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Abstract

This thesis looks at developing a semi-automated approach to estimate multiple, sparse, linear re-

gression models simultaneously. We are motivated by a telecommunications application and aim to

produce interpretable models.

Firstly, we generalise the best-subset problem (Miller, 1996) which is often used to estimate

sparse linear regression models. We call our problem the Simultaneous Best-Subset (SBS) problem

and use it to simultaneously estimate multiple linear regression models. The so-called SBS approach

produces models that perform more favourably in comparison to models estimated individually using

the best-subset approach. We solve the SBS problem by formulating a Mixed Integer Quadratic

Optimisation (MIQO) program which can often be solved quickly using an optimisation solver. The

MIQO framework allows us to have some control over the regression models estimated which is

desirable in an automated setting.

Secondly, we propose a simultaneous shrinkage operator. This operator shrinks coefficients be-

tween models towards a common value. We show that this operator can further improve parameter

estimation when simultaneously estimating multiple linear regression models. This operator was

found to be particularly useful when noisy predictors entered the models.

Thirdly, we show how the SBS approach can be integrated into a two-step semi-automated pro-

cedure for fitting REGression Seasonal AutoRegressive Integrated Moving Average (Reg-SARIMA)

models. We apply this automated approach to estimate models for a telecommunications dataset

and compare it to the current approach employed by our industrial collaborator. We show how the

Reg-SARIMA models provide a better fit to the data, are more interpretable, and perform more

favourably for future short-term predictions. In addition to this, the two-step procedure requires

much less human intervention into the modelling procedure than procedures currently used by in-

dustry.

Finally, we propose fast approaches to simultaneously estimate multiple sparse linear regression

models. Using a simulation study we show that these approaches often produce models that perform

as favourably as the SBS approach, despite producing models in far less time.
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Chapter 1

Introduction

The work in this thesis considers estimating statistical models that are suitable for a range of in-

dustrial applications. Suitable applications include scenario’s where multiple linear models can be

estimated simultaneously and particularly when similarity may be expected across the models. In ad-

dition to this, the data can be time ordered and our approach is able to select suitable predictors that

can be used to explain the variation observed in a response variable. We apply our methodology to

an industrial dataset provided by our industrial collaborator, BT, to better understand how weather

variables affect the rate of telecommunication events. Our methodology has also been applied by

BT to understand how electricity consumption for different types of telecommunication buildings

can be affected by weather variables. Suitable applications from the statistical literature include

understanding commodity dynamics (Barbaglia et al., 2016) and modelling sales data (Wilms et al.,

2018), where the effects of multiple predictor variables are expected to affect sales across multiple

stores similarly.

One important aspect of producing statistical models for industry is model interpretability. Mod-

els that are interpretable are often simple and can support or provide an explanation relating the

external (predictor) variables to the (response) variable of interest. We achieve model inter-

pretability in the following ways. Firstly, we estimate multiple models simultaneously for related

response variables. We encourage the models to include effects from similar predictor variables,

which is expected in practise. This is not always achieved using current procedures due to the chal-

lenging modelling conditions primarily caused by highly correlated predictor variables. As well as

improving model interpretability we show that simultaneous model estimation can greatly improve

model selection and estimation accuracy. Secondly, we fit sparse models that include the effects of

only the most important predictor variables. Finally, we exploit expert knowledge at the model esti-

mation stage to ensure the effects of external variables are in agreement with this expert knowledge.

1
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This greatly reduces the human intervention required to ensure models are interpretable.

By reducing the amount of intervention needed to produce interpretable models we have developed

a semi-automated approach that can select important predictors to include into models and estimate

their effects. Traditional manual approaches to statistical modelling, whereby an analyst produces

models by hand, are becoming infeasible due to the amount of related data that is routinely recorded.

We apply our approach to an example where the number of predictors is in the thirties and the

automated nature allows it to be applied to many groups of related response variables. The maximum

number of models estimated simultaneously in our application is seven, although this and the number

of predictors considered can be larger, but subject to increased computational time.

The main contribution of this thesis is the development of multiple simultaneous predictor selec-

tion methods. We investigate how a shrinkage operator, only available when jointly fitting models,

can improve parameter estimation. By implementing our methods using mixed integer quadratic

optimisation techniques, we can estimate the models easily and ensure they demonstrate desirable

properties. We consider a two-step procedure that can be used to select predictors for our models

and account for the serial correlation often observed in the response variables. Finally, we produced

a statistical software package during this project which has had significant impact in industry. The

package has allowed BT to seamlessly integrate our work into their systems and produce large num-

bers of sensible models with minimal effort. These models can be used as excellent baseline models

and compared to models produced by hand, requiring significantly more effort.

1.1 Telecommunications event dataset

Our industrial collaborator, BT own and are responsible for maintaining much of the UK’s telecom-

munications network. Statistical models are used by BT to better understand how the network

behaves. Specifically, statistical models can be used to quantify the impact of external influences on

the network. In addition to this, predictions from these models can also be used to plan effectively

by efficiently allocating resources. In Chapter 3 and Chapter 4 we apply our methodology to the

telecommunications event dataset, provided to us by BT. This dataset provides a good example of

the modelling challenges often encountered by researchers within the organisation. In this section

we provide details of the telecommunications event dataset to motivate much of the methodology

developed in this thesis.

The telecommunication event dataset records the daily event rates by type at a given location

in the network. Figure 1.1.1 shows the daily event rate for a particular event type and location for

approximately 3 years and 8 months. A telecommunication event may correspond to a problem with
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Figure 1.1.1: A daily time series plot of telecommunications event rate data. We do not show the

vertical scale or the time window in the interest of anonymising the data.

a service provided by the network such as an interrupted service. The measure is an event rate as

the daily number of events is scaled by the daily number of active services. This is to ensure that we

take into account the number of active services, which changes on a daily basis, when considering

the number of events. In this dataset the location corresponds to a specific region in the United

Kingdom. Other telecommunication datasets could identify a location specific to a component in

the network, in contrast to a geographical location. In the interest of developing a method which is

widely applicable, we focus on estimating models that do not explicitly use spatial information. The

event type identifies the particular problem with a service. Given that BT have a national network

it’s obvious that the task of producing excellent models for all types of events across many locations

poses a significant challenge to the industry.

It is known by experts that events of the same type are influenced by the same weather variables,

no matter the location in the network. However, it is thought that the effect of the weather variables

on events may differ between locations. For example, consider an event type that is known to

be influenced by precipitation. The effects of precipitation on this event type may be more similar

between regions in Scotland than compared to one region from Scotland and one region from London.

This difference could be explained by the geography of the two locations. Figure 1.1.2 shows that

there may exist strong correlation for suitably grouped events. The similarity between events within

a group combined with expert opinion suggests that it may be advantageous to jointly model groups

of events. We do not consider the problem of determining suitable groups and leave this to the

expert judgement of our industrial collaborator.
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Figure 1.1.2: Correlation between suitably grouped events. The upper-right grids show the pairwise

scatter-plots of the events between the six locations within the group for a fixed event type. The

lower-left grid shows the Pearson correlation coefficient between the events shown in the scatter-plots

reflected across the main diagonal.

Complex relationships may exist between response and predictor variables. Expert knowledge

can often provide appropriate non-linear transformations that reveal these relationships, but the

parameters of these transformations are typically not known. Reasonable estimates of the trans-

formation parameters may be obtained by selecting the best predictor among a group of predictors.

We make the following distinction between a group of predictor variables and a group of response

variables,

• Group of predictors: A set of predictors that are produced by applying a transformation to

an observed base predictor for multiple values of a transformation parameter.

• Group of response variables: A set of response variables that are deemed suitable for joint

analysis due to the similarity in their behaviour or physical properties.

By using a fine grid of parameters it may be possible to obtain an accurate estimate of the transfor-

mation and it’s associated parameter. A fine grid of parameter values can lead to highly correlated

predictors, as shown in Figure 1.1.3. Here, we observe the correlation between pairs of predictors

from a group of predictors. These predictors were obtained by smoothing precipitation across a

grid of smoothing parameter values. Clearly, including all smoothed precipitation predictors in a

model for telecommunication events will tell us very little about the relationship between events and

precipitation. However, if we can identify a single smoothed precipitation predictor (among other
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predictors) that can adequately explain the behaviour of telecommunication events we are likely to

gain from a much better understanding of a relationship.
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0.67 0.83 0.95

0.52 0.68 0.82 0.95

0.40 0.54 0.68 0.85 0.96

0.31 0.42 0.55 0.71 0.86 0.96

0.22 0.31 0.41 0.55 0.70 0.84 0.95

Figure 1.1.3: Correlation amongst predictors within a group of predictors. The upper-right grids

show the pairwise scatter-plots between the eight predictors within the group produced by smoothing

the precipitation observations. The lower-left grid shows the Pearson correlation coefficient between

the predictors shown in the scatter-plots reflected across the main diagonal.

Building statistical models that adequately explain the physical relationship between a response

variable and predictor variables can be challenging. It is important to obtain simple models that

can be interpreted easily and these models should describe a relationship that aligns with expert

judgement and opinion. Currently, great effort is required to obtain interpretable models. Highly

correlated predictors present challenging conditions to select the best predictors and estimate their

effects. Often with the current procedure, pairs of highly correlated predictors are selected for

a model. The problem here is that one predictor appears to have a large positive effect on the

response, and the other a large negative effect. The effect of these predictors may effectively cancel,

which makes it hard to interpret the resulting model.

The event data described in this section is recorded daily. This means that the event dataset

is time series data. Daily time series typically exhibit seasonality (Hyndman and Athanasopoulos,

2019). This can be identified in Figure 1.1.4 which shows an estimate of the auto-correlation function

for the event data presented in Figure 1.1.1. A large peak at a lag l in the auto-correlation function

indicates that the values separated by l days are often highly correlated. The repeated pattern in

the auto-correlation function every 7 lags indicates the presence of weekly seasonality. In practice,

large peaks at lag seven suggests that the events on each day of the week are similar to that of the
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same day on the previous week. Seasonality may be a characteristic of a response variable that is not

induced by a predictor of interest. For example, it is unlikely that the weekly seasonality present in

the event data is caused by weather variables, and thus, the seasonality could be explicitly included

into the models. In Chapter 2 we discuss how BT currently estimate and remove the seasonality

observed in response variables in order to reveal a relationship and discuss the drawbacks of this

approach.

0 5 10 15 20 25 30 35

Lag (l)

−0.2

0.0

0.2
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0.6

0.8

1.0

ρ̂
(l

)

Telecommunication event time series auto correlation estimate, ρ̂(l)

Figure 1.1.4: An estimate of the auto-correlation function for the telecommunications event rate

data. The vertical lines show an estimate of the auto-correlation at lag l. The uncertainty cloud

shows the 95% confidence intervals calculated using Bartlett’s formula.

The events considered in the telecommunications event dataset are reported by customers. As

such, fewer events are typically observed on UK bank holidays1. The bank holiday effect can not

easily be seen by eye in Figure 1.1.1. However, by removing the weekly seasonality from the event

data low events on bank holidays are made very clear. Figure 1.1.5 shows the events smoothed using

a seven day symmetric moving average. This moving average calculates the 7-point running mean

using one value from each day of the week, in doing so this smooths out the between day variation.

In this section we have highlighted a number of characteristics of this dataset that are also present

in many of the telecommunications datasets. It is important to take these into consideration when

estimating statistical models. We have also discussed a number of the problems BT encounter when

producing models. Using the typical characteristics of the data and the problems often encountered

we are able to create a list of requirements needed for a modelling approach. Firstly, we require a

predictor selection algorithm that can perform favourably when many of the predictors are highly

1We note here that bank holidays may differ between Scotland, England, Northern Ireland and Wales.
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Daily event data smoothed with a 7 day centered moving average
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Figure 1.1.5: Daily event rates smoothed using a 7 day symmetric moving average. Low counts are

often identified on bank holidays which are indicated by the coloured circles. An observed bank

holiday indicates the additional bank holiday given in lieu of a bank holiday that falls on a weekend.

correlated. Secondly, we should consider approaches that jointly fit models for related response

variables in order to encourage similarity amongst these models. Thirdly, the statistical models

should be able to explain the serial correlation often observed in the response variables. And finally,

the approach must produce sensible models with minimal human intervention so that a large number

of models can be produced efficiently.

Now that we have introduced the modelling challenges often encountered when modelling telecom-

munications datasets we will provide the structure of the remainder of this thesis.

1.2 Thesis structure

In Chapter 2 we introduce the notation used throughout. We then review the most relevant literature

relating to predictor selection in both univariate response and multivariate response linear regression

and how the best set of predictors may be chosen. We will briefly describe the modelling approach

used by our industrial collaborator for telecommunications data. By exploring the current approach,

we can highlight the areas where this approach is undesirable and most in need of improvement.

This will allow us to further motivate our methodology.

In Chapter 3 we present our semi-automated approach that simultaneously selects predictors for

multivariate response linear regression. We then define a simultaneous shrinkage operator and show

how it can be used to further improve parameter estimation. We integrate our simultaneous predictor
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selection approach into a two-step procedure that iterates between learning the serial correlation of

model errors and selects the best predictors to include into a model. We show empirically that

simultaneous predictor selection can perform favourably when compared to univariate methods and

that our two-step approach can greatly improve the performance of predictor selection. Finally we

demonstrate our approach on a subset of the telecommunications dataset.

In Chapter 4 we apply our method to the full telecommunications event dataset. We explore

the performance of our approach with the current approach rigorously, and provide insight into the

gains of simultaneous predictor selection in practise. We also assess how well each approach satisfies

the modelling assumptions that are specified a priori.

In Chapter 5 we investigate how the computational performance of the simultaneous predictor

selection approach proposed in Chapter 3 is affected by various different implementations. In partic-

ular we consider solving the SBS problem by formulating a number of different MIQO programs. In

addition to this, we compare the approach to a fast alternative that does not require an optimisation

solver and can produce good quality models quickly.

In Chapter 6 we propose a number fast simultaneous predictor selection approaches. We discuss

how these approaches relate to their univariate counterparts that have been proposed in the current

body of literature. In a simulation study we compare how each approach performs across a range of

practical performance criteria.

In Chapter 7 we carry out a detailed study to understand how the simultaneous shrinkage op-

erator proposed in Chapter 3 performs in many different scenarios. In particular, we compare the

performance of the shrinkage operator in sparse, medium and dense scenarios. Here sparse, medium

and dense scenarios correspond to models with low to a high number of active predictors present.

Finally, we conclude this thesis in Chapter 8 by providing a summary of each chapter in turn. In

addition to this, we also discuss areas for future research that may provide avenues for our industrial

collaborator to explore and interesting areas for further academic research.



Chapter 2

Literature review and current

procedures used to model

telecommunications data

In this chapter we review the most relevant literature related to our modelling challenges. We consider

both univariate and multivariate linear regression models and discuss a number of approaches used to

estimate and select predictors for these models. We discuss some known properties of these methods

and how they can be used to address our goals. Importantly, we also highlight areas where these

approaches do not meet our needs and identify areas in the literature where significant contributions

can be made. We follow by describing the current modelling approach employed by our industrial

collaborator. But first, we introduce the notation used throughout this thesis.

2.1 Notation

Throughout this thesis we use Y to denote a response variable and X to denote a predictor. We

are interested in how multiple predictors, X1, . . . , XP influence the response variable Y . In Chapter

1 we discussed the potential to jointly model response variables. When there are multiple response

variables we will denote them by Ym, for m = 1, . . . ,M . We will consider grouping related response

variables. We use the notation Gi to denote the ith group of response variables. The set Gi lists

the indices of the response variables in Group i. For example, let Group 1 contain the variables

{Y1, Y2, Y3}. Then, we will refer to this group of response variables as G1 = {1, 2, 3}.
It will be useful to distinguish between predictors when there are multiple response variables.

9
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For each response variable we assume that there are P predictors. We assume that each response

variable has a realisation of each predictor such that Xp,m denotes the realisation of predictor Xp

for response variable Ym. We denote all predictors for response variable Ym as X1,m, . . . , XP,m for

m = 1, . . . ,M . As an example, suppose that we consider only precipitation as a predictor. Here,

P = 1 and the precipitation time series for each response variable is given by X1,m for m = 1, . . . ,M .

We will index the observations for both response and predictor variables by t. We use the

convention that T denotes the total number of observations. Similarly, we use p to index the predictor

variables and P to denote the total number of predictors. When we consider multiple response

variables we use m to index each response variable and M to denote the total number of response

variables. When considering only one response variable we denote the observations as,

y =


y1
...

yT


′

and, x =


x1,1 . . . x1,P

...
. . .

...

xT,1 · · · xT,P

 . (2.1.1)

Here, ′ corresponds to the matrix transpose and we will use this throughout. We also use the

convention that y corresponds to an observation of the random variable Y . We use x to denote

an observation of predictor X but do not assume that these predictors are random variables. In

(2.1.1) the matrix y ∈ RT is a matrix of dimension T and x ∈ RT×P has dimension T × P . When

considering a group of response variables we generalise the notation in (2.1.1). When M response

variables are considered we use the notation

y ∈ RT×M and x ∈ RT×P×M

to represent the observations. Here, yt,m corresponds to observation t of response variables Ym. The

value xt,p,m corresponds to observation t of predictor Xp,m. In the presence of multiple response

variables it will be useful to consider the data for only one response variable. In this case, we will

use the notation

y∗,m =


y1,m

...

yT,m


′

∈ RT and x∗,∗,m =


x1,1,m . . . x1,P,m

...
. . .

...

xT,1,m · · · xT,P,m

 ∈ RT×P .

Here, it is clear from the use of the asterisk that y is two dimensional and x is three dimensional. This

indicates that we are considering data for multiple response variables. Specifying only the index

m we indicate that we are considering all data for response variable Ym and predictor variables

X1,m, . . . , XP,m respectively.

The predictors used in an analysis may be produced by applying a series of transformations to

some base predictor. We consider two transformations of a predictor. The first transformation is a
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non-linear transformation that smooths a predictor and was used to produce the predictors shown

in Figure 1.1.3. Given a base predictor, Xp the exponential smoothing function may be used to

produce a predictor Xs, such that

xt,s = αxt,p + (1− α)xt−1,s, for t = 2, . . . , T. (2.1.2)

Here, we set x1,s = x1,t. The reason for applying such transformations will be made clear in Section

2.3. In equation (2.1.2) α is a parameter that is used to adjust how much the time series Xt,p is

smoothed. A value of α close to 1 will produce a time series very close to the original. A value

of α close to 0 will produce a time series that evolves much more slowly. Suppose we applied the

exponential smoothing function for α ∈ [0.1, 0.2, 0.3] to base predictor X1. Then, we will produce

three new predictors, call them X2, X3, X4. These predictors are all produced from applying the

exponential smoothing function to base predictor X1 and give a group of predictors. When a group

of predictors have been produced from a non-linear transformation of a base predictor we use the

notation Ti to correspond to the ith group. Suppose Non-linear Predictor Transformation Group 1

corresponds to the predictors {X2, X3, X4}, then T1 = {2, 3, 4}.
It will also be useful to lag predictors. Given an observation of predictor Xp we will use the

notation LXt,p = Xt−1,p to denote lagging the variable Xp by 1 lag. Here, L is known as the

backward shift operator. Suppose we lag observations of predictor X1, such that

x2,t = Lx1,t = x1,t−1, for t = 2, . . . , T,

x3,t = L2x1,t = x1,t−2, for t = 3, . . . , T,

x4,t = L3x1,t = x1,t−3, for t = 4, . . . , T.

Here, we have created observations of predictor X2, X3 and X4 by lagging predictor X1 by 1, 2, and

3 respectively. It will be useful to group predictors that are produced from lagging a base predictor.

Suppose Lagged Predictor Group 1 corresponds to the predictors X2, X3, X4 then L1 = {2, 3, 4}.

2.2 Literature review

We will now explore the most important literature relevant to the work presented in this thesis. In

Section 2.2.1 we introduce the linear regression model and methods used for estimation. We follow

by introducing a generalisation of the linear regression model in Section 2.2.2 which is particularly

useful when observations are ordered in time. In Section 2.2.3 we review the most popular methods

used to select predictors. In Section 2.2.4 we discuss mathematical programming tools used to both

estimate regression models and select predictors. In Section 2.2.5 we discuss methods used to estimate
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models for a multivariate response variable and highlight why these methods are not suitable for our

application. Finally, in Section 2.3 we outline the current modelling procedure typically used by our

industrial collaborator and discuss the drawbacks of this approach that we aim to address.

2.2.1 Linear regression

Given a response variable Y and predictor variables X1, . . . , XP , a linear regression model can be

written in the form

Y = β0 +

P∑
p=1

XpβP + η. (2.2.1)

Here, β0, β1, . . . , βP denote the regression coefficients and η denotes the model error. We refer to the

errors of a linear regression model as regression residuals. It is assumed that the relationship between

the response variable and the predictors is linear. Given observations, y of the response variable

and, x for the predictor variables we wish to estimate the best model parameters β0, β1, . . . , βP .

The Ordinary Least Squares (OLS) estimates find the best values by minimising the sum of squared

residuals. The OLS estimates are given by the solution to the following minimisation problem,

β̂ = [β̂0, β̂1, . . . , β̂P ] = arg min
β0,...,βP

 T∑
t=1

(
yt − β0 −

P∑
p=1

βpxt,p

)2
 . (2.2.2)

Here, the residuals ηt = yt−β0−
∑P
p=1 xt,pβp for t = 1, . . . , T . The coefficients can also be estimated

using statistical inference. We can place an assumption on the distributional form of the regression

residuals and use the method of maximum likelihood to estimate the regression coefficients. It is

common to assume that the residuals are independent and identically distributed such that

ηt ∼ N(0, σ2) for t = 1, . . . , T.

Here, the residuals are assumed to be normally distributed with zero mean and common variance,

σ2. Under these assumptions, the least squares estimates are the same as the estimates obtained by

the method of maximum likelihood (Rao and Toutenburg, 1999).

It is common to include the intercept term β0 in a linear regression model unless there is good

reason not to (Ryan, 2008). When an intercept term is included in the model in equation (2.2.1),

we can append a column of 1’s to the predictor matrix x so that,

∗
x = [1 x] ∈ RT×(P+1).

Here, 1 ∈ RT×1. Then, the least squares estimates of β in model (2.2.1) are available in closed from

and given by,

β̂ = (
∗
x
′ ∗
x)−1

∗
x
′
y. (2.2.3)
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As well as the closed form expression given in (2.2.3) the least squares estimator has a number

of other desirable properties. The least squares estimator is consistent and optimal in the class

of linear unbiased estimators (Rawlings et al., 1998). However, the first column of
∗
x can cause

numerical instability. If one or more columns of x differ very little, then these columns will be near

multiples of 1. In this case, the matrix
∗
x will be ill-conditioned. Ill-conditioned matrices can cause

numerical instability and this was emphasised by Longley (1967). By centering the response variables

we remove the need to include 1 in the predictor matrix and hence remove the intercept from the

model. We center the response variable by subtracting the sample mean from each observed value.

Centering the predictors can also be useful. When only the predictors are centered, the interpretation

of the intercept, β0 is the expected value of the response when the predictors Xp for p = 1, . . . , P are

equal to their mean. Snee and Marquardt (1984) point out that the intercept is essentially a nuisance

parameter as we are generally not interested in the value of the response when the predictors all take

the value zero.

As well as centering, the data can also be scaled. The purpose of scaling the data is so that the

arbitrariness in the choice of scale is eliminated (Mardia et al., 1994). For example, if X1 measures

the depth of rainfall and Y is the rate of telecommunication events, then Y will be the same whether

X is measured in mm or cm. Scaling and centering of the response and predictor variables is

accomplished as follows,

Ỹ =
Y − µY
σY

and X̃p =
Xp − µXp

σXp

. (2.2.4)

Here, Ỹ and X̃p give the scaled and centered response and predictor variables. We will use the

sample estimates, µ̂Y = 1
T

∑T
t=1 yt, µ̂Xp

= 1
T

∑T
t=1 xt,p, σ̂

2
Y = 1

T

∑T
t=1 (yt − µ̂Y )

2
and, σ̂2

Xp
=

1
T

∑T
t=1

(
xt,p − µ̂Xp

)2
and use these to center and scale the observed response and predictor variables.

Unless otherwise stated we will estimate models of the form,

Ỹ =

P∑
p=1

X̃pβ̃p + η̃.

Here, η̃ is the regression residual obtained for the scaled and centered model. The model for the

response variable on the original scale can be recovered as follows,

Y − µY
σY
√
T

=

P∑
p=1

Xp − µXp

σXp

√
T

β̃p + η̃ ⇐⇒ Y = µY −
P∑
p=1

µXp β̃pσY

σXp

+

P∑
p=1

Xp
β̃pσY
σXp

+ η̃σY
√
T

= β0 +

P∑
p=1

Xpβp + η.,

where β0 = µY −
∑P
p=1

µXp β̃pσY

σXp
, βp =

β̃pσY

σXp
for p = 1, . . . , P and ηt = η̃σY

√
T .

In the presence of highly correlated predictors Hoerl and Kennard (1970) showed that the least

squares estimates can be unsatisfactory. In simulations, the estimated coefficients could even take
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the wrong sign. That is, for a predictor which should have a positive effect on the response variable,

estimates of the associated regression coefficient were found to be negative. Hoerl and Kennard

(1970) proposed shrinking the coefficients towards a more stable solution, closer to the origin. The

method proposed by Hoerl and Kennard (1970) is known as ridge regression. The ridge estimates

are given in closed form by

β̂ridge = arg min
β

 T∑
t=1

(
yt −

P∑
p=1

xt,pβp

)2

+ λ

P∑
p=1

β2
p

 = (x′x+ λI)
−1
x′y. (2.2.5)

Here, λ is a tuning parameter and I is the P × P identity matrix. As λ increases the regression

coefficients are shrunk towards zero. We can see this by considering the objective function in (2.2.5).

As λ −→ ∞ the r.h.s term will start to dominate the objective function. As a consequence, small

regression coefficients are required to minimise the objective function to keep the contributions of the

r.h.s expression as small as possible. Shrinking the coefficients, although inducing bias, can improve

prediction accuracy (Hastie et al., 2008).

Often, our industrial collaborator estimates regression models whereby the regression coefficients

obtained are non-meaningful. The predictors used in the models are often highly correlated and this

highlights the challenges of modelling with highly correlated predictors in our industrial setting. In

addition to this, we are faced with correlation across time. We will now discuss a more general class

of linear regression model where the residuals are assumed to be correlated across time.

2.2.2 Regression with correlated residuals

We stated earlier that the common assumptions placed on the residuals, η are that they are in-

dependent and normally distributed with zero mean and common variance σ2. When regression

residuals exhibit serial correlation they are no longer independent and the least squares estimates

are inefficient, although they remain unbiased (Fang and Koreisha, 2004). Cochrane and Orcutt

(1949) developed an approximate procedure for least squares estimation in the presence of serial

correlation. The Cochrane-Orcutt procedure is suitable when the regression residuals can be written

ηt = φ1ηt−1 + et. (2.2.6)

Model (2.2.6) is a special case of the more general Seasonal AutoRegressive Integrated Moving

average (SARIMA) model,

∇d∇Ds φ(L)Φ(L)ηt = θ(L)Θ(L)et. (2.2.7)

Here, it is often assumed that et ∼WN(0, σ2
e), a white noise process with zero mean and variance σ2

e .

For more details on white noise processes, the reader is refereed to Chatfield (2000). The SARIMA



CHAPTER 2. LITERATURE REVIEW AND CURRENT PROCEDURES 15

model is composed of four components, the auto-regressive component φ(L) = 1− φ1L− . . .− φrLr

which we call the AutoRegressive (AR) polynomial. The backward shift operator is denoted, L such

that Lηt = ηt−1. The Moving Average (MA) polynomial in (2.2.7) is given by θ(L) = 1 − θ1L −
. . . − θqLq. The integrated term relates to the differencing operator ∇ where ∇d = (1 − L)d, and

is applied d times. Finally, in a seasonal model there are seasonal counterparts of the AR, MA and

differencing operator given by Φ(L) = 1−Φ1L
s − . . .−ΦRsLRs, Θ(L) = 1−Θ1L

s − . . .ΘqL
Qs, and

∇Ds = (1 − Ls)D respectively. The seasonal polynomials differ as the lags are at multiples of the

seasonal period, s. The residual model (2.2.6) considered by Cochrane and Orcutt (1949) is known

as an AR(1) model where φ(L) = 1− φ1L, with one autoregressive parameter.

Combining the general SARIMA model (2.2.7) with the linear regression model (2.2.1) gives a

Regression-SARIMA (Reg-SARIMA) model

yt =

P∑
p=1

xt,pβp + ηt where (2.2.8a)

∇d∇Ds φ(L)Φ(L)ηt = θ(L)Θ(L)et. (2.2.8b)

It is known that if the SARIMA process is invertible (2.2.8) can be re-written as

∇d∇Ds φ(L)Φ(L)

θ(L)Θ(L)
yt =

P∑
p=1

∇d∇Ds φ(L)Φ(L)

θ(L)Θ(L)
xt,pβp + et. (2.2.9)

This can be seen as a linear regression model on the linearly transformed variables
∗
yt and

∗
xt,p where

∗
yt =

∇d∇Ds φ(L)Φ(L)

θ(L)Θ(L)
yt and

∗
xt,p =

∇d∇Ds φ(L)Φ(L)

θ(L)Θ(L)
xt,p.

For more details on SARIMA models the reader is referred to Brockwell and Davis (2002). If the

white noise process is assumed to be independent and normally distributed then the least squares

estimator applied to the linear transformed data (
∗
y,
∗
x) will give us an efficient unbiased estimator

of the regression coefficients.

In addition to serially correlated errors, the least squares estimates may be unsatisfactory for

alternative reasons. One such reason is model interpretability (Hastie et al., 2008). When the

number of predictors, P is large, having all predictors present will make the model complicated.

It may be more beneficial to consider a smaller subset of predictors that exhibit the strongest

effects. Interpretation is of considerable importance to our industrial application as we are trying to

quantify the underlying physical relationship between a response variable and a set of predictors. In

the following section we will discuss popular predictor selection methods that have been developed

specifically to determine a good subset of predictors. A comprehensive review of classical methods

is given by Hocking (1976) and for more recent developments see Hastie et al. (2008); Hutmacher

and Kowalski (2014).
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2.2.3 Predictor selection for linear regression

Statisticians have been concerned with predictor selection since the 1960’s. Models with many

predictors can be hard to interpret and misleading. For our industrial application we are trying

to understand how a set of external predictors affect a set of response variables. It is of utmost

importance that we can accurately estimate the effects of the predictors to better understand the

underlying physical relationship between the response and predictor variables.

Early predictor selection methods such as the stepwise procedure first presented by Efroymson

(1960) are based on simple principles but remain popular today. The idea here, is to add statistically

significant predictors into the model, one-by-one, and remove any predictors that no longer remain

significant. Statistical significance is determined by the F -statistic, see Miller (2002) or Ryan (2008)

for further details. A predictor is added to the model if the F -statistic of the model with the

addition of that predictor exceeds some value Fin, and a predictor is removed from the model if the

F statistic of the model without the predictor exceeds Fout. This procedure is easy to implement,

computationally efficient and has been shown by Miller (1996) to converge providing Fout ≤ Fin.

The Efroymson stepwise algorithm uses two simple ideas, a forwards and backwards search. These

ideas can be separated to give two additional stepwise methods, forwards stepwise and backwards

stepwise. Oosterhoff (1963) observes that forward stepwise and backward stepwise need not agree.

Mantel (1970) illustrates a scenario where forward stepwise could fail to identify an excellent model

with two predictors because it may not include either of the predictors alone. These drawbacks

of the forward stepwise approach are especially concerning in the presence of a greater number of

predictors. Another criticism of all stepwise methods is that they may fail to identify the best subset

of any given size. Consider at some point in a stepwise search there are k predictors in a model.

There may exist another combination of k predictors which can further reduce the sum of squared

residuals given in (2.2.2) than the current stepwise model. Stepwise selection may not be able to

identify this model because of the iterative approach to adding or removing variables. The problem

associated to finding the best k predictors for a regression model is known as the best-subset problem

(Miller, 2002).

We refer to k, the number of predictors in the model as the model sparsity. It is computationally

costly to fit every model of sparsity k, as given P predictors, there will be a total of P !
(P−k)!k! models.

The best-subset problem can be stated formally as

min
β

 T∑
t=1

(
yt −

P∑
p=1

xt,pβp

)2
 subject to ||β||0 ≤ k. (2.2.10)

Here, the l0 pseudo-norm ||β||0 =
∑P
p=1 1βp 6=0 counts the number of non-zero entries in β. The

best-subset problem is known to be a very hard problem (Natarajun, 1995). Many authors including
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Hocking and Leslie (1967), Beale et al. (1967), Beale (1970a), LaMotte and Hocking (1970) and

Furnival and Wilson (1974) have considered computationally efficient methods to find the best-

subset of each size for k ∈ {1, 2, . . . , P}. LaMotte (1972) incorporated the ideas from LaMotte and

Hocking (1970) into a computer program called select. Hocking (1976) notes that an early version

of select is inefficient for P > 30 and the program described by Furnival and Wilson (1974) is

similar, although the computations are performed in a more efficient manner.

Until recently, selecting predictors using the best-subset method was not considered practical for

problems where P ≥ 50. A modern implementation of the best-subset approach is available in the

leaps (Lumley, 2017) statistical software package for the R programming language (R Core Team,

2018). This best-subset implementation accepts up to P = 49 predictors. More than 50 predictors

can be supplied but the software informs the user that computation may be slow. Recently, Bertsimas

et al. (2016) have shown that with increases in computational power, advancements in specialised

optimisation software and sophisticated mathematical programming models that the best-subset

approach is now suitable for applications with P in the hundreds. We will consider the type of

mathematical programs used to solve the best-subset problem in Section 2.2.4.

The best-subset and stepwise approaches are known in the literature as subset selection methods

(Hastie et al., 2008). These approaches select predictors to include into a model and typically use the

ordinary least squares estimator to estimate the associated coefficients of the predictors. Alternative

approaches to estimate the regression coefficients use shrinkage. We have already seen the ridge

estimator introduced by Hoerl and Kennard (1970). However, due to the form of the ridge estimator

it is not capable of predictor selection because all regression coefficient estimates remain non-zero.

The general form of a shrinkage operator penalises the ordinary least squares estimator as follows,

min
β

 T∑
t=1

(
yt −

P∑
p=1

xt,pβp

)2

+ λP(β)

 . (2.2.11)

Here, P(·) is a penalty on the regression coefficients β. Often, the penalty is chosen such that as λ

increases, the values of the solution to (2.2.11) are shrunk towards zero. Tibshirani (1996) introduced

the Least Absolute Shrinkage and Selection Operator (LASSO) which both shrinks coefficients and

selects predictors. The LASSO penalty takes the form

P(β) =

P∑
p=1

|βp|.

Here, |βp| denotes the absolute value of the regression coefficient. The LASSO approach has been

generalised by many authors, including Zou and Hastie (2005), Tibshirani et al. (2005), Zou (2006)

and Yuan and Lin (2006). However, Tibshirani (2011) notes that this approach did not receive much

attention until Efron et al. (2004) developed an efficient algorithm to estimate the LASSO solutions.
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Earlier implementations of the LASSO used an off-the-shelf quadratic solver that did not scale well

(Tibshirani, 2011). A gradient-descent based method, later developed by Mazumder et al. (2011)

can also be used to compute the LASSO solutions efficiently. The LASSO and variants can also

be implemented with the Alternating Direction Method of Multipliers (ADMM) algorithms (Boyd

et al., 2011; Gaines et al., 2018).

Under certain conditions, the LASSO benefits from desirable statistical properties, see for example

Zhao and Yu (2006), Donoho (2006) Knight and Fu (2000) and Meinshausen and Buhlmann (2006).

These, include the ability to correctly identify the true model. However, when these conditions are

not satisfied the LASSO can be sub-optimal in model selection, see Zou (2006); Zhang and Huang

(2008); Zou and Li (2008); Zhang (2010).

LASSO solutions can be computed efficiently because the LASSO penalty is convex (Efron et al.,

2004). Alternative non-convex penalties have also been studied in the literature such as the MC+

penalty of Zhang (2010). The general form of the non-convex penalty is

P(β) =

P∑
p=1

q(|βp|;λ, γ).

Here, q(|βp|;λ, γ) is a non-convex function in β and λ and γ give the degree of regularisation and

non-convexity of the penalty respectively. Mazumder et al. (2011) describe an algorithm to efficiently

estimate the solutions of a family of non-convex penalties. The sparsenet package available for R

implements the Sparsenet methodology described in Mazumder et al. (2011) using the MC+ penalty

of Zhang (2010).

Predictor selection can also be considered in a Bayesian framework. Park and Casella (2008)

develop a fully Bayesian model for the LASSO problem. An advantage of Bayesian approaches to

predictor selection is that standard errors of the regression coefficients are easily obtainable. The

limiting distribution of the LASSO estimator is complex (Knight and Fu, 2000; Chatterjee and

Lahiri, 2011) making it difficult to accurately quantify uncertainty in regression coefficients in the

frequentist framework. Bayesian estimation can also incorporate expert knowledge (Jiang et al.,

2016). Garthwaite and Dickey (1988) consider how to construct an informative prior so that expert

opinion can be used efficiently.

A number of studies have taken place to compare the performance of subset selection and shrink-

age approaches. Bertsimas et al. (2016) compare the best-subset method to the LASSO, Stepwise

and Sparsenet methods concluding that the best-subset approach performs favourably by achieving

sparse solutions with good predictive power. However, further investigation by Hastie et al. (2017)

concludes that neither the LASSO or the best-subset approach uniformly dominate one another.

These authors found that the best-subset approach performs best when the ratio between signal and
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noise is high, whereas the LASSO is better in low ratio regimes. Hastie et al. (2017) conclude that

a simplified version of the relaxed LASSO (Meinshausen, 2007) performed favourably overall. The

relaxed LASSO implemented by Hastie et al. (2017) uses the least squares estimates to estimate the

regression coefficients for predictors selected with LASSO.

In the following section we will describe a number of techniques that can be used to estimate

regression models. In particular we focus on mathematical programming approaches. Much of our

work has exploited the flexibility of mathematical programming and the general idea of mathematical

programming is key to understanding the flexibility and power of these approaches.

2.2.4 Mathematical programming for regression

In Section 2.2.1 we provided the closed form expression for the OLS and ridge estimators. In Section

2.2.3 we provided references that focus on developing specialised algorithms for implementing the

best-subset approach and the LASSO. Here, we consider a much more general approach that can be

used to implement both, best-subset selection and the LASSO without the need to develop approach

specific algorithms. The advantage here is that an approach can be modified, and providing modified

approaches can be presented as one of a number of special mathematical programs, we can implement

them easily using mathematical programming tools.

The OLS and ridge estimates are the solutions to the least-squares optimisation problems given

in (2.2.2) and (2.2.5) respectively. Similarly, regression coefficients estimated using the LASSO

and best-subset approach are solutions to optimisation problems, however numerical algorithms are

needed to solve these problems. The original application of the LASSO Tibshirani obtained the

LASSO estimates using a Quadratic Program (QP) solver (Tibshirani, 2011). The LASSO problem

that is written in penalised form in (2.2.11) can be written as a Quadratic Program. Quadratic

programs are special types of mathematical programs that can be formulated as follows (Nocedal

and Wright, 2006)

min

[
1

2
β′Qβ − a′β

]
subject to, (2.2.12a)

Aβ ≤ C. (2.2.12b)

Here, β ∈ RP is the vector of optimisation variables, Q ∈ RP×P , a ∈ RP , A ∈ Rn×P , C ∈ Rn×1 and

≤ represents the element-wise less than or equal to inequality. The function, 1
2β
′Qβ− a′β given in

(2.2.12a) is known as the objective function and (2.2.12b) gives the linear constraints. When Q is

a positive-semi-definite matrix (2.2.12) is a Convex Quadratic Program (CQP) (Boot, 1964). State-

of-the-art optimisation solvers such as Gurobi Gurobi Optimization (2018) and CPLEX are capable

of solving CQP’s.
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Bertsimas et al. (2016) discuss a number of Mixed Integer Quadratic Optimisation (MIQO)

programs that can be formulated to solve the best-subset problem. The authors propose two formu-

lations that provide good performance in practice. The recommended formulation is determined by

the number of observations and the number of predictors under consideration. With these formula-

tions Bertsimas et al. (2016) are able to solve best-subset problems with thousands of observations

and hundreds of predictors within seconds. A MIQO program can be expressed as

min

[
1

2
x′Qx+ a′x

]
subject to, (2.2.13a)

Ax ≤ C, (2.2.13b)

xi ∈ {0, 1}, for i ∈ I, (2.2.13c)

xi ∈ R+ for i /∈ I. (2.2.13d)

Here, Q ∈ RD×D, A ∈ Rn×D, C ∈ Rn×1 and ≤ denotes the element-wise less than or equal

to inequality. We optimise over the x ∈ RD containing both discrete (xi, i ∈ I) and continuous

(xi, i /∈ I) variables. Many optimisation solver are capable of solving MIQO programs. The ADMM

algorithms that can be used to implement the LASSO are not able to implement the best-subset

approach exactly (Boyd et al., 2011).

Constraining variables to take integer values makes mathematical programs very hard to solve

(Natarajun, 1995). The literature for solving discrete optimisation problems is vast, but a good

introduction to solving integer programming problems is given by Wolsey (1998). Many efficient

approaches to integer programming problems implement the branch-and-bound method first proposed

by Land and Doig (1960). The idea here is to create a tree that can be used to explore the solution

space. Efficient algorithms prune this tree so that the entire solution space need not be explored.

Having introduced the linear regression model and estimation methods we now focus on the work

of Bertsimas and King (2016). Approaches discussed thus far often produce undesirable models in

the presence of highly correlated predictors. The method proposed by Bertsimas and King (2016)

is able to exclude pairs of highly correlated predictors from entering a model. In Chapter 3 we

generalise this approach to fit multiple linear regression models simultaneously and show how it can

be used as an automated approach that can obtain good models with minimal effort.

An algorithmic approach to linear regression

Bertsimas and King (2016) proposed an algorithmic approach to linear regression. Bertsimas and

King suggest using a MIQO to fit a model that satisfies a number of desirable attributes. These

attributes are discussed in the following texts, Chatterjee et al. (2012); Draper and Smith (1998);
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Seber and Lee (2003); Weisberg (2014). A simplification of the MIQO model presented by Bertsimas

and King (2016) is given by

min
β,z

 T∑
t=1

(
yt −

P∑
p=1

xp,tβp

)2
 subject to, (2.2.14a)

zp ∈ {0, 1}, for p = 1, . . . , P, (2.2.14b)

βp ∈ R, for p = 1, . . . , P, (2.2.14c)

−Mzp ≤ βp ≤Mzp, for p = 1, . . . , P, (2.2.14d)

P∑
p=1

zp ≤ k, (2.2.14e)

zp + zs ≤ 1, ∀(p, s) ∈ HC, (2.2.14f)∑
p∈Tj

zp ≤ 1, ∀j, (2.2.14g)

zp = 1, ∀p ∈ J . (2.2.14h)

For large enough M (2.2.14a) through (2.2.14e) provides a MIQO program that can be used to

solve the best-subset problem (2.2.10). The binary variables zp ensure that if zp = 0 then βp = 0,

otherwise βp can take any value within the range [−M,M ] by the constraints given in (2.2.14d).

Constraint (2.2.14e) controls the sparsity of the model. As explained previously, this constraint is

particularly useful when many predictors are available. By allowing no more than k of the binary

variables, zp to take the value one, constraint (2.2.14d) ensures that no more than k of the regression

coefficients are non-zero. The remaining constraints help ensure that the models produced have a

number of desirable properties. Define the set of pairs of highly correlated predictors,

HC = {(p, s) : Cor(Xp, Xs) > ρ, ∀(p, s) ∈ {1, . . . , P} × {1, . . . , P}}.

Using HC in constraint (2.2.14f) ensures that no pair of predictors with correlation exceeding ρ can

be present in the model. The set Tj gives the indices of a set of predictors which are a result of

applying non-linear transformations to one of the other predictor variables. Constraint (2.2.14g)

ensures that at most one of the predictors from Tj is present in the model. Finally, the set J denotes

the set of predictors that must be present in the model. The set of required predictors may be

provided by expert knowledge.

The MIQO model presented in (2.2.14) simplifies the approach suggested by Bertsimas and King

(2016) but promises a number of desirable properties in any model produced. Other properties

provided by Bertsimas and King (2016) include avoiding particular combinations of predictors in a

model and including groups of predictors, where all predictors in the group are either included or
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not included. In addition to this, the objective can be modified to produce robust estimates of the

regression coefficients in the presence of atypical observations.

The predictor selection and linear regression estimation approaches we have considered thus far

are suitable when the response variable in a linear regression model is univariate. That is, we consider

producing models for one response variable at a time. We will refer to the approach of modelling

each response individually as individual regression. In the following section we consider multivariate

response linear regression and approaches that have considered predictor selection for these models.

2.2.5 Multivariate response linear regression

Related response variables in our industrial applications may suggest that jointly modelling such

variables could be favourable. Our industrial collaborator would like to explore the possibility of

jointly estimating the system of models

Yt,1 =

P∑
p=1

Xt,p,1βp,1 + ηt,1,

. . .

Yt,M =

P∑
p=1

Xt,p,Mβp,M + ηt,M .

(2.2.15)

In the literature, systems of models such as (2.2.15) are known as seemingly unrelated regression

models (Nagabhushana Rao et al., 2013). Early work by Zellner (1962) sparked interest in producing

efficient estimators for such models. Zellner (1962) gained efficiency by using a generalised least

squares estimator that utilises correlation amongst the residuals between models for multiple response

variables.

To the best of our knowledge, predictor selection for systems of linear regression models has not

yet been considered in the literature. Systems similar to (2.2.15), where predictor selection methods

are known, are known as multi-response regression models. These models are subtly different to the

system (2.2.15). Multi-response models take the form

Y1 =

P∑
p=1

Xpβp,1 + η1,

. . .

YM =

P∑
p=1

Xpβp,M + ηM .

(2.2.16)

Note that a single realisation of the predictors X1, . . . , XP are present in each of the M regression

models. Here, we do not assume that each response has its own unique realisation of the predictors
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which is assumed in (2.2.15). The models presented in (2.2.16) are not entirely appropriate for our

application, but some interesting literature in this area has inspired ideas for the work presented in

later chapters.

Early work by Izenman (1975), van der Merwe and Zidek (1980) and Brown and Zidek (1980)

used shrinkage estimation procedures to estimate multi-response models. However, the curds and

whey method proposed by Breiman and Friedman (1997) performed more favourably in simulations

performed by the authors. However, none of these approaches consider the problem of predictor

selection.

Predictor selection for multi-response models has been considered by multiple authors, see for

example Rothman et al. (2010), Lee and Liu (2012), Xin et al. (2017), and using a Bayesian frame-

work, Lee et al. (2017). Similä and Tikka (2005) propose an extension of the LARS algorithm (Efron

et al., 2004) which is generalised further by Similä and Tikka (2006). Turlach et al. (2005) and

Similä and Tikka (2007) present algorithms for solving constrained optimisation problems related to

multi-response models. These constrained optimisation problems take the form,

min

 M∑
m=1

T∑
t=1

(
yt,m −

P∑
p=1

xt,pβm,p

)2
 subject to

P∑
p=1

(
||βp,∗||q

)
≤ ν, (2.2.17)

for some norm || · ||q on the regression coefficients. Here, we use the following notation for the

regression coefficients,

β =


β1,1 . . . β1,M

...
. . .

...

βP,1 · · · βP,M

 where βp,∗ = [βp,1, . . . , βp,M ] and β∗,m =


β1,m

...

βP,m

 .
In (2.2.17) the parameter ν is a tuning parameter. Turlach et al. (2005) consider the l∞ norm,

||βp,∗||∞ = max{βp,1, . . . , βp,M} whereas Similä and Tikka (2007) consider the l2 norm, ||βp,∗||2 =√∑M
m=1 β

2
m,p. We note here that the solutions obtained by Turlach et al. (2005) to problem (2.2.17)

using the l∞ norm are not sparse. The authors suggest a simple heuristic that determines which

predictor coefficients to set to zero by considering the size of the coefficients in the solutions. The

indices of the selected predictors from the heuristic are given by

I = {p : ||βp,∗||∞ > ν10−4 for p = 1, . . . , P}.

Turlach et al. (2005) note that the coefficients in the solutions they obtain may not have any inherent

meaning but may be useful for explanatory purposes.

For both the subset selection and shrinkage approaches used to estimate linear regression models a

tuning parameter is needed. We will now discuss methods used to determine these tuning parameters

and hence select an appropriate model.
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2.2.6 Model selection

We have considered a number of methods that may determine a useful set of predictors to include

into a linear regression model. Given k, the best-subset approach selects the predictors which

minimises the least squares objective subject to at most k of the regression coefficients taking non-

zero values. Given λ, the LASSO minimises a penalised form of the least squares objective. The form

of the LASSO penalty both shrinks and selects predictors as some coefficients are set to zero exactly

(Tibshirani, 1996). Here, we discuss how to determine λ and k. Each value of k and λ produces an

estimate of a regression model using the best-subset approach and LASSO respectively. Selecting

the tuning parameter will in effect select a linear regression model, so we use the terms selecting a

tuning parameter and selecting a model interchangeably.

One approach to model selection is using information theory. Suppose we wish to select a model

from a listM1, . . . ,MN . EachMn is a set containing the indices of predictors in the model and we

use kn = |Mn| to denote the number of predictors in model Mn. Under the normality assumptions

of the regression residuals stated in Section 2.2.1 and given observed data (y,x), the likelihood

function for a univariate response model, Mn is given by

L(θn) =

T∏
t=1

 1√
2πσ2

n

exp

(
yt −

∑
p∈Mn

xt,pβp

)2
2σ2

n

 . (2.2.18)

Here, θ = [βp1 , . . . , βpkn
, σ2
n] denotes the parameters for model Mn which include the regression

coefficients and the variance of the residuals, σ2
n. The likelihood function is maximised with the least

squares estimates given by

β̂
LS

= (x′x)−1x′y,

where the residual variance is estimated as σ̂n
LS = 1

T

∑T
t=1

(
yt −

∑
p∈Mn

xt,pβ̂
LS
p

)2
. The log-

likelihood function is simply the log of the likelihood function. The log-likelihood for model Mn is

given by

l(θn) =
−T
2

log
(
2πσ2

n

)
−

T∑
t=1

(
yt −

∑
p∈Mn

xt,pβp

)2
2σ2

n

.

We could choose the model, Mn which maximises the likelihood (2.2.18) and log-likelihood, but

this will often choose one of the models with the largest number of parameters (Miller, 2002). Akaike

(1973) suggested that if using the likelihood to select a model, a penalty should be deducted from the

likelihood which penalises the number of parameters in the model. Akaike’s Information Criterion

(AIC) for model Mn is given by

AICn = 2|θ̂n| − 2l(θ̂n).
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Here, we denote the number of parameters in the likelihood |θ̂n| = kn+ 1, since there is a parameter

for each predictor in the model and we must include the estimate of the residual variance. Given

N models, M1, . . . ,MN the model with the lowest AIC is selected. Several authors have proposed

modifications of the AIC including Schwarz (1978), Rissanen (1978), Hannan and Quinn (1979) and

Hurvich and Tsai (1989). The Schwarz criterion, also known as the Bayesian Information Criterion

(BIC) is given by

BICn = |θ̂n| log(T )− 2l(θ̂n).

The BIC is known to be asymptotically consistent for model selection (Hurvich and Tsai, 1989;

Vrieze, 2012). However, the expected number of variables that should be omitted but are included

in the model does not tend to zero as the sample size increases for the AIC (Miller, 2002).

Stone (1977) showed the asymptotic equivalence of model selection by AIC and cross-validation.

Cross-validation is an alternative to using information criterion for model selection. Cross-validation

can be used when the data is permutable (Ding et al., 2019) meaning that there is no inherent

order for the data. It works as follows. The data is split into a training and validation set. The

training data is used to estimate each of the candidate models. Then, each of these models is used to

make predictions for the validation data. For each model, some measure of predictive performance

is recorded. The model with the best predictive performance is selected and then the whole dataset

is used to re-estimate the selected model for future predictions.

As this form of cross-validation approach is suitable only for permutable data using this approach

to select time series models is not appropriate, as each item of data is time ordered. A variant of

cross-validation for time series is available from the literature and the interested reader is referred

to Hyndman and Athanasopoulos (2019) for further details. Cross-validation has been used to

select amongst models produced by the LASSO and best-subset approaches by Bertsimas et al.

(2016), Bertsimas and King (2016) and Hastie et al. (2017). This works as follows. The best-

subset and LASSO approaches are used to estimate a set of models for pre-specified values of the

tuning parameters. For the best-subset approach typically k = 1, 2, . . . , P is used. For the LASSO,

the default used in the glmnet package (Friedman et al., 2010) is for 50 values of λ ranging from

λmax = ||x′y||∞ to a small fraction of λmax on a log-scale. Then, the model selected for each

approach is that which minimises the prediction error on the validation set.

The maximum likelihood estimates of the regression coefficients are not used to estimate the

model in the LASSO approach. This is because the LASSO minimises a penalised form of the sum

of squared residuals. Therefore, an alternative form for the information criteria is needed for the
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LASSO. The AIC and BIC for the LASSO is derived by Zou et al. (2007) as

AICLASSO(µ̂) =
||y − µ̂||2
Tσ2

+
2

T
d̂f(µ̂) and BICLASSO(µ̂) =

||y − µ̂||2
Tσ2

+
log(T )

N
d̂f(µ̂).

Here, µ̂ are the fitted values from a LASSO model, σ2 is the variance of the residuals and d̂f(µ̂)

are the degrees of freedom of the LASSO fit. It was shown by Zou et al. (2007) that an unbiased

estimate of the degrees of freedom for the LASSO fit is given by the number of non-zero coefficients.

In this section we have considered a range of literature that considers estimating regression

models and selecting predictors for these models. We have also considered generalisations of the

linear regression model that include correlated residuals and multivariate responses. In the following

section we provide details of the current modelling approach typically employed by our industrial

partner.

2.3 Current procedures

Our aim is to develop statistical models that can explain the relationship between a response variable,

Ym and predictor variables, X1,m, . . . , XP,m. These models may take the form

Ym = f(Xm,1, . . . , Xp,m) + η. (2.3.1)

Here, f denotes some function and η denotes some variation in Ym not attributed to the predictors

Xm,1, . . . , Xp,m. In Chapter 1 we discussed that the response variables in the telecommunications

event dataset exhibit weekly seasonality. Also, bank holidays appear to adversely affect the variation

in the responses. This behaviour of the response variables is not thought to be attributed to weather

predictors, which are of primary interest for our industrial collaborator in the telecommunications

event dataset. The current approach estimates the variation in the response variables caused by

weekly seasonality and bank holiday affects and removes it from the response variables. This is seen

as a data pre-processing step. The procedure for doing this follows. For ease of notation we shall

drop the response index, m as this procedure is an individual regression procedure which is applied

to each response variable separately.

It is possible to decompose the response variable into the sum of components. Hyndman and

Athanasopoulos (2019) present an additive decomposition model of a time series as the sum of three

components, these consist of a seasonal component, St a trend-cycle component, Tt and a remainder

component Rt such that

Yt = St + Tt +Rt.

There are a number of ways to estimate the components. Hyndman and Athanasopoulos (2019)
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discuss a classical method using moving averages, however our industrial collaborator uses simple

averages as follows.

First, we identify the seasons. Figure 2.3.1 shows a seasonal sub-series plot. Here, the events

are plotted for each day of the week separately. It is clear that the level of events on Saturdays and

Sundays are unique and lower than the level of each weekday. There is slight variation between levels

of events for each weekday. As the level of events for each day of the week appears to vary it may be

argued that we should estimate a seasonal component for each day of the week. Further, we observed

in Figure 1.1.5 that events are typically lower on bank holidays. In Chapter 1 we discussed that the

events appear to deviate much further from past values on Christmas and Boxing Day in comparison

to all other bank holidays. This suggests that a single seasonal component for a Christmas Day and

Boxing Day, and a seasonal component for all other bank holidays may be suitable.

y t

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Figure 2.3.1: A seasonal sub-series plot highlighting the weekday levels of the telecommunication

event data.

The seasonal components for each season are estimated in the following way. Let the sets of

indices be defined

S1 = {t : t corresponds to Christmas Day, Boxing Day or substitute},

S2 = {t : t /∈ S1 and t corresponds to a bank holiday},

S3 = {t : t /∈ S1 ∪ S2 and t corresponds to a Monday},
...

S9 = {t :/∈ S1 ∪ S2 and t corresponds to a Sunday}.

Recall that a bank holiday substitute is the additional bank holiday given in lieu of one that falls
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on a Saturday or Sunday. Then, the estimates of the seasonal components corresponding to Si are

calculated as

Ŝi =
1

|Si|
∑
t∈Si

Yt.

The next step is to estimate the trend component. When there are long-term increases or decreases

in a time series we say that the time series exhibits trend. Our industrial partner estimates the trend

component by applying a 365 day centered moving average to the de-seasonalised data as follows,

T̂t =
1

min{t+ 183, T} −max{1, t− 183}

min{T,t+183}∑
t=max{1,t−183}

(
Yt − Ŝt

)
.

Note that for t ∈ [1, 183] and t ∈ [T − 182, T ] Tt is not strictly symmetric.

Once the trend and seasonal components have been estimated they can be removed and an

estimate of the remainder component obtained as

R̂t = Yt − Ŝt − T̂t.

We let Ỹt = R̂t denote our pre-processed response data. It is possible that the predictor variables

also have long-term increases or decreases. Therefore, a centered moving average is also applied to

the predictor variables to obtain the pre-processed predictor variables,

X̃t,p = Xt,p −
min{T,t+183}∑
t=max{1,t−183}

Xt,p.

Relating back to the model given in (2.3.1), we now seek a model of the form,

Ỹt = f̃(X̃1, . . . , X̃P ) + η̃, (2.3.2)

for some error η̃ and some function f̃ . Our industrial partner assumes that f̃ is a linear function in

the predictors.

Following the pre-processing of data, our industrial collaborator applies a stepwise search algo-

rithm to select predictors. A number of undesirable properties of the resulting models are often

observed, some of which we have already discussed. Typically, combinations of highly correlated

predictors are selected for the models where the coefficients of the associated predictors have con-

flicting signs. This leads one to question the validity of such a model as one would expect strongly

correlated predictors to affect the response variable in either a positive or negative way, but not in

opposing ways. Hastie et al. (2008) note that this problem is often observed with the least squares

estimates and motivates the application of ridge regression (Hoerl and Kennard, 1970).

The stepwise algorithm used by our industrial collaborator is implemented using the stats::step

(R Core Team, 2018) function in R. This procedure iteratively adds the predictor which produces
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a model with the lowest AIC, until the AIC of a model can not be reduced further by adding an

additional predictor.

In this chapter we have introduced linear regression models and a number of methods used to

estimate them. In particular, we focused on procedures that could produce sparse models where a

number of the regression coefficients are estimated to be zero. Often these procedures use a tuning

parameter and we discussed methods that can can be used to determine them. We introduced

literature for predictor selection in multi-response models and described the procedure that our

industrial collaborator uses to model telecommunications data. In the next chapter we describe the

procedure that we have developed to model telecommunications data.



Chapter 3

Semi-automated simultaneous

predictor selection for

Regression-SARIMA models: An

application to telecommunications

events

Abstract: Deciding which predictors to use plays an integral role in deriving statistical models in a

wide range of applications. Motivated by challenges of predicting events across a telecommunications

network, we propose a semi-automated, joint model fitting procedure for linear regression models.

Our approach can model and account for serial correlation in the regression residuals, produce sparse

and interpretable models and can be used to jointly select models for a group of related response

variables. We achieve this by fitting linear models under constraints on the number of non-zero

coefficients using a generalisation of the Mixed Integer Quadratic Optimisation approach developed

by Bertsimas and King (2016). Our approach can produce models with better predictive performance

on the telecommunications data than methods currently used by industry.

30
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This chapter is structured as follows. In Section 3.1 we start with an introduction to the industrial

setting that motivated our methodology. In Section 3.2 we state our problem formally and review

the existing literature for predictor selection in linear regression. We then discuss how to use the

MIQO program presented by Bertsimas and King (2016) to develop a semi-automated modelling

procedure. In Section 3.3 we introduce our MIQO program and extensions that can improve the

performance of the models. Section 3.4 highlights the advantages of our approach over standard

methods in the literature through a simulation study. We apply our approach to a motivating data

application in Section 3.5 before concluding this chapter in Section 3.6.

3.1 Introduction

The use of statistical models to drive business efficiency is becoming increasingly wide spread (Proost

and Fawcett, 2013). Consequently, organisations are recording more and more data for subsequent

analysis, see for example Katal et al. (2013) and Jordan and Mitchel (2015). As a result, tradi-

tional (manual) approaches for building statistical models are often infeasible for the ever increasing

volumes of data. Automating these approaches is necessary, and will allow principled statistical

methods to continue driving business efficiency.

Telecommunication companies routinely collect a variety of data so as to better understand the

physical relationship between their network and external influences. In practice, data is collected for

a response variable (from the network) along with associated (external) predictor variables. Using

this data, the goal is to obtain an interpretable statistical model that explains the behaviour between

the response and most important predictors. Whilst historically statisticians have fitted such models

by hand, this is costly. The work in this chapter is motivated by a current problem of this form by an

industrial collaborator. They have data from many different locations within a network, and wish to

develop appropriate models for how the rates of certain events depend on a range of external factors.

The statistical challenges include how to fit sparse and interpretable models for each response, whilst

allowing for the serial correlation in the data and ensuring we borrow information across the response

variables. This all needs to be accomplished with minimal human input.

We propose a multivariate response implementation of the best-subset problem. The idea is to fit

the same model for each response variable, but allow for the coefficients associated with a particular

predictor to vary across each model. We show how the Mixed Integer Quadratic Optimisation

(MIQO) approach of Bertsimas et al. (2016) can be used to automatically fit such a model in the

presence of a known serial correlation structure for the time-series of responses, and propose an

iterative procedure that alternates between learning the serial correlation structure and fitting the
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model. Our approach can also shrink the coefficients associated with a particular predictor towards

a common value. The model fits can be performed under constraints that avoid including highly

correlated predictors, this helps with the interpretability of the final models. We reduce the human

input by modelling characteristics of the response variables, instead of determining subjective steps

to remove these characteristics. The only input needed is through choosing an appropriate set of

predictors and potential non-linear transformations of the predictors. Here, we estimate the serial

correlation by pre-specifying a suitable list of time series models, although iterative approaches

outlined in Hyndman and Khandakar (2008) could be adopted. The predictor selection approach is

computationally feasible for hundreds of predictors and tens of response variables.

There are many articles in the literature devoted to predictor selection in univariate response

models see for example, Hastie et al. (2017), Bertsimas et al. (2016), Zou and Hastie (2005), Tib-

shirani (1996), and Hocking (1976) and the references therein. Hastie et al. (2008) collate many of

the methods developed in the literature. Breiman and Friedman (1997) and Srivastava and Solanky

(2003) have shown that simultaneous model estimation has advantages over individual modelling

procedures. Turlach et al. (2005), Similä and Tikka (2007) and Simon et al. (2013) consider selecting

variables for the multi-response models used by Breiman and Friedman (1997) and Srivastava and

Solanky (2003). To the best of our knowledge simultaneous predictor selection for multiple separate

linear regression models has not been considered in the literature. We show how MIQO can be

used to automate model estimation and propose a two-step procedure to fit more general Regression

Seasonal AutoRegressive Integrated Moving Average (Reg-SARIMA) models. We find that a more

accurate specification of the model for the regression residuals can lead to a significant reduction in

the variance of the predictor selection routine. Using the generalised least squares objective (Rao and

Toutenburg, 1999) we can improve estimation accuracy of the regression coefficients and predictor

selection accuracy.

3.2 Problem statement & existing approaches

First, we introduce the linear regression model and existing methods for choosing suitable predictors.

We then outline our proposal to automate a modelling procedure for one response variable and show

how expert opinion can be incorporated into our model.

The linear regression model is able to describe the relationship between a response variable, Y

and dependent variables, X1, . . . , XP as follows

Y =

P∑
p=1

Xpβp + η. (3.2.1)
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Here, the coefficient βp tells us how much we should expect Y to change when we observe a unit

change in Xp. If the set of predictors {X1, . . . , XP } is known, the coefficients, β = [β1, . . . , βP ] can

be estimated with the Ordinary Least Squares (OLS) estimates. Given observations of the response

y ∈ RT and predictors x ∈ RT×P the OLS estimates are given by

β̂OLS = arg min
β

 T∑
t=1

(
yt −

P∑
p=1

xt,pβp

)2
 . (3.2.2)

Here, the aim is to find the values of β that minimise the sum of squared residuals. When P is large

and contains redundant predictors, the OLS estimates can be unsatisfactory. Prediction accuracy

can be improved by shrinking or setting some of the coefficients to zero (Hastie et al., 2008). Setting

coefficients to zero removes the corresponding predictors from the model, leading to a simpler, more

interpretable model. Throughout, we refer to the number of non-zero coefficients in the model as

the model sparsity, which we denote k.

Often, practitioners can offer insight into which predictors may be suitable. The linear regression

model assumes a linear relationship between predictors and response variable, but this may not be

suitable (Rawlings et al., 1998). For example, some telecommunication events are caused by long

periods of heavy rainfall, causing underground cables to flood. Exponential smoothing can be applied

to daily precipitation measurements to provide a surrogate predictor for ground water levels. But

this introduces the question of how best to choose the smoothing parameter. One option is to obtain

such surrogate predictors for a grid of smoothing parameters. But this both increases substantially

the number of potential predictors to choose from, and can lead to highly correlated predictors.

Selecting predictors can be achieved in several ways. One popular approach is shrinkage (Tibshi-

rani, 1996), where the regression coefficients are shrunk towards zero. For a suitable penalty, P(β)

and tuning parameter λ ∈ R+, some regression coefficients can be set to zero exactly. The penalty

can be added to the least squares objective in the following way,

T∑
t=1

(
yt −

P∑
p=1

xt,pβp

)2

+ λP(β). (3.2.3)

The Least Absolute Shrinkage and Selection Operator (LASSO) penalty, PLASSO(β) =
∑P
p=1 |βp|,

introduced by Tibshirani (1996) has received much attention in the literature. It has been applied

and generalised by a variety of authors including Yuan and Lin (2006), Zou (2006) and, Tibshirani

et al. (2005). Efron et al. (2004) developed an efficient algorithm that can obtain LASSO solutions

very quickly. Tibshirani (1996) observed empirically that the LASSO performed unfavourably when

high pairwise correlations exist between the predictors. In such cases the LASSO was dominated by

the ridge penalty, Pridge(β) =
∑P
p=1 β

2
p . The ridge penalty was developed by Hoerl and Kennard

(1970) to improve prediction when predictors are highly correlated. Although a shrinkage method,
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the ridge penalty does not act as a predictor selector as all coefficients remain non-zero in a ridge

estimate. To improve the performance of the LASSO when predictors are highly correlated Zou and

Hastie (2005) proposed the elastic net penalty given by, Pe-net = (1 − α)
∑P
p=1 β

2
p + α

∑P
p=1 |βp|.

This penalty is a mixture of the LASSO and ridge penalties.

Alternatively, subset selection methods can be used to select predictors. By determining which

subset of predictors to retain, subset methods use the least squares objective to estimate the co-

efficients of the retained predictors (Hastie et al., 2008). A number of classical subset methods

are described in detail by Hocking (1976). The forward-stepwise routine is the current algorithm

of choice for selecting predictors in our telecommunications application. This algorithm is usually

initialised with an intercept term, iteratively adding the predictor most improving the least squares

objective. This gives a fitted model with k predictors for k = 1, . . . , P . However, the model produced

by stepwise methods for any k ≥ 2 are not guaranteed to be the best model with k predictors; in

terms of having the smallest value of the least squares objective. Despite the sub-optimal stepwise

models and issues raised by Mantel (1970), Beale (1970b), Berk (1978) and Hocking (1976), fast and

easy implementation of these algorithms may explain why they remain popular.

Finding the model with sparsity k which minimises the least squares objective is known as the

best-subset problem (Miller, 2002). The best-subset problem is stated formally as

min
β

 T∑
t=1

(
yt −

P∑
p=1

xt,pβp

)2
 subject to

P∑
p=1

1βp 6=0 ≤ k. (3.2.4)

Here, 1βp 6=0 is an indicator variable taking the value 1 if coefficient βp is non-zero and zero otherwise.

An implementation of the best-subset method is available in the statistical package leaps (Lumley,

2017) in R (R Core Team, 2018) and capable of choosing from up to 49 predictors efficiently. A larger

number of predictors may be provided although the computational time may be excessive. Bertsi-

mas et al. (2016) showed that the combined improvements of computational power, mathematical

optimisation algorithms, and sophisticated mathematical formulations, that the best-subset method

is suitable for choosing amongst hundreds of predictors.

3.2.1 Our proposed automation procedure

Automated procedures can limit the control over the output. We do not seek a fully automated

approach, but one that can produce sensible outputs with minimal input for hundreds of response

variables. Bertsimas et al. (2016) have shown that the best-subset method tends to produce sparser

models than the LASSO. Although the best-subset approach can be more computationally demand-

ing than stepwise approaches, it tends to perform better when it can be applied (Berk, 1978). It is

straightforward to implement a stepwise algorithm using MIQO and this can result in a significant
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speed up due to the absence of the combinatorics of predictor inclusion. This idea is further explored

in Chapter 6.

The best-subset problem with sparsity k can be solved by finding the optimal solution to the

following MIQO program (Bertsimas et al., 2016),

min
β,z

 T∑
t=1

(
yt −

P∑
p=1

xt,pβp

)2
 subject to, (3.2.5a)

(1− zp, βp) ∈ SOS1, p = 1, . . . , P, (3.2.5b)

P∑
p=1

zp ≤ k, (3.2.5c)

s.t. zp ∈ {0, 1}, p = 1, . . . , P, (3.2.5d)

βp ∈ R, p = 1, . . . , P. (3.2.5e)

Here, we use SOS1 to indicate specially ordered sets of type 1. At most one variable in a specially

ordered set constraint can take a non-zero value. If the binary variable zp takes the value 1 then

necessarily, the continuous variable βp must be zero as (1− zp) and βp form a specially ordered set

(3.2.5b). Constraint (3.2.5c) controls the sparsity of the models by restricting the maximum number

of predictors to k. The MIQO program can be solved for k = 1, . . . , P . The value k can be chosen

with model selection criteria such as the AIC (Akaike, 1973) or BIC (Schwarz, 1978). Alternatively,

cross validation methods can be used (Stone, 1974).

Expert knowledge

Bertsimas and King (2016) show that we can easily add constraints to the MIQO program to avoid

including pairs of highly correlated predictors into the model. We can add the constraints

zp + zs ≤ 1, ∀(p, s) ∈ HC. (3.2.6)

Constraints of the form (3.2.6) will allow at most one of the binary variables zp or zs to take the

value 1. This ensures that at most one of the regression coefficients, βp or βs are non-zero so that

only one of Xp or Xs will be present in the model. Adding constraints of the form (3.2.6) for all pairs

of highly correlated variables, HC = {(p, s) : Cor(Xp, Xs) > ρ} will ensure that no two predictors

with correlation exceeding ρ will enter the model.

Expert knowledge may suggest predictors that must be present in the model. This may be

suitable to account for known outliers or other known external influences. Let the set J denote the

indices of predictors that must be present in a model, Bertsimas and King (2016) show that these
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predictors can be forced into the model with the constraints

zp = 1, ∀ p ∈ J .

Expert knowledge may also suggest how the predictors should affect the response variables. For

example, some predictors may be known to have a positive effect on the response variable. Highly

correlated predictors can lead to high variance of the least squares coefficients. Hastie et al. (2008)

note that it is even possible for the coefficients to take the wrong sign. We propose to include expert

knowledge as follows. Let the sets P and N denote the sets of predictor indices that should have

positive and negative effects on the response variables respectively. Then, the constraints

βp ≥ 0, ∀p ∈ P and βp ≤ 0, ∀p ∈ N , (3.2.7)

ensure that the regression coefficients take the correct sign according to expert opinion.

In Section 3.1 we discussed the need to determine the best parameter from a set of non-linear

transformations. To ensure the best parameters are found, in terms of minimising the least squares

objective, we can use the following constraints. Let Ti denote the set of predictors obtained by

applying a non-linear transformation to an observed predictor for a grid of parameter values. Then,

the constraints

∑
p∈Tj

zp ≤ 1, for T1, . . . , TJ , (3.2.8)

ensure at most one of the predictors from each group Tj will appear in the model.

Although it may now be feasible to apply the best-subset method to problems with the num-

ber of predictors in the hundreds thanks to the work of Bertsimas et al. (2016) and advances in

computational power, the best-subset approach can still be more computationally demanding than

alternative methods. We now describe techniques to reduce the computational burden of the best-

subset approach.

Computational considerations

The cardinality constraints in the best-subset problem (3.2.4) make it a difficult problem to solve. In

fact, formulations of the best-subset problem (3.2.5) using integer variables make the problem NP-

hard (Natarajun, 1995). When using constraints of the form (3.2.7) we have noticed a computational

advantage. There appears to be considerable speed-up in the total runtime of the solver when the

sign of the regression coefficients are restricted to either the positive half-line or negative half-line.

Figure 3.2.1 shows the comparison of solving the best-subset problem for k = 1, . . . , 35 using MIQO

program (3.2.5) including constraints of the form (3.2.7) where P = {1, . . . , 35} and N = ∅.
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Figure 3.2.1: Average time taken to solve the best-subset problem for k = 1, . . . , 35. The orange

marks indicate the average time taken to solve the best-subset problem when β ∈ RP compared to

the blue marks which constrain βp ≥ 0 for p = 1, . . . , P . The time taken was averaged over 100

simulations.

In a typical implementation of the best-subset method using formulation (3.2.5), the computa-

tional burden of solving the best-subset problem appears to be when solving problems with k ≈ P
2 .

This may be explained by the PCk feasible combinations of predictors that a solver must consider

to prove a solution is optimal. In a quest to reduce the computational burden of the best-subset

approach an obvious question to ask is, is solving the best-subset problems with sparsity levels k ≈ P
2

necessary? In our application, sparse models are desired in order to illustrate the strongest effects of

a few predictors. Here, and possibly in many other applications, setting a maximum level of sparsity

Kmax may be a practical step to reduce the computational burden of the best-subset method.

A maximum level of sparsity could be chosen arbitrarily. However, in our application using

constraints of the form (3.2.6) and (3.2.8) the value Kmax can be determined automatically. Presence

of the constraints (3.2.6) and (3.2.8) suggests that there exists a maximum level of model sparsity

where at least one constraint of the form (3.2.6) or (3.2.8) will be violated if an additional predictor

is included into the model. We have found that Gurobi (Gurobi Optimization, 2018) will inform the

user if an MIQO program is infeasible very quickly. We propose to modify the sparsity constraint

(3.2.5c) as follows,
P∑
p=1

zp = k.

Now, if k > Kmax a feasible solution to the modified best-subset problem does not exist and the

solver will inform the user of an infeasible MIQO program. Thus, we are no longer required to search

for models with a greater number of predictors.

We have presented a MIQO program for the best-subset problem that can be used to automate
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fitting linear regression models and discussed some techniques that can reduce the computational

burden of the best-subset method. In the following section we will describe how we have extended this

formulation to model multiple response variables simultaneously and describe a number of extensions

that can improve estimation accuracy.

3.3 Simultaneous predictor selection for a system of linear

regression models

Interpretability and consistency of models is important in an industry setting. If a model is not easy

to interpret then it is of little use for practitioners trying to understand the dynamics of the system

being modelled. When models contradict expert opinion or take very different forms for a number of

related response variables, the reliability of the models may be questioned. We now describe how we

extend the MIQO program (3.2.5) used to solve the best-subset problem. This MIQO program allows

us to simultaneously select predictors and obtain models for multiple related response variables to

ensure consistency in the selected predictors for each response variable.

3.3.1 Multiple datasets

Many of the response variables in telecommunication applications are correlated and often this is

expected. However, due to the high correlation between the predictor variables associated with each

response, models produced using the current procedure do not always suggest similarity amongst

the response variables. This can be due to both the combination of predictors selected in the models

and their estimated coefficient.

We now consider estimating regression models for M response variables simultaneously. We

assume that these response variables are suitable for joint analysis. We write the system of models

Y1 =

P∑
p=1

Xp,1βp,1 + η1,

. . .

YM =

P∑
p=1

Xp,Mβp,M + ηM .

(3.3.1)

Here, we assume that each response variable has a unique realisation of the P predictor variables.

For example, suppose predictor X1 corresponds to precipitation. Then, predictor X1,m corresponds

to the precipitation for response Ym. Let Sm denote the set of selected predictors for response Ym.

The current procedure used by our industrial collaborator often produces models where Sm1 6= Sm2 ,
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contrary to expert opinion. This motivates the following problem which we call the Simultaneous

Best-Subset (SBS) problem,

min
β

 M∑
m=1

T∑
t=1

(
yt,m −

P∑
p=1

xt,p,mβp,m

)2
 subject to

M⋃
m=1

Sm ≤ k. (3.3.2)

The union
⋃M
m=1 Sm gives the selected predictors across all models. If all models contain the same

predictors then each model may include up to k predictors.

As well as consistency in predictor selection some similarity in the coefficients βp,1, . . . , βp,M may

be expected. We can penalise for large dissimilarities in the coefficients by introducing auxiliary

variables β̄1, . . . , β̄P and adding the penalty

P(β) = λ

M∑
m=1

P∑
p=1

(
β̄p,m − βp,m

)2
(3.3.3)

to the objective appearing in (3.3.2). A similar approach has been used by Tibshirani et al. (2005),

Barbaglia et al. (2016) and Wilms et al. (2018) using l1 penalties on the difference between coeffi-

cients. The tuning parameter, λ must be determined. For large λ the penalty (3.3.3) will dominate

the objective and force the solver to encourage βp,1, . . . , βp,M close to β̄p for p = 1, . . . , P . In prac-

tise, a suitable range of λ must be determined. We have used a sequence of λ equally spaced on the

log scale between 2gk and a small fraction of 2gk. Let β∗ denote the optimal solution to the SBS

problem (3.3.2) with sparsity k. Then, we denote the value of the objective function to the SBS

problem at β∗ as gk. We observed that coefficients become more stable for large values of λ and

that the coefficients βp,1, . . . , βp,M become sufficiently close to β̄p for p = 1, . . . , P when λ = 2gk.

The number of binary variables in the optimisation model need not increase for simultaneously

estimating multiple regression models. The number of binary variables remains to be the number

of predictor variables, P . However, the number of constraints in the optimisation model must be

increased to ensure a feasible solution of (3.3.2) is obtained. We use the SOS1 constraints

(1− zp, βp,m) ∈ SOS − 1, for p = 1, . . . , P, m = 1, . . . ,M. (3.3.4)

These constraints, along with the sparsity constraint (3.2.5c), ensure that no more than k predictors

are present across each of the M regression models. Lastly, we specify the range of coefficient values

βp,m ∈ R+, for p = 1, . . . , P, m = 1, . . . ,M. (3.3.5)

To prevent pairs of highly correlated predictors entering the models we define the set HC as follows,

HC =

(p, s) : for (p, s) ∈ {1, . . . , P} × {1, . . . , P} if

M∑
m=1

∑
p 6=s

1cor(Xm,p,Xm,s>ρ) > 0

 .

By using the constraints of the form (3.2.6) we prevent any model in the system (3.3.1) containing

pairs of predictors with correlation that exceeds ρ.
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3.3.2 Application to serially correlated data

Fitting linear regression models to time ordered data often produces models where the observed

residuals appear serially correlated (Brockwell and Davis, 2002). We propose a two-step algorithm

similar to the Cochrane and Orcutt (1949) procedure, that implements a predictor selection step

to a Generalised Least Squares (GLS) transform of the data. Here, we give an example of the

GLS transform, before describing how we incorporate predictor selection. Suppose we have response

variable Y and predictors X1, . . . , XP and the true model is

Yt =

P∑
p=1

Xt,pβP + ηt, where, (3.3.6a)

ηt = φηt−1 + et. (3.3.6b)

Here, the regression residuals, ηt are serially correlated. Ignoring serial correlation in observed resid-

uals may not only mis-specify the model but ignores potentially valuable information. Minimising

the least squares objective (3.2.2) no longer gives the most efficient estimator (Rao and Toutenburg,

1999) for the regression coefficients. Providing (3.3.6b) is stationary (see Brockwell and Davis, 2002)

we can write (3.3.6) as a regression model with residuals that are not serially correlated

Yt
1− φL =

P∑
p=1

Xt,p

1− φLβp + et. (3.3.7)

Here, L is the backward-shift operator such that Lηt = ηt−1. The linear filter can be applied to

the response and predictor variables to obtain transformations of the original variables, Ỹt = Yt

1−φL

and X̃t,p =
Xt,p

1−φL . We show empirically in Section 3.4.2 that predictor selection accuracy can be

improved by transforming the response and predictor variables appropriately.

In practise, neither the predictor variables present in the model or the serial correlation structure

of the regression residuals are known. We assume a general Regression Seasonal AutoRegressive

Integrated Moving Average (Reg-SARIMA) model of the form

yt,m =

P∑
p=1

xt,p,mβp,m + ηt,m, where, (3.3.8a)

ηt,m =
θm(L)Θm(Ls)

∇dm∇Dm
s φm(L)Φm(Ls)

εt,m. (3.3.8b)

The SARIMA model is composed of four components, the auto-regressive component φ(L) = 1 −
φ1L− . . .−φrLr which we call the AutoRegressive (AR) polynomial. The backward shift operator is

denoted, L such that Lηt = ηt−1. The Moving Average (MA) polynomial in (2.2.7) is given by θ(L) =

1−θ1L− . . .−θqLq. The integrated term relates to the differencing operator ∇ where ∇d = (1−L)d,

and is applied d times. Finally, in a seasonal model there are seasonal counterparts of the AR, MA
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and differencing operator given by Φ(L) = 1−Φ1L
s − . . .−ΦRsLRs, Θ(L) = 1−Θ1L

s − . . .ΘqL
Qs,

and ∇Ds = (1−Ls)D respectively. The seasonal polynomials differ as the lags are at multiples of the

seasonal period, s. We propose the following two-step algorithm to determine the best predictors

and serial correlation structure of the regression residuals.

First, we seek suitable predictors for the model. Fix the sparsity k and use the data

(Y1, X1,1, . . . , XP,1), . . . , (YM , X1,M , . . . , XP,M )

to determine a suitable set of predictors by solving the SBS problem. Given initial estimates of the

coefficients β̂k,01,1 , . . . , β̂
k,0
P,M , obtain the observed residuals for each model

η̂k,0t,m = yt,m −
P∑
p=1

xt,p,mβ̂
k,0
p,m.

Now we need to estimate the serial correlation structure of the regression residuals. Given a list

L of suitable SARIMA models, these models can be fit to the observed regression residuals η̂k,0t,m

for m = 1, . . . ,M . The best SARIMA model can be identified, for example, based on information

criteria. We require the transformed data

∇d̂m∇D̂m
s φ̂m(L)Φ̂m(Ls)

θ̂m(L)Θ̂m(Ls)
yt,m = ỹt,m and

∇d̂m∇D̂m
s φ̂m(L)Φ̂m(Ls)

θ̂m(L)Θ̂m(Ls)
xt,p,m = x̃t,p,m (3.3.9)

for m = 1, . . . ,M and p = 1, . . . , P . Consider fitting the the SARIMA model (3.3.8b) to obtain the

observed model errors ε̂t,m,

η̂t,m
∇̂dm∇̂Dm

s φ̂m(L)Φ̂m(Ls)

θ̂m(L)Θ̂m(Ls)
= ε̂t,m.

This process can be applied to (3.3.9) to obtain ỹt,m and x̃t,p,m for m = 1 . . . ,M and p = 1, . . . , P .

Then, the predictors can be re-selected by solving the SBS problem again, but with the filtered

data ỹt,m and x̃t,p,m. This procedure can be iterated until convergence in the regression estimates,

selected predictors, and the models for serial correlation. Let βi, and pi, di, qi, P i, Di, Qi denote the

estimates of the regression coefficients and SARIMA model order at iteration i. In addition to this,

let Ii denoted the indices of the selected predictors at iteration i then, the we say that the algorithm

converges if the following hold

• ∑M
m=1

∑P
p=1 |βip − βi−1p | ≤ ε.

• {pi ≡ pi−1}⋂{di ≡ di−1}⋂{qi ≡ qi−1}⋂{P i ≡ P i−1}⋂{Di ≡ Di−1}⋂{qi ≡ Qi−1}.
• Ii ≡ Ii−1.

If the procedure does not converge an upper limit to the number of iterations can be considered. We

have observed that convergence often occurs after two iterations.
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In the following section we demonstrate the improvements in predictor selection using our si-

multaneous approach and show how the two-step method can improve the variance and accuracy of

predictor selection in the presence of serial correlation.

3.4 Simulation study

In this section we evaluate the performance of the Simultaneous Best-Subset (SBS) and two-step

approaches for predictor selection. In particular, we compare how the SBS approach, which estimates

a system of linear regression models (3.3.1) compares to the best-subset approach which estimates

each model in a system individually. We then show how predictor selection accuracy can be improved

using the two-step approach when the regression residuals are serially correlated. Following this, we

compare the SBS approach to some of the methods discussed in Section 3.2. In the final part of this

section we consider the computational demands of the SBS approach.

We generate synthetic data from the system of linear regression models (3.3.1) where we fix the

regression coefficients such that

βp,m =



0.3, for p = 17,

1, for p = 18,

0.6, for p = 19,

0, otherwise,

for all m.

The predictors associated to response variable Ym are generated such that

Xm ∼ MVN35(0,Σ) where 0 ∈ R35 and Σ := (Σ)i,j = ρ|i−j| for m = 1, . . . ,M.

The total number of regression models in the system, M will be made clear. We use P = 35 predictor

variables as provably optimal solutions to the SBS problem can be obtained within seconds for all

k ∈ {1, . . . , 35}. We include predictors X17, X18 and X19 so that for large values of ρ these predictors

are highly correlated and hard to distinguish amongst the other predictors. This makes the task

of identifying the true predictors challenging. Unless otherwise stated the regression residuals are

generated such that

ηt,m ∼ N(0, σ2
η) for m = 1, . . . ,M.

The variance of the regression residuals σ2
η will be made clear where relevant.

For each approach, we are particularly interested in the number of correct predictors which have

been selected. In a simulation of size N , we may compute the proportion of times that an approach

correctly identifies the correct subset of predictors for the system. For each simulation we will
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produce a value in the interval [0, 1]. A value of 1 indicates that the approach correctly identified

the predictors for each model in the system. A value of m
M indicates that the approach identified

the correct subset of predictors for m of the M models in the system. In addition to the proportion

of times an approach correctly identifies predictors, we are also concerned with with the predictive

performance of the approach. We measure this using the mean-squared error of prediction. Let

β̂ denote an estimate of the regression coefficients for the system of models 3.3.1. We define the

mean-squared prediction error for model m as

MSEmpred(β̂) =
1

T

T∑
t=1

(yt,m − ŷt,m)
2
.

Here, ŷt,m is the predicted value of yt,m. We define the mean-squared prediction error of the system

as

MSEpred(β̂) =
1

M

M∑
m=1

MSEmpred(β̂).

By considering the error in estimating the coefficients we can determine both the predictor selection

accuracy and also the predictive power. Small values in estimation error will only be obtained if the

coefficients that should be zero are zero, and the coefficients that shouldn’t be zero are close to their

true values. We define the mean-squared estimation error for model m, and the mean-squared error

in estimation of the system respectively as

MSEmest(β) =
1

P

P∑
p=1

(
βp,m − β̂p,m

)2
for m = 1, . . . ,M and MSEest(β) =

1

M

M∑
m=1

MSEmest(β).

Now that we have discussed the main criteria used to assess the performance of the approaches

we proceed with the evaluation of each approach. First, we consider the gains from simultaneous

predictor selection.

3.4.1 Simultaneous selection

The SBS approach was proposed to jointly estimate and select predictors for a system of linear

models. Here, we compare the performance of the SBS approach to the best-subset approach as we

increase M . We show that both predictor correlation and the variance of the regression residuals

affects the performance of the approaches and highlight the extent to which each approach is affected.

We generate 1000 synthetic datasets as described in Section 3.4 and fix the residual variance such

that Var(ηt,m) = 1 for m = 1, . . . ,M . We observe the predictor selection accuracy and the mean-

squared estimation of the system when both approaches are applied with k = 3. This corresponds

to the true model sparsity.

Figure 3.4.1a shows that selection accuracy for the best-subset method (M=1) deteriorates

rapidly as the predictor correlation (ρ) exceeds 0.5. However, simultaneous predictor selection with
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Figure 3.4.1: Predictor selection accuracy and the mean-squared estimation error for the system as

the predictor correlation increases.

M = 5 appears to accurately select predictors until ρ exceeds 0.87. As the number of models in the

system increases the threshold at which predictor selection accuracy deteriorates appears to increase.

There appears to be some consistency in the selection accuracy of the SBS approach as the number of

models in the system increases. As a consequence of improved selection accuracy, the mean-squared

estimation error for the system decreases as M increases. The mean-squared estimation error is

shown in Figure 3.4.1b.

We now compare the performance of the SBS approach and the best-subset approach as the

variance of the regression residuals increases. The same residual variance is used for each model

in the system. Here, we fix the predictor correlation ρ = 0.95. Again, we simulate 1000 synthetic

datasets and observe the predictor selection accuracy and mean-squared estimation error of the

system when k = 3. Figure 3.4.2a shows that the best-subset approach is unable to identify the

correct subset of predictors when σηm > 3 for m = 1, . . . ,M . As the variance of the residuals

increases the accuracy of the SBS approach deteriorates. However, as the number of models in the

system increases the accuracy of the SBS approach improves.

The SBS approach was proposed to improve estimation accuracy for a system of related linear

regression models. We have seen in Figures 3.4.1a and 3.4.2a that the accuracy of the SBS approach

appears to improve with the number of regression models in the system. The improved accuracy of

the SBS approach over the best-subset approach may be explained as the SBS approach uses more

information to fit a single regression model. We now compare the performance of the SBS approach

to the best-subset approach where each method uses the same number of observations. Figure 3.4.2b

shows the selection accuracy of the best-subset approach using MT observations. Consider the line

in Figure 3.4.2b corresponding to T = 2500. This can be compared to the line in Figure 3.4.2a

corresponding to M = 5 as 500 observations were generated for each of the 5 response variables.
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Figure 3.4.2: Predictor selection accuracy as the variance of the residuals increases. We compare the

SBS approach using MT observations where there are M response variables each with T observations

to the best-subset approach with one response variable which has MT observations.

Effectively, each approach uses 2500 observations but the selection accuracy for the SBS approach is

not as accurate. In practise, we are typically limited to the number of observations for each response

variable. We now show how our simultaneous shrinkage operator proposed in Section 3.3.1 may

further improve estimation accuracy.

Simultaneous shrinkage

Here, we investigate the impact of the simultaneous shrinkage estimator on the estimates of the

regression coefficients and the predictive performance of the models. We fix M = 5 and simulate

750 observations for each response variable and their associated predictors from the model defined

in Section 3.4. We split the data randomly into two sets. We use 500 observations for each response

variable as a training set to estimate the models. The remaining 250 observations for each response

variable are used to determine the predictive accuracy of the models. We fix ρ = 0.95, k = 3 and

σ2
ηm = 2 for m = 1, . . . ,M .

Figure 3.4.3 shows the trace-plots of the regression coefficients for each of the five models in the

system as the value of the simultaneous shrinkage penalty increases. As λ increases, the simultaneous

best-subset changes a total of three times. Initially a noisy predictor, 21 is included into the model

(shown by non-zero red trace). Then, predictor 21 is dropped for 27, this is then reversed, before

predictor 21 is then dropped for the true predictor, 17. The horizontal lines show the coefficients of

predictors 17, 18 and 19. Some coefficient estimates start far from the true value, see for example

β19,1, β18,2 and β18,5. But, as the shrinkage penalty increases the estimates of each coefficient appear

to eventually approach the true values.

Shrinking the coefficients from each model to a common value increases the in-sample error.
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Figure 3.4.3: Trace plot of the regression coefficients as the shrinkage parameter λ is increased,

penalising dissimilarities in βp,1, . . . , βp,M for p = 1, . . . , 35. Here, we solve the SBS problem with

simultaneous shrinkage with k = 3.

Figure 3.4.4a shows the mean-squared prediction error for the system on the data used to estimate

the model as the shrinkage penalty increases. However, as the coefficients approach the true values

this reduces the mean-squared prediction error of the held-out sample. This is shown in Figure

3.4.4b.

0 2g
λ

264.5

265.0

265.5

266.0

266.5

In
-s

am
p

le
er

ro
r

In-sample error as λ increases

m = 1

m = 2

m = 3

m = 4

m = 5

(a) In-sample prediction error

0 2g
λ

0.515

0.520

0.525

0.530

0.535

0.540

0.545

0.550

O
u

t
of

sa
m

p
le

p
re

d
ic

ti
on

er
ro

r

Out of sample prediction error as λ increases

m = 1

m = 2

m = 3

m = 4

m = 5

(b) Out-of-sample prediction error

Figure 3.4.4: In-sample and out-of-sample mean-squared prediction error of the system as the shrink-

age penalty increases.

In this section we have shown that estimation accuracy of the regression coefficients can be

improved with simultaneous predictor selection. This in part may be as the simultaneous shrinkage

operator can help identify the predictors that should be in the model. Consequently, this can lead to

a reduction in prediction error. Now we investigate how the autocorrelation in regression residuals

can affect predictor selection accuracy and how the two-step procedure can be used to improve

selection accuracy.
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3.4.2 Application to serially correlated data

In Section 3.3.2 we motivated the need to consider serial correlation in the regression residuals.

Here, we compare the predictors selected using the SBS approach where the serial correlation in

the observed residuals is ignored, to using the SBS approach in the two-step procedure discussed in

Section 3.3.2. We simulate data from the system of models (3.3.1) where M = 5 and impose the

following correlation structure on the residuals

ηt,m = 0.9ηt−1,m + et,m for m = 1, . . . , 5. (3.4.1)

Here, et,m ∼ N(0, 1) are simulated independently for m = 1, . . . , 5. The regression coefficients and

predictors are the same as those given in Section 3.4. We simulate 600 observations and observe

the predictors selected for each approach using the first 500 observations, the first 520 observations,

and so on, until all 600 observations are used. Each method will be applied a total of 6 times. Our

industrial collaborator observed that the selected predictors often change with small changes in the

data. By increasing the number of observations used by the SBS approach we can determine if the

high variation in the selected predictors can be reduced with the two-step approach.

Figure 3.4.5 shows the trace-plots of selected predictors for each approach using the first 50

datasets. We simulated a total of 500 datasets but Figure 3.4.5 shows only the first 50 for clarity.

The results of the remaining datasets were found to be similar. The dots between each pair of vertical

lines corresponds to a single dataset. The vertical triplet of dots indicates the selected predictors

using T observations. The left-most vertical triplet between each pair of vertical lines indicates

the predictors selected using 500 observations. From left to right, the vertical triplets indicate the

selected predictors using T = 500, 520, . . . , 600 observations from that dataset.

Figure 3.4.5a shows that when the serial correlation in the regression residuals is ignored there

is large variation in the selected predictors. There are few datasets where the best-subset approach

could correctly identify the true predictors. The true predictors are indicated by the horizontal

lines at 17,18 and 19. Further, the subset selected by the SBS approach frequently changes as the

number of observations increases. This can be seen by the level of the dots changing from left to

right within each pair of vertical lines. When the serial correlation in the regression residuals is

addressed variation in the selected predictors is much reduced. Figure 3.4.5b shows the predictors

selected using the SBS approach within the two-step algorithm. We can clearly see that the two-step

approach correctly identifies the true subset more often. Further, there are fewer datasets where the

predictors selected change as the number of observations is increased. Although this behaviour is

still observed in the two-step approach, it is far less frequent.

It is possible to recover the true correlation structure of the regression residuals. Recall from
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Figure 3.4.5: A comparison of the iterative approach which adjusts for serial correlation (b), and the

standard approach that ignores serial correlation in the regression residuals (a).

Section 3.3.2 that we fit multiple SARIMA models to the regression residuals observed after esti-

mating the regression coefficients. We select the SARIMA model with the lowest value of the BIC

(Schwarz, 1978). Figure 3.4.6 shows that we can often recover the true correlation structure. Each of

the 5 rows in Figure 3.4.6 indicates the results for each of the 5 response variables. The vertical axis

indicates each of the SARIMA p, d, q, P,D,Q orders. Each pair of vertical lines indicates a dataset,

similar to Figure 3.4.5. If ‘.’ appears in Figure 3.4.6 on the row corresponding to p it indicates that

p was correctly identified. If an integer appears in place of ‘.’, then this is the value fit in error.

Occasionally the wrong SARIMA model was fit to the residuals, but this did not appear to adversely

affect the selected predictors.

In the following section we compare the SBS approach to alternative approaches from the liter-

ature. In addition to this, we modify one approach to select predictors simultaneously for a system

of linear regression models to give a comparison to an alternate simultaneous procedure.

3.4.3 Comparison to other approaches

In this section we generate data for a system of models (3.3.1) where M = 5 and compare the models

fit by the LASSO (Tibshirani, 1996), the elastic-net (Zou and Hastie, 2005) and stepwise selection

(Miller, 2002), to the SBS approach and a modified version of the Simultaneous Variable Selection

(SVS) approach proposed by Turlach et al. (2005). In each simulation we generate 1000 observations
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Figure 3.4.6: Indicating if the true time SARIMA model orders were identified in each application

of the two-step SBS algorithm.

of each response variable and the associated predictors. The observations are randomly divided into

train/test/validation sets to the proportions 50%/25%/25% respectively.

We use the training data to estimate the models. The stepwise method is implemented using

the stats::step (R Core Team, 2019) function and automatically selects a model using the AIC

(Akaike, 1973). The LASSO (Tibshirani, 1996) and its generalisation, the elastic-net (Zou and

Hastie, 2005) require tuning parameters to be determined. We determine the tuning parameters as

follows. First, we apply each method to the training data for each response variable for a range of

tuning parameter values. We then select the model for each response variable that has the lowest

mean-squared prediction error on the test dataset. We apply the elastic-net using α = 0, 0.1, . . . , 1,

and for 100 values of the shrinkage penalty, λ. Note that α = 1 gives the LASSO. The elastic-net is

applied using the glmnet (Zou and Hastie, 2018) package in R.

Details of how we modified the SVS method are given in Appendix 3.A. The SVS approach

was proposed for exploratory analysis in selecting predictors for multi-response models (Breiman

and Friedman, 1997), but we modify this approach to estimate a system of linear regression models

(3.3.1) and consider this modified approach in its own right. We apply the modified SVS method with

100 values of the tuning parameter. We can force the coefficients estimated using the modified SVS

method to take positive values only. The results for this approach will be presented as SVS+. The

SBS approach is implemented by generalising the MIQO program (3.2.5) described in Section 3.3.

We include the constraints (3.2.6) that exclude pairs of highly correlated predictors with correlation

exceeding 0.8. We consider k = 1, . . . ,Kmax where Kmax is determined automatically using the

procedure described in Section 3.2.1. The mathematics programs formulated for both the modified

SVS and SBS approach were solved using Gurobi (Gurobi Optimization, 2018).

The modified SVS and SBS approaches fit the models for each response variable simultaneously.
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Therefore, we select the models for each response variable simultaneously. Consider the 5 regression

models obtained simultaneously for each value of tuning parameter for both the SBS and SVS

approaches, as a model for the system. Then, we select the model for the system by selecting the

models with the lowest mean-squared prediction error for the system on the test data.

In this simulation we use groups of highly correlated predictors as we expect groups of highly

correlated predictors in our telecommunications application. The predictors are denoted

X = [X(1),X(2),X(3),X(4),X(5)] ∈ R35.

Here, X(b) corresponds to the predictor group b. Group b of predictors contains b + 4 predictors

such that

X(b) = [X(b),1, . . . , X(b),b+4] for b = 1, 2, 3, 4, 5.

The group sizes are 5,6,7,8 and 9 respectively. Each group contains highly correlated predictors such

that

X(b) ∼ MVN(0b+4,Σ(b)) where Σ(b),i,j := 0.95|i−j|.

Here, 0b+4 ∈ Rb+4 is a vector of zeros. We use a predictor from each group to generate the response

variables such that the regression coefficients are given by

βp,m =



1, if p = 30,

0.775, if p = 25,

0.55, if p = 14,

0.325, if p = 5,

0.1, if p = 2,

0, otherwise,

for m = 1, . . . , 5. (3.4.2)

The variance of the regression residuals is such that Var(ηt,m) = 2 for m = 1, . . . , 5.

We average a number of performance criteria over 50 simulations. The average mean-squared

prediction error for the system on the validation data is represented by MSE. The average model

sparsity is shown by Sparsity. This sparsity measure may be misleading in terms of indicating

whether an approach could often identify the true model sparsity. For this reason we also consider

the average number of false negatives (F−), the number of predictors that should have been selected

but were not. In addition to this we show the average number of false positives (F+), the average

number of predictors that should have been selected, but were not. We define a naive similarity

measure

1

MP

M∑
m=1

P∑
p=1

(
βp,m −

1

M

M∑
m=1

βp,m

)2
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which provides an estimate of the across model variation in the regression coefficients. The average

time to implement each approach is indicated by Time and the average number of models containing

the true subset of predictors is shown by True Subset. Finally, the proportion of models containing

negative coefficients is shown by Neg Coef.

Table 3.4.1: Summary measures of the predictor selection algorithms

MSE Sparsity Time Similarity False− False+ Neg Coef True Subset

LASSO 4.09 12.82 0.54 0.11 1.07 8.89 0.61 0

SBS 4.01 4.84 18.33 0.001 0.84 0.68 0 0.25

SVS 4.04 17.20 2.81 0.010 0.47 12.67 0.90 0

SVS+ 4.03 13.96 3.05 0.008 0.52 9.48 0 0

Stepwise 6.23 7.28 2.01 0.149 1.73 4.01 0.83 0

Table 3.4.1 shows the results. Note that in each application of the elastic-net the best performing

model corresponds to α = 1 giving the LASSO. The SBS approach appears to produce the sparsest

models. In addition to this, the SBS approach also appears to include the lowest number of false

positives which may suggest that the SBS approach can accurately select a subset of the true predic-

tors. After some investigation we did notice that often predictor 2 was not selected. Considering the

coefficients of the models given in 3.4.2 we can see that the coefficient of predictor 2 is the smallest

and may be hard to identify given the noise.

The SBS approach did however take the longest time to implement on average but does produce

the models with the lowest prediction accuracy. The mathematical programming approach allows us

to only accept models with positive coefficients for the SBS and SVS+ methods and we can see that

all other approaches contain a high proportion of models with negative coefficients. Only the SBS

approach was able to identify the correct subset and it did this only 25% of the time. Despite low

false negative values of the other approaches the high false positive values may explain why the other

approaches were not able to identify the correct subset. Finally, the SBS approach also provided

system of models whereby the coefficients for each model were most similar. The univariate stepwise

and LASSO approaches produced system of models with highly varied coefficients across models.

This may be explained by large variations in the selected predictors across the models.

3.4.4 Computational aspects

In Section 3.2.1 we discussed a number of approaches that can be used to ensure the SBS approach

is computationally feasible. Here, we are interested in a worst case scenario and consider how the

SBS approach scales with the number of predictors and number of models in the system. We solve
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the SBS problem (3.3.2) by generalising the MIQO program (3.2.5) but do not consider any of the

extensions discussed in Section 3.3.1. In this simulation study all data is generated as follows,

Xm ∼ MVN(µ,Σ) where µ = [0, . . . , 0] ∈ RP and Σi,j = 0.25|i−j|.

The number of response variables and the number of predictors will be made clear where relevant.

The regression coefficients are given by

βp,m =


1, if p = 1, 3, 5,

0, otherwise,

for m = 1, . . . ,M.

We generate T = 500 observations for each response variable and its associated predictor variables

and average the results over 50 simulations.
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Figure 3.4.7: Scaling of the SBS approach as the number of regression models in the system (M)

increases and the number of predictors (P ) increases, respectively.

Figure 3.4.7a shows how the SBS approach scales as the number of models in the system increases.

Here, we fix P = 35 and solve the SBS problem when k = 3. There is a near linear trend for the

solve time on the square root scale. This suggests that the time to solve the SBS problem scales

quadratically with M . Figure 3.4.7b shows how the time to solve the SBS problem scales with P .

Here, we fix M = 5 and solve for both k = 3 and k = 5. The SBS approach appears to scale

exponentially with P . This can be seen by the near linear trend when M > 10 with time on a

logarithmic scale. We also see an increase in the solve time when k = 5 in comparison to k = 3 in

agreement with our observations in Figure 3.2.1.

In this section we have shown empirically that the SBS approach seems to have consistency

in predictor selection as the number of regression models in a system increases. We have shown

that the simultaneous shrinkage operator can improve the coefficient estimates by encouraging the

coefficients between models in the system to common values. We have also shown that better

selection accuracy can be obtained with a two-step procedure that accounts for serial correlation in
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the regression residuals. We will now apply our approach to an example from the telecommunication

events dataset.

3.5 Data study

The daily events in a telecommunications network are recorded by type and location within the

network. Each type of event may be influenced by a different set of predictors. In the application

presented here, location corresponds to a geographic location, but more detailed information, such

as the location within the network, is available in other datasets. We use three response variables of

the same type, from locations considered to be suitable for joint modelling. We use five groups of

predictor variables. The first four groups of predictors are derived from transformations applied to

external predictors. The last group relates to indicator variables to adjust for calendar affects.

We present three approaches for modelling the event data. The first approach, which we refer

to as Automated, is our joint approach for selecting predictors simultaneously for multiple response

variables using our two-step procedure to estimate a model for the regression residuals. The second

approach (Individual Automated) uses the Automated approach but is applied to each response

variable individually. Consequently the Individual Automated approach cannot take advantage of

simultaneous predictor selection. We present the Individual Automated approach to clearly highlight

the gains in simultaneous predictor selection. The final approach (Baseline) is the current approach

adopted by our industrial collaborator. This approach removes the weekly seasonality and calendar

effects from the response variables as part of a data pre-processing step. It can be quite a time-

consuming process to determine how best to remove the seasonality and calendar effects. There are

various ways of achieving this, see for example Hyndman and Athanasopoulos (2019). It is up to

the analyst to determine the best procedure to employ. This is subjective and assumes that the

weekly seasonality and bank holiday effects are estimated without error. Ignoring estimation error

may cause predictions made from the models to be misleadingly accurate. The current procedure is

included as a baseline comparison. There are a total of 1396 daily observations, corresponding to

about 3 years 9 months of data.

The estimated regression coefficients for the three approaches are given in Table 3.5.1. It is clear

from Table 3.5.1 that the Automated and Individual Automated approaches produce models that are

much sparser than those produced by the Baseline approach, not considering the calendar effects.

All coefficients produced from the Automated and Individual Automated approaches have positive

coefficients which would be expected from these variables, with the exception of the calendar effect

variables which are negative. The Baseline approach includes highly correlated predictors from the
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same group and with opposing effects. All six transformations of Predictor 3 are included. Both

large negative and large positive coefficients appear for the predictors in Group 3 for the Baseline

approach. This appears to be the behaviour of the least squares estimator, discussed by Hastie et al.

(2008). Using simultaneous predictor selection and constraining the sign of the coefficients we are

able to select the single best transformation of the base predictor used to produce Group 3.

Table 3.5.1: Regression coefficients for the Automated, Individual Automated and Baseline proce-

dures. Each column represents the three different response variables for each method. The rows

determine the predictor variables. The dashes indicate that the coefficient was exactly zero and

hence the associated predictor was not selected.

Automated Individual Automated Baseline

Predictor Coefficient (m) (m) (m)

Group 1 2 3 1 2 3 1 2 3

1 β1.1,m - - - - - - - - -

β1.2,m - - - - - 0.01 - - 0.01

β1.3,m 0.01 0.01 0.01 0.01 0.01 - 0.01 0.01 -

2 β2.1,m - - - - - - - - -

β2.2,m 0.02 0.02 0.01 0.02 0.02 0.01 0.03 0.02 0.03

β2.3,m - - - - - - -0.02 -0.02 -0.03

3 β3.1,m - - - - - - -0.03 -0.01 -0.02

β3.2,m - - - - - - 0.21 1.12 0.13

β3.3,m 0.06 0.05 0.05 0.06 0.05 -1.96 -4.55 -0.86

β3.4,m - - - - - - 7 6.49 1.59

β3.5,m - - - - - - -9.87 -3.03 -0.77

β3.6,m - - - - - 0.09 4.82 -0.00 -

4 β4.1,m - - - - - - - - 0.01

β4.2,m - - - - - - - - -

β4.3,m 0.03 0.02 0.01 0.03 0.02 0.01 0.02 0.03 -

5 β5.1,m -0.77 -0.78 -0.65 -0.77 -0.78 -0.64 - - -

β5.2,m -0.73 -0.79 -0.68 -0.73 -0.79 -0.68 - - -

β5.3,m -0.27 -0.27 0.24 -0.27 -0.27 0.24 - - -

The mean squared errors for the 14 day-ahead predictions for the three approaches are given in

Table 3.5.2. Recall that the Reg-SARIMA models explain the seasonality and calendar affects. They

also describe the effects of other predictors. By selecting predictors simultaneously the Automated
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approach provides more accurate forecasts of the response variables. Table 3.B.1 shows the estimates

of the SARIMA coefficients for the Automated approach.

Table 3.5.2: MSE for the 14 day-ahead predictions for each of the three response variables and the

three methods described in Section 3.5.

MSE Prediction (m) Automated Individual Automated Baseline

(1) 0.204 0.204 0.280

(2) 0.172 0.173 0.314

(3) 0.173 0.182 0.212

We model the response variables using Reg-SARIMA models. The regression part of the model

can explain the effect of predictors and the SARIMA part can explain seasonality and serial cor-

relation. To determine whether the models produced by the Automated approach have adequately

captured the serial correlation and seasonality within the data we can inspect the sample autocorre-

lation and sample partial autocorrelation functions of the model errors. The sample autocorrelation

functions for the Automated and Baseline approaches are shown in Figure 3.5.1. There appears to be

very little significant serial correlation in the model errors for the Automated approach. Modelling

the regression residuals as a SARIMA process appears to account for most of the serial correlation.

The Baseline approach would appear to violate the typical regression assumptions of independent

regression residuals as there appears to be significant serial correlation at many lags in the regression

residuals for all three response variables. Similar conclusions for the sample partial autocorrelation

functions can be made, these are shown in Figure 3.5.2.

When serial correlation in the regression residuals is ignored the standard errors for each of the

regression coefficients may be severely underestimated (Rawlings et al., 1998). This would raise

suspicions about the significance of any predictor in the model. Further, prediction intervals are

likely to be too narrow.

3.6 Conclusions and further work

Motivated by a real world industrial problem we have proposed a procedure to help automate the

modelling process of telecommunications data. More specifically, we have developed a MIQO pro-

gram to solve the simultaneous best-subset problem proposed in Section 3.3, to simultaneously select

predictors when jointly modelling multiple response variables. We have integrated predictor selec-

tion within a two-step procedure, that iterates between selecting predictors for a regression model

and modelling the serial correlation of the regression residuals. Automation is achieved by adding



CHAPTER 3. SEMI-AUTOMATED SIMULTANEOUS PREDICTOR SELECTION 56

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

0.0

0.2

0.4

0.6

0.8

1.0

ACF Response 1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

0.0

0.2

0.4

0.6

0.8

1.0

ACF Response 2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

0.0

0.2

0.4

0.6

0.8

1.0

ACF Response 3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

0.0

0.2

0.4

0.6

0.8

1.0

ACF Response 1

(a) m = 1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

0.0

0.2

0.4

0.6

0.8

1.0

ACF Response 2

(b) m = 2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

0.0

0.2

0.4

0.6

0.8

1.0

ACF Response 3

(c) m = 3

Figure 3.5.1: An estimate of the autocorrelation function for the fitted model errors for each of the

three response variables. The estimates for both the Automated approach (top) and the Baseline

approach (bottom) are shown. The vertical lines show an estimate of the autocorrelation at lag l.

The uncertainty cloud shows the 95% confidence intervals where the standard deviation is calculated

according to Bartlett’s formula.

constraints to the MIQO program to ensure sensible models are produced and by eliminating the

need to pre-process the data by modelling calendar affects and seasonality.

We have shown that predictor selection accuracy can be improved by simultaneously selecting

predictors for multiple response variables. Selection accuracy and coefficient estimation can further

be improved by shrinkage. The shrinkage we introduced is only possible when joint estimation of

models is considered. In contrast to LASSO like penalties that shrink coefficients towards zero our

shrinkage method forces coefficients between models towards a common value.

An interesting avenue for future research would investigate the impact of modelling the regression

residuals simultaneously. We may consider modelling the regression residuals as a Vector Auto-

Regression (VAR) which could explain both serial and cross correlations between the regression

residuals from multiple models. We anticipate that prediction error may be reduced further as well

as give a consistent form for the regression residuals between models.
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Figure 3.5.2: An estimate of the partial autocorrelation function for the fitted model errors for each of

the three response variables. The estimates for both the Automated approach (top) and the Baseline

approach (bottom) are shown. The vertical lines show an estimate of the partial autocorrelation

at lag l. The uncertainty cloud shows the 95% confidence intervals where the standard deviation is

calculated as 1√
1396

.

3.A Implementing the modified SVS method

In this appendix we introduce the Convex Quadratic Program (CQP) introduced by Turlach et al.

(2005) to solve the Simultaneous Variable Selection (SVS) problem. The SVS approach was proposed

by Turlach et al. (2005) as an explanatory tool to help determine sets of suitable predictors for multi-

response models (Breiman and Friedman, 1997). We modify the CQP used by Turlach et al. (2005)

to produce feasible solutions to the SBS problem. The SVS problem is given by

min
β

 M∑
m=1

T∑
t=1

(
yt,m −

P∑
p=1

xt,pβp,m

)2
 subject to,

P∑
p=1

max (|βp,1|, . . . , |βp,M |) ≤ ν.

(3.A.1)

Here, M denotes the number of response variables considered for joint analysis. When M = 1,

(3.A.1) gives the LASSO in constrained form (Tibshirani, 1996). We propose to modify the SVS

problem given in (3.A.1) by replacing the objective with that used for the SBS problem. This gives
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the following,

min
β

 M∑
m=1

T∑
t=1

(
yt,m −

P∑
p=1

xt,p,mβp,m

)2
 subject to,

P∑
p=1

max (|βp,1|, . . . , |βp,M |) ≤ ν.

(3.A.2)

The CQP formulated by Turlach et al. (2005) to solve the SVS problem is given by

min
β,z

 M∑
m=1

T∑
t=1

(
yt,m −

P∑
p=1

xt,pβp,m

)2
 subject to,

uM ⊗ z − β ≥ 0,

uM ⊗ z + β ≥ 0,

ν − uPz ≥ 0.

(3.A.3)

Here, uj ∈ Rj , with each entry equal to 1 and z ∈ RP are auxiliary variables. We modify formulation

(3.A.3) to solve problem (3.A.2) as follows,

min
β,z

 M∑
m=1

T∑
t=1

(
yt,m −

P∑
p=1

xt,p,mβp,m

)2
 subject to,

uM ⊗ z − β ≥ 0,

uM ⊗ z + β ≥ 0,

ν − uPz ≥ 0.

(3.A.4)

We must determine the maximum value of ν. We set νmax =
∑M
m=1

∑P
p=1 |β̂p,m| where

β̂ = arg max

 M∑
m=1

T∑
t=1

(
yt,m −

P∑
p=1

xt,p,mβp,m

)2
 .

All coefficients given by a solution to formulation (3.A.4) are non-zero. We apply the heuristic

proposed by Turlach et al. (2005) to determine which predictors should be zero. Let

I = {p : max{|βp,1|, . . . , |βp,M |} > ν × 1e−4, for p = 1, . . . , P}.

Then I denotes the indices of the non-zero coefficients.

3.B Parameter estimates for the SARIMA residual models

Here, we provide the parameter estimates for the SARIMA models fitted to the regression residuals.

A SARIMA (2,0,1)(1,0,1,7) model was selected for the residuals for Y1, the coefficients are given in

Table 3.B.1. For Y2 and Y3 the order of the SARIMA models for the residuals was (1,0,1)(1,1,1,7).
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Table 3.B.1: Parameter estimates for the SARIMA models, fitted to the regression residuals for re-

sponse variables, Y1, Y2 and Y3. The dashes indicate the coefficient was exactly zero so the parameter

was not present in the model used.

Parameter Estimate

(m = 1) (m = 2) (m = 3)

φm,1 0.914 0.797 0.221

φm,2 -0.082 – –

θm,1 -0.708 -0.570 0.180

Φm,1 0.057 0.043 0.022

Θm,1 -0.979 -0.964 -0.972

σηm 0.293 0.298 0.397



Chapter 4

Telecommunications event data

case study

In Chapter 3 we compared the performance of models produced by our semi-automated two-step

approach against the models produced by our industrial collaborator. This was achieved by fitting

models to one group of response variables and observing various properties of the models fit. By

excluding pairs of highly correlated predictors we were able to produce more interpretable models

with the Automated approach, in which the sign of each regression coefficient was as expected.

This approach typically produced models with fewer weather related predictors, greater predictive

accuracy, and agreement amongst the selected predictors used in each model of response variables

within a group. In this chapter we further validate the performance of the Automated approach by

fitting models to all other groups of response variables.

In Section 4.1 we provide details of the dataset. In particular, we will present the groups of

response variables and give some details on how the groups are determined. We will then discuss the

predictors. In this chapter we have increased the total number of predictors considered by including

lagged predictors which may provide useful information for predicting telecommunication events.

In Section 4.2 we give details on the four approaches used to model the telecommunication events.

In Section 4.3 we will reiterate the aims and motivation for developing the Automated approach. We

will assess how the Automated approach and others compare at satisfying these aims. We end this

chapter by concluding our findings in Section 4.4.

60
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4.1 Data description

Recall that we denote response variables, Ym corresponding to the telecommunication event rates for

a given event type, recorded at location m in the network. Associated with each response variable we

have predictor variables denoted Xp,m corresponding to the realisation of predictor p for response

variable m. Further details of the response variables follow.

Response variables: The telecommunications event dataset comprises 36 response variables.

Each response variable measures the rate of telecommunication events at a given location within

the network. The number of events per day for a given event type is recorded and scaled by the

number of active lines. Since the number of (active) lines providing a particular service changes

through time it is important to scale the number of events by the number of active lines.

Each response variable is allocated to a response group. We have a total of seven response groups

which we denote Gi for i = 1, . . . , 7. The set Gi contains the indices of the related response variables

within Group i. Table 4.1.1 shows each of the seven groups. In Section 1.1 we discussed that the

effect of a predictor on events may vary depending on where the events occur. Here, each response

group is determined by a geographical region in the UK.

Table 4.1.1: Allocation of the 36 response variables to the 7 response groups.

Response group Number in group

G1 = {1, 2, 3, 4, 5, 6} 6

G2 = {7, 8, 9, 10, 11, 12} 6

G3 = {13, 14, 15} 3

G4 = {16, 17, 18, 19, 20} 5

G5 = {21, 22, 23, 24, 25} 5

G6 = {26, 27, 28, 29, 30, 31, 32} 7

G7 = {33, 34, 35, 36} 4

Predictor variables: Many of the predictors that we consider including in the models for response

variables are derived from the measurements of weather variables. In Chapter 1 we discussed the

importance of understanding the effect of external variables on the telecommunications network for

the industry. The following weather variables are considered here,

1. Humidity: The mean relative humidity (gm−3) over a 24-hour period.

2. Wind speed: The maximum recorded wind speed (mph) within a 24-hour period.
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3. Precipitation: The total amount of rainfall (mm) within a 24-hour period.

4. Lightning: The total number of lighting strikes within a 24-hour period.

Non-linear transformations of the weather variables can often be more suitable to include in

models for telecommunication events. Here, the non-linear transformation applied to the weather

variables is the exponential smoothing function defined in equation (2.1.2). Suitable smoothing

parameters for the exponential smoothing function were chosen such that the maximum pairwise

correlation between the resulting predictors is around 0.97. We denote the set of predictors produced

from applying the exponential smoothing function to a weather variable for a range of smoothing

parameters by Ti. The groups of predictor variables are shown in Table 4.1.2. We can see that group

T1 consists of four predictors derived from applying the exponential smoothing function (given in

Section 2.1) to the Humidity weather variable.

Table 4.1.2: The predictors used by our automated procedure grouped by transformation for the

telecommunications event data.

Predictor Group Predictor index Number in group

T1 (Humidity) 1,2,3,4 4

T2 (Wind Speed) 5,6,7,8 4

T3 (Precipitation) 9,10,11,12,13,14 6

T4 (Lightning) 15,16,17 3

L1 (Humidity) 18,19,20,21,22,23,24 7

L2 (Lighting) 25, 26 2

L3 (Wind Speed) 27,28,29 3

L4 (Precipitation) 30,31,32,33,34,35,36 7

B (Bank holidays) 37,38,39 3

In addition to non-linear transformations of the weather variables, we also include lagged weather

variables as predictors. For each weather variable we always include the lag 0. A group of predictors

derived from lagging a weather variable is denoted Li. We can see from Table 4.1.2 that the lags

included for precipitation are, 0,1,2,3,4,5 and 6. The number of predictors within each predictor

group varies. The size of predictor group is determined by the associated weather variables along

with the duration of its effect. For example, ground water levels may rise after prolonged rainfall.

The effect of lightning strikes are thought to be more immediate. Therefore, there will be a large

number of lagged variables for precipitation, and fewer for the lightning variable.

Finally, we use bank holiday indicators as predictors for the Automated approach. Bank holiday

predictors are not provided for all other approaches as bank holiday effects are accounted for in
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the pre-processing step. We consider a total of three bank holiday indicators. The bank holiday

indicators are predictors 37, 38 and 39. Predictor 38 indicates Christmas bank holidays such that

xt,38,m =


−1, if t corresponds to Christmas Day, Boxing Day or any substitute,

0, otherwise.

Predictor 39 indicates the Christmas-New Year period such that

xt,39,m =


−1, if t corresponds to any date between 27/12/yyyy to 1/1/(yyyy + 1),

0, otherwise.

Here, we use yyyy to denote the years included in the telecommunications dataset. Finally, Predictor

37 takes the value -1 for any other bank holidays and zero otherwise.

In the following section we give details on the methods used to produce models for the telecom-

munication events.

4.2 Details of the implemented approaches

We compare the Automated approach to three alternatives. The current approach used by our

industrial partner will be used to give a baseline comparison. We refer to this approach as the

Baseline approach. We observed in Chapter 3 that the Baseline approach often includes many

pairs of highly correlated predictors where the sign of the associated regression coefficients oppose.

Therefore, we modify the Baseline approach by increasing the penalty used in the stepwise selection

procedure. We call this modified approach the Modified baseline approach. The Baseline approach

uses the AIC (Akaike, 1973) to terminate the stepwise algorithm, whereas the Modified baseline

approach will use the BIC (Schwarz, 1978). We also apply the SBS approach to the data after

pre-processing. The Automated approach differs from the Baseline approach in a number of ways.

Firstly, it estimates models for the fault rates directly. Secondly, it fits a more general Reg-SARIMA

model. We apply the SBS approach to the data after pre-processing, to highlight the differences

between stepwise selection used in the baseline approach and simultaneous predictor selection. We

call this approach the Simultaneous baseline approach. Further details of these approaches follow.

Baseline approach: This approach is currently used by our industrial collaborator. The telecom-

munication event rates and the associated predictor variables are pre-processed using the procedure

described in Section 2.3. We denote the pre-processed response variable Ỹm, and the observa-

tions ỹm ∈ RT×1. The associated observations of the predictors after pre-processing are denoted
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x̃m ∈ RT×P . A forward stepwise selection approach is used to estimate models of the form

ỹt,m = β0,m +

36∑
p=1

x̃t,p,mβp,m + η̃t,m (4.2.1)

for m = 1, . . . , 36. Here, predictors X1, . . . , X36 from the 39 predictors listed in Table 4.1.2 are

considered for inclusion into the model. The forward stepwise algorithm is implemented in the R

language using the stats::step function. The algorithm is initialised using a model including only

the intercept term β0,m. Then, the algorithm iteratively adds predictors that most reduce the AIC

(Akaike, 1973). The algorithm terminates when it is no longer possible to reduce the AIC by adding

another predictor. This approach is applied to each of the 36 response variables individually.

Modified baseline approach: This approach is the same as the Baseline approach although the

stepwise algorithm terminates when it is no longer possible to improve the BIC (Schwarz, 1978) of

the model by including another predictor.

Simultaneous baseline approach: This approach solves the SBS problem to estimate models of

the form (4.2.1) for each response variable in a group simultaneously. In the MIQO program used to

solve the SBS problem we include the constraints that exclude pairs of highly correlated predictors

from entering the models. We also include the constraints that permit at most one of the predictors

from the groups Tj for j = 1, 2, 3, 4 given in Table 4.1.2. We solve the following MIQO problem,

β̂ = arg min
β,η

 M∑
m=1

T∑
t=1

(
ỹt,m −

P∑
p=1

x̃t,p,mβp,m

)2
 subject to,

(βp,m, ηp) ∈ SOS − 1, for m = 1, . . . ,M, for p = 1 . . . , P,

−
P∑
p=1

ηp = k − P,

βp,m ∈ R+, for m = 1, . . . ,M, for p = 1 . . . , P,

ηp ∈ {0, 1}, for p = 1, . . . , P,

−ηp − ηs ≤ −1, ∀(p, s) ∈ HC, (4.2.2a)

−
∑
p∈Ti

ηp ≤ 1− |Ti|, for 1 = 1, 2, 3, 4, (4.2.2b)

given the response data ỹ ∈ RT×M and predictor data x̃ ∈ RT×P×M that has been pre-processed.

Here, we use M to denote the total number of response variables in a group. Constraints of the form

(4.2.2a) ensure that pairs of highly correlated predictors are not present in the model. Constraints

(4.2.2b) ensure that at most one predictor from the set Tj for j = 1, 2, 3, 4 are present in each of the

regression models estimated by solving (4.2.2).
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For each group of response variables we solve (4.2.2) for k = 1, . . . ,Kmax. The value Kmax is

determined automatically for each group of response variables. It may differ between groups of

response variables as it depends on the sample estimates of the correlation between the predictors

in each group of response variables. In Section 3.2.1 we discussed how to automatically determine

Kmax based on the feasibility of the MIQO program.

For each response variable, Ỹm where m ∈ Gi we will have Kmax models of the form (4.2.1). We

will select the best k ∈ {1, . . . ,Kmax} for each Ỹm where m ∈ Gi, simultaneously. Let the model for

response variable Ỹm estimated using (4.2.2) be denotedMk
m. The superscript k denotes the sparsity

level used in the SBS model (4.2.2). Let, BIC(Mk
m) denote the BIC (Schwarz, 1978) of model Mk

m.

Then, we simultaneously select the models for Ỹm corresponding to the sparsity

k̂ = arg min
k

{∑
m∈Gi

BIC(Mk
m)

}
.

The final approach that we consider is our proposed automated approach.

Automated approach: This approach differs from the three approaches given previously as it

does not require the data to be pre-processed and fits models to the telecommunication event rates

directly. We estimate Reg-SARIMA models of the form

yt,m =

39∑
p=1

xt,p,mβp,m + ηt,m, where, (4.2.3a)

∇m∇smφm(L)Φm(L)ηt,m = θm(L)Θm(L)em,t, (4.2.3b)

simultaneously for all m ∈ Gi. We repeat this approach for i = 1, . . . , 7. We follow with a description

of how models of the form (4.2.3) are estimated.

The following steps are taken for each group of response variables, Gi for i = 1, . . . , 7. To avoid

cumbersome notation given group Gi we use M to denote the total number of response variables in

a given group. Rather than refer to the observed response variable data yGi we simply use y, and

similarly for the predictor variables. We let L denote the list of length N giving the order SARIMA

models considered for the regression residuals

L = [(p1, d1, q1, P1, D1, Q1, s1), . . . , (pN , dN , qN , PN , DN , QN , sN )].

For each level of sparsity, k = 1, . . . ,Kmax the following steps are taken.

1. Use the response observations, y ∈ RT×M and predictor observations, x ∈ RT×P×M in the

optimisation model (4.2.2) to estimate the regression coefficients β̂
0 ∈ RP×M for models of the

form

yt,m =

39∑
p=1

xt,p,mβp,m + ηt,m.



CHAPTER 4. TELECOMMUNICATIONS EVENT DATA CASE STUDY 66

2. For, m = 1, . . . ,M determine the best SARIMA models for the regression residuals (4.2.3b)

(a) Calculate the residuals

η̂0
∗,m = y∗,m − x∗,∗,mβ̂

0

∗,m.

(b) For, n = 1, . . . , N , fit the SARIMA model of order (pn, dn, qn, Pn, Dn, Qn, sn) to η̂0
∗,m.

Denote the N models fitted as R̂0
m,n.

(c) Select the best SARIMA model using the BIC (Schwarz, 1978). Let, BIC(R̂0
m,n) denote

the value of the BIC of model R̂0
m,n, then we select the best n associated to response

variable m as

n̂m = arg min
n
{R̂0

m,n}.

(d) Now we apply the Generalised Least Squares (GLS) transformation to the response and

predictor variables. Let

φ̂0m(L), Φ̂0
m(L), θ̂0m(L), Θ̂0

m(L),∇d̂0m ,∇
ŝ0m
D̂0

m

,

denote the SARIMA polynomials and differencing operators corresponding to model R̂0
m,n̂.

Then, the we apply the GLS transformation to the data

ȳt,m =
∇d̂0m∇

ŝ0m
D̂0

m

φ̂0m(L), Φ̂0
m(L)

θ̂0m(L)Θ̂0
m(L)

yt,m, x̄t,p,m =
∇d̂0m∇

ŝ0m
D̂0

m

φ̂0m(L), Φ̂0
m(L)

θ̂0m(L)Θ̂0
m(L)

xt,p,m,

where ȳt,m and x̄t,p,m are the GLS transformed response and predictor variables.

3. The following steps now iterate until we obtain convergence in the two-step algorithm or some

maximum iteration number, maxit is reached. We discuss what it means for the algorithm to

have converged shortly. For it = 1, . . . ,maxit:

(a) We re-estimate the regression coefficients using the response data ȳ ∈ RT×M and for the

predictors, x̄ ∈ RT×P×M that has had the GLS transformation applied. Using ȳ and x̄

in the optimisation model (4.2.2) we estimate the regression coefficients β̂
it ∈ RP×M for

models of the form

ȳt,m =

39∑
p=1

x̄t,p,mβp,m + ηt,m.

(b) For, n = 1, . . . , N fit the SARIMA model of order (pn, dn, qn, Pn, Dn, Qn, sn) to η̂it∗,m.

Denote the N models fitted as R̂itm,n.

(c) Select the best SARIMA model using the BIC (Schwarz, 1978). Select the n for response

variable Ym such that

n̂m = arg min
n
{R̂itm,n}.



CHAPTER 4. TELECOMMUNICATIONS EVENT DATA CASE STUDY 67

Let, (pitn̂m
, ditn̂m

, qitn̂m
, P itn̂m

, Dit
n̂m
, Qitn̂m

, sitn̂m
) denote the selected SARIMA model order cor-

responding to Ym at iteration it.

(d) Now we re-apply the Generalised Least Squares (GLS) transformation to the response

and predictor variables. Let

φ̂itm(L), Φ̂itm(L), θ̂itm(L), Θ̂it
m(L),∇d̂itm ,∇

ŝitm
D̂it

m

,

denote the SARIMA polynomials and differencing operators corresponding to model R̂itm,n̂.

Then, the GLS transformation of the data becomes

ȳt,m =
∇d̂itm∇

ŝitm
D̂it

m

φ̂itm(L), Φ̂itm(L)

θ̂itm(L)Θ̂it
m(L)

yt,m, x̄t,p,m =
∇d̂itm∇

ŝitm
D̂it

m

φ̂itm(L), Φ̂itm(L)

θ̂itm(L)Θ̂it
m(L)

xt,p,m.

(e) Check for convergence. If the algorithm has converged, stop. Otherwise, return to 3(a).

4. If maxit has been reached the two-step algorithm has not converged.

Steps 1-4 will produce Kmax models of the form (4.2.3) for each response variable, giving a total

of Kmax ×M models for response Group i. The sparsity of the Reg-SARIMA models is also chosen

simultaneously. For each level of sparsity k, denote the associated Reg-SARIMA model for response

m as Mk,m. Let BIC(Mk,m) denote the value of the BIC (Schwarz, 1978) for model Mk,m. Then,

we select the model sparsity as

k̂ = min
k

∑
m∈Gi

BIC(Mk,m).

For each level of sparsity we sum the BIC of each model fit to the response variables in Gi, and select

the k for which this sum is minimal. The criteria used to determine whether the two-step algorithm

has converged is as follows.

At iteration, it > 0 in the two-step algorithm we check

1. If the same subset of predictors has been selected between two consecutive iterations,

{p : βitp,m 6= 0 for p = 1, . . . , P, ∀m ∈ Gi} = {p : βit−1p,m 6= 0 for p = 1, . . . , P, ∀m ∈ Gi}.

2. If the sum of the absolute differences in coefficient estimates between two consecutive iterations

is less than some convergence tolerance ε,

∑
m∈Gi

P∑
p=1

(
|β̂itp,m − β̂

it−1
p,m |

)
≤ ε.

3. Finally, check whether the same SARIMA models were selected consecutively for the Reg-

SARIMA models for each m ∈ Gi,

(pitn̂m
, ditn̂m

, qitn̂m
, P itn̂m

, Dit
n̂m
, Qitn̂m

, sitn̂m
) = (pit−1n̂m

, dit−1n̂m
, qit−1n̂m

, P it−1n̂m
, Dit−1

n̂m
, Qit−1n̂m

, sit−1n̂m
).
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If the logical conditions 1-3 are all satisfied, then the two-step algorithm has converged. We will now

evaluate the performance of each of the approaches.

4.3 Evaluation of the approaches

The Automated procedure discussed in Chapter 3 was developed to address many of the challenges

often encountered when modelling telecommunications data. We now recall these challenges and

explain how we will assess if each of these challenges has been addressed.

Firstly, an approach with minimal user input was required. We have discussed the Automated

approach in detail in Chapter 3 and note that significantly less time is required to produce statistical

models. This is achieved by modelling the response variables directly. The advantage here is that

behaviour observed in the response variables, not thought to be attributed to weather variables, can

be incorporated into the models themselves. By modelling the events directly we can incorporate

non-weather related variation into the models. This allows us to model the seasonality using the

Reg-SARIMA model and the calendar effects can be estimated using indicator variables. Using

indicator variables to account for calendar affects has two benefits. Firstly, the approach will decide

automatically if a calendar affect exists by including the respective indicator variable into the model.

This removes judgemental elements of the modelling procedure that may differ amongst different

analysts. The second advantage in using indicator variables is that the effects of the weather related

predictors are estimated at the same time as calendar effects. The pre-processing stage assumes the

calendar effects are estimated without error. This can lead to over-confident predictions.

The second requirement of the approach is to produce interpretable models when selecting

amongst a large number of highly correlated predictor variables. Our approach guarantees that

the sign of the regression coefficients obtained using our automated procedure agrees with expert

opinion by placing constraints on the regression coefficients. Interpretable models will also be as-

sessed by the consistency of selected predictors amongst response variables from the same group. It is

thought that models for response variables within the same group should contain similar predictors.

We will inspect the predictors chosen for each response variable looking for consistency among the

chosen predictors.

The third requirement of the modelling approach was to adequately capture serial correlation in

the response variables. We will investigate the ability of each method to capture serial correlation

by observing the sample autocorrelation plots of the model errors. Let ŷt,m denote the fitted values

of the telecommunication events. We will inspect the sample autocorrelation ρ̂(êt,m), where êt,m =

yt,m − ŷt,m are the model errors. A model that fails to capture serial correlation should yield
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significant peaks in the autocorrelation plot of the model errors.

Finally, a procedure that can jointly model response variables was sought. The Simultaneous base-

line and Automated approaches estimate the impact of predictors jointly. The Simultaneous baseline

approach has been proposed directly to show improvements in simultaneous predictor selection in

comparison to the Baseline approach. We will evaluate the prediction error for 14 day-ahead and

365 day-ahead forecasts for each approach. Comparing the prediction errors between the Baseline,

Modified baseline and Simultaneous baseline approaches will give a direct insight into the improve-

ments obtained by using simultaneous predictor selection. A comparison of the selected predictors

now follows.

4.3.1 Comparison of selected predictors

In this section we will investigate the predictors selected between the approaches described in Section

4.2. A common challenge when selecting amongst highly correlated predictors is obtaining models

whereby coefficients for highly correlated predictors are not contradictory. Table 4.3.1 shows the

regression coefficients for the models produced by the Modified baseline approach for the six response

variables in Group 1. Predictors 16 and 17 are present in four of the six models. The correlation

between predictors 16 and 17 is at least 0.94 across all response variables. Observing the coefficients

in Table 4.3.1 we can see that for each response variable where predictors 16 and 17 are present,

the coefficients take opposing signs. Predictors 16 and 17 correspond to a transformation of the

lightning variable. The four models aforementioned would suggest that lighting has both positive

and negative effects on telecommunication events. Such observations are seen for all other groups

of response variables. Conflicting signs for coefficients amongst highly correlated predictors is more

common for models produced by the Baseline approach.

There are a few predictors present in most of the models within Group 1. Predictor 17 appears in

each model, and predictors 4 (T1, humidity) and 30 (L4, precipitation) appear in all models except

for response variable 5. In order to access the differences using simultaneous predictor selection we

compare this to the models produced by the Simultaneous baseline approach. The coefficients for

the selected predictors using the Simultaneous baseline approach are shown in Table 4.3.2. Predictor

17 which appeared in all models produced by the Modified baseline approach appear in the models

produced by the Simultaneous baseline approach. All predictors selected by the Simultaneous baseline

approach appear in at least one of the models produced by the Modified baseline approach. By design,

none of the coefficients take negative values and the average model sparsity for the Simultaneous

baseline approach is 6. The average sparsity of the models produced by the Modified baseline is 7.5.
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Table 4.3.1: Regression coefficients produced using the Modified baseline approach for the predictors

selected in the models for response variables in Group 1. Negative coefficients are highlighted in red.

The dashes indicate the coefficient was zero exactly, hence the associated predictor was not selected.

Coefficient estimate for response variable,

Predictor Group Coefficient Y1 Y2 Y3 Y4 Y5 Y6

T1 (Humidty) β3,m – – – – 0.089 –

- β4,m 0.05 0.008 0.079 0.027 – 0.07

T2 (Windspeed) β6,m 0.054 – 0.009 – – –

T3 (Precipitation) β9,m – – – – 0.01 –

- β11,m – – – – – 0.003

- β12,m 0.01 0.009 – – – 0.006

- β13,m – – 0.025 0.01 0.017 –

- β14,m – 0.015 – 0.009 – –

T4 (Lightning) β15,m – – – – 0.008 –

- β16,m -0.027 – 0.006 0.005 – 0.028

- β17,m 0.01 0.012 -0.014 -0.02 -0.004 -0.017

L2 (Lightning) β25,m – – – – – 0.011

- β26,m -0.003 – – – – –

L3 (Windspeed) β27,m – 0.008 – -0.012 -0.008 –

L4 (Precipitation) β30,m 0.007 0.12 0.006 0.115 – -0.029

The regression coefficients for the Regression-SARIMA models obtained using the Automated

approach are shown in Table 4.3.3. There is some agreement in the selected predictors with the

Simultaneous baseline and Automated approaches. In particular, all predictors selected by the Si-

multaneous baseline approach appear in the models produced by the Automated approach, with the

exception of predictor 27 (L3, windspeed). In addition to the predictors selected by the Simultaneous

baseline approach predictors, 6, 37, 38 and 39 appear in the models.

Figure 4.3.1 shows how the simultaneous best-subset of predictors changes as the two-step algo-

rithm progresses. Given a sparsity level k, recall from Section 4.2 that we obtain estimates of the

regression coefficients for models of the form (4.2.1). We then proceed by finding a suitable SARIMA

model for the regression residuals and then re-select the best-subset of predictors on a GLS transform

of the response and predictor variables. Therefore, for each level of sparsity, we will have at least

two best-subsets of predictor variables.

Figure 4.3.1 shows that for sparsity levels, 1, 3, 9, 10 and 11 the two-step algorithm converges in

two steps. Each set of horizontal dots indicates the presence of a predictor in the two-step algorithm.



CHAPTER 4. TELECOMMUNICATIONS EVENT DATA CASE STUDY 71

We can see that predictor 37 was selected initially as the best predictor. This is shown by the left-most

blue dot in Figure 4.3.1. Once suitable SARIMA models are selected for the regression residuals,

the best single predictor to include for the linear regression models on the GLS transform of the

data is selected. This is again predictor 37. For all other levels of sparsity the two-step algorithm

required three iterations for this group of response variables. It appears that as soon as predictor 39

is included into the models, predictor 27 is replaced with predictor 6.

Table 4.3.2: Regression coefficients produced using the Simultaneous baseline approach for the pre-

dictors selected in the models for response variables in Group 1.

Coefficient estimate for response variable,

Predictor Group Coefficient Y1 Y2 Y3 Y4 Y5 Y6

T1 (Humidity) β4,m 0.009 0.009 0.005 0.010 0.011 0.005

T3 (Precipitation) β13,m 0.076 0.071 0.082 0.088 0.075 0.051

T4 (Lighting) β17,m 0.013 0.010 0.008 0.003 0.007 0.006

L2 (Lightning) β25,m 0.002 0.001 0.000 0.001 0.002 0.003

L3 (Windspeed) β27,m 0.007 0.008 0.004 0.005 0.006 0.002

L4 (Precipitation) β30,m 0.009 0.014 0.009 0.007 0.004 0.010

Table 4.3.3: Regression coefficients produced using the Automated approach for the predictors se-

lected in the models for response variables in Group 1.

Coefficient estimate for response variable,

PredictorGroup Coefficient Y1 Y2 Y3 Y4 Y5 Y6

T1 (Humidity) β4,m 0.010 0.010 0.007 0.010 0.011 0.006

T2 (Windspeed) β6,m 0.011 0.011 0.010 0.006 0.007 0.005

T3 (Precipitation) β13,m 0.073 0.059 0.065 0.077 0.051 0.037

T4 (Lightning) β17,m 0.010 0.006 0.005 0.001 0.007 0.003

L3 (Lightning) β25,m 0.003 0.001 0.000 0.001 0.002 0.003

L4 (Precipitation) β30,m 0.009 0.014 0.010 0.008 0.005 0.010

B (Bank Holidays) β37,m 0.760 0.780 0.656 0.644 0.755 0.756

- β38,m 0.723 0.794 0.686 0.750 0.883 0.735

- β39,m 0.240 0.243 0.210 0.100 0.233 0.217

The substitution of predictors conditional on the inclusion of another predictor highlights the

importance of considering the best-subset approach, or one of the hybrid variants we proposed in

Chapter 5. In a forward stepwise approach, once a predictor is selected it cannot be removed or
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substituted with another predictor. This substitution of predictor behaviour is again observed as

the model sparsity changes from 9 to 10, as predictor 6 is dropped from the models.
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Figure 4.3.1: Trace-plot indicating the predictors selected for Group 1 at each iteration of the two-

step algorithm (Automated approach). The red vertical lines indicate the selected model.

Predictors 37, 38, and 39 appear in all of the Reg-SARIMA models produced using the Automated

approach for the telecommunications event dataset. The two-step algorithm converges in no more

than eight iterations for all response groups. The number of predictors present in all models is

approximately 8. An exception to this is response Group 2. The trace of selected predictors for

Group 2 is shown in Figure 4.3.2. The models for Group 2 contained only four predictors, in which

only one is weather related. In consultation with our industrial partner the response variables in

Group 2 are expected to be less influenced by weather variables due to their location in the network.

In the following we will discuss the serial correlation captured by the Automated approach with

the Baseline approach.

4.3.2 Modelling serial correlation

Significant serial correlation is observed in the model errors for all response variables fit using the

Baseline, Modified baseline, and Simultaneous baseline approaches. The presence of serial correlation

indicates that the model for each response variable fails to adequately explain the serial correlation

observed. In comparison, almost all significant serial correlation in the response variables appears to

be captured in the models fit by the Automated approach. Marginally significant serial correlation
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appears in the sample autocorrelation estimates of the model errors fit using the Automated approach.

The auto-correlation plot of the model errors appear very similar to those observed in Chapter 3

for both the Automated and Baseline approaches. The autocorrelation and partial autocorrelation

plots are provided in Appendix 4.A.
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Figure 4.3.2: Trace-plot indicating the predictors selected for Group 2 at each iteration of the two-

step algorithm. The red vertical lines indicate the selected model.

The estimates of the SARIMA parameters for Group 5 are shown in Table 4.3.4. An interesting

observation here is that the same order of SARIMA model was selected for each response variable

in Group 1. Similar parameter estimates were obtained for each SARIMA model. The SARIMA

models were estimated and selected separately for each response variable. In Chapter 8 we discuss

the potential of estimating these models simultaneously.

A common SARIMA model for the regression residuals was found for many of the response

variables in the telecommunications dataset. In fact, the Regression-SARIMA(1,0,1)(1,0,1,7) model

was fitted to all but one response variable in Group 4. In this single exception, the order of the

Reg-SARIMA model fit was (1,0,0)(1,0,1,7). The difference here is that the model did not include a

moving average term.



CHAPTER 4. TELECOMMUNICATIONS EVENT DATA CASE STUDY 74

Table 4.3.4: The SARIMA coefficients (given to 2.dp) for each Reg-SARIMA model fitted using the

Automated approach for all response variables in Group 1 .

SARIMA Parameters for response variable,

Parameter Y1 Y2 Y3 Y4 Y5 Y6

φ1,m 0.66 0.85 0.73 0.92 0.98 0.93

dm 0 0 0 0 0 0

θ1,m -0.43 -0.65 -0.49 -0.81 -0.92 -0.81

Φ1,m 0.06 -0.01 -0.01 0.03 -0.01 -0.01

Dm 1 1 1 1 1 1

Θ1,m -0.97 -0.97 -0.97 -1.01 -0.97 -0.96

σ2
em 0.06 0.06 0.08 0.052 0.06 0.04

Finally we shall assess the performance of the models numerically.

4.3.3 Predictions

To quantify the performance of the models numerically we consider the mean-squared error of the 14

day-ahead and 365 day-ahead predictions. It may not be possible to obtain accurate values of some

predictors which are required to predict the response variables. In particular, we may be unable to

obtain accurate predictions of the weather predictors for more than a couple of days ahead. However,

the main purpose of these models is for explanatory purposes, so we compare predictions based on

observed values of the predictors. By comparing the predictive performance of the models on both

a short and long term horizon we can better understand how each of the approaches perform.

Table 4.3.5: Mean squared error of the 14 day-ahead predictions for each response variable in Group

1 by the four approaches given in Section 4.2.

Mean-squared prediction error for response variable,

Approach Y1 Y2 Y3 Y4 Y5 Y6 Average

Baseline 0.247 0.293 0.167 0.058 0.266 0.096 0.188

Modified baseline 0.254 0.254 0.184 0.056 0.238 0.092 0.180

Simultaneous baseline 0.176 0.110 0.345 0.045 0.104 0.082 0.144

Automated 0.140 0.104 0.111 0.041 0.130 0.029 0.093

The mean-squared prediction error for the 14 day-ahead predictions for each response variable

in Group 1 is shown in Table 4.3.5. The Automated approach produced the lowest mean-squared

prediction error for five of the six response variables. The Simultaneous baseline approach produced
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the lowest prediction error for response variable Y5, followed by the Automated approach. The

mean-squared prediction error averaged over all response variables was at least 35% lower for models

produced by the Automated approach in comparison to the Simultaneous baseline approach, which

followed in second place. The 14 day-ahead predictions made from the models produced by the

Modified baseline, Simultaneous baseline and Automated approaches are shown in Figure 4.3.3 for

response variables in Group 1.
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ŷ T
+
h

Y3 Predictions: 14 Day-ahead

observed

Modified baseline

Simultaneous baseline

Automated

1 3 5 7 9 11 13

h

0.4

0.6

0.8

1.0

1.2

1.4

1.6
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Figure 4.3.3: Prediction plots for all response variables in Group 1 for the Modified baseline, Simul-

taneous baseline and Automated approaches.

Across all nine response groups we found that the Reg-SARIMA models produced by the Au-

tomated approach produced the most accurate predictions for the 14 day-ahead predictions. Slight

reductions in prediction errors were observed with the Simultaneous baseline approach over the Base-

line and Modified baseline approaches. The improvement in prediction accuracy of the Simultaneous

baseline compared to the Baseline and Modified baseline approaches may be due to selecting pre-

dictors simultaneously. There appeared to be no overall winner between the Baseline and Modified

baseline approaches for the 14 day-ahead predictions. However, the models produced by the Modified

baseline approach were typically much sparser than models produced by the Baseline approach.
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Table 4.3.6: Mean squared error of the 365 day-ahead prediction for each response variable in Group

4 by the four approaches given in Section 4.2.

m

Approach 1 2 3 4 5 Average

Baseline 0.075 0.054 0.058 0.068 0.050 0.061

Modified baseline 0.074 0.054 0.057 0.063 0.051 0.060

Simultaneous baseline 0.117 0.062 0.061 0.125 0.104 0.094

Automated 0.085 0.062 0.085 0.078 0.069 0.076

The 365 day-ahead mean-squared prediction error averaged across each response variable in a

response group was lowest for models produced by the Automated approach for five of the seven

response groups. Table 4.3.6 shows the results for Group 4 where the models produced by the Auto-

mated approach were not the most accurate over a 365 day period. Despite the Automated approach

not being the most accurate, the prediction errors are comparable to the Baseline approaches and

far less effort was needed to implement this approach.

4.4 Conclusion

In this chapter we have applied our Automated simultaneous predictor selection approach to the full

telecommunications event dataset. We compared the performance of our approach to the Baseline

approach currently used by our industrial collaborator. We found the models produced by the

Automated approach generally more favourable.

Firstly, the automated approach does not require the data to be pre-processed, so can produce

models with less effort in comparison to all other approaches. The MIQO framework used to fit

models in the Automated approach excludes pairs of highly correlated predictors. Consequently,

the models fit by the Automated approach do not contain pairs of highly correlated predictors, for

which the corresponding coefficients are opposing in sign. This is guaranteed by enforcing positive

regression coefficients.

The models produced by the Automated approach often resulted in models with fewer weather

related predictor variables. Despite including fewer predictors, the models produced by the Auto-

mated approach performed comparably. The 14 day-ahead predictions were most accurate, in terms

of mean-squared prediction error for models produced by the Automated approach. The 365 day-

ahead predictions averaged over each response variable within a group were most accurate for the

Automated approach for five of the seven response groups. The Automated approach performed the
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best for a short horizon. This was most likely due to the Reg-SARIMA’s ability to capture the serial

correlation in the response variables.

In conclusion, the Reg-SARIMA models fit by the Automated approach are more favourable over

a number of criteria, and significantly less time is required by an analyst to estimate non-weather

related effects. This is desirable for our industrial collaborator as datasets grow in size and large

numbers of models are required. Secondly, the Automated approach jointly selects predictors for

groups of response variables. This allows us to achieve consistency amongst groups of response

variables.

4.A Supplementary ACF and PACF plots

This appendix contains the ACF and PACF plots of the model errors from the Modified Baseline,

Simultaneous Baseline and Automated approaches for Group 1.

4.A.1 Modified Baseline Approach

Both, significant autocorrelation and partial autocorrelation was found in the model errors from the

Modified Baseline approach. These plots are shown in Figures 4.A.1 and 4.A.2 respectively.
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Figure 4.A.1: ACF of the model errors from the Modified Baseline approach for Group 1. The

uncertainty cloud shows the 95% confidence interval calculated using Bartlett’s formula.
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Figure 4.A.2: PACF of the model errors from the Modified Baseline approach for Group 1.

4.A.2 Simultaneous Baseline Approach

Both, significant autocorrelation and partial autocorrelation was found in the model errors from the

Simultaneous Baseline approach. These plots are shown in Figures 4.A.3 and 4.A.4 respectively.
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Figure 4.A.3: ACF of the model errors from the Simultaneous Baseline approach for Group 1. The

uncertainty cloud shows the 95% confidence interval calculated using Bartlett’s formula.
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Figure 4.A.4: PACF of the model errors from the Simultaneous Baseline approach.

4.A.3 Automated Approach

The model errors from the Automated approach typically contain far less significant autocorrelation

compared to the Modified Baseline and Simultaneous Baseline approaches. At the 95% confidence

level very few lags show signs of significant autocorrelation for all response variables in Group 1 with

the exception of Response 3, this can be seen in Figure 4.A.5. Significant autocorrelation is found

at the lags which are multiples of seven for Response 3. This may be explained by the Automated

approach failing to include a seasonal autoregressive term for the regression residuals.
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Figure 4.A.5: ACF of the model errors from the Automated approach for Group 1. The uncertainty

cloud shows the 95% confidence interval calculated using Bartlett’s formula.

Similarly, the partial autocorrelation appears significant at very few lags at the 95% level for

all response variables in Group 1 with the exception of Response 3, this can be seen in Figure

4.A.6. Again, this may be explained by the failure of the Automated approach to specify a seasonal

autoregressive term for the regression residuals.
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Figure 4.A.6: PACF of the model errors from the Automated approach for Group 1.



Chapter 5

Simultaneous best-subset

implementation study

In Chapter 3 we observed that the time taken to solve the SBS problem exactly using MIQO programs

can be excessive. In this chapter we show that it is possible to reduce the time required to solve

the SBS problem. We achieve this by using data driven parameters to improve the performance of

the optimisation solver. We develop a discrete first-order algorithm to obtain good feasible solutions

to the SBS problem and show that these solutions can be used produce good statistical models in

practice.

The structure of this chapter follows. In Section 5.1 we specify three systems of linear regression

models that we use in the remainder of this thesis to assess the performance of simultaneous predictor

selection algorithms. In Section 5.2 we re-visit the SBS problem and derive a number of data-driven

MIQO programs that can be used to solve the SBS problem exactly and demonstrate that this can

lead to a reduction in the time required to solve the SBS problem. In Section 5.4 we develop a

discrete first-order algorithm to provide good feasible solutions to the SBS problem in practise. We

show how feasible solutions to the SBS problem can be used to estimate the data-driven parameters

in Section 5.5. In Section 5.6 we perform a simulation study to investigate how our methods perform.

81
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5.1 Models

This chapter is concerned with approaches that can simultaneously select predictors for systems of

linear regression models taking the form

yt,1 =

P∑
p=1

xt,p,1βp,1 + ηt,1,

. . .

yt,M =

P∑
p=1

xt,p,Mβp,M + ηt,M .

(5.1.1)

Here, we have M response variables and a realisation of each of the P predictor variables for each

response variable. The regression residuals, ηt,m for all models are independently distributed such

that

ηt,m ∼ N(0, σ2
ηm) for m = 1, . . . ,M. (5.1.2)

Here, we refer to σ2
ηm as the residual variance for model m. The structure of the regression coefficients

and distributions of the predictor variables are given for four models as follows.

Uniformly spaced model: In this model the indices of the non-zero regression coefficients are

uniformly spaced such that

βp,m =


1, if p ∈ {1, 8, 15, 22, 29},

0, otherwise,

for m = 1, . . . , 5. (5.1.3)

Here, the predictor variables Xm are distributed such that

Xm ∼ MVN(035,Σ) where 0P = [0, . . . , 0] ∈ R35 and Σi,j ∈ R35×35 := Σi,j = ρ|i−j|

for m = 1, . . . , 5.

Adjacent model: The Adjacent model, whereby the position of the non-zero coefficients are ad-

jacent such that,

βp,m =



0.3, if p = 17,

1, if p = 18,

0.6, if p = 19,

0, otherwise,

for m = 1, . . . , 5. (5.1.4)

Here, the predictor variables Xm are distributed such that

Xm ∼ MVN(035,Σ) where 0P = [0, . . . , 0] ∈ R35 and Σi,j ∈ R35×35 := Σi,j = ρ|i−j|

for m = 1, . . . , 5.
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Application model: In this model the predictors behave similarly to the predictors in our telecom-

munications application. We generate the predictors such that blocks of predictors can be generated

where there is pair-wise correlation amongst the predictors from each block. The regression coeffi-

cients are such that

βp,m =



1, if p = 30,

0.775, if p = 25,

0.55, if p = 14,

0.325, if p = 5,

0.1, if p = 2,

0, otherwise,

for m = 1, . . . , 5. (5.1.5)

The predictors Xm are distributed such that

Xm ∼ MVN35(035,Σ) for m = 1, . . . , 5.

The covariance matrix of the predictors, Σ has the block diagonal structure such that

Σ =


Σ(1) · · · 0

...
. . .

...

0 · · · Σ(5)

 ∈ R35×35.

Here, Σ(b) ∈ R(b+4)×(b+4) := Σ
(b)
i,j = ρ|i−j| for b = 1, . . . , 5. In the Uniformly spaced, Adjacent, and

Application models, we will present results for two values of ρ ∈ {0.5, 2}. The results for each model

will be presented ModelName-ρ and the variance of the regression residuals, σ2
ηm for m = 1, . . . , 5,

will be made clear.

Scaling model: To determine how the approaches scale with P and M we simulate data from

the Scaling model, so-called as we use it to investigate the scaling of approaches. In this model the

regression coefficients are given such that,

βp,m =


1, if p = 1, 3, 5,

0, otherwise,

for m = 1, . . . ,M. (5.1.6)

Here, the predictor variables Xm are distributed such that

Xm ∼ MVN(0P ,Σ) where 0P = [0, . . . , 0] ∈ RP and Σi,j ∈ RP×P := Σi,j = 0.25|i−j|.

The residuals, ηt,m are independently distributed such that

ηt,m ∼ N(0, 0.5).
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Now that we have introduced the models that will be used in simulation studies throughout the

remainder of this this thesis we will consider the possibility of reducing the time required to solve

the SBS problem.

5.2 Introduction

In Chapter 3 we introduced the Simultaneous Best-Subset (SBS) problem to select predictors simul-

taneously for systems of linear regression models of the form

yt,1 =

P∑
p=1

xt,p,1βp,1 + ηt,1,

. . .

yt,M =

P∑
p=1

xt,p,Mβp,M + ηt,M .

(5.2.1)

Recall that the SBS problem is defined as,

min

 M∑
m=1

T∑
t=1

(
yt,m −

P∑
p=1

xt,p,mβp,m

)2
 subject to

∣∣∣∣∣
M⋃
m=1

Sm
∣∣∣∣∣ ≤ k. (5.2.2)

Here, Sm = {p : βp,m 6= 0 for p = 1, . . . , P} denotes the predictors selected in model m. The

SBS problem seeks to minimise the sum of squared residuals across M regression models, providing

that at most k unique predictors are included across all models. We denote k as the overall model

sparsity. The sparsity of each regression model fit in this joint approach cannot exceed k and each

model typically assumes the same predictors. In Chapter 3, we described a number of practical

procedures that ensured solving the SBS problem is feasible. These procedures included selecting a

maximum level of sparsity, Kmax << P when P is large. In addition to this a maximum runtime

for the optimisation solver can be provided as good solutions are often found very quickly. We

explained how Kmax can be determined automatically when constraints that exclude predictors with

high pairwise correlation are used. We now consider whether using MIQO models with data specific

parameters can reduce the time to solve the SBS problem.

It is possible to formulate optimisation problems using parameterised formulations. Parame-

terised formulations are used to solve many mixed integer optimisation problems. An example

includes the use of big-M parameters to activate constraints (Dai et al., 2019). Consider the two

constraints

βp,m ≤ ηpM and − ηpM ≤ βp,m, (5.2.3)

where βp,m ∈ R and ηp ∈ {0, 1}. If ηp = 0 then the constraints given in (5.2.3) are satisfied only if

βp,m = 0. The idea is to choose M large enough such that if β∗p,m denotes the optimal value of βp,m in
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a solution, then M > βp,m and −M < βp,m. When ηp = 0, the constraints in (5.2.3) are active, but

inactive otherwise. Soltysik and Yarnold (2010) present a formulation for the multivariable optimal

discriminant analysis model using big-M parameters and discuss an approach to obtain a lower

bound on M , thereby improving the computational efficiency in solving the associated problem.

For the simultaneous best-subset formulations big-M parameters can reduce the feasible solution

space. The idea is to reduce the solution space of the formulation when the integer constraints are

relaxed so that the integer variables are closer to integer solutions in the relaxed problem. Bertsimas

et al. (2016) use this idea to improve the performance of the optimiser for solving the best-subset

problem.

The parameters used in a formulation may be data dependent. This means that a parameter

used in a formulation for one dataset may not give optimal solutions to the mathematical problem

when used with another dataset. This could be because a parameter provided for the optimisation

problem is too small hence the optimal solution to the mathematical problem is not feasible for the

optimisation formulation. We will now demonstrate this with an example. Consider the best-subset

problem

min

 T∑
t=1

(
yt −

P∑
p=1

xt,pβp

)2
 subject to ||β||0 ≤ k. (5.2.4)

The objective is to minimise the sum of squared residuals subject to at most k predictors present in

the model. Bertsimas et al. (2016) present a more structured version of the best-subset problem,

min

 T∑
t=1

(
yt −

P∑
p=1

xt,pβp

)2
 subject to,

−MU ≤ βp ≤MU , for p = 1, . . . , P, (5.2.5a)

||β||1 ≤Ml, (5.2.5b)

||β||0 ≤ k.

Here, two additional types of constraint have been added. Firstly, constraint (5.2.5a) bounds the

maximum absolute value of all regression coefficients. Secondly, the l1 norm, ||β||1 =
∑P
p=1 |βp| is

bounded above by Ml in constraint (5.2.5b). Provided Ml and MU are chosen to be significantly

large then solutions to problem (5.2.5) will also be solutions to problem (5.2.4). Parameters Ml and

MU chosen for one dataset may not be large enough to obtain optimal solutions to problem (5.2.4)

for another dataset.

In Section 3.4.4 we observed how significant improvements to the time to solve the SBS problem

can be achieved by setting the lower bound for all regression coefficients to zero. The motivation

for this was to exploit application specific knowledge. Here we assumed that an increasing value
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in all predictors must increase the value of the response variable. This assumption may not be

appropriate in general. Bertsimas and King (2016) provide a number of techniques that could be

used to estimate data-specific parameters. Despite showing some improvements in the performance

of the solver such as increasing the rate at which the lower-bound to the optimisation formulation

increases, the authors failed to illustrate the practical improvements in the time to solve the best-

subset problem. We shall now investigate the impact of parameterised formulations for solving the

SBS problem.

5.3 Parameterised formulations for the SBS problem

We can generalise the more structured problem (5.2.5) to obtain a more structured problem associated

to the SBS problem. Solutions to the SBS problem (7.1.1) can be obtained by solving

min
β

 M∑
m=1

T∑
t=1

(
yt,m −

P∑
p=1

xt,p,mβp,m

)2
 subject to,

−MU ≤ βp,m ≤MU , for p = 1, . . . , P, m = 1, . . . ,M,

||β||1 ≤Ml,

||β||0 ≤ k.

(5.3.1)

Here, β ∈ RP×M , and provided Ml and MU are chosen sufficiently large the optimal solution to the

problem given in (5.3.1) will provide the optimal solution to the SBS problem. Solving (5.3.1) will

estimate a system of M regression models. Therefore, we could constrain the maximum absolute

value and l1 norm of the regression coefficients for each model. This suggests solving the following

problem,

min
β

 M∑
m=1

T∑
t=1

(
yt,m −

P∑
p=1

xt,p,mβp,m

)2
 subject to,

−Mm
U ≤ βp,m ≤Mm

U , for p = 1, . . . , P, m = 1, . . . ,M,

||β||1 ≤Mm
l ,

||β||0 ≤ k.

(5.3.2)

Again, provided Mm
l and Mm

U are chosen sufficiently large solving (5.3.2) will give us an optimal

solution to the SBS problem given in (7.1.1). In problem (5.3.2) we have the absolute value of the

regression coefficients and l1 norm of the regression coefficients dependent on m. It is possible to

formulate problems (5.3.1) and (5.3.2) as MIQO models. However, a little work is needed to include

the constraint on the l1 norm of the regression coefficients. The constraint

||β||1 ≤Mm
l ,
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can be satisfied by introducing variables u,v ∈ RMP and the constraints,

up,m − vp,m = βp,m, for p = 1, . . . , P, m = 1, . . . ,M,

up,m ≥ 0, for p = 1, . . . , P, m = 1, . . . ,M,

vp,m ≥ 0, for p = 1, . . . , P, m = 1, . . . ,M,

M∑
m=1

P∑
p=1

up,m + vp,m ≤Ml.

We no longer require the SOS1 constraints to control βp,m or ηp, both taking non-zero values. We

can control the zero-valued regression coefficients with MU directly,

βp,m +MUηp ≤MU ⇐⇒ βp,m ≤ (1− ηp)MU , for m = 1, . . . ,M, p = 1, . . . , P, and,

−βp,m +MUηp ≤MU ⇐⇒ −MU (1− ηp) ≤ βp,m, for m = 1, . . . ,M, p = 1, . . . , P.

It is known generally in the optimisation literature that increasing the number of variables in

a formulation to an optimisation problem can increase the time taken to solve the problem (Chen

et al., 2010). Therefore, we will consider solving a more structured formulation of the SBS both with

and without the l1 constraints on the regression variables. We will compare the time taken to solve

the following MIQO models.

Formulation 1: We used this formulation in Chapter 3 to solve the SBS problem. This formulation

does not require any data specific parameters. Formulation 1 is given by

min
β,η

 M∑
m=1

T∑
t=1

(
yt,m −

P∑
p=1

xt,p,mβp,m

)2
 subject to, (5.3.3)

(βp,m, ηp) ∈ SOS1, for p = 1, . . . , P, m = 1, . . . ,M, (5.3.4)

−
P∑
p=1

ηp ≤ k − P, (5.3.5)

βp,m ∈ R, for p = 1, . . . , P, m = 1, . . . ,M, (5.3.6)

ηp ∈ {0, 1}, for p = 1, . . . , P. (5.3.7)
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Formulation-l∞-l1: By adding the constraints for the maximum absolute value and l1 norm of all

regression coefficients we arrive at the following formulation,

min
β,η,u,v

 M∑
m=1

T∑
t=1

(
yt,m −

P∑
p=1

xt,p,mβp,m

)2
 subject to, (5.3.8)

βp,m +MUηp ≤MU , for p = 1, . . . , P, m = 1, . . . ,M, (5.3.9)

−βp,m +MUηp ≤MU , for p = 1, . . . , P, m = 1, . . . ,M, (5.3.10)

−
P∑
p=1

ηp ≤ k − P, (5.3.11)

βp,m ∈ R, for p = 1, . . . , P, m = 1, . . . ,M, (5.3.12)

ηp ∈ {0, 1}, for p = 1, . . . , P, (5.3.13)

up,m ∈ R+, for p = 1, . . . , P, m = 1, . . . ,M, (5.3.14)

vp,m ∈ R+, for p = 1, . . . , P, m = 1, . . . ,M, (5.3.15)

up,m − vp,m = βp,m, for p = 1, . . . , P, m = 1, . . . ,M, (5.3.16)

M∑
m=1

P∑
p=1

up,m + vp,m ≤Ml, (5.3.17)

−MU ≤ βp,m ≤MU , for p = 1, . . . , P, m = 1, . . . ,M. (5.3.18)

The name for this formulation indicates that both the l∞ norm, ||β||∞ = maxp,m β, and l1 norm

constraints are included in this formulation.
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Formulation-lm∞-lm1 : Model specific bounds, Mm
U and Mm

l for m = 1, . . . ,M , can be used to

provide the following formulation,

min
β,η,u,v

 M∑
m=1

T∑
t=1

(
yt,m −

P∑
p=1

xt,p,mβp,m

)2
 subject to, (5.3.19)

βp,m +Mm
U ηp ≤Mm

U , for p = 1, . . . , P, m = 1, . . . ,M, (5.3.20)

−βp,m +Mm
U ηp ≤Mm

U , for p = 1, . . . , P, m = 1, . . . ,M, (5.3.21)

−
P∑
p=1

ηp ≤ k − P, (5.3.22)

βp,m ∈ R, for p = 1, . . . , P, m = 1, . . . ,M, (5.3.23)

ηp ∈ {0, 1}, for p = 1, . . . , P, (5.3.24)

up,m ∈ R+, for p = 1, . . . , P, m = 1, . . . ,M, (5.3.25)

vp,m ∈ R+, for p = 1, . . . , P, m = 1, . . . ,M, (5.3.26)

up,m − vp,m = βp,m, for p = 1, . . . , P, m = 1, . . . ,M, (5.3.27)

M∑
m=1

P∑
p=1

up,m + vp,m ≤Mm
l , (5.3.28)

−Mm
U ≤ βp,m ≤Mm

U , for p = 1, . . . , P, m = 1, . . . ,M. (5.3.29)

The name for this formulation indicates that the l∞ norm constraints that are response specific are

included on the regression coefficients.

Formulation-l∞: Finally, we consider constraining the maximum absolute values of the regression

coefficients without the constraint on the l1 norm as follows,

min
β,η

 M∑
m=1

T∑
t=1

(
yt,m −

P∑
p=1

xt,p,mβp,m

)2
 subject to, (5.3.30)

βp,m +MUηp ≤MU for p = 1, . . . , P, m = 1, . . . ,M, (5.3.31)

−βp,m +MUηp ≤MU for p = 1, . . . , P, m = 1, . . . ,M, (5.3.32)

−
P∑
p=1

ηp ≤ k − P, (5.3.33)

βp,m ∈ R, for p = 1, . . . , P, m = 1, . . . ,M, (5.3.34)

ηp ∈ {0, 1}, for p = 1, . . . , P, (5.3.35)

−MU ≤ βp,m ≤MU for p = 1, . . . , P, m = 1, . . . ,M. (5.3.36)

The name for this formulation indicates that only the l∞ constraints are included in this formulation.
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5.3.1 Estimating the parameters: A demonstration

To determine the values MU , Ml, and Mm
U for m = 1, . . . ,M , we can solve the unparameterised

formulation for the SBS problem given by Formulation-1 in (5.3.3). Denote the optimal solution

obtained by solving Formulation-1 by β∗ then the parameters for the parameterised formulations

can then be estimated using β∗ as follows,

MU = ||β∗||∞ and, Mm
U = ||β∗∗,m||∞.

Ordering the values |β∗(1)| ≥ |β∗(2)| ≥ . . . ≥ |β∗(P )| the parameter Ml can be set

Ml =

k∑
i=1

|β∗(i)|.

Here, k denotes the sparsity of the SBS problem. Estimating parameters for the parameterised

formulations by first solving the unparameterised formulation is not practically sensible. Once the

optimal solution to the SBS problem is obtained there is no value in solving an alternative formulation

of the problem. However, by estimating the parameters in this way we can ensure two things. Firstly,

the parameters are valid. This means that using them will ensure we can obtain the optimal solution

to the SBS problem as the parameters will be sufficiently large. Secondly, these parameters will be

as small as possible. This means that by solving a formulation with parameters any smaller will not

produce optimal solutions to the SBS problem. Further, if we do not observe an improvement in

the time to solve the parameterised formulations when the parameters are derived from the optimal

solution, it is unlikely that we would observe a reduction in time to solve the SBS problem if the

parameters were estimated by any other means.

5.3.2 Motivating demonstration

The purpose of this section is to determine whether it is possible to reduce the time required to

solve the SBS problem using the parameterised formulations given in Section 5.3. We generate 100

datasets from the Application model defined in Section 5.1. We consider the time taken to solve the

SBS problem for k ∈ {5, 10}. Using smaller values of k is unlikely to show large differences in the

time to solve the SBS problem as Gurobi can solve these problems in a very short amount of time.

Figure 5.3.1 shows the box-plots for the total time to solve the SBS problem using the four formu-

lations described in Section 5.3. The results are presented abbreviating Formulation to Form. Figure

5.3.1a shows that the total time to solve the SBS problem using Formulation-l∞-l1, Formulation-l∞-

l1-ws and Formulation-lm∞-l1 appear very similar and much lower in comparison to the unparame-

terised formulation (Formulation-1). The total solve time for solving the SBS problem with k = 10 is

shown in Figure 5.3.1b. Again, the parameterised formulations appear to perform more favourably.
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Formulation-lm∞-l1, which includes the model specific parameters, provides the shortest times to solve

the SBS problem. The largest time taken by Formulation-lm∞-l1 is nearly half the largest times of

any of the other three methods when k = 10.
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(b) k = 10

Figure 5.3.1: Box-plots for the total time to solve the SBS problem, using the formulations proposed

in Section 5.3. The boxes indicate the lower-quartile, median and upper quartile of 100 runtimes for

each formulation. The points identify runtimes greater than 1.5 times the inter-quartile range.

In practise, it is not feasible to determine the parameters for parameterised formulations by first

solving the SBS problem using an unparameterised formulation. We have shown here that a reduction

in the total time to solve the SBS problem can be reduced with parameterised formulations. We will

now consider how to estimate the formulation parameters practically. The idea here is to produce a

good feasible solution to the SBS problem quickly and then use the feasible solution to estimate the

formulation parameters.

5.4 A discrete first-order approach to the SBS problem

Bertsimas et al. (2016) develop a discrete extension of first-order methods in convex optimisation

(Nesterov, 2005) to obtain near optimal solutions to problems of the form,

min
β
g(β) subject to ||β||0 ≤ k. (5.4.1)

Here, we consider one linear regression model only where β ∈ RP×1 and the response and predictor

observations are given by,

y ∈ RT×1 and x ∈ RT×P .

We consider modifying the methods proposed by Bertsimas et al. (2016) to obtain good solutions to
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the SBS problem. Recall from Chapter 2 that the objective in (5.4.1) for the best-subset problem is

g(β) =

T∑
t=1

(
yt −

P∑
p=1

xt,pβp

)2

.

Bertsimas et al. (2016) proposed Algorithm 1 to obtain good feasible solutions to the best-subset

problem. This algorithm uses a convergence tolerance, ε and a parameter, L which must be greater

than or equal to the largest eigenvalue of x′x. The hard-thresholding operator (Donoho and John-

stone, 1994), Hk(c) used in Algorithm 1, is defined as follows. Let β̂ ∈Hk(c) and order the values

|c(1)| ≥ |c(2)| ≥ . . . ≥ |c(P )| then

β̂ =


ci, if i ∈ {(1) . . . , (k)},

0, otherwise.

Here, β̂i is the ith coordinate of β̂. Algorithm 1 applies the hard-thresholding operator to a gradient

descent update of the regression coefficients. Note the dependence of the hard-thresholding operator

on k as it uses the k largest values in absolute value of the input. We could apply Algorithm 1 with

the SBS objective,

g(β) =

M∑
m=1

T∑
t=1

(
yt,m −

P∑
p=1

xt,m,pβp,m

)2

.

However, for k = 1 only one of the MP coefficients will be non-zero. A feasible solution to the

SBS problem will allow up to M coefficients to be non-zero, providing each of these coefficients

corresponds to the same predictor. We modify Algorithm 1 so that at sparsity k, we obtain a

solution of β ∈ RP×M with kM non-zero coefficients. We use the superscript i to denote the ith

estimate of the regression coefficients obtained in our iterative algorithm.

Algorithm 1 Discrete first-order algorithm proposed by Bertsimas et al. (2016) to obtain good

feasible solutions to the best-subset problem.

1: Initialise with β0 ∈ RP×1 such that ||β0||0 ≤ k.

2: for i ≥ 1 do

βi ∈Hk

(
βi−1 − 1

L∇g(βi−1)
)
.

3: if
∣∣g(βi)− g(βi−1)

∣∣ ≤ ε then

4: return βi

5: end if

6: end for

We propose to apply a gradient decent update to the individual model coefficients and modify the

hard-thresholding operator such that the same indices of the non-zero coefficients are chosen for each
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model. Applying a gradient descent on each model should ensure we obtain good coefficient updates

for each model. A modified hard-thresholding operator will ensure that the non-zero coefficients in

each of the M models correspond to the same predictors.

We will first introduce the notation used to describe our Discrete First-Order Algorithm (DFOA)

for the SBS problem. The idea is to initialise an algorithm with a feasible solution to the SBS

problem, and then combine a gradient descent algorithm with a hard-thresholding operator. The

gradient decent step will produce new values for the regression coefficients that reduce the value of

the objective function. However, the new values for the regression coefficients are not guaranteed

to satisfy the sparsity constraint of the SBS problem. We use the hard-thresholding operator to

determine which coefficients should be set to zero in order to satisfy the sparsity constraints. By

initialising the algorithm with a number of feasible solutions we can improve the chance of obtaining

good feasible solutions.

Recall that we are trying to obtain good regression coefficients for the system of linear regression

models (5.2.1). All M × P regression coefficients are denoted β ∈ RP×M . Let the sets, Im(β) be

defined as,

Im(β) = {p : βp,m 6= 0, for p = 1, . . . , P}, for m = 1, . . . ,M.

Here, Im(β) gives the non-zero coefficient indices for model m. If |⋃Mm=1 Im(β)| ≤ k, then each

model has at most k non-zero coefficients since Im(β) ⊆ ⋃Mm=1 Im(β), for m = 1, . . . ,M . The SBS

objective can be re-written,

g(β) =

M∑
m=1

gm(β),

where gm(β) =
∑T
t=1

(
yt,m −

∑P
p=1 xt,p,mβp,m

)2
, gives the residual sums of squares for model m.

The first derivatives with respect to βp,m follow,

d

dβp,m
gm(β) = ∇gm(β) = −2

T∑
t=1

(xt,p,m)

T∑
t=1

(
yt,m −

P∑
p=1

xt,p,mβp,m

)
.

Finally, we propose a modification of the hard-thresholding operator, which we call the modified

hard-thresholding operator to ensure a solution, β ∈ H̃k(β) is feasible for the SBS problem with

sparsity k1. If we order the coefficients as follows,

M∑
m=1

|β(1),m| ≥
M∑
m=1

|β(2),m| ≥ . . . ≥
M∑
m=1

|β(P ),m|,

then let

β̂p,m =


βp,m, if p ∈ {(1), (2), . . . , (k)},

0, otherwise,

1Note that the data has been standardised as described in Chapter 2
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so that β̂ ∈ H̃k(β). The algorithm requires a convergence tolerance, ε and parameters, Lm for m =

1, . . . ,M . We set Lm equal to the largest eigenvalue of the matrix x′∗,∗,mx∗,∗,m, for m = 1, . . . ,M

and ε = 1e−6. Pseudo-code for our algorithm is given by Algorithm 2.

Algorithm 2 A discrete first order algorithm to obtain feasible solutions to the simultaneous best-

subset problem.

1: Initialise with β0 ∈ RP×M such that
∣∣∣⋃Mm=1 I(β∗,m)

∣∣∣ ≤ k
2: for i ≥ 1 do,

3: for m = 1, . . . ,M do

4: βm = βi−1∗,m − 1
Lm
∇gm(β)

5: end for

6: βi ∈ Hk([β1, . . . ,βM ])

7: if |∑M
m=1 gm(β)−∑M

m=1 gm(βi−1)| ≤ ε then

8: return βi

9: end if

10: end for

Algorithm 2 can be initialised by randomly selecting k predictors from {1, . . . , P} to be present in

the regression models, then estimating the associated coefficients by minimising the SBS objective.

We will investigate the quality of solutions obtained from Algorithm 2 by comparing them to the

optimal solutions to the SBS problem in Section 5.6.

Having considered how to obtain feasible solutions to the SBS problem we will now consider how

to estimate parameters for the parameterised formulations given in Section 5.3.

5.5 Estimating formulation parameters

Given a feasible solution, β∗k to the SBS problem with sparsity k, we can estimate the parameters

for the parameterised formulations. Let g(β∗k) = UBk, denote the value of the SBS objective at

the feasible solution β∗k. The objective value g(β∗k) is an upper bound to the objective value of the

SBS problem at an optimal solution. Alternative solutions (maintaining sparsity k) may exist that

reduce the objective further. We estimate parameters for the parameterised formulations using the

following idea. The idea is to consider the maximum and minimum value of all regression coefficients

subject to the objective of the SBS problem not exceeding UBk. We consider ensuring the objective

remains below UBk ignoring the sparsity of the solutions so we can determine a valid upper bound

to all of the regression coefficients. Finding the maximum and minimum values of each βp,m subject
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to g(β∗) ≤ UBk can be stated using two convex quadratically constrained optimisation problems,

u+p,m := max
β

βp,m subject to,

M∑
m=1

P∑
p=1

(
yt,m −

P∑
p=1

xt,p,mβp,m

)2

≤ UBk,
and,

u−p,m := min
β
βp,m subject to,

M∑
m=1

P∑
p=1

(
yt,m −

P∑
p=1

xt,p,mβp,m

)2

≤ UBk.

(5.5.1)

Here, u+p,m and u−p,m are the largest and smallest values respectively of βp,m providing g(β) ≤ UBk,

whilst allowing all other variables to vary. Since all other variables are allowed to take non-zero

values, i.e there is no sparsity constraints on β, the value

MU = max
p,m
{|u+p,m|, |u−p,m|},

gives a valid upper bound to the maximum absolute value of all regression coefficients to the SBS

problem with sparsity k. To see this, consider solving the SBS problem with sparsity ki. Let

gki := min
β

 M∑
m=1

T∑
t=1

(
yt,m −

P∑
p=1

xt,p,mβp,m

)2
 subject to

∣∣∣∣∣
M⋃
m=1

Im (β)

∣∣∣∣∣ ≤ ki,
then gkj ≤ gki if kj ≥ ki. This can be seen as the optimal solution giving gki is a feasible solution to

the SBS problem with sparsity kj . Hence gkj will not exceed gki . Therefore, seeking the minimum

and maximum of all βp,m subject to

M∑
m=1

T∑
t=1

(
yt,m −

P∑
p=1

xt,p,mβp,m

)2

≤ UBk, (5.5.2)

will produce a smaller and larger values for βp,m when minimising and maximising respectively, than

if sparsity constraints were also placed on β.

The parameter Ml can be determined by ordering the maximum absolute values of all bounds

of the regression coefficients. Taking the largest kM regression coefficients in absolute value as we

have M regression models each with sparsity k. Order the bounds as follows,∣∣∣u(sgn1)
(p1,m1)

∣∣∣ ≥ ∣∣∣u(sgn2)
(p2,m2)

∣∣∣ ≥ . . . ≥ ∣∣∣u(sgnMP )
(p2MP ,m2MP )

∣∣∣ .
Then, Ml =

∑kM
i=1 u

(sgni)
(pi,mi)

gives a valid upper bound for the l1 norm of the regression coefficients.

We have not determined whether it is possible to determine valid bounds for the model specific l1

norm, Mm
l and maximum absolute bound, Mm

U used in Formulation-lm∞-l1. We leave further details

of this for the discussion in Section 5.7.

Bertsimas et al. (2016) suggest solving the convex quadratic programs given in 5.5.1 (with only

one response variable) with an optimisation solver. However these solutions are available analytically.

This is considered in the following section.
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5.5.1 An analytical approach

We will now explain how the solutions to the convex quadratic programs given in (5.5.1) are available

in closed form. The idea here is to fix βp,m and find an analytical solution for all other coefficients,

βp∗,m∗ where p∗ 6= p and m∗ 6= m. Then, fixing the values of βp∗,m∗ for all p∗ 6= p and for all m∗ 6= m,

we solve a quadratic equation to find both the largest and smallest values of βp,m, providing the

objective of the SBS problem does not exceed UB.

It is well known that the solution to the least squares problem

min
β

 T∑
t=1

(
yt −

P∑
p=1

xt,pβp

)2
 = (y − xβ)′(y − xβ)

is given by the least squares estimator β̂ = (x′x)−1x′y. Consider the following modified least squares

problem,

g(β(−i)) := min
β1,...,βi−1,βi+1,βP

T∑
t=1

yt −∑
p 6=i

xt,pβp

2

where we remove predictor Xi and variable βi from the minimisation problem. This is available in

closed form by removing the column of x relating to predictor Xi. Let x(−i) ∈ RT×(P−1) denote

the predictor matrix with predictor Xi removed. Then, the solution to the modified least squares

problem is given by β̃ = (x′(−i)x(−i))
−1x′(−i)y. We find the values of βp, where p 6= i, that minimise

the modified least squares objective. Given the objective of the modified least squares problem,

g(β(−p)) we solve the quadratic equation

T∑
t=1

xt,iβ
2
i +

T∑
t=1

xt,iytβi +

T∑
t=1

yt = UBk − g(β(−i)). (5.5.3)

Here, UBk is a valid upper bound to the best-subset problem with sparsity k. The quadratic equation

(5.5.3) can be solved using the quadratic formula. We will now write the SBS objective using matrix

notation and show how bounds for the variables for the SBS problem can be obtained analytically.

Let,

β−(p,m) =



β1,1

. . .

βp−1,m

βp+1,m

. . .

βp,m


and, x−(m,p) =



x1,1,1 0

. . .

x1,p−1,m x1,p+1,m

...
...

xT,p−1,m xT,p+1,m

. . .

0 xT,P,M



.
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The above notation indicates that the row corresponding to βp,m is removed from all regression

coefficients and the column corresponding to predictor p for model m from x respectively. We define

the modified simultaneous least squares estimator

β̂−(pj ,mi) = arg min

 ∑
m 6=mi

T∑
t=1

ỹt,m −∑
p 6=pj

xt,p,mβp,m

2


= (x′−(pj ,mi)
x−(pj ,mi))

−1x′−(pj ,mi)
ỹ,

where ỹt,m = yt,m − xt,p,mβp,m. The closed form expression for the modified least squares estimator

is given by

g−(p,m)(β̂−(p,m)) =||ỹ − x−(p,m)β̂−(p,m)||22

=||ỹ − x−(p,m)(x
′
−(p,m)x−(p,m))

−1x−(p,m)ỹ||22

=(ỹ − x−(p,m)(x
′
−(p,m)x−(p,m))

−1x−(p,m)ỹ)′×

(ỹ − x−(p,m)(x
′
−(p,m)x−(p,m))

−1x−(p,m)ỹ)

=ỹ′(IMT − x−(p,m)(x
′
−(p,m)x−(p,m))

−1x−(p,m))
′×

(IMT − x−(p,m)(x
′
−(p,m)x−(p,m))

−1x−(p,m))ỹ

=ỹ′Ap,mỹ

=(y − xp,mβp,m)′Ap,m(y − xp,mβp,m)

=x′p,mAp,mxp,mβ
2
p,m − 2y′Ap,mx(p,m)βp,m + y′Ap,my.

(5.5.4)

Setting (5.5.4) equal to UBk, gives us a quadratic equation in βp,m as follows,

x′(p,m)Ap,mx(p,m)β
2
p,m − 2y′Ap,mx(p,m)βp,m + y′Ap,my = UBk. (5.5.5)

Here,

Ap,m = (IMT − x−(p,m)(x
′
−(p,m)x−(p,m))

−1x−(p,m))
′(IMT − x−(p,m)(x

′
−(p,m)x−(p,m))

−1x−(p,m)).

Solving (5.5.5), gives us the minimum and maximum values of βp,m, such that the equation given in

(5.5.2) holds.

So far in this chapter we have presented a number of parameterised MIQO formulations for the

SBS problem and shown that by using these formulations it is possible to reduce the time required

to solve the SBS problem. We have developed a DFOA to quickly determine feasible solutions to

the SBS problem and shown how the SBS objective value at these feasible solution can be used to

determine bounds on the regression coefficients. In the following section we investigate the quality

of the solutions obtained using our DFOA and whether the MIQO formulations presented in Section

5.3 can be used in practice to reduce the time required to solve the SBS problem.
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5.6 Simulation study

In this simulation study we will generate synthetic data from the models presented in Section 5.1.

We aim to determine how feasible solutions to the SBS problem provided by the DFOA presented

in Section 5.4 compare to the optimal SBS solution. In addition to this, we evaluate the practical

reduction in time to solve the SBS problem using the MIQO formulations presented in Section 5.3.

5.6.1 Performance of the DFOA algorithm

In Section 5.4 we described a DFOA to quickly obtain feasible solutions to the SBS problem. In

this section we investigate how quickly the DFOA can obtain solutions. We simulate data from the

Scaling model given in Section 5.1 and determine how the DFOA scales with M , the number of

response variables and P , the number of predictor variables. We run each simulation 50 times and

present the average time to implement the DFOA. To investigate how the algorithm scales with P

and M we fix M = 5 and P = 30 respectively. Figure 5.6.1 shows how the algorithm scales. Figure

5.6.1a shows that the DFOA appears to scale linearly with M . In contrast, Figure 5.6.1b shows that

the DFOA appears to scale quadratically with P . Note the average time for Figure 5.6.1b is shown

on the square-root scale.

We now consider how the DFOA performs in comparison to the SBS approach. The DFOA

is used to quickly obtain solutions to the SBS problem but the SBS approach finds the optimal

solutions to the SBS problem. We compare the performance using a number of criteria. We generate

750 observations from each model and split randomly to create a training set of 500 and validation

set of 250 observations. We average all results over 50 simulations. We record the total time to solve

both the SBS problem and implement the DFOA which we present as Total Runtime. We record

the mean-squared estimation error of the regression coefficients defined as

MSEe(β) =
1

MT

M∑
m=1

P∑
p=1

(
βp,m − β̂p,m

)2
.

Here, β̂p,m denotes the estimate of the true regression coefficient value βp,m. We also compare the

mean-squared prediction accuracy of the system given by,

MSEp(β) =
1

MP

M∑
m=1

T∑
t=1

(yt,m − ŷt,m)
2
.

Here, ŷt,m is the predicted value of yt,m where yt,m corresponds to an observation in the test set.

We also consider how many of the true predictors the approach selects. Finally, denote the SBS

objective value at an optimal solution as g∗. Then, we compare the relative accuracy of the objective
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(Bertsimas et al., 2016) to the best solution provided by the DFOA as,

Relative accuracy =
g∗ − g
g∗

.

Here, g denotes the lowest objective value of SBS problem given the 50 solutions provided by the

DFOA.
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Figure 5.6.1: Scaling of the discrete first order algorithm as the number of predictors, P and the

number of regression models, M increases.

We generate data from the Adjacent, Application and Uniformly spaced models given in Section

5.1 and apply the DFOA using three levels of sparsity. The true model sparsity is indicated in bold

and we choose a value both greater and less than this value to compare. The relative accuracy of the

DFOA is shown in Table 5.6.1. We can see that when ρ = 0.25 the DFOA was able to identify the

optimal value when k ≤ k∗, where k∗ is the true model sparsity for all three models. When ρ = 0.95,

the DFOA was able to find the optimal solution for the Adjacent model when k = 1. Clearly, the

DFOA performs more favourably as a predictor selector when the correlation amongst the predictors

is low.

Table 5.6.2 shows the performance measures for the models estimated using the SBS and DFOA

approaches when applied to data generated from the Uniformly spaced model when ρ = 0.95. The

average time to implement the DFOA is 50 times is less than 0.2 seconds for each level of sparsity.

The time to solve the SBS problem is under 0.5 seconds when k ∈ {2, 5}. However, when k = 25 the

time to solve the SBS problem takes 34 seconds on average. Despite the SBS approach taking over

180 times longer on average than the DFOA approach, the mean-squared estimation of the system

is identical. Further, the mean-squared prediction error of the system is slightly lower for solutions

to the SBS problem provided by the DFOA, and the DFOA correctly identified all five predictors

used to generate the response data.

Table 5.6.3 shows the performance measures for the models estimated using the SBS and DFOA

approaches when applied to data generated from the Application model when ρ = 0.25. We can
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Table 5.6.1: Relative accuracy of the solutions to the SBS problem produced by the DFOA algorithm.

Adjacent model Application model Uniformly spaced model

k = 1 k = 3 k = 7 k = 3 k = 5 k = 8 k = 2 k = 5 k = 25

ρ = 0.95 0 0.077 0.0276 0.3241 0.3179 0.1533 0.1253 0.6478 0.0068

ρ = 0.25 0 0 0.0027 0 0 0.0025 0 0 0.0043

see that the DFOA takes less than 2.5 seconds for each level of sparsity whilst the SBS approach

actually solves the SBS problem in under one second, for all three levels of sparsity. Here, the time

to solve the SBS problem to optimality is faster than implementing the DFOA approach 50 times.

In this example the DFOA found the optimal solution in each simulation for all levels of sparsity.

Table 5.6.2: Performance of the DFOA when data is generated from the Uniformly spaced model

and ρ = 0.95.

k = 2 k = 5 k = 25

SBS DFOA SBS DFOA SBS DFOA

Total Runtime 0.20 0.09 0.07 0.10 34.44 0.19

MSE Estimation 0.16 0.28 0.00 0.16 0.01 0.01

MSE Prediction 1.64 1.88 0.25 0.73 0.27 0.26

# True Predictors 2 1.08 5 2.04 5 5

In Section 5.A, we provide the summary results comparing the DFOA and the SBS approach for

the Adjacent, Application and Uniformly spaced models when ρ = 0.95 and ρ = 0.25 that are not

presented here. We find that the DFOA is consistent in the time to provide solutions to the SBS

problem taking under three seconds on average in all simulations. In contrast, we found that the time

to obtain the optimal solution to the SBS problem could vary much more, taking over 30 seconds on

average in some cases. When ρ = 0.25, the DFOA appears to be able to identify the predictors used

to generate the response variables. Hence, the mean-squared error in estimation and prediction for

the system is very similar to that obtained from the optimal solution to the SBS problem. However,

when ρ = 0.95 the predictors become more correlated and are more indistinguishable between one-

and-other and the DFOA is not able to identify the predictors generating the response variables as

accurately. The mean-squared estimation error of the system is typically worse for models estimated

using the DFOA, although since the predictors are highly correlated, the mean-squared prediction

error of the two approaches is very similar.

We can conclude that the DFOA can provide very good solutions to the SBS problem when
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Table 5.6.3: Performance of the DFOA when data is generated from the Application model and

ρ = 0.25.

k = 3 k = 5 k = 8

SBS DFOA SBS DFOA SBS DFOA

Total Runtime 0.09 2.04 0.15 2.41 0.82 2.42

MSE Estimation 0.00 0.00 0.00 0.00 0.00 0.00

MSE Prediction 0.37 0.37 0.25 0.25 0.26 0.26

# True Predictors 3 3 5 5 5 5

the correlation amongst predictors is low. The DFOA is not able to identify the predictors used

to generate the response variables when the correlation amongst the predictors is high. However,

when the correlation amongst the predictors is high, the DFOA can estimate models with predictive

performance comparable to the optimal solution of the SBS approach. Given a good solution to the

SBS problem, we now compare the performance of the two methods used to estimate the parameters

of the formulations presented in Section 5.3.

5.6.2 Estimating formulation parameters

In Section 5.5 we discussed two methods for estimating the parameters for the MIQO models pre-

sented in Section 5.3. The first method was based on solving the convex quadratic programming

problems proposed by Bertsimas et al. (2016). The second method used a closed form solution. In

order to determine how best to estimate the parameters for the parameterised SBS formulations we

now consider how each method scales with Mand P . We use Gurobi (Gurobi Optimization, 2018)

to solve all MP convex quadratic programs given in (5.5.1) giving the bounds on each regression

coefficient. The closed form method was implemented in Python3.6 (Python Software Foundation,

2017) using numpy1.16.1 (Oliphant, 2006). We average our results over 25 simulations for each value

of M and P . We simulate data from the Scaling model. To determine how the two approaches scale

with M we fix P = 30. To determine how the two approaches scale with P we fix M = 5.

Figure 5.6.2 shows how the algorithms scale as M increases. The vertical axis shows the square-

root of the total time taken. Figure 5.6.2a shows that solving all convex quadratic programs appear

to scale quadratically with M . However, the parabola in Figure 5.6.2b shows that the closed form

implementation scales at a worse than quadratic rate.

The closed form and convex quadratic program methods appear to scale quadratically with

the number of predictors. Figure 5.6.3 shows the total time (on square root sale) to estimate the

formulation parameters as P increases using the convex quadratic programs and the closed form
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Figure 5.6.2: The runtime of the Convex Quadratic Programming and Closed Form methods for

estimating the SBS formulation parameters, as M increases.
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Figure 5.6.3: The runtime of the Convex Quadratic Programming and Closed Form methods for

estimating the SBS formulation parameters, as P increases.

expression. Despite both algorithms scaling quadratically with P , the total runtime of the closed

form method is considerably higher than using the convex quadratic programs. With P = 35 and

M = 5 the closed form approach took over 70 seconds on average to estimate all of the parameters. In

comparison, the convex quadratic program approach took a little over 3 seconds on average. It may be

possibly to improve the computational time of the closed form approach by using specially designed

routines that take advantage of the block diagonal matrices. We do not consider implementing this

as Gurobi appears to solve all of the convex quadratic programs quickly.

Now that we have determined which method we will use to estimate the formulation parameters,

we will investigate the time to solve the SBS problem using the parameters estimated from the data.

5.6.3 Practical impact of warmstarts and parameterised formulations

We now consider the practical advantages of estimating the parameters used in parameterised for-

mulations of the SBS problem. Particularly, we investigate if we can solve the SBS problem quicker

using the parameterised formulations given Section 5.3 where we estimate the parameters using the
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methods developed in Section 5.5.

Here, we compare the time required to solve the SBS problem using the following formulations,

Formulation-1, Formulation-l∞-l1, and Formulation-l∞. Formulation-1 does not use any parameters.

Formulation-l∞-l1 requires the parameters MU ≥ ||β||0, and Ml ≥ ||β||1. This formulation contains

M × P additional variables in comparison to Formulation-1 due to the l1 norm constraint. Finally,

Formulation-l∞ requires the parameter MU ≥ ||β||0. Each formulation is solved with and without

a warmstart. These results will be presented as Form-*-ws and Form-* respectively. We do not

compare Formulation-lm∞-lm1 as we have not considered whether it is possible to obtain provable

bounds on the model specific parameters and leave this to a discussion in Chapter 8. We simulate

data from the Application model and consider the time to solve the SBS problem using sparsity

levels k ∈ {5, 10}. We use the same simulation study given in Section 5.3.2 but here the parameters

are estimated from the data rather than determined from optimal solutions to the SBS problem.
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Figure 5.6.4: The time to solve the SBS problem using three formulations discussed in Section 5.3.

Each formulation is used with and without warmstarts, and the parameters are estimated using the

CQP approach discussed in Section 5.5.

Figure 5.6.4 shows the box-plots of the time to solve the SBS problem with each formulation with

and without using warmstarts. It appears that Formulation-l∞ can produce the optimal solution for

the SBS problem fastest at the true level of sparsity (k = 5). The spread of total solve times appears

similar across all methods and there does not appear to be any significant advantage to providing

the solver with a warmstart solution. However, observing the median times for each formulation,

there appears to be less than 0.075 seconds difference. When k = 10, the difference between median

times to solve the SBS problem using each formulation is greater. Here, Formulation-1, that does

not require any parameters appears to solve the SBS problem the fastest. Further, this formulation

appears to have the smallest variance in the solve times. Formulation-l∞ follows Formulation-1 in the

ranking for the fastest solve times although the spread of solve times is slightly larger. Formulation-
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l∞ appears to take around 3 seconds more to solve the SBS problem. These results are surprising

as the feasible range of the continuous variables has been reduced. The solve times for Formulation-

l∞-l1 are much higher than the other two formulations. This is likely to be caused by a greater

number of variables in the optimisation problem. When k = 10, there appears to be no significant

improvement by supplying the solver with a warmstart solution.

5.7 Conclusion

In this chapter we have determined that it is possible to reduce the time to solve the SBS problem

using MIQO programs with data driven parameters. Initially we achieved this by obtaining the

optimal solution to the SBS problem. This approach to estimating the parameters was of little

practical use. In Section 5.4 we developed a DFOA that could produce good solutions to the SBS

problem. The DFOA performed well as an approach to simultaneously select predictors when the

predictor correlation is low and produced models with predictive performance comparable to models

estimated using the optimal solution to the SBS problem. In Section 5.5 we proposed two methods

for estimating the parameters for the MIQO models given in Section 5.3, given good solutions to the

SBS problem. When estimating the parameters using a solution obtained from the DFOA we found

that the time to solve the SBS was not necessarily reduced.

5.A Additional results for the performance of the DFOA

In this appendix we provide additional results to Section 5.6. These tables show the results for the

models estimated using 50 random initialisations of the DFOA which provide feasible solutions to

the SBS problem.

Table 5.A.1: The performance of the models estimated using the DFOA and optimal solutions to

the SBS problem. The data is generated from the Adjacent model with ρ = 0.95.

k = 1 k = 3 k = 7

SBS DFOA SBS DFOA SBS DFOA

Total Runtime 0.07 0.04 0.10 0.10 5.51 0.12

MSE Estimation 0.03 0.03 0.00 0.02 0.00 0.00

MSE Prediction 0.30 0.30 0.25 0.27 0.26 0.26

# True Predictors 1 1 3 1.56 3 2.31
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Table 5.A.2: The performance of the models estimated using the DFOA and optimal solutions to

the SBS problem. The data is generated from the Adjacent model with ρ = 0.25.

k = 1 k = 3 k = 7

SBS DFOA SBS DFOA SBS DFOA

Total Runtime 0.07 0.54 0.08 2.26 3.47 2.34

MSE Estimation 0.01 0.01 0.00 0.00 0.00 0.00

MSE Prediction 0.67 0.67 0.25 0.25 0.26 0.26

# True Predictors 1 1 3 3 3 3

Table 5.A.3: The performance of the models estimated using the DFOA and optimal solutions to

the SBS problem. The data is generated from the Application model with ρ = 0.95.

k = 3 k = 5 k = 8

SBS DFOA SBS DFOA SBS DFOA

Total Runtime 0.13 0.09 0.21 0.11 3.14 0.12

MSE Estimation 0.00 0.06 0.00 0.03 0.00 0.02

MSE Prediction 0.37 0.56 0.25 0.38 0.26 0.30

# True Predictors 3 1.08 4.88 2.08 4.84 2.92

Table 5.A.4: The performance of the models estimated using the DFOA and optimal solutions to

the SBS problem. The data is generated from the Uniformly-spaced model with ρ = 0.25.

k = 2 k = 5 k = 25

SBS DFOA SBS DFOA SBS DFOA

Total Runtime 0.07 1.04 0.07 2.05 38.39 2.51

MSE Estimation 0.09 0.09 0.00 0.00 0.00 0.00

MSE Prediction 3.27 3.27 0.25 0.25 0.27 0.26

# True Predictors 2 2 5 5 5 5



Chapter 6

Fast simultaneous predictor

algorithms

In Chapter 5 we found that good predictive performance can be achieved by estimating systems

of linear regression models using good feasible solutions to the SBS problem where these solutions

were obtained quickly from a DFOA. In this chapter we consider simultaneous predictor selection

approaches that can be implemented much faster than the SBS approach and show that these

approaches perform well in practise.

This chapter is organised as follows. In Section 6.1 we describe the simultaneous predictor

selection approaches and how to implement them. In Section 6.2 we carry out a simulation study to

compare the performance of these approaches. We conclude this chapter in Section 6.3.

6.1 The approaches

The first implementation we consider is a stepwise algorithm, naturally extending the popular step-

wise algorithm used for a single linear regression model. The second approach is a hybrid, mixing

the best-subset approach with stepwise selection. Finally, we consider adapting the Simultaneous

Variable Selection (SVS) method proposed by Turlach et al. (2005). Details of the three approaches

follow.

6.1.1 A stepwise approach:

An obvious fast alternative to the best-subset implementation of simultaneous variable selection is

a stepwise algorithm. The idea is to iteratively add (or remove) the predictor that most improves

106
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(or worsens) the simultaneous least squares objective. A forward stepwise implementation can be

formulated as a MIQO optimisation problem. The advantages of formulating a MIQO program is

that the automation constraints that we introduced in Chapter 3 can be added easily, resulting in a

fast approach that could be used to automate a modelling procedure. The initial MIQO formulation

could be

min
β,η

 M∑
m=1

T∑
t=1

(
yt,m −

P∑
p=1

xt,p,mβp,m

)2
 subject to,

−
P∑
p=1

ηp ≤ k − P,

(βp,m, ηp) ∈ SOS1,

βp,m ∈ R, p = 1, . . . , P, m = 1, . . . ,M,

ηp ∈ {0, 1}, p = 1, . . . , P.

(6.1.1)

This formulation is equivalent to Formulation 1 given in Section 5.3 with k = 1. When a predictor is

selected we can remove the associated binary variable from the formulation that has sparsity k + 1.

Let the set Sk denote the selected predictors for the stepwise implementation at sparsity k. Then, a

stepwise formulation for sparsity k may be given by

min
β,η

M∑
m=1

 T∑
t=1

(
yt,m −

P∑
p=1

xt,p,mβp,m

)2
 subject to, (6.1.2a)

−
∑

p∈P\Sk−1

ηp ≤ 1− |P \ Sk−1|, (6.1.2b)

(βp,m, ηp) ∈ SOS1, p ∈ P \ Sk−1, m = 1, . . . ,M, (6.1.2c)

βp,m ∈ R, p = 1, . . . , P, m = 1, . . . ,M, (6.1.2d)

ηp ∈ {0, 1}, p ∈ P \ Sk−1. (6.1.2e)

Formulation (6.1.2) has a computational advantage over the SBS formulations. Firstly, at stage k

there are only P−k+1 possible combinations of predictors to select. Secondly, the number of integer

variables decreases as the sparsity level increases.

It is not entirely necessary to formulate a MIQO problem to implement a stepwise algorithm.

Alternatively, a greedy search algorithm that fits all of the models iteratively, and finds the best

predictor to add to the models simultaneously could be used. However, as was previously mentioned,

the MIQO approach allows us to include our automated constraints introduced in Chapter 3.
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6.1.2 A hybrid approach:

By formulating a stepwise approach as a MIQO program, it is easy to see how to create a hybrid

between a stepwise selection procedure and the best-subset selection procedure. A forward stepwise

approach does not guarantee to find the optimal solution to the SBS problem for any level of sparsity

when k > 1. This is because all selected predictors must remain in the model as the sparsity

of the model increases. However, an approach need not be this restrictive. With increases in

computational power and methods for optimisation highlighted by Bertsimas et al. (2016), it is

possible to trade-off the combinatorial aspect of the problem with a stepwise approach. We propose

a hybrid stepwise/best-subset approach that allows r previously selected variables to be replaced.

Miller (1984) considered an approach where selected predictors are replaced in turn. This differs

from our proposed approach as we consider replacing r predictors and are guaranteed to find the

best substitutes. When r is set to zero, we have standard stepwise. When seeking a model with

sparsity k and r = k we have the standard best-subset implementation. Any value 0 < r < k gives a

hybrid approach at which the computational demands should be lower than a best-subset approach,

but consequently higher than a stepwise approach. We could formulate such an approach as follows,

min
β,η

 M∑
m=1

T∑
t=1

(
yt,m −

P∑
p=1

xt,p,mβp,m

)2
 subject to,

−
P∑
p=1

ηp ≤ k − P,

−
∑

p∈Sk−1

ηp = k − r − 1− |Sk−1|, (6.1.3a)

(βp,m, ηp) ∈ SOS1, for p = 1, . . . , P, m = 1, . . . ,M,

ηp ∈ {0, 1}, p = 1, . . . , P.

Here, constraint (6.1.3a) ensures that k − r of the previously selected predictors are included in the

model. Stepwise approaches have typically been criticised as they do not guarantee the best-subset

for any given level of sparsity, see for example Beale (1970b) and Mantel (1970). By allowing at

most r previously selected variables to be exchanged, we are more likely to obtain the best-subset

for a given level of sparsity k.

6.1.3 Modified simultaneous variable selection:

Turlach et al. (2005) proposed a Simultaneous Variable Selection (SVS) approach for selecting pre-

dictors in multi-response models. Multi-response models have been used by Breiman and Friedman
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(1997) and Similä and Tikka (2005) to improve predictive performance in multivariate response

regression models. Multi-response models take the form

yt,m =

P∑
p=1

xt,pβp,m + ηt,m, for m = 1, . . . ,M.

Here, one predictor matrix x ∈ RT×P is used to predict values in all M response variables. We

assume that a predictor matrix xm ∈ RT×P is available for each of the M regression models, where

xm can be thought of as a realisation of the P predictors for each of the M models. Following the

LASSO method of Tibshirani (1996), Turlach et al. (2005) arrived at the following problem,

min
β

 T∑
t=1

M∑
m=1

(
yt,m −

P∑
p=1

xt,pβp,m

)2
 subject to

P∑
p=1

max{|βp,1|, . . . , |βp,m|} ≤ ν. (6.1.4)

Problem (6.1.4) for M = 1 gives the LASSO (Tibshirani, 1996) problem in constrained form. Using

a convex quadratic optimisation formulation problem (6.1.4) can be written as

min
β,z

 M∑
m=1

T∑
t=1

(
yt,m −

P∑
p=1

xt,pβp,m

)2
 subject to, (6.1.5a)

uM ⊗ z − β ≥ 0, (6.1.5b)

uM ⊗ z + β ≥ 0, (6.1.5c)

ν − uPz ≥ 0. (6.1.5d)

Here, z ∈ RP and uM ∈ RM are auxiliary variables and β ∈ RMP . The constraints (6.1.5b) ensure

that βp,m ≤ zp for m = 1, . . . ,M and constraints (6.1.5c) ensure that −βp,m ≤ zp for m = 1, . . . ,M .

Collectively, (6.1.5b) and (6.1.5c) ensure that −βp,m ≤ zp ≤ βp,m for m = 1, . . . ,M so that with

(6.1.5d) we have
∑P
p=1 max{|βp,1|, . . . , |βp,m|} ≤ ν. All regression coefficients in a solution to (6.1.5)

will have a non-zero value. Turlach et al. (2005) propose the following to select predictors. Let

J = {p : max{βp,1, . . . , βp,m} > ν10−4 for p = 1, . . . , P}, (6.1.6)

then the coefficients βm,p for p /∈ J and for m = 1, . . . ,M should be set to zero.

The SVS approach was proposed as an exploratory tool. We propose to modify this approach to

determine a suitable subset of predictors and then use the simultaneous least squares objective to

estimate the coefficients of the selected variables much like the idea of the relaxed LASSO (Mein-

shausen, 2007). The convex quadratic program we solve to determine the subsets of predictors
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follows,

min
β,z

 M∑
m=1

T∑
t=1

(
yt,m −

P∑
p=1

xt,p,mβp,m

)2
 subject to,

uM ⊗ z − β ≥ 0,

uM ⊗ z + β ≥ 0,

ν − uPz ≥ 0.

(6.1.7)

Here, the objective is modified to use the simultaneous least squares objective. We use the same

heuristic as Turlach et al. (2005) for selecting the non-zero coefficients. A suitable range of values

for ν can be determined easily. For ν >
∑M
m=1

∑P
p=1 β

∗
p,m the solution to (6.1.7) will be β∗, the

simultaneous least squares estimate. So solving (6.1.7) for a range of ν ∈ (0,
∑M
m=1

∑P
p=1 β

∗
p,m) will

help us produce a range of suitable subsets. Let J denote the selected predictors using some value

of the tuning parameter ν, then the coefficients are estimated as

β̂ = arg min

 M∑
m=1

T∑
t=1

(
yt,m −

P∑
p=1

xt,p,mβp,m

)2
 subject to,

βj,m = 0, for j /∈ J , for m = 1, . . . ,M.

We could also consider applying the simultaneous shrinkage operator here.

Now that we have introduced each of the simultaneous predictor selection approaches we will

study how they perform using a simulation study. We will investigate the total time needed to im-

plement each approach and how the models estimated using each approach perform, when compared

to models estimated using the SBS approach.

6.2 Simulation study

Firstly, we will consider how each approach scales with M and P . The Stepwise approach produces

at most P models, a model is produced at each stage of the Stepwise approach. We will consider

the time to implement the Hybrid approach when r = 1 which we denote Hybrid-1. The Hybrid

approach also produces at most P models, one for each level of sparsity, k = 1, . . . , P . The number of

models produced by the SVS approach is not easy to determine a priori. This is because it depends

on the size of the coefficients in a solution to the convex quadratic problem given in (6.1.7) and the

heuristic given in (6.1.6). We will implement the modified SVS approach using 100 values of ν. We

have found that the number of predictors selected using the heuristic changes more frequently for

small values of ν. In order to obtain the largest number of unique subsets of selected predictors for

the modified SVS approach we space ν on a logarithmic scale.
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We generate 100 datasets from the Scaling model given in Section 5.1, and present the average

time taken to implement each approach. To investigate how the approaches scale with P we fix

M = 5 and to investigate how they scale with M we fix P = 35.
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Figure 6.2.1: Scaling of the Hybrid, Stepwise, and SVS simultaneous predictor selection approaches

with M , the number of response variables

Figure 6.2.1 shows how the approaches scale withM . All approaches appear to scale quadratically.

The Hybrid-1 approach takes on average 400 seconds to solve problems with M = 35 and P = 35. In

Section 3.2.1 we observed that with M = 5 and P = 35 the SBS approach took around 400 seconds

to solve just one SBS problem with k = 35
2 . Here, 35 MIQO programs have been solved with 30

more response variables. The Stepwise approach is considerably faster, taking only 20 seconds to

produce models for each level of sparsity. With M = 5 and P = 35 the SVS approach takes around

one minute to solve all 100 problems given each value of the tuning parameter.

The SBS approach scaled poorly with P . Figure 6.2.2 shows how the approaches scale with P .

The Hybrid approach appears to scale exponentially with P , but we were able to obtain the models

for all levels of sparsity in under 3 minutes with P = 50. This can be seen in Figure 6.2.2a. The

Stepwise method appears to scale quadratically with P , (see Figure 6.2.2b) and the SVS approach

appears to scale approximately linearly with P (see Figure 6.2.2c).
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Figure 6.2.2: Scaling of the Hybrid, Stepwise, and SVS simultaneous predictor selection approaches

with P the number of predictors variables.
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The simultaneous predictor selection approaches given in Section 6.1 can be implemented much

faster than the SBS approach. It is now important for us to determine if the quality of the regression

models estimated using these approaches is as good as the models estimated using the SBS approach.

We simulate 25 datasets from the Adjacent, Application and Uniformly-spaced models defined in

Section 5.1. The results for each dataset will be provided using the abbreviated names, Adj, App

and Unif respectively. The value of ρ used follows the abbreviated names. Each dataset will

consist of 1000 observations for each response variable and we split the observations randomly into

training/test/validation sets to the ratios 50%/25%/25% respectively. The following applies for each

approach. We apply the approach to the training data, using each value of the associated tuning

parameters. For each value of the tuning parameter we calculate the mean-squared prediction error

of the associated system of linear regression models using the test data. Then, we select the model

associated to the tuning parameter that gives the lowest prediction error on the validation data.

We compare the selected models for each approach using a number of criteria. These include the

mean-squared prediction error of the system on the validation data, the mean-squared estimation

error of the system, and the average sparsity of each of the models. We will also provide the time to

implement each approach as a comparison. Each of these criteria is now discussed in turn.

6.2.1 Average time to implement each approach:

The motivation for developing alternatives to the SBS approach was to obtain more computationally

efficient methods for simultaneously selecting predictors. Figure 6.2.3 compares the natural logarithm

of the time in seconds to implement each approach. We can see that the Stepwise approach is

consistently the fastest, followed by SVS, Hybrid-1, Hybrid-3 and then the SBS approaches.
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Figure 6.2.3: The average time to implement each simultaneous predictor selection method. Each

group of five points shows the average time to implement each method on a log scale, for of the

synthetic data models, and for each of the five simultaneous predictor selection methods

It is not easy to determine the actual times to implement each approach by eye in Figure 6.2.3.
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Therefore, we will now consider the average time taken to implement each approach for the imple-

mentation times shown in Figure 6.2.3. On average, both the Stepwise and SVS approaches were

implemented in under four seconds. The Hybrid-1 approach took less then 20 seconds and both the

Hybrid-3 and SBS approaches exceeded 1100 seconds. The value of r, that determines how many

previously selected predictors in the Hybrid can be substituted, plays a significant role in the total

time to implement the Hybrid approach. In the examples presented in Figure 6.2.3, we observe in

excess of a 55 times factor speedup from the Hybrid-3 approach to the Hybrid-1 approach.

6.2.2 Average model sparsity:

We calculate the average model sparsity for the selected models for each approach. We define the

estimated model sparsity as

k̂ =
1

5

5∑
m=1

35∑
p=1

Iβ̂p,m 6=0.

Here, indicator Iβ̂p,m
takes the value 1 if the estimated coefficient β̂p,m is not equal to zero. The

estimated model sparsity is then averaged over the 25 simulations. Figure 6.2.4 shows the average

model sparsity for each of the approaches. The black horizontal lines indicate the true model sparsity.

The models selected for the SBS, Stepwise, Hybrid-1 and Hybrid-3 approaches were identical.

In most simulations, the models selected for the SVS approach typically included slightly more

predictors on average than all other approaches. With the exception of Uniformly spaced model,

with ρ = 0.95 and σ2
ηm = 2, for m = 1, . . . , 5 the average sparsity of the model selected for the SVS

approach typically contained only one more predictor than the other approaches.
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Figure 6.2.4: The average sparsity of the models fit by the simultaneous predictor selection ap-

proaches.
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6.2.3 Mean-squared estimation error:

For each system of regression models estimated using the simultaneous predictor selection approaches

we calculate the mean-squared estimation error of the system as

1

35× 5

5∑
m=1

35∑
p=1

(
βp,m − β̂p,m

)2
.

Here, βp,m is the true value of the coefficients given in Section 5.1, and β̂p,m is the corresponding

estimate. The mean-squared estimation errors are shown in Figure 6.2.5. The mean-squared esti-

mation error of the SVS approach is typically higher than all other approaches. We have seen that

the average sparsity of the model for the SVS approach was higher than all other approaches. The

increased estimation error of the SVS approach may be caused by non-zero coefficient estimates that

should be zero. To determine if this it the case we need to determine how often the approaches

identified the correct subset of predictors.
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Figure 6.2.5: The average mean-squared estimation error of the system for each simultaneous pre-

dictor selection approach.

6.2.4 Average number of correctly identified predictors:

The average number of correctly identified predictors, for each approach, is shown in Figure 6.2.6.

The true model sparsity is again shown by the black horizontal line. Despite the SVS approach

producing models with more predictors than the other approaches, it appears that the predictors

selected by the SVS approach often contained the true predictors. Here, the results for the SVS

approach appear more favourable as the models estimated using the SVS approach contained the

true predictors more often.

6.2.5 Mean-squared error in prediction:

Finally, we consider how the models estimated using each approach compare in predicting values for

the validation dataset. For each of the selected models we calculate the mean-squared prediction
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Figure 6.2.6: The average number of correctly identified predictors for each of the simultaneous

predictor selection approaches.

error of the system as

1

5× 250

5∑
m=1

250∑
t=1

(
yvalidationt,m − ŷvalidationm,t

)2
.

Here, yvalidationt,m is the tth observation of the mth response variable from the validation dataset and

ŷvalidationm,t is the associated fitted value. The mean-squared prediction error averaged over the 25

simulations is shown in Figure 6.3.1. We can see that the average prediction error for the SVS

approach is at least that of all other approaches. This could again be explained by the inclusion of

noisy predictors.

6.3 Conclusion

In this chapter we have proposed simultaneous predictor selection approaches that can be imple-

mented in significantly less time than the SBS approach. Whilst these alternative approaches can be

seen to give approximate solutions to the SBS problem, these approaches perform well in practise.

In addition to this, our Hybrid approach is capable of trading-off the combinatorial challenges of

obtaining the optimal solution to the SBS problem with fast runtimes. This is achieved by a param-

eter r which allows at most r of the predictors to be replaced as the algorithm progresses. In our

simulation studies we found that the Stepwise and Hybrid methods produced the same solution as

the SBS approach, despite taken significantly less time to produce the solution.
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Figure 6.3.1: The average mean-squared prediction error for each of the simultaneous predictor

selection approaches



Chapter 7

Simultaneous shrinkage study

In Chapter 3 we introduced a simultaneous shrinkage operator that could improve predictor selection

accuracy and significantly improve model estimation accuracy. In this chapter we apply the SBS

problem with simultaneous shrinkage to the data generating models defined in Section 5.1 to better

understand the behaviour of this operator under different generating processes. In addition to this,

we consider how the shrinkage operator performs under different model sparsity’s.

7.1 Introduction

Recall that the SBS problem with simultaneous shrinkage is defined as

min

 M∑
m=1

T∑
t=1

(
yt,m −

P∑
p=1

xt,p,mβp,m

)2

+ λ

M∑
m=1

P∑
p=1

(
βp,m − β̄p,m

)2 subject to, (7.1.1)

∣∣∣∣∣
M⋃
m=1

Sm
∣∣∣∣∣ ≤ k. (7.1.2)

Here, Sm = {p : βp,m 6= 0 for p = 1, . . . , P} denotes the predictors selected in model m. In Section

3.4.1 we applied simultaneous shrinkage to the Adjacent model, given in Section 5.1 when k = 3, the

true level of sparsity. We also found that the true subset of predictors was not initially selected in

the solution to the SBS problem but as λ increased, the subset of predictors selected changed to the

true subset. We did not consider the effect of the operator on the SBS solution when k was greater

than, or less than, the true level of sparsity.

In the following sections we select a subset of the results and summarise the effect of the shrinkage

operator on the SBS solution when it is applied when the level of sparsity, k, is greater than, equal to,

and less than the true model sparsity. We simulate 750 observations from each model and randomly

allocate 500 to a training dataset and use the remaining observations for validation dataset. Each

117
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time we solve the SBS problem with shrinkage we observe the trace-plot of the SBS solution as the

penalty λ increases. We also observe the effect of increasing λ on the mean-squared estimation error

of the system and the mean-squared prediction error of the system on the validation data. We define

the mean-squared estimation estimation error of the system as

MSEe =

M∑
m=1

P∑
p=1

(
βp,m − β̂p,m

)2
.

Here, βp,m for p = 1, . . . , P and m = 1, . . . ,M denote the true value of the regression coefficients

and β̂p,m for p = 1, . . . , P and m = 1, . . . ,M denote the estimates obtained from a solution of the

SBS problem with shrinkage. The mean-squared prediction error of the system is given by

MSEp =

M∑
m=1

T∑
t=1

(yt,m − ŷt,m)
2
.

Here, yt,m denotes an observation from the validation dataset and ŷt,m denotes the fitted value

obtained from a model estimated by solving the SBS problem with shrinkage. We now discuss the

performance of the simultaneous shrinkage operator for the three cases of sparsity in turn.

7.2 True level of sparsity

In Chapter 3, we applied the simultaneous shrinkage operator to data generated from the Adjacent

model with ρ = 0.95. We observed that as λ increases, the regression coefficients can be pushed

towards the true values. Figure 7.2.1 shows the effect of increasing the simultaneous shrinkage

penalty on the estimates of the regression coefficients for data generated from the Application model

where ρ = 0.25. Here, k = 5 the true sparsity of the model. We can see that many of the regression

coefficients are pushed closer towards the true values with the largest changes in the coefficients

observed for small values of λ. However, some regression coefficients are pushed away from the true

values. This occurs for coefficients β31,3, and β31,4 for example.

Figure 7.2.2a shows that the mean-squared estimation error is initially improved for all response

variables. The largest gains in estimation error are observed for Response 1. Improving the estima-

tion error appears to have a subsequent improvement in prediction error. Again, the most significant

improvements appear to be for Response 1. We observe slight improvements in prediction error for

response variables, 2, 4, and 5. However, the prediction accuracy for Response 3 is reduced slightly.

The prediction accuracy averaged across all response variables does increase as the shrinkage penalty

increases.

Appendix 5.A shows the results for the application of the shrinkage operator to all other datasets.

At the true level of sparsity the shrinkage operator does typically improve the mean-squared error

in both estimation and prediction.
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Figure 7.2.1: Trace-plot of the regression coefficients for each response variable as λ increases. The

data is generated from the Application model where ρ = 0.25 and var(ηm) = 2 for m = 1, . . . , 5.
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Figure 7.2.2: The effect of the simultaneous shrinkage operator on the mean-squared estimation and

prediction error. The data is generated from the Application model, where ρ = 0.25 and var(ηm) = 2

for m = 1, . . . , 5.

7.3 Noisy models

Here we shall investigate the effect of the simultaneous shrinkage operator when the value of k is set

higher than the true level of model sparsity. In practice, the true level of model sparsity is unknown

so it is of interest to us to observe how the operator behaves in general.

Figure 7.3.1 shows the trace of regression coefficient estimates for each response variable as the

simultaneous shrinkage penalty increases. The data is generated from the Uniformly spaced model

with ρ = 0.95. Here, each non-zero coefficient assumes the value one. The coefficients corresponding

to predictors 1,8,15,22 and 29 are non-zero. We observe that the estimates of the non-zero coefficients

are around one and that they appear to improve slightly with shrinkage. An interesting observation

is how the shrinkage operator affects the estimates of the coefficients that should be zero. The

sparsity level k = 25 indicates that up to 20 additional regression coefficients are allowed to take

non-zero values in a solution provided from the mixed-integer quadratic optimisation problem. Here,

it appears that as the value of the shrinkage penalty increases, the values of the coefficients for many
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of the predictors not present in the true model are pushed towards zero.
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Figure 7.3.1: Trace of the regression coefficients for each response variable as λ increases. The data

is generated from the Uniformly spaced model with ρ = 0.95 and var(ηm) = 0.5, for m = 1, . . . , 5.

Due to space constraints, the legend shows only the coefficients that are non-zero.

The solution to the SBS problem with k = 25 includes many more predictors into a model when

compared to the true model. Erroneously estimating coefficients that should be zero as non-zero

affects the mean-squared error in estimating the regression coefficients. Shrinking the regression

coefficients towards a common value shows that the error in estimation can be dramatically reduced.

This is shown in Figure 7.3.2a. The simultaneous shrinkage operator appears to push many of the

coefficients that should take zero values, towards zero, having a great impact on the overall estimation

accuracy of the simultaneous best-subset method. Estimation accuracy appears to be improved by

over 80% in comparison to the solution provided by the SBS approach without shrinkage. As a

consequence of improved estimation, we observe an improvement in the prediction error. Figure

7.3.2b shows that the prediction error for each response variable improves significantly.
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Figure 7.3.2: The effect of the simultaneous shrinkage operator on the mean-squared estimation

and prediction errors. The data is generated from the Uniformly spaced model with ρ = 0.95 and

var(ηm) = 0.5, for m = 1, . . . , 5.

When the simultaneous shrinkage operator is added to the objective of the SBS problem and when
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noisy predictors are present in the model we typically observe an improvement in both estimation

error and prediction error. We believe that this may be due to forcing many of the coefficients of

the noisy variables towards zero. This may be caused by the coefficients of a given noisy predictor

taking a mixture of values above and below zero in each of the regression models. As the penalty in

the simultaneous shrinkage operator increases the coefficients are pushed closer to a common value,

which may be close to zero.

7.4 Sparse models

Finally, we discuss the effect of the simultaneous shrinkage operator on sparse models. Here, we

set the sparsity, k to a value less than the true model sparsity. Figure 7.4.1 shows the trace-plot of

the regression coefficients as the simultaneous shrinkage penalty increases for the Adjacent model

with ρ = 0.25. We observe a slight movement in the regression coefficient estimates as the penalty

increases.
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Figure 7.4.1: Trace of the regression coefficients for each response variable as λ increases. The data

is generated from the Adjacent model with ρ = 0.25 and var(ηm) = 0.5, for m = 1, . . . , 5.

As a consequence of slight changes in the regression coefficient estimates, the mean-squared

estimation error changes very slightly. This is illustrated in Figure 7.4.2. The average mean-squared

prediction error does not appear to change, but we can confirm it does decrease (see Figure 7.4.2b).

When applying the simultaneous shrinkage operator to sparse models, the effect on the regres-

sion coefficients is harder to generalise. Appendix 5.A shows that reasonably large changes can be

observed in the regression coefficients estimates. This can have a large impact on the mean-squared

estimation error, in contrast to our observations in this section. However, the gain in prediction

accuracy is typically small.
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(a) MSE Estimation
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(b) MSE Prediction

Figure 7.4.2: The effect of the simultaneous shrinkage operator on the mean-squared estimation and

prediction error. The data is generated from the Adjacent model with ρ = 0.25 and var(ηm) = 0.5,

for m = 1, . . . , 5.

7.5 Conclusion

In this chapter we have observed that the simultaneous shrinkage operator can improve regression

coefficient estimation for a system of linear regression models. When the sparsity of the SBS problem

is set at least that of the true model, we typically find that both estimation and prediction error

improves as the level of shrinkage increases. These effects are even stronger when k is much greater

than the true level of sparsity. This is a consequence of many of the noisy coefficient estimates being

driven towards zero.

7.A Additional results for the SBS problem with simultane-

ous shrinkage

In this appendix we present the remainder of the results for Chapter 7. Here, we use the solutions

of the SBS problem with simultaneous shrinkage to estimate the system of linear regression models

for the models defined in Section 5.1 and for three levels of k.
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The results presented here are for the Adjacent model with ρ = 0.95, and σ2
ηm = 0.5. Here, the

level of sparsity k, is less than the true sparsity of the model.
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Figure 7.A.1: Regression coefficient trace-plots for an increasing shrinkage penalty.
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Figure 7.A.2: Mean-squared estimation error for each model. The mean-squared estimation error

for the system is given in red.
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Figure 7.A.3: Mean-squared prediction error for each response variable in the hold-out dataset. The

mean-squared prediction error for the system is given in red.
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The results here are for the Adjacent model with ρ = 0.95, and σ2
ηm = 0.5. Here, the level of

sparsity k, is equal to the true sparsity of the model.
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Figure 7.A.4: Regression coefficient trace-plots for an increasing shrinkage penalty.
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Figure 7.A.5: Mean-squared estimation error for each model. The mean-squared estimation error

for the system is given in red.
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Figure 7.A.6: Mean-squared prediction error for each response variable in the hold-out dataset. The

mean-squared prediction error for the system is given in red.
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The results here are for the Adjacent model with ρ = 0.95, and σ2
ηm = 0.5. Here, the level of

sparsity k, is greater than the true sparsity of the model.
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Figure 7.A.7: Regression coefficient trace-plots for an increasing shrinkage penalty.
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Figure 7.A.8: Mean-squared estimation error for each model. The mean-squared estimation error

for the system is given in red.
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Figure 7.A.9: Mean-squared prediction error for each response variable in the hold-out dataset. The

mean-squared prediction error for the system is given in red.
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The results presented here are for the Adjacent model with ρ = 0.95, and σ2
ηm = 2. Here, the

level of sparsity k, is less than the true sparsity of the model.
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Figure 7.A.10: Regression coefficient trace-plots for an increasing shrinkage penalty.
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Figure 7.A.11: Mean-squared estimation error for each model. The mean-squared estimation error

for the system is given in red.
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Figure 7.A.12: Mean-squared prediction error for each response variable in the hold-out dataset.

The mean-squared prediction error for the system is given in red.



CHAPTER 7. SIMULTANEOUS SHRINKAGE STUDY 127

The results here are for the Adjacent model with ρ = 0.95, and σ2
ηm = 2. Here, the level of

sparsity k, is equal to the true sparsity of the model.
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Figure 7.A.13: Regression coefficient trace-plots for an increasing shrinkage penalty.
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Figure 7.A.14: Mean-squared estimation error for each model. The mean-squared estimation error

for the system is given in red.
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Figure 7.A.15: Mean-squared prediction error for each response variable in the hold-out dataset.

The mean-squared prediction error for the system is given in red.
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The results here are for the Adjacent model with ρ = 0.95, and σ2
ηm = 2. Here, the level of

sparsity k, is greater than the true sparsity of the model.
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Figure 7.A.16: Regression coefficient trace-plots for an increasing shrinkage penalty.
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Figure 7.A.17: Mean-squared estimation error for each model. The mean-squared estimation error

for the system is given in red.
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Figure 7.A.18: Mean-squared prediction error for each response variable in the hold-out dataset.

The mean-squared prediction error for the system is given in red.
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The results presented here are for the Application model with ρ = 0.95, and σ2
ηm = 0.5. Here,

the level of sparsity k, is less than the true sparsity of the model.
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Figure 7.A.19: Regression coefficient trace-plots for an increasing shrinkage penalty.
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Figure 7.A.20: Mean-squared estimation error for each model. The mean-squared estimation error

for the system is given in red.
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Figure 7.A.21: Mean-squared prediction error for each response variable in the hold-out dataset.

The mean-squared prediction error for the system is given in red.
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The results here are for the Application model with ρ = 0.95, and σ2
ηm = 0.5. Here, the level of

sparsity k, is equal to the true sparsity of the model.
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Figure 7.A.22: Regression coefficient trace-plots for an increasing shrinkage penalty.
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Figure 7.A.23: Mean-squared estimation error for each model. The mean-squared estimation error

for the system is given in red.
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Figure 7.A.24: Mean-squared prediction error for each response variable in the hold-out dataset.

The mean-squared prediction error for the system is given in red.
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The results here are for the Application model with ρ = 0.95, and σ2
ηm = 0.5. Here, the level of

sparsity k, is greater than the true sparsity of the model.
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Figure 7.A.25: Regression coefficient trace-plots for an increasing shrinkage penalty.
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Figure 7.A.26: Mean-squared estimation error for each model. The mean-squared estimation error

for the system is given in red.
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Figure 7.A.27: Mean-squared prediction error for each response variable in the hold-out dataset.

The mean-squared prediction error for the system is given in red.
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The results presented here are for the Application model with ρ = 0.95, and σ2
ηm = 2. Here, the

level of sparsity k, is less than the true sparsity of the model.
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Figure 7.A.28: Regression coefficient trace-plots for an increasing shrinkage penalty.
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Figure 7.A.29: Mean-squared estimation error for each model. The mean-squared estimation error

for the system is given in red.
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Figure 7.A.30: Mean-squared prediction error for each response variable in the hold-out dataset.

The mean-squared prediction error for the system is given in red.
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The results here are for the Application model with ρ = 0.95, and σ2
ηm = 2. Here, the level of

sparsity k, is equal to the true sparsity of the model.
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Figure 7.A.31: Regression coefficient trace-plots for an increasing shrinkage penalty.
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Figure 7.A.32: Mean-squared estimation error for each model. The mean-squared estimation error

for the system is given in red.
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Figure 7.A.33: Mean-squared prediction error for each response variable in the hold-out dataset.

The mean-squared prediction error for the system is given in red.
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The results here are for the Application model with ρ = 0.95, and σ2
ηm = 2. Here, the level of

sparsity k, is greater than the true sparsity of the model.
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Figure 7.A.34: Regression coefficient trace-plots for an increasing shrinkage penalty.
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Figure 7.A.35: Mean-squared estimation error for each model. The mean-squared estimation error

for the system is given in red.
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Figure 7.A.36: Mean-squared prediction error for each response variable in the hold-out dataset.

The mean-squared prediction error for the system is given in red.
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The results presented here are for the Uniformly spaced model with ρ = 0.95, and σ2
ηm = 0.5.

Here, the level of sparsity k, is less than the true sparsity of the model.
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Figure 7.A.37: Regression coefficient trace-plots for an increasing shrinkage penalty.
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Figure 7.A.38: Mean-squared estimation error for each model. The mean-squared estimation error

for the system is given in red.
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Figure 7.A.39: Mean-squared prediction error for each response variable in the hold-out dataset.

The mean-squared prediction error for the system is given in red.
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The results here are for the Uniformly spaced model with ρ = 0.95, and σ2
ηm = 0.5. Here, the

level of sparsity k, is equal to the true sparsity of the model.
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Figure 7.A.40: Regression coefficient trace-plots for an increasing shrinkage penalty.
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Figure 7.A.41: Mean-squared estimation error for each model. The mean-squared estimation error

for the system is given in red.
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Figure 7.A.42: Mean-squared prediction error for each response variable in the hold-out dataset.

The mean-squared prediction error for the system is given in red.
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The results here are for the Uniformly spaced model with ρ = 0.95, and σ2
ηm = 0.5. Here, the

level of sparsity k, is greater than the true sparsity of the model.
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Figure 7.A.43: Regression coefficient trace-plots for an increasing shrinkage penalty.
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Figure 7.A.44: Mean-squared estimation error for each model. The mean-squared estimation error

for the system is given in red.
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Figure 7.A.45: Mean-squared prediction error for each response variable in the hold-out dataset.

The mean-squared prediction error for the system is given in red.
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The results presented here are for the Uniformly spaced model with ρ = 0.95, and σ2
ηm = 2. Here,

the level of sparsity k, is less than the true sparsity of the model.
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Figure 7.A.46: Regression coefficient trace-plots for an increasing shrinkage penalty.
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Figure 7.A.47: Mean-squared estimation error for each model. The mean-squared estimation error

for the system is given in red.
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Figure 7.A.48: Mean-squared prediction error for each response variable in the hold-out dataset.

The mean-squared prediction error for the system is given in red.
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The results here are for the Uniformly spaced model with ρ = 0.95, and σ2
ηm = 2. Here, the level

of sparsity k, is equal to the true sparsity of the model.
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Figure 7.A.49: Regression coefficient trace-plots for an increasing shrinkage penalty.
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Figure 7.A.50: Mean-squared estimation error for each model. The mean-squared estimation error

for the system is given in red.
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Figure 7.A.51: Mean-squared prediction error for each response variable in the hold-out dataset.

The mean-squared prediction error for the system is given in red.
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The results here are for the Uniformly spaced model with ρ = 0.95, and σ2
ηm = 2. Here, the level

of sparsity k, is greater than the true sparsity of the model.
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Figure 7.A.52: Regression coefficient trace-plots for an increasing shrinkage penalty.
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Figure 7.A.53: Mean-squared estimation error for each model. The mean-squared estimation error

for the system is given in red.
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Figure 7.A.54: Mean-squared prediction error for each response variable in the hold-out dataset.

The mean-squared prediction error for the system is given in red.



Chapter 8

Conclusions and further work

Within this thesis we have developed and implemented a range of simultaneous predictor selection

methods to jointly estimate multiple linear regression models. Much of the work in this thesis has

been motivated by the challenges encountered when modelling telecommunications data.

In Chapter 3, we proposed a generalisation of the best-subset problem (Miller, 2002) which we

called the Simultaneous Best-Subset problem. The idea of solving the Simultaneous Best Subset

problem is to simultaneously select predictors for multiple linear regression models. By allowing at

most k unique predictors to be present across a set of regression models, we were able to obtain

sparse models in which the same predictors were often present in each regression model. In addition

to this, we were able to show empirically that the regression models obtained from solving the SBS

problem were superior to those obtained from fitting each regression model individually using the

best-subset approach. The solutions to the SBS problem more often contained the true predictors

than solutions to the best-subset problem. Further, the SBS approach appeared to be consistent in

predictor selection. As we increased the number of models jointly estimated the SBS method would

more often identify the correct predictors. Consequently, the estimation error in the regression

coefficients also reduced.

In Chapter 3, we determined the best SARIMA models for the regression residuals by fitting

each model from a list of suitable models and selecting the model with the smallest value of the BIC

(Schwarz, 1978). Whilst this approach is in a sense automatic, there is scope to improve it. Hyndman

and Khandakar (2008) developed an algorithm to automatically identify SARIMA models. Their

motivation for this approach was to obtain automatic forecasts for a large number of time series in a

business setting. Their approach is implemented in the forecast (Hyndman and Khandakar, 2008)

package for R and may provide a more automated approach than that we have implemented.

Additionally, we have identified the SARIMA models for the residuals individually. It may be

141
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possible to improve the performance of the models by modelling the residuals as a multivariate

process using the multi-class vector autoregressive models used by Barbaglia et al. (2016) and Wilms

et al. (2018). This multi-class approach is even capable of encouraging similarity across the residual

models. This idea is similar in nature to the idea we have used in our simultaneous shrinkage

operator.

In Chapter 4 we applied the Automated approach developed in Chapter 3 to the whole telecom-

munications dataset. We found that the Reg-SARIMA models produced by this approach were more

accurate for short-term predictions and were often more accurate for long-term predictions. In cases

where the Reg-SARIMA models were less accurate the predictive accuracy was comparable to all

other approaches. The models produced by the Automated approach often contained fewer weather

related predictor variables. Consistency in the selected predictors across models within a response

ensured that the models were far more interpretable. In addition to this, the effects of all predictors

were inline with expert opinion and the models did not include pairs of highly correlated predictors

with opposing effects. This provided a significant improvement over the current procedure.

In Chapter 5 we were able to show empirically that the time to solve the SBS problem could

be reduced with formulations of the SBS problem that contained data-driven parameters. These

parameters were derived from optimal solutions of the SBS problem. However, in practice we were

not able to reduce the time to solve the SBS problem using parameters derived from solutions

obtained by our Discrete First Order Algorithm (DFOA). Bertsimas et al. (2016) noted that the

optimisation solver often found very good solutions to the best-subset problem quickly. It would

be interesting to compare the solutions obtained from our DFOA to a solution obtained from an

optimisation solver after a short amount of time. If very good solutions for the SBS problem are

obtained in a short amount of time we may be able to improve the formulation parameter estimates

and hence improve the time to solve the SBS problem in practise.

In Chapter 6 we proposed a number of alternative fast simultaneous predictor selection methods.

With these methods we were able to jointly estimate multiple linear regression models significantly

quicker than applying the SBS method. We found that these fast methods often fit the same models

as the SBS approach, so could be used as a practical alternative to the SBS approach in problems

where the number of response variables, or the number of predictors is much higher. Whilst the

models produced by the Stepwise and Hybrid approaches were the same as the model produced

by the SBS approach in our simulation study in Section 6.2, it would be of significant practical

interest to see if these fast approaches perform as well as the SBS approach when applied to the

telecommunications event data.

In Chapter 7 we further studied the performance of the simultaneous shrinkage operator that, to
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the best of our knowledge, has not been considered in the literature. The idea behind simultaneous

shrinkage was to shrink coefficients across multiple regression models towards a common value. We

found that the operator could improve the selection accuracy of predictors and the estimation of

regression coefficients. The operator was found to be particularly useful when the models produced

by the SBS approach were not sparse. With shrinkage, we were able to drive many of the coefficients

that should be zero towards zero as the penalty increased. This ultimately reduced the mean-squared

prediction error of the models. Rather than using an l2 shrinkage penalty, we could consider using

an l1 penalty of the form

P(β) = λ

M∑
m=1

P∑
p=1

|β̃p − βp,m|,

where β̃p for p = 1, . . . , P are auxiliary variables used to produce similar values across models. The

form of this l1 penalty may set β̃p = βp,m for p = 1, . . . , P and m = 1, . . . ,M for some λ large

enough.

In Chapter 5, we were able to identify a good value for the shrinkage parameter using cross-

validation approaches (Stone, 1974). However, it may not always to appropriate to use cross-

validation to determine parameters. One example is when only a small number of observations

are available. Zou et al. (2007) were able to do this for the LASSO using the framework proposed by

Stein (1981). This work may provide a good starting point for us to derive information criteria such

as the AIC (Akaike, 1973) or BIC (Schwarz, 1978) for systems of linear regression models estimated

with simultaneous shrinkage.

Our approach could also be extended in a number of ways. In some applications it may not

be possible to observe all predictors for each response variable. We could easily modify the MIQO

program to ensure that similarity in predictor selection is encouraged in this scenario. We could also

implement a simulation study where the variance of some response variables is greater than others.

We suspect that compared to individual regression methods, we may gain estimation accuracy in the

response variables with the highest variance at the expense of losing accuracy in estimation for the

response variables with the lowest variance. It would also be great to see our Automated approach

applied to other datasets. Since providing the software package to BT, it has already been applied

to investigate the electricity demand of different telecommunications buildings. The automated

nature of the approach whilst providing good interpretable models shows that our approach can

have significant impact in industry,
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