are merged if they belong to the
same class. MegaClouds are used to facilitate the human
interpretability. Figure 5 illustrates the formation of the
MegaClouds.

Fig. 5. MegaClouds – Voronoi Tesselation.

Rules in the MegaClouds layer have the following
format:

Rc: IF (x ∼ MC1) OR (x ∼ MC2) OR ... OR (x ∼
MCmc) THEN (class c)

where MC are the MegaClouds, or the areas formed
from the merging of the clouds, and mc is the number
of identified MegaClouds. Multimodal typicality, τ , can
also be used to illustrate the MegaClouds as illustrated
by Figure 6.

Fig. 6. Typicality for the iRoads dataset.

B. Architecture and Validation of the proposed xDNN

Architecture for the validation process of the proposed
xDNN method is illustrated by Figure 7.

The validation process of xDNN is composed of the
following layers:

1) Features descriptor layer;
2) Similarity layer (density);
3) Local decision-making.
4) Global decision-making.
Which is detailed described as following:

1) Features descriptor layer:
Similarly to the features descriptor layer described in
the training process.

2) Prototypes layer:



Fig. 7. Architecture for the validation process of the proposed xDNN.

In this layer the degrees of similarity to the nearest
prototypes (per class) are extracted for each unlabeled
(new/validation) data sample/image Ii defined as fol-
lows:

S(x, pi) =
1

1 + (x−pi)
σ2
i

, (15)

where S denotes the similarity degree.
3) Local (per class) decision-making layer:

Local (per class) decision-making is calculated based on
the ‘winner-takes-all’ principle and can be obtained by:

λc = max
j=1,2,...,P

(Sj), (16)

4) Global decision-making layer: The global decision-
making layer is in charge of forming the decision by
assigning labels to the validation images based on the
degree of similarity of the prototypes obtained by the
prototype identification layer as illustrated by Figure 7
and determining the winning class.

λ∗c = max
c=1,2,...,C

(λc), (17)

In order to determine the overall degree of satisfaction,
the maximum of the local, per class winners is applied.
The label is obtained by the following equation (18):

label = argmax
c=1,2,...,C

(λ∗c), (18)

III. EXPERIMENTAL DATA

We validated our proposed approach, xDNN using sev-
eral complex, well-known image classification benchmark
datasets (iRoads and Calltech-256).

A. iRoads dataset

The iROADS dataset [15] was considered in the analysis
first. The dataset contains 4,656 image frames recorded from
moving vehicles on a diverse set of road scenes, recorded in
day, night, under various weather and lighting conditions, as
described below:
• Daylight - 903 images
• Night - 1050 images
• Rainy day - 1049 images
• Rainy night - 431 images
• Snowy - 569 images
• Sun strokes - 307 images
• Tunnel - 347 images

B. Caltech-256

Caletch-256 has 30,607 images divided into 257 object
categories (one of which is the background) [16].

C. Performance Evaluation

The performance of the classification methods is usually
evaluated based on their accuracy index which is defined as
follows:

ACC(%) =
TP + TN

TP + FP + TN + FN
, (19)

where TP, FP, TN, FN denote true and false, negative and
positive, respectively.

All the experiments were conducted with MATLAB 2018a
using a personal computer with a 1.8 GHz Intel Core i5
processor, 8-GB RAM, and MacOS operating system. The
classification experiments were executed using 10-fold cross
validation under the same ratio of training-to-testing (80% to
20%) sample sets.



IV. RESULTS AND ANALYSIS

Computational simulations were performed to assess the
accuracy of the proposed explainable deep learning method,
xDNN against other state-of-the-art approaches.

A. iRoads Dataset
Table I shows that the proposed xDNN method provides

the best result in terms of classification accuracy as well as
time/complexity and simplicity of the model structure (num-
ber of parameters/prototypes). The number of model parame-
ters for xDNN (and DRB) is, strictly speaking, zero, because
the 2 parameters (mean, µ and standard deviation, σ) per
prototype (data cloud) are derived from the data and are not
algorithmic parameters or user-defined parameters. For kNN
method one can argue that the number of parameters is the
number of data samples, N. The proposed explainable DNN
surpasses in terms of accuracy the state-of-the-art VGG–VD–
16 algorithm which is a well-established convolutional deep
neural network. Moreover, the proposed xDNN has at its top
layer a set of a very small number of MegaClouds (27 or, on
average, 4 MegaClouds per class) which makes it very easy
to explain and visualize. For comparison, our earlier version
of deep rule-based models, called DRB [17] also produced a
high accuracy and was trained a bit faster, but ended up with
521 prototypes (on average 75 prototypes per class) [26].
With xDNN we do generate meaningful IF...THEN rules
as well as generate an analytical description of the typicality
which is the empirically derived pdf in a closed form which
lends itself for further analysis and processing.

TABLE I
PERFORMANCE COMPARASION: IROADS DATASET

Method Accuracy Time(s) # Parameters
xDNN 99.59% 4.32 27

VGG–VD–16 [26] 99.51 % 836.28 Not reported
DRB [26] 99.02% 2.95 521
SVM [26] 94.17% 5.67 Not reported
KNN [26] 93.49% 4.43 4656

Naive Bayes [26] 88.35% 5.31 Not reported

MegaClouds generated by the proposed xDNN model can
be visualized in terms of rules as illustrated by the Figure 8.

Voronoi tesselation can also be used to visualize the
resulting MegaClouds as illustrated by Figure 9.

Typicality for classes ‘night scene’ and ‘snow scene’ are
given by Figure 10.

Typicality can also be used for interpreatability and ex-
plainability as it is correspondent to the pdf. One can use the
typicality to represent the likelihood that an image represents
a specific type of driving conditions. For a given image a
vector of features can be extracted, x ∈ R4096 which can
be standardized and normalized and used to demonstrate the
likelihood of a certain type of driving condition as shown on
Fig. 10.

B. Caltech-256 Dataset

Results for Caltech-256 are presented in Table II.

IF (I ∼ ) OR

(I ∼ ) OR

OR (I ∼ )
THEN ‘Daylight scene’

Fig. 8. xDNN rule generated for the ‘Daylight scene’.

Fig. 9. MegaClouds for the iRoads dataset.

TABLE II
PERFORMANCE COMPARASION: CALTECH-256 DATASET

Method Accuracy
xDNN 75.41%

SVM(1) [27] 24.6 %
SVM(2) [27] 39.6%
SVM(3) [27] 46.0%
SVM(4) [27] 51.3%
SVM(5) [27] 65.6%
SVM(7) [27] 71.7%

Softmax(5)[27] 65.7%
Softmax(7) [27] 74.2%



Fig. 10. Typicality for the iRoads dataset (2D), 2 classes, representing ‘night
scene’ and ‘snow scene’.

Results presented in Table II demonstrate that the proposed
xDNN approach can obtain the best classification reported so
far world wide for this complex problem, namely, 75.41%.
The proposed approach did surpass all of the competitors,
offering the highest accuracy, as well as, clearly explainable
model. xDNN produced on average 3 MegaClouds per class
(a total of 721) which are clearly explainable. Rules have the
following format:

IF (x ∼ ) OR (x ∼ ) OR (x ∼ )
THEN ‘CD’

Experiments have demonstrated that the proposed xDNN
approach is able to produce highly accurate results surpassing
state-of-the-art methods for different challenging datasets.
Moreover, xDNN presents highly interpretable results that
can be presented in the form of IF...THEN logical rules,
Voronoi tessellations, and/or typicality (empirically derived
form of pdf) in a closed analytical form allowing further
analysis. Because of its recursive, non-iterative and non-
parametric form it allows computationally very efficient
implementations to be realized.

V. CONCLUSION

In this paper we propose a new method, explainable deep
neural network (xDNN), that is directly addressing the bottle-
necks of the traditional deep learning approaches and offers a
clearly explainable internal architecture that can outperform
the existing methods. The proposed xDNN approach requires
very little computational resources (no need for GPUs) and
short training times (in the order of seconds). The proposed
approach, xDNN is prototype-based. Prototypes are actual
training data samples (images), which have local peaks of the
empirical data distribution called typicality as well as of the
data density. This generative model is identified in a closed
form and equates to the pdf but is derived automatically and

entirely from the training data with no user- or problem-
specific thresholds, parameters or intervention. The proposed
xDNN offers a new deep learning architecture that combines
reasoning and learning in a synergy. It is non-iterative and
non-parametric, which explains its efficiency in terms of
time and computational resources. From the user perspective,
the proposed approach is clearly understandable to human
users. Results for some well-known benchmark data sets such
as iRoads and Caltech-256 show that xDNN outperforms
the other methods including state-of-the-art deep learning
approaches (VGG–VD–16) in terms of accuracy, time to
train and offers a clearly explainable classifier. In fact, the
result on the very hard Caltech-256 problem (which has 257
classes) represents a world record [1]1. Future research will
concentrate on the development of a tree-based architecture,
synthetic data generation, and local optimization in order to
improve the proposed deep explainable approach.
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