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Abstract: Traditionally, in supervised machine learning, (a significant) part of the available data (usually 50% to 

80%) is used for training and the rest – for validation. In many problems, however, the data is highly imbalanced 

in regard to different classes or does not have good coverage of the feasible data space which, in turn, creates 

problems in validation and usage phase. In this paper, we propose a technique for synthesising feasible and likely 

data to help balance the classes as well as to boost the performance in terms of confusion matrix as well as overall. 

The idea, in a nutshell, is to synthesise data samples in close vicinity to the actual data samples specifically for 

the less represented (minority) classes. This has also implications to the so-called fairness [1] of machine learning. 

In this paper, we propose a specific method for synthesising data in a way to balance the classes and boost the 

performance, especially of the minority classes. It is generic and can be applied to different base algorithms, e.g. 

support vector machine, k-nearest neighbour, deep networks, rule-based classifiers, decision trees, etc. The results 

demonstrated that: i) a significantly more balanced (and fair) classification results can be achieved; ii) that the 

overall performance as well as the performance per class measured by confusion matrix can be boosted. In 

addition, this approach can be very valuable for the cases when the number of actual available labelled data is 

small which itself is one of the problems of the contemporary machine learning.   

Keywords- fairness; imbalanced classification; performance boosting; synthetic data generation. 

1. Introduction 

In machine learning, classification is to learn a predictive model from training data that can perform accurate 

prediction on the categories of previously unseen data. Most of standard classification approaches are designed 

for larger-scale and balanced data sets with the goal of maximizing overall classification accuracy [2]. For 

example, let us consider an extreme case, if a data set consists of five samples of class 1 and 995 samples of class 

2, a classifier can achieve 99.5% accuracy even if it classifies all data samples as class 1. As a result, classifiers 

learned from imbalanced data sets tend to ignore the minority class because the minority class samples are 

outnumbered by the majority class samples and they play a much weaker role in the overall performance 

evaluation. 

On the other hand, the class imbalance problem often occurs in real-world applications, e.g., financial fraud 

detection [3], medical diagnosis [4] and mechanical fault detection [5], where minorities (rare samples) are of 

greater interest. In such application scenarios, the primary goal for classification algorithms is to identify the rare 

samples as accurately as possible because the costs of misclassifying the minorities can be very high. Although 

traditional classification algorithms usually demonstrate good performance on standard classification tasks, they 

usually straggle with imbalanced problems [6]. In recent years, imbalanced learning have received much more 

attentions and is now a hotly studied problem in the fields of machine learning and pattern recognition [7]. Till 

now, many successful methods have been proposed for tackling the class imbalance problem [7], [8], which can 

be categorizes into three major groups [6], namely, 1) data sampling, 2) cost-sensitive learning and 3) algorithmic 

modification. A review of the state-of-the-art will be given in the next section. 

In this paper, the focus of our study is synthetic data sampling. More specifically, we propose a novel self-adaptive 

synthetic over-sampling (SASYNO) approach to tackle the class imbalance problem. The common practice of 

popular data sampling approaches is to randomly select minority class samples and create linear interpolations 

between them and their neighbours for artificial data synthesis. However, this strategy is not necessarily going to 

expand the knowledge base but are more likely to create overlaps between the expanded minority class and the 
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original majority class, especially when data structure is highly complex. In contrast, the key idea of the proposed 

approach is to select out neighbouring minority class samples based on their mutual distances and create both 

interpolations and extrapolations around neighbouring samples for synthetic data generation. SASYNO firstly 

identifies a population of pairwise neighbouring samples from minority class. Then, SASYNO imposes Gaussian 

disturbance on these identified neighbouring samples to create extrapolations, and, finally, generates synthetic 

samples by creating linear interpolations between these extrapolations. Comparing with standard data sampling 

approaches, the uniqueness of SASYNO comes from the following two aspects: 

1) The proposed approach selects out the most proper candidates from minority class samples and uses them for 

data synthesis only. This allows SASYNO to precisely expand the minority class avoiding possible overlaps with 

the majority class.  

2) The proposed approach employs Gaussian disturbance to create extrapolations from existing data samples for 

synthetic data generation, which gives SASYNO an extra degree of freedom for expanding the knowledge base.  

The remainder of this paper is organized as follows. Section 2 provides a review of related works. The algorithmic 

details of SASYNO are given in Section 3. Section 4 presents numerical examples as the proof of concept with 

detailed analysis and discussions. This paper is concluded by Section 5. 

2. Related Work 

As mentioned in the previous section, popular approaches for imbalance learning generally can be categorized 

into three major types: 1) data sampling, 2) cost-sensitive learning and 3) algorithmic modification. 

• Data sampling approaches [7]–[9] rebalance the data sets by sampling, which is achieved by over-

sampling the minority class [7], under-sampling the majority class [10] or a hybrid of both [11]. 

• Cost-sensitive learning approaches [4], [12] incorporate the costs of misclassifying minority class 

samples into function minimization. 

• Algorithmic modification approaches [13], [14] are the modifications of commonly-used machine 

learning algorithms to achieve better performance with imbalanced data set. 

Currently, data sampling approaches are the dominant solutions to address the class imbalance problem because 

they are more generic and can be employed by standard classification methods [15].  

Random over-sampling and down-sampling are the two basic and easy-to-use approaches for balancing data 

through randomly duplicating or removing samples from the minority or majority classes. However, in many class 

imbalance problems, minor class samples are much rare compared with the majority class samples. Down-

sampling of the majority class is not advisable since it will cause a significant loss of information. Therefore, 

over-sampling techniques are more popular and intensively studied [16]. 

The most successful advanced over-sampling approaches are SMOTE (synthetic minority over-sampling 

technique) [8], ADASYN (adaptive synthetic sampling approach) [7] and MWMOTE (majority weighted 

minority over-sampling technique) [9]. SMOTE [8] tackles the class imbalance problem by creating linear 

interpolations between randomly selected minority class samples and their neighbours of the same class. 

ADASYN [7] uses a very similar strategy as SMOTE, but it prioritizes samples near decision boundaries and 

focuses on these hard-to-learn minority class  samples by assigning weights calculated per sample as the ratio of 

neighbours belonging to the majority class. MWMOTE [9] firstly identifies the minority class samples at the 

decision boundaries and assigns them weights based on their distances to neighbouring majority class samples. 

Then, MWMOTE clusters these minority class samples for generating the synthetic samples. 

Other popular over-sampling approaches include Borderline-SMOTE (BLSMOTE) by Han et al. [17], Safe-Level-

SMOTE (SLSMOTE) by Bunkhumpornpat et al. [18], RACOG (rapidly converging Gibbs algorithm) by Das et 

al. [16],  MDO (Mahalanobis distance-based over-sampling algorithm) by Adbi and Hashemi [19], A-SUWO 

(adaptive semi-unsupervised weighted oversampling algorithm) by Nekooeimehr and Lai-Yuen [20] and SMOM 

(k-nearest neighbours-based synthetic minority oversampling algorithm) by Zhu et al. [21], etc. However, due to 

the limited space of this paper, it is impossible to cover all the data sampling approaches in the literature, interested 

readers may refer to [6], [22], [23] for more details. 



3. Proposed Method 

In this section, details of the proposed SASYNO are presented. First of all, let {𝒙}𝑁 = {𝒙1, 𝒙2, … , 𝒙𝑁} (𝒙𝑖 =

[𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑀]
𝑇

∈ 𝐑𝑀) be a two-class data set in a real data space, 𝐑𝑀, where 𝑀 is the dimensionality; the 

subscript 𝑖 denotes the index of 𝒙𝑖. The data set consists of two classes, namely, “Class 0” and “Class 1”. 

According to class labels, {𝒙}𝑁 can be divided into two sets, {𝒙}
𝑁0
0  and {𝒙}

𝑁1
1 , where 𝑁0 and 𝑁1 are the respective 

numbers of data samples of the two classes and the superscripts “0” and “1” indicate the class labels. In this paper, 

we assume that class 0 is the minority class, and class 1 is the majority one, namely, 𝑁0 < 𝑁1.  

The algorithmic procedure of SASYNO is described as follows. By default, SASYNO is used for generating 

synthetic minority class data samples to balance the minority and majority classes. Nonetheless, SASYNO is, in 

principle, a generic approach for data augmentation and can be used for generating any amount of synthetic data 

samples of any classes. 

Stage 1. Identifying pairwise neighbouring samples  

In this stage, we identify neighbouring data samples based on the ensemble properties and mutual distribution of 

the minority class samples, {𝒙}
𝑁0
0 . In order to define the concept of closeness directly from the observed data, we 

employ the following objective quantifier of the data pattern [24]: 

γ =
1

𝑃𝜇 
∑ ‖𝒙𝑖

0 − 𝒙𝑗
0‖

𝒙𝑖
0,𝒙𝑗

0∈{𝒙}
𝑁0
0 ; ‖𝒙𝑖

0−𝒙𝑗
0‖≤𝜇;𝑖≠𝑗

                                                                                    (1) 

where ‖𝒙𝑖
0 − 𝒙𝑗

0‖ denotes the Euclidean distance between 𝒙𝑖
0 and 𝒙𝑗

0, ‖𝒙𝑖
0 − 𝒙𝑗

0‖ = √(𝒙𝑖
0 − 𝒙𝑗

0)
𝑇

(𝒙𝑖
0 − 𝒙𝑗

0); 𝜇 is 

the average distance between any pair of minority class samples, 𝜇 =
2

𝑁0(𝑁0−1)
∑ ∑ ‖𝒙𝑖

0 − 𝒙𝑗
0‖𝑁0

𝑗=𝑖+1
𝑁0−1
𝑖=1 ; γ is the 

average distance between any pair of minority class samples between which the distance is less than 𝜇; 𝑃𝜇 is the 

number of such pairs. The quantifier γ provides an estimation of average distance between any two data samples 

that are considered as spatially neighbouring. Based on this quantifier. Note that γ is directly derived from data 

without making any prior assumptions on generation model with parameters. 

Based on the objectively derived quantifier, γ, we can identify a collection of pair-wise neighbouring samples 

from the minority class samples, denoted by, 𝐏 using the following condition: 

𝐼𝐹 (‖𝒙𝑖
0 − 𝒙𝑗

0‖ ≤ γ) 𝑇𝐻𝐸𝑁 (𝐏 ← 𝐏 ∪ {(𝒑𝑘, 𝒒𝑘) = (𝒙𝑖
0, 𝒙𝑗

0)};  𝑘 ← 𝑘 + 1 )                        (2) 

where 𝒙𝑖
0, 𝒙𝑗

0 ∈ {𝒙}
𝑁0
0  and 𝑖 ≠ 𝑗. The identified pair-wise neighbouring samples will be used for generating 

synthetic samples in the next stages.   

The rationale behind the pair-wise neighbouring samples identification is to identify the subspaces which are 

occupied by the minority class samples only. Synthetic samples generated around these subspaces are highly 

unlikely to be overlapped with the major class samples. Thus, the quality of the synthetic samples is guaranteed. 

Stage 2. Creating explorations by Gaussian disturbance 

In this stage, the algorithm randomly selects a pair of neighbouring samples from the collection 𝐏 denoted by 

(𝒑𝑘, 𝒒𝑘)∗ ∈ 𝐏 (𝑘 ← 1) and apply Gaussian disturbance to create extrapolations in the data space: 

(�̂�𝑘 , �̂�𝑘)∗ = (𝒑𝑘 + 𝒈𝑝, 𝒒𝑘 + 𝒈𝑞)
𝑘

∗
                                                                                                (3) 

where 𝒈𝑝 = [𝑔𝑝,1, 𝑔𝑝,2, … , 𝑔𝑝,𝑀]
𝑇
 and 𝑮𝑞 = [𝑔𝑞,1, 𝑔𝑞,2, … , 𝑔𝑞,𝑀]

𝑇
 are two 𝑀 dimensional randomly generated 

vectors following the Gaussian distributions, 𝑔𝑝,𝑙 , 𝑔𝑞,𝑙~ℵ(0, 𝜎𝑙
2) (𝑙 = 1,2, … , 𝑀); the standard deviation, 𝜎𝑙 of the 

Gaussian distribution ℵ(0, 𝜎𝑙
2) is defined per attribute in a similar way to γ (equation (1)) as follows: 

𝜎𝑙 =
1

𝑃𝜇𝑙
 
∑ |𝑥𝑖,𝑙
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0 |
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where |∙| denotes the absolute value;  𝜇𝑙 =
2

𝑁0(𝑁0−1)
∑ ∑ |𝑥𝑖,𝑙

0 − 𝑥𝑗,𝑙
0 |𝑁0

𝑗=𝑖+1
𝑁0−1
𝑖=1  is the average distance between any 

two data samples belonging to  {𝒙}
𝑁0
0  at the lth dimension of 𝐑𝑀. By applying Gaussian disturbance to 

neighbouring sample pairs, the subspaces occupied by the minority class samples are extended in an exploratory 



way, which gives the proposed algorithm an extra degree of freedom to extrapolate new knowledge from the 

empirically observed data.  

Stage 3. Creating interpolations for synthetic data generation 

In this stage, the algorithm generates a synthetic sample by creating random interpolation between �̂�𝑘 and �̂�𝑘: 

𝒔𝑘 = 𝒓𝑘
𝑇�̂�𝑘 + (1 − 𝒓𝑘)𝑇�̂�𝑘                                                                                                    (5) 

where 𝒓𝑘 = [𝑟𝑘,1, 𝑟𝑘,2, … , 𝑟𝑘,𝑀]
𝑇
 is a 𝑀 dimensional random vector, each element, 𝑟𝑘,𝑙 (𝑙 = 1,2, … , 𝑀) follows the 

uniform distribution with the value range of  [0,1]. Then, the algorithm goes back to Stage 2 to create the next 

synthetic sample (𝑘 ← 𝑘 + 1). 

To balance the data set, 𝑁𝑠
0 (𝑁𝑠

0 = 𝑁1 − 𝑁0) extra minority class samples are needed, therefore, the same process 

will be repeated for 𝑁𝑠
0 times. Once  {𝒔}𝑁𝑠

0 = {𝒔1, 𝒔2, … , 𝒔𝑁𝑠
0} are generated from the selected neighbouring sample 

pairs, they are merged into {𝒙}
𝑁0
0 : {𝒙}

𝑁0
0 ← {𝒙}

𝑁0
0 ∪ {𝒔}𝑁𝑠

0 , and the minority and majority classes are balanced. 

An illustration of the syntenic data generation process introduced by this paper is given in Fig. 1. The yellow and 

blue ellipsoids surrounding 𝒑𝑘 and 𝒒𝑘 are the areas that  �̂�𝑘 and �̂�𝑘 are highly likely to appear in the data space 

after Gaussian disturbance. The radii of the yellow and blue ellipsoids surrounding 𝒑𝑘 and 𝒒𝑘  are 2𝜎 and 3𝜎, 

respectively. According to the “68–95–99.7” rule, the probability for �̂�𝑘 and �̂�𝑘 to appear within the respective 

yellow ellipsoids is 90.3% (95% × 95%) and the probability for �̂�𝑘 and �̂�𝑘 to appear within the respective blue 

ellipsoids is 99.4% (99.7% × 99.7%). The yellow and blue capsules are the areas that 𝒔𝑘 (generated from 𝒑𝑘 and 

𝒒𝑘) would appear with a very large chance. The probability for 𝒔𝑘 to appear within the yellow capsule is 

81.5% (90.3% × 90.3%) and the probability is 98.8% (99.4% × 99.4%) for 𝒔𝑘 to appear in the blue capsule.  

 

 

Fig. 1. Illustration of generating synthetic data from 𝒑𝑘 and 𝒒𝑘. 

The main procedure of SASYNO is summarized in the form of pseudo-code as follows. 

Input: {𝒙}𝑁 

i. Calculate the amount of synthetic data samples needed to be generated: 𝑁𝑠
0 = 𝑁1 − 𝑁0; 

ii. Calculate the quantifier of the data pattern, γ by equation (1); 

iii. Identify pair-wise neighbouring samples, 𝐏 from {𝒙}
𝑁0
0  by equation (2); 

iv. For 𝑘 = 1 to 𝑁𝑠
0 do 

1. Randomly select a pair of neighbouring samples, (𝒑𝑘 , 𝒒𝑘)∗ from 𝐏; 

2. Apply Gaussian disturbance to (𝒑𝑘, 𝒒𝑘)∗  by equation (3) and obtain (�̂�𝑘, �̂�𝑘)∗; 

3. Create random interpolation between (�̂�𝑘, �̂�𝑘)∗ and obtain 𝒔𝑘; 



v. End for 

vi. {𝒙}
𝑁0
0 ← {𝒙}

𝑁0
0 ∪ {𝒔}𝑁𝑠

0  

Output: {𝒙}𝑁 

 

4. Numerical Examples and Discussion 

In this section, we evaluate the performance of SASYNO based on a variety of real-world data sets.  

4.1. Numerical examples on imbalanced data sets 

Since the imbalanced binary classification problem is the primary focus of the recent researches, SASYNO is 

firstly tested on five popular data sets as summarized in Table 1. In this paper, for all binary classification 

problems, the minority and majority classes are re-denoted by “Class 0” and “Class 1”, respectively.  

 

Table 1. Details of binary classification data sets used for performance evaluation 

Dataset # Samples, 𝑁𝑠 # Minority, 𝑁0 

(Class 0) 

# Majority, 𝑁1 

(Class 1) 

#Attributes, 𝑀 

Wilt (WI)1 Training Set 4339 74 4265 5 + 1 label 

Testing Set 500 187 313 

Spambase (SB)2 4601 1813 2788 57 + 1 label 

German Credit (GC)3 1000 300 7000 24 + 1 label 

Mammograph (MG)4 11183 260 10923 6 + 1 label 

Occupancy 

Detection 

(OD)5,6 

Training Set 8143 1729 6414 5 + 1 label 

Testing Set 1 2665 972 1693 

Testing Set 2 9752 2049 7703 
1Available from http://archive.ics.uci.edu/ml/datasets/wilt 
2Available from https://archive.ics.uci.edu/ml/datasets/Spambase  
3Available from https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data) 
4Available from http://odds.cs.stonybrook.edu/mammography-dataset/ 
5Available from https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+ 
6Time stamps have been removed in advance 

 

The following six classification approaches are involved as the base classifiers: 

1) Self-organizing neuro-fuzzy inference system (SONFIS) [25]; 

2) Support vector machine classifier (SVM) [26]; 

3) k-nearest neighbour classifier (KNN) [27]; 

4) decision tree classifier (DT) [28]; 

5) Random forest classifier (RF) [29], and; 

6) Multilayer perceptron (MLP). 

Here SONFIS uses Euclidean distance as the distance measure, and the level of granularity is set as 12; SVM uses 

Gaussian kernel; 𝑘 is equal to 1 for KNN; RF uses an ensemble of 100 classification trees; MLP is composed of 

one input layer, two hidden layers and one output layer, each hidden layers has 20 neurons. 

The quality of the synthetic data generated by the proposed approach is also compared with the synthetic data 

generated by the state-of-the-art approaches as follows. 

1) ADASYN [7]; 

2) SMOTE [8]; 

3) BLSMOTE [17]; 

4) SLSMOTE [18], and; 

http://archive.ics.uci.edu/ml/datasets/wilt
http://archive.ics.uci.edu/ml/datasets/wilt
https://archive.ics.uci.edu/ml/datasets/Spambase
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https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
http://odds.cs.stonybrook.edu/mammography-dataset/
http://odds.cs.stonybrook.edu/mammography-dataset/
https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+
https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+


5) Random down-sampling (RDS). 

In this paper, for ADASYN, SMOTE, BLSMOTE and SLSMOTE algorithms, the number of nearest neighbours 

is set as 𝑘 = 5. During the experiments, all the involved over-sampling approaches (SASYNO, ADASYN, 

SMOTE, BLSMOTE and SLSMOTE) generate  𝑁1 − 𝑁0 new synthetic samples from the minority class samples 

to balance the minority and majority classes. RDS randomly remove 𝑁1 − 𝑁0 majority class samples to achieve 

the same purpose. 

For imbalanced classification problems, the commonly-used performance criterion, namely, overall accuracy is 

insufficient for evaluation. Thus, we further involve a set of assessment metrics related to receiver operating 

characteristics graph as follows [7], [8]. 

1) Sensitivity (SN). SN is the true positive ratio, also known as recall: 𝑆𝑁 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
; 

2) Specificity (SP). SP is the true negative ratio measured defined as: 𝑆𝑃 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
; 

3) F-Measure (FM):  𝐹𝑀 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑁+𝐹𝑃
; 

4) G-mean (GM): 𝐺𝑀 = √
𝑇𝑃

𝑇𝑃+𝐹𝑁
∙

𝑇𝑁

𝑇𝑁+𝐹𝑃
; 

5) Overall accuracy (Acc): 𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
; 

The definitions of TP, TN, FP, FN are given by Fig. 2, where 𝐾0 and 𝐾1 represent the numbers of minority and 

majority class samples in the prediction results, respectively. 

 

 

Fig. 2. Confusion matrix 

 

In the first numerical example, we use SONFIS as the base classifier to evaluate the performance of the proposed 

SASYNO and compare with the alternative data sampling approaches on WI, SB, GC, MG and OD data sets. For 

SB, GC and MG data sets, 80% data samples are randomly selected out as the training set, and the remaining are 

used for testing.  We keep the original splitting for WI and OD data sets, but combine the testing set 1 and 2 of 

the OD data set as one. The obtained results after 10 Monte Carlo experiments in terms of the five performance 

measures given above are tabulated in Table 1. The performance of SONFIS on original data (denoted as ORIG) 

is also reported in Table 1 as the baseline. The respective ranks per performance measure per data set are reported 

in the same table (in italic) for visual clarity. The average ranks per performance measure across the five data sets 

are also reported at the end of this table. For better illustration, we visualize the obtained synthetic data samples 

by SASYNO together with the original data samples using the t-SNE technique [30] in Fig. 3, where one can 

clearly see that SASYNO significantly expands the minority class and effectively avoids overlaps with the 

majority class. 

 

Table 1. Performance comparison between data sampling approaches using SONFIS as base learner 

Dataset Algorithm SN SP GM FM Acc 

WI SASYNO 0.7319 0.9183 0.8198 0.7989 0.8344 

6 1 6 1 2 

ADASYN 0.7887 0.8765 0.8314 0.7914 0.8434 

5 2 3 2 1 

SMOTE 0.9284 0.7517 0.8354 0.6129 0.7842 

2 6 2 6 5 



BLSMOTE 0.8409 0.8142 0.8274 0.7305 0.8218 

4 3 4 4 4 

SLSMOTE 0.8833 0.8085 0.8451 0.7306 0.8282 

3 4 1 3 3 

RDS 0.5445 0.8024 0.6608 0.6275 0.6696 

7 5 7 5 7 

ORIG 0.9333 0.7247 0.8224 0.5344 0.7560 

1 7 5 7 6 

SB SASYNO 0.7016 0.8616 0.7773 0.7492 0.7895 

4 2 2 2 2 

ADASYN 0.6733 0.8694 0.7650 0.7417 0.7753 

6 1 6 4 6 

SMOTE 0.7530 0.8470 0.7985 0.7585 0.8096 

1 6 1 1 1 

BLSMOTE 0.6857 0.8546 0.7653 0.7372 0.7775 

5 4 5 5 5 

SLSMOTE 0.7083 0.8501 0.7758 0.7431 0.7886 

3 5 3 3 3 

RDS 0.6620 0.8549 0.7522 0.7267 0.7632 

7 3 7 6 7 

ORIG 0.7141 0.8284 0.7689 0.7260 0.7818 

2 7 4 7 4 

GC SASYNO 0.3880 0.7542 0.5397 0.4560 0.5910 

6 3 6 3 6 

ADASYN 0.4052 0.7596 0.5533 0.4632 0.6120 

5 2 3 2 5 

SMOTE 0.4474 0.7447 0.5747 0.4244 0.6590 

1 6 1 6 1 

BLSMOTE 0.4102 0.7504 0.5527 0.4457 0.6220 

4 5 4 5 4 

SLSMOTE 0.4320 0.7647 0.5735 0.4717 0.6410 

2 1 2 1 2 

RDS 0.3741 0.7512 0.5289 0.4528 0.5720 

7 4 7 4 7 

ORIG 0.4132 0.7364 0.5501 0.4082 0.6385 

3 7 5 7 3 

MG SASYNO 0.3061 0.9947 0.5512 0.4399 0.9532 

3 2 3 2 2 

ADASYN 0.3366 0.9945 0.5777 0.4685 0.9586 

2 3 1 1 1 

SMOTE 0.4092 0.9888 0.5658 0.3964 0.8656 

1 6 2 3 3 

BLSMOTE 0.2788 0.9922 0.4797 0.3608 0.8518 

4 4 4 4 4 

SLSMOTE 0.1499 0.9921 0.3321 0.2016 0.7463 

6 5 5 5 6 

RDS 0.07290 0.9958 0.2566 0.1289 0.6353 

7 1 7 7 7 

ORIG 0.1709 0.9868 0.3310 0.1836 0.7488 

5 7 6 6 5 

OD SASYNO 0.3061 0.9947 0.5512 0.4399 0.9532 

3 2 3 2 2 

ADASYN 0.3366 0.9945 0.5777 0.4685 0.9586 

2 3 1 1 1 

SMOTE 0.4092 0.9888 0.5658 0.3964 0.8656 

1 6 2 3 3 

BLSMOTE 0.2788 0.9922 0.4797 0.3608 0.8518 



4 4 4 4 4 

SLSMOTE 0.1499 0.9921 0.3321 0.2016 0.7463 

6 5 5 5 6 

RDS 0.07290 0.9958 0.2566 0.1289 0.6353 

7 1 7 7 7 

ORIG 0.1709 0.9868 0.3310 0.1836 0.7488 

5 7 6 6 5 

Average Rank SASYNO 4.6 1.8 4 2 3 

ADASYN 4.8 2.4 3.8 3 3.8 

SMOTE 1.6 6.2 2 4.2 3 

BLSMOTE 3.8 4.2 3.8 4.2 3.8 

SLSMOTE 3.8 3.4 3.2 3.2 3.6 

RDS 7 3.2 7 5.8 7 

ORIG 2.4 6.8 4.2 5.6 3.8 

 

 

(a) WI data set 

 

(b) OD data set 

Fig. 3. Data visualization with t-SNE 

 



In the second example, we use SVM and KNN as the base classifiers and repeat the experiments under the same 

protocol as the previous example. Numerical results are given in Tables 2 and 3, respectively. Additionally, we 

calculate the average ranks of the involved data sampling approaches across the three numerical examples and 

report it in Table 4.  

 

Table 2. Performance comparison between data sampling approaches using SVM as base learner 

Dataset Algorithm SN SP GM FM Acc 

WI SASYNO 0.3755 1.0000 0.6128 0.5460 0.3780 

2 1 2 1 2 

ADASYN 1.0000 0.6273 0.7920 0.0106 0.6280 

1 2 1 3 1 

SMOTE 1.0000 0.6273 0.7920 0.0106 0.6280 

1 2 1 3 1 

BLSMOTE 1.0000 0.6273 0.7920 0.0106 0.6280 

1 2 1 3 1 

SLSMOTE 1.0000 0.6273 0.7920 0.0106 0.6280 

1 2 1 3 1 

RDS 0.3745 0.3000 0.1838 0.5449 0.3752 

3 3 3 2 3 

ORIG 1.0000 0.6273 0.7920 0.0106 0.6280 

1 2 1 3 1 

SB SASYNO 0.9271 0.7388 0.8206 0.5512 0.7377 

7 1 6 1 1 

ADASYN 0.9560 0.6996 0.8177 0.4987 0.7349 

6 2 7 2 2 

SMOTE 0.9948 0.6932 0.8303 0.4743 0.7301 

2 5 1 6 5 

BLSMOTE 0.9868 0.6932 0.8270 0.4748 0.7297 

4 6 3 5 6 

SLSMOTE 0.9915 0.6955 0.8303 0.4831 0.7328 

3 4 2 4 3 

RDS 0.9831 0.6958 0.8270 0.4845 0.7326 

5 3 4 3 4 

ORIG 0.9953 0.6863 0.8264 0.4477 0.7214 

1 7 5 7 7 

GC SASYNO 0.3135 0.9333 0.5396 0.4764 0.3235 

1 1 1 1 3 

ADASYN 0.0000 0.6905 0.0000 0.0000 0.6905 

3 3 3 3 1 

SMOTE 0.0000 0.6905 0.0000 0.0000 0.6905 

3 3 3 3 1 

BLSMOTE 0.0000 0.6905 0.0000 0.0000 0.6905 

3 3 3 3 1 

SLSMOTE 0.0000 0.6905 0.0000 0.0000 0.6905 

3 3 3 3 2 

RDS 0.1512 0.7717 0.2549 0.1941 0.5340 

2 2 2 2 1 

ORIG 0.0000 0.6905 0.0000 0.0000 0.6905 

3 3 3 3 1 

MG SASYNO 0.3132 0.9942 0.5573 0.4439 0.9552 

4 2 4 4 4 

ADASYN 0.2536 0.9933 0.5006 0.3746 0.9426 

5 3 5 5 5 

SMOTE 0.8075 0.9877 0.8922 0.6005 0.9852 

2 6 2 1 1 

BLSMOTE 0.2474 0.9924 0.4939 0.3615 0.9421 



6 5 6 6 6 

SLSMOTE 0.5239 0.9926 0.7185 0.5930 0.9777 

3 4 3 2 3 

RDS 0.1719 0.9968 0.4121 0.2862 0.8939 

7 1 7 7 7 

ORIG 0.8200 0.9857 0.8980 0.5324 0.9838 

1 7 1 3 2 

OD SASYNO 0.2160 1.0000 0.4647 0.3552 0.2372 

6 1 6 5 6 

ADASYN 0.2214 0.9980 0.4700 0.3625 0.2612 

5 6 5 4 5 

SMOTE 0.2513 0.9994 0.5011 0.4016 0.3741 

2 2 2 1 2 

BLSMOTE 0.2292 0.9988 0.4784 0.3729 0.2936 

3 4 3 2 3 

SLSMOTE 0.2226 0.9982 0.4714 0.3641 0.2666 

4 5 4 3 4 

RDS 0.2127 0.9991 0.4610 0.3508 0.2222 

7 3 7 6 7 

ORIG 1.0000 0.7916 0.8897 0.02030 0.7920 

1 7 1 7 1 

Average Rank SASYNO 4 1.2 3.8 2.4 3.2 

ADASYN 4 3.2 4.2 3.4 2.8 

SMOTE 2 3.6 1.8 2.8 2 

BLSMOTE 3.4 4 3.2 3.8 3.4 

SLSMOTE 2.8 3.6 2.6 3 2.6 

RDS 4.8 2.4 4.6 4 4.4 

ORIG 1.4 5.2 2.2 4.6 2.4 

 

Table 3. Performance comparison between data sampling approaches using KNN as base learner 

Dataset Algorithm SN SP GM FM Acc 

WI SASYNO 0.7536 0.9335 0.8387 0.8209 0.8528 

6 1 6 1 2 

ADASYN 0.8205 0.8722 0.8459 0.7995 0.8538 

5 3 5 2 1 

SMOTE 0.9163 0.7873 0.8494 0.6961 0.8168 

2 6 4 6 5 

BLSMOTE 0.8758 0.8308 0.8530 0.7647 0.8438 

4 4 1 3 3 

SLSMOTE 0.9106 0.7990 0.8530 0.7187 0.8262 

3 5 2 4 4 

RDS 0.6107 0.8901 0.7370 0.7143 0.7408 

7 2 7 5 7 

ORIG 0.9333 0.7747 0.8503 0.6712 0.8080 

1 7 3 7 6 

SB SASYNO 0.7439 0.8800 0.8090 0.7829 0.8209 

4 2 3 1 2 

ADASYN 0.7021 0.8897 0.7902 0.7694 0.8005 

7 1 7 4 7 

SMOTE 0.7628 0.8547 0.8073 0.7693 0.8180 

2 7 4 5 4 

BLSMOTE 0.7378 0.8656 0.7990 0.7687 0.8112 

5 4 5 6 5 

SLSMOTE 0.7598 0.8626 0.8095 0.7753 0.8207 

3 5 2 2 3 

RDS 0.7226 0.8724 0.7938 0.7671 0.8058 



6 3 6 7 6 

ORIG 0.7678 0.8573 0.8112 0.7737 0.8216 

1 6 1 3 1 

GC SASYNO 0.4319 0.7862 0.5820 0.5046 0.6305 

5 1 4 1 5 

ADASYN 0.4233 0.7706 0.5700 0.4844 0.6245 

6 2 6 2 6 

SMOTE 0.4589 0.7522 0.5861 0.4447 0.6665 

2 6 2 6 2 

BLSMOTE 0.4473 0.7637 0.5828 0.4705 0.6535 

4 3 3 3 4 

SLSMOTE 0.4483 0.7583 0.5815 0.4589 0.6565 

3 4 5 5 3 

RDS 0.3849 0.7578 0.5386 0.4617 0.5830 

7 5 7 4 7 

ORIG 0.4621 0.7504 0.5869 0.4386 0.6685 

1 7 1 7 1 

MG SASYNO 0.05540 0.9940 0.2343 0.1039 0.6629 

5 2 5 5 6 

ADASYN 0.05380 0.9922 0.2303 0.1005 0.6725 

6 3 6 6 5 

SMOTE 0.6548 0.9905 0.8043 0.6264 0.9831 

2 6 2 3 2 

BLSMOTE 0.4737 0.9920 0.6844 0.5531 0.9747 

4 4 4 4 4 

SLSMOTE 0.6314 0.9919 0.7906 0.6450 0.9830 

3 5 3 1 3 

RDS 0.04860 0.9961 0.2198 0.09230 0.5829 

7 1 7 7 7 

ORIG 0.6747 0.9903 0.8164 0.6298 0.9837 

1 7 1 2 1 

OD SASYNO 0.8433 0.9887 0.9131 0.8975 0.9540 

1 2 1 2 1 

ADASYN 0.8148 0.9845 0.8957 0.8748 0.9432 

7 3 7 6 6 

SMOTE 0.8371 0.9702 0.9012 0.8621 0.9404 

5 7 6 7 7 

BLSMOTE 0.8413 0.9840 0.9099 0.8888 0.9505 

4 4 2 3 3 

SLSMOTE 0.8416 0.9839 0.9099 0.8886 0.9504 

3 5 3 4 4 

RDS 0.8289 0.9943 0.9078 0.8979 0.9532 

6 1 5 1 2 

ORIG 0.8418 0.9835 0.9099 0.8882 0.9503 

2 6 4 5 5 

Average Rank SASYNO 4.2 1.6 3.8 2 3.2 

ADASYN 6.2 2.4 6.2 4 5 

SMOTE 2.6 6.4 3.6 5.4 4 

BLSMOTE 4.2 3.8 3 3.8 3.8 

SLSMOTE 3 4.8 3 3.2 3.4 

RDS 6.6 2.4 6.4 4.8 5.8 

ORIG 1.2 6.6 2 4.8 2.8 

 

 

Table 4. Overall ranks of involved data sampling approaches 

Algorithm Rank 



SN SP GM FM Acc Overall 

SASYNO 4.3 1.5 3.9 2.1 3.1 3 

ADASYN 5 2.7 4.7 3.5 3.9 3.9 

SMOTE 2.1 5.4 2.5 4.1 3 3.4 

BLSMOTE 3.8 4 3.3 3.9 3.7 3.7 

SLSMOTE 3.2 3.9 2.9 3.1 3.2 3.3 

RDS 6.1 2.7 6 4.9 5.7 5.1 

ORIG 1.7 6.2 2.8 5 3 3.7 

 

Furthermore, we also involve DT, RF and MLP as base learners to evaluate the effectiveness of the proposed 

SASYNO following the similar experimental protocol used by the previous examples and compare the baseline 

results obtained with the original data sets. The results are reported in Table 5. 

 

Table 5. Performance of SASYNO with alternative classifiers as base learners 

Dataset Base Learner Algorithm SN SP GM FM Acc 

WI DT SASYNO 0.7332 0.9452 0.8325 0.8170 0.8454 

ORIG 0.8917 0.7895 0.8390 0.6971 0.8140 

RF SASYNO 0.7639 0.9714 0.8614 0.8505 0.8738 

ORIG 0.9472 0.7935 0.8669 0.7137 0.8282 

MLP SASYNO 0.7053 0.9260 0.8080 0.7888 0.8206 

ORIG 0.0875 0.6265 0.0745 0.0072 0.6264 

SP DT SASYNO 0.8808 0.9394 0.9096 0.8941 0.9159 

ORIG 0.8912 0.9336 0.9121 0.8941 0.9170 

RF SASYNO 0.9297 0.9451 0.9374 0.9218 0.9392 

ORIG 0.9335 0.9443 0.9389 0.9228 0.9402 

MLP SASYNO 0.6998 0.8483 0.7419 0.7144 0.8124 

ORIG 0.7100 0.8383 0.7371 0.6874 0.7745 

GC DT SASYNO 0.4971 0.7724 0.6178 0.4918 0.6860 

ORIG 0.4992 0.7763 0.6215 0.5016 0.6880 

RF SASYNO 0.6161 0.7934 0.6982 0.5510 0.7485 

ORIG 0.6214 0.7854 0.6975 0.5312 0.7470 

MLP SASYNO 0.5224 0.8222 0.6544 0.5748 0.7050 

ORIG 0.6050 0.7670 0.6797 0.4796 0.7315 

MG DT SASYNO 0.3060 0.9931 0.5496 0.4288 0.9549 

ORIG 0.6310 0.9897 0.7894 0.5961 0.9821 

RF SASYNO 0.3842 0.9940 0.6171 0.5079 0.9659 

ORIG 0.8499 0.9895 0.9165 0.6724 0.9874 

MLP SASYNO 0.2559 0.9959 0.5035 0.3910 0.9386 

ORIG 0.7951 0.9873 0.8857 0.5854 0.9847 

OD DT SASYNO 0.8492 0.9677 0.9065 0.8631 0.9418 

ORIG 0.8503 0.9646 0.9057 0.8589 0.9401 

RF SASYNO 0.8348 0.9707 0.8996 0.8612 0.9392 

ORIG 0.8591 0.9824 0.9187 0.8950 0.9542 

MLP SASYNO 0.8493 0.9967 0.9196 0.9121 0.9595 

ORIG 0.8589 0.9741 0.9128 0.8758 0.9446 

 

4.2. Numerical examples on benchmark image sets 

In this subsection, numerical examples on popular benchmark image sets are presented to demonstrate that 

SASYNO is a generic approach and can be used to improve the performance of base learners on various 

classification problems. The following four mage sets are used for experimental investigation. Details of the four 

datasets are summarized in Table 6, one can find problem descriptions and example images from [31]–[34]. 

1) UCMerced image set (available from http://weegee.vision.ucmerced.edu/datasets/landuse.html) [31]; 

http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html


2) WHU-RS19 image set (available from http://captain.whu.edu.cn/repository.html) [32]; 

3) MNIST image set (available from http://yann.lecun.com/exdb/mnist/) [33], and; 

4) FashionMNIST image set (available from https://github.com/zalandoresearch/fashion-mnist) [34]. 

The following three classification algorithms are employed as the base learners: 

1) SONFIS [25]; 

2) SVM [26], and; 

3)  KNN [27]. 

Here SONFIS uses Euclidean distance as the distance measure, and the level of granularity is set as 12; SVM uses 

linear kernel; 𝑘 is equal to 5 for KNN. 

 

 

Table 6. Details of benchmark image sets for performance evaluation 

Dataset # Images # Classes # Images per Class # Features Resolution 

UCMerced 2100 21 100 8192×1 256×256 

WHU-RS19 950 19 50 600×600 

MNIST Training set 60000 10 Approximately 6000 784×1 28×28 

Testing set 10000 Approximately 1000 

FashionMNIST Training set 60000 6000 

Testing set 10000 10000 

 

In this paper, we use the same approach as described in [25] to extract a 8192 × 1 dimensional feature vector 

from each image of UCMerced and WHU-RS19 image sets using an ensemble feature descriptor formed by the 

pretrained  pre-trained AlexNet [35] and VGG-VD-16 [36] deep learning neural networks. For MNIST and 

FashionMNIST image sets, we convert them into 784×1 dimensional feature vectors for classifier training and 

testing, and further normalize them with the corresponding L2 norm following [25]. During the numerical 

experiments conducted in this subsection, for UCMerced and WHU-RS19, we use SASYNO to create synthetic 

feature vectors from the feature vectors of training images from each class to double the size of the training sets. 

For MNIST and FashionMNIST, we are able to create synthetic images from the training images directly thanks 

to the simpler structure. 

Following the common practice, for UCMerced image set, we randomly select out 50% and 80% images per class 

for synthetic data generation by SASYNO and classifier training, and use the remaining ones for testing [31]. For 

WHU-RS19 image set, 40% and 60% images per class are randomly selected out for synthetic data generation 

and classifier training, and the remaining ones are used for testing [32]. The classification accuracy rates on the 

testing images by the three classifiers trained with the augmented training sets are reported in Table 7, and the 

results obtained by the classifiers trained with the original training sets are reported as the base line. Note that the 

reported results in Table 7 are the average of 30 Monte Carlo experiments. 

 

Table 7. Performance of SASYNO on UCMeced and WHU-RS19 image sets 

Dataset % Training 

Samples 

SONFIS SVM KNN 

SASYNO ORIG SASYNO ORIG SASYNO ORIG 

UCMerced 50 0.9313 0.9267 0.9440 0.9419 0.9108 0.9005 

80 0.9565 0.9529 0.9583 0.9583 0.9377 0.9293 

WHU-RS19 40 0.9386 0.9370 0.9458 0.9439 0.9282 0.9228 

60 0.9500 0.9463 0.9589 0.9570 0.9414 0.9370 

 

In the second numerical example, we randomly select out 10000, 20000, 30000, 40000, 50000 and 60000 images 

from the training sets of MNIST and FashionMNIST for training. The classification accuracy rates of the three 

base learners trained on the augmented and original training sets under different experimental settings are reported 

http://captain.whu.edu.cn/repository.html
http://captain.whu.edu.cn/repository.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist


in Table 8. Examples of original images of the original MNIST and FashionMNIST image sets and the synthetic 

ones generated by SASYNO are given in Fig. 4 for better illustration. 

 

 

Fig. 4. Examples of original and synthetic images of MNIST and FashionMNIST image sets 

 

Table 8. Performance of SASYNO on MNIST and FashionMNIST image sets 

Dataset #Training  

Samples 

SONFIS SVM KNN 

SASYNO ORIG SASYNO ORIG SASYNO ORIG 

MNIST 10000 0.9512 0.9491 0.9070 0.9037 0.9473 0.9454 

20000 0.9593 0.9588 0.9185 0.9163 0.9571 0.9563 

30000 0.9632 0.9628 0.9232 0.9222 0.9615 0.9614 

40000 0.9659 0.9658 0.9266 0.9261 0.9642 0.9642 

50000 0.9671 0.9682 0.9285 0.9284 0.9665 0.9663 

60000 0.9692 0.9685 0.9306 0.9303 0.9682 0.9679 

FashionMNIST 10000 0.8328 0.8314 0.8314 0.8269 0.8177 0.8164 

20000 0.8450 0.8436 0.8424 0.8387 0.8350 0.8345 

30000 0.8514 0.8529 0.8462 0.8453 0.8445 0.8440 

40000 0.8565 0.8571 0.8490 0.8490 0.8504 0.8499 

50000 0.8600 0.8609 0.8510 0.8508 0.8548 0.8544 

60000 0.8639 0.8633 0.8511 0.8523 0.8582 0.8578 

 



4.3 Discussions 

Numerical examples presented in subsection 4.1 demonstrate that the proposed SASYNO can effectively tackle 

the class imbalance problem by creating high-quality synthetic minority class samples and improve the overall 

performance of different base learners including SONFIS, KNN, SVM, DT, RF and MLP on various highly 

imbalanced data sets. Compared with the state-of-the-art data sampling approaches involved in comparison, one 

can see from Tables 1-4 that SASYNO significantly improves the true negative ratio of the classification results 

by these base learners (namely, specificity) and outperforms all the comparative data sampling approaches in 

terms of specificity, F-measure and the overall ranks.  

Numerical examples presented in subsection 4.2 further demonstrate the promise of SASYNO as a generic 

approach for data augmentation, even for very high-dimensional problems. As one can see from Table7, the 

classification performance of SONFIS, KNN and SVM is improved by involving SASYNO for training set 

augmentation. On the other hand, as one can see from Table 8, SASYNO effectively improves the classification 

performance of the three base learners when the scale of the training set is relatively small (10000, 20000 training 

images). However, the problem of overfitting occurs with the scale of the training set becomes large (30000, 

40000, 50000, 60000 training images), and SASYNO is not able to improve the classification performance 

furthermore.  

5. Conclusion 

This paper presented a new over-sampling approach named SASYNO to tackle the imbalance classification 

problem. The proposed approach is able to generate high-quality synthetic samples from the empirically observed 

minority class samples and effective balance the data set. Numerical examples on benchmark binary classification 

problems demonstrate the better performance of SASYNO comparing with the popular alternatives. In addition, 

it is justified through numerical examples that SASYNO is a generic approach and can be used for data 

augmentation for various classification problems. 

As future work, we will explore more on imbalanced multi-class classification problems. Such problems are far 

more challenging for standard classification algorithms compared with binary classification problems. It is 

important to see how SASYNO perform on these problems. Also, it is shown by numerical examples that 

SASYNO can be used for creating synthetic images. Lack of labelling is a major problem in field of image 

recognition, it will be very interesting to see how deep convolutional neural networks react to these synthetic 

images generated by SASYNO.  
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