
A Self-Adaptive Synthetic Over-Sampling Technique for Imbalanced

Classification

Xiaowei Gu1,2,*, Plamen P Angelov1,2,3* and Eduardo Almeida Soares1,2

1School of Computing and Communications, Lancaster University, Lancaster, UK, LA1 4WA

2 Lancaster Intelligent, Robotic and Autonomous Systems Centre, Lancaster University, Lancaster, UK

3 Honorary Professor at Technical University, Sofia, 1000, Bulgaria

*The first two authors contribute equally.

Email: x.gu3@lancaster.ac.uk; p.angelov@lancaster.ac.uk; e.almeidasoares@lancaster.ac.uk

Abstract: Traditionally, in supervised machine learning, (a significant) part of the available data (usually 50% to

80%) is used for training and the rest – for validation. In many problems, however, the data is highly imbalanced

in regard to different classes or does not have good coverage of the feasible data space which, in turn, creates

problems in validation and usage phase. In this paper, we propose a technique for synthesising feasible and likely

data to help balance the classes as well as to boost the performance in terms of confusion matrix as well as overall.

The idea, in a nutshell, is to synthesise data samples in close vicinity to the actual data samples specifically for

the less represented (minority) classes. This has also implications to the so-called fairness [1] of machine learning.

In this paper, we propose a specific method for synthesising data in a way to balance the classes and boost the

performance, especially of the minority classes. It is generic and can be applied to different base algorithms, e.g.

support vector machine, k-nearest neighbour, deep networks, rule-based classifiers, decision trees, etc. The results

demonstrated that: i) a significantly more balanced (and fair) classification results can be achieved; ii) that the

overall performance as well as the performance per class measured by confusion matrix can be boosted. In

addition, this approach can be very valuable for the cases when the number of actual available labelled data is

small which itself is one of the problems of the contemporary machine learning.

Keywords- fairness; imbalanced classification; performance boosting; synthetic data generation.

1. Introduction

In machine learning, classification is to learn a predictive model from training data that can perform accurate

prediction on the categories of previously unseen data. Most of standard classification approaches are designed

for larger-scale and balanced data sets with the goal of maximizing overall classification accuracy [2]. For

example, let us consider an extreme case, if a data set consists of five samples of class 1 and 995 samples of class

2, a classifier can achieve 99.5% accuracy even if it classifies all data samples as class 1. As a result, classifiers

learned from imbalanced data sets tend to ignore the minority class because the minority class samples are

outnumbered by the majority class samples and they play a much weaker role in the overall performance

evaluation.

On the other hand, the class imbalance problem often occurs in real-world applications, e.g., financial fraud

detection [3], medical diagnosis [4] and mechanical fault detection [5], where minorities (rare samples) are of

greater interest. In such application scenarios, the primary goal for classification algorithms is to identify the rare

samples as accurately as possible because the costs of misclassifying the minorities can be very high. Although

traditional classification algorithms usually demonstrate good performance on standard classification tasks, they

usually straggle with imbalanced problems [6]. In recent years, imbalanced learning have received much more

attentions and is now a hotly studied problem in the fields of machine learning and pattern recognition [7]. Till

now, many successful methods have been proposed for tackling the class imbalance problem [7], [8], which can

be categorizes into three major groups [6], namely, 1) data sampling, 2) cost-sensitive learning and 3) algorithmic

modification. A review of the state-of-the-art will be given in the next section.

In this paper, the focus of our study is synthetic data sampling. More specifically, we propose a novel self-adaptive

synthetic over-sampling (SASYNO) approach to tackle the class imbalance problem. The common practice of

popular data sampling approaches is to randomly select minority class samples and create linear interpolations

between them and their neighbours for artificial data synthesis. However, this strategy is not necessarily going to

expand the knowledge base but are more likely to create overlaps between the expanded minority class and the

mailto:x.gu3@lancaster.ac.uk
mailto:x.gu3@lancaster.ac.uk
mailto:p.angelov@lancaster.ac.uk
mailto:p.angelov@lancaster.ac.uk
mailto:e.almeidasoares@lancaster.ac.uk
mailto:e.almeidasoares@lancaster.ac.uk

original majority class, especially when data structure is highly complex. In contrast, the key idea of the proposed

approach is to select out neighbouring minority class samples based on their mutual distances and create both

interpolations and extrapolations around neighbouring samples for synthetic data generation. SASYNO firstly

identifies a population of pairwise neighbouring samples from minority class. Then, SASYNO imposes Gaussian

disturbance on these identified neighbouring samples to create extrapolations, and, finally, generates synthetic

samples by creating linear interpolations between these extrapolations. Comparing with standard data sampling

approaches, the uniqueness of SASYNO comes from the following two aspects:

1) The proposed approach selects out the most proper candidates from minority class samples and uses them for

data synthesis only. This allows SASYNO to precisely expand the minority class avoiding possible overlaps with

the majority class.

2) The proposed approach employs Gaussian disturbance to create extrapolations from existing data samples for

synthetic data generation, which gives SASYNO an extra degree of freedom for expanding the knowledge base.

The remainder of this paper is organized as follows. Section 2 provides a review of related works. The algorithmic

details of SASYNO are given in Section 3. Section 4 presents numerical examples as the proof of concept with

detailed analysis and discussions. This paper is concluded by Section 5.

2. Related Work

As mentioned in the previous section, popular approaches for imbalance learning generally can be categorized

into three major types: 1) data sampling, 2) cost-sensitive learning and 3) algorithmic modification.

• Data sampling approaches [7]–[9] rebalance the data sets by sampling, which is achieved by over-

sampling the minority class [7], under-sampling the majority class [10] or a hybrid of both [11].

• Cost-sensitive learning approaches [4], [12] incorporate the costs of misclassifying minority class

samples into function minimization.

• Algorithmic modification approaches [13], [14] are the modifications of commonly-used machine

learning algorithms to achieve better performance with imbalanced data set.

Currently, data sampling approaches are the dominant solutions to address the class imbalance problem because

they are more generic and can be employed by standard classification methods [15].

Random over-sampling and down-sampling are the two basic and easy-to-use approaches for balancing data

through randomly duplicating or removing samples from the minority or majority classes. However, in many class

imbalance problems, minor class samples are much rare compared with the majority class samples. Down-

sampling of the majority class is not advisable since it will cause a significant loss of information. Therefore,

over-sampling techniques are more popular and intensively studied [16].

The most successful advanced over-sampling approaches are SMOTE (synthetic minority over-sampling

technique) [8], ADASYN (adaptive synthetic sampling approach) [7] and MWMOTE (majority weighted

minority over-sampling technique) [9]. SMOTE [8] tackles the class imbalance problem by creating linear

interpolations between randomly selected minority class samples and their neighbours of the same class.

ADASYN [7] uses a very similar strategy as SMOTE, but it prioritizes samples near decision boundaries and

focuses on these hard-to-learn minority class samples by assigning weights calculated per sample as the ratio of

neighbours belonging to the majority class. MWMOTE [9] firstly identifies the minority class samples at the

decision boundaries and assigns them weights based on their distances to neighbouring majority class samples.

Then, MWMOTE clusters these minority class samples for generating the synthetic samples.

Other popular over-sampling approaches include Borderline-SMOTE (BLSMOTE) by Han et al. [17], Safe-Level-

SMOTE (SLSMOTE) by Bunkhumpornpat et al. [18], RACOG (rapidly converging Gibbs algorithm) by Das et

al. [16], MDO (Mahalanobis distance-based over-sampling algorithm) by Adbi and Hashemi [19], A-SUWO

(adaptive semi-unsupervised weighted oversampling algorithm) by Nekooeimehr and Lai-Yuen [20] and SMOM

(k-nearest neighbours-based synthetic minority oversampling algorithm) by Zhu et al. [21], etc. However, due to

the limited space of this paper, it is impossible to cover all the data sampling approaches in the literature, interested

readers may refer to [6], [22], [23] for more details.

3. Proposed Method

In this section, details of the proposed SASYNO are presented. First of all, let {𝒙}𝑁 = {𝒙1, 𝒙2, … , 𝒙𝑁} (𝒙𝑖 =

[𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑀]
𝑇

∈ 𝐑𝑀) be a two-class data set in a real data space, 𝐑𝑀, where 𝑀 is the dimensionality; the

subscript 𝑖 denotes the index of 𝒙𝑖. The data set consists of two classes, namely, “Class 0” and “Class 1”.

According to class labels, {𝒙}𝑁 can be divided into two sets, {𝒙}
𝑁0
0 and {𝒙}

𝑁1
1 , where 𝑁0 and 𝑁1 are the respective

numbers of data samples of the two classes and the superscripts “0” and “1” indicate the class labels. In this paper,

we assume that class 0 is the minority class, and class 1 is the majority one, namely, 𝑁0 < 𝑁1.

The algorithmic procedure of SASYNO is described as follows. By default, SASYNO is used for generating

synthetic minority class data samples to balance the minority and majority classes. Nonetheless, SASYNO is, in

principle, a generic approach for data augmentation and can be used for generating any amount of synthetic data

samples of any classes.

Stage 1. Identifying pairwise neighbouring samples

In this stage, we identify neighbouring data samples based on the ensemble properties and mutual distribution of

the minority class samples, {𝒙}
𝑁0
0 . In order to define the concept of closeness directly from the observed data, we

employ the following objective quantifier of the data pattern [24]:

γ =
1

𝑃𝜇
∑ ‖𝒙𝑖

0 − 𝒙𝑗
0‖

𝒙𝑖
0,𝒙𝑗

0∈{𝒙}
𝑁0
0 ; ‖𝒙𝑖

0−𝒙𝑗
0‖≤𝜇;𝑖≠𝑗

 (1)

where ‖𝒙𝑖
0 − 𝒙𝑗

0‖ denotes the Euclidean distance between 𝒙𝑖
0 and 𝒙𝑗

0, ‖𝒙𝑖
0 − 𝒙𝑗

0‖ = √(𝒙𝑖
0 − 𝒙𝑗

0)
𝑇

(𝒙𝑖
0 − 𝒙𝑗

0); 𝜇 is

the average distance between any pair of minority class samples, 𝜇 =
2

𝑁0(𝑁0−1)
∑ ∑ ‖𝒙𝑖

0 − 𝒙𝑗
0‖𝑁0

𝑗=𝑖+1
𝑁0−1
𝑖=1 ; γ is the

average distance between any pair of minority class samples between which the distance is less than 𝜇; 𝑃𝜇 is the

number of such pairs. The quantifier γ provides an estimation of average distance between any two data samples

that are considered as spatially neighbouring. Based on this quantifier. Note that γ is directly derived from data

without making any prior assumptions on generation model with parameters.

Based on the objectively derived quantifier, γ, we can identify a collection of pair-wise neighbouring samples

from the minority class samples, denoted by, 𝐏 using the following condition:

𝐼𝐹 (‖𝒙𝑖
0 − 𝒙𝑗

0‖ ≤ γ) 𝑇𝐻𝐸𝑁 (𝐏 ← 𝐏 ∪ {(𝒑𝑘, 𝒒𝑘) = (𝒙𝑖
0, 𝒙𝑗

0)}; 𝑘 ← 𝑘 + 1) (2)

where 𝒙𝑖
0, 𝒙𝑗

0 ∈ {𝒙}
𝑁0
0 and 𝑖 ≠ 𝑗. The identified pair-wise neighbouring samples will be used for generating

synthetic samples in the next stages.

The rationale behind the pair-wise neighbouring samples identification is to identify the subspaces which are

occupied by the minority class samples only. Synthetic samples generated around these subspaces are highly

unlikely to be overlapped with the major class samples. Thus, the quality of the synthetic samples is guaranteed.

Stage 2. Creating explorations by Gaussian disturbance

In this stage, the algorithm randomly selects a pair of neighbouring samples from the collection 𝐏 denoted by

(𝒑𝑘, 𝒒𝑘)∗ ∈ 𝐏 (𝑘 ← 1) and apply Gaussian disturbance to create extrapolations in the data space:

(�̂�𝑘 , �̂�𝑘)∗ = (𝒑𝑘 + 𝒈𝑝, 𝒒𝑘 + 𝒈𝑞)
𝑘

∗
 (3)

where 𝒈𝑝 = [𝑔𝑝,1, 𝑔𝑝,2, … , 𝑔𝑝,𝑀]
𝑇
 and 𝑮𝑞 = [𝑔𝑞,1, 𝑔𝑞,2, … , 𝑔𝑞,𝑀]

𝑇
 are two 𝑀 dimensional randomly generated

vectors following the Gaussian distributions, 𝑔𝑝,𝑙 , 𝑔𝑞,𝑙~ℵ(0, 𝜎𝑙
2) (𝑙 = 1,2, … , 𝑀); the standard deviation, 𝜎𝑙 of the

Gaussian distribution ℵ(0, 𝜎𝑙
2) is defined per attribute in a similar way to γ (equation (1)) as follows:

𝜎𝑙 =
1

𝑃𝜇𝑙

∑ |𝑥𝑖,𝑙

0 − 𝑥𝑗,𝑙
0 |

𝒙𝑖
0,𝒙𝑗

0∈{𝒙}
𝑁0
0 ; |𝑥𝑖,𝑙

0 −𝒙𝑗,𝑙
0 |≤𝜇𝑙;𝑖≠𝑗

 (4)

where |∙| denotes the absolute value; 𝜇𝑙 =
2

𝑁0(𝑁0−1)
∑ ∑ |𝑥𝑖,𝑙

0 − 𝑥𝑗,𝑙
0 |𝑁0

𝑗=𝑖+1
𝑁0−1
𝑖=1 is the average distance between any

two data samples belonging to {𝒙}
𝑁0
0 at the lth dimension of 𝐑𝑀. By applying Gaussian disturbance to

neighbouring sample pairs, the subspaces occupied by the minority class samples are extended in an exploratory

way, which gives the proposed algorithm an extra degree of freedom to extrapolate new knowledge from the

empirically observed data.

Stage 3. Creating interpolations for synthetic data generation

In this stage, the algorithm generates a synthetic sample by creating random interpolation between �̂�𝑘 and �̂�𝑘:

𝒔𝑘 = 𝒓𝑘
𝑇�̂�𝑘 + (1 − 𝒓𝑘)𝑇�̂�𝑘 (5)

where 𝒓𝑘 = [𝑟𝑘,1, 𝑟𝑘,2, … , 𝑟𝑘,𝑀]
𝑇
 is a 𝑀 dimensional random vector, each element, 𝑟𝑘,𝑙 (𝑙 = 1,2, … , 𝑀) follows the

uniform distribution with the value range of [0,1]. Then, the algorithm goes back to Stage 2 to create the next

synthetic sample (𝑘 ← 𝑘 + 1).

To balance the data set, 𝑁𝑠
0 (𝑁𝑠

0 = 𝑁1 − 𝑁0) extra minority class samples are needed, therefore, the same process

will be repeated for 𝑁𝑠
0 times. Once {𝒔}𝑁𝑠

0 = {𝒔1, 𝒔2, … , 𝒔𝑁𝑠
0} are generated from the selected neighbouring sample

pairs, they are merged into {𝒙}
𝑁0
0 : {𝒙}

𝑁0
0 ← {𝒙}

𝑁0
0 ∪ {𝒔}𝑁𝑠

0 , and the minority and majority classes are balanced.

An illustration of the syntenic data generation process introduced by this paper is given in Fig. 1. The yellow and

blue ellipsoids surrounding 𝒑𝑘 and 𝒒𝑘 are the areas that �̂�𝑘 and �̂�𝑘 are highly likely to appear in the data space

after Gaussian disturbance. The radii of the yellow and blue ellipsoids surrounding 𝒑𝑘 and 𝒒𝑘 are 2𝜎 and 3𝜎,

respectively. According to the “68–95–99.7” rule, the probability for �̂�𝑘 and �̂�𝑘 to appear within the respective

yellow ellipsoids is 90.3% (95% × 95%) and the probability for �̂�𝑘 and �̂�𝑘 to appear within the respective blue

ellipsoids is 99.4% (99.7% × 99.7%). The yellow and blue capsules are the areas that 𝒔𝑘 (generated from 𝒑𝑘 and

𝒒𝑘) would appear with a very large chance. The probability for 𝒔𝑘 to appear within the yellow capsule is

81.5% (90.3% × 90.3%) and the probability is 98.8% (99.4% × 99.4%) for 𝒔𝑘 to appear in the blue capsule.

Fig. 1. Illustration of generating synthetic data from 𝒑𝑘 and 𝒒𝑘.

The main procedure of SASYNO is summarized in the form of pseudo-code as follows.

Input: {𝒙}𝑁

i. Calculate the amount of synthetic data samples needed to be generated: 𝑁𝑠
0 = 𝑁1 − 𝑁0;

ii. Calculate the quantifier of the data pattern, γ by equation (1);

iii. Identify pair-wise neighbouring samples, 𝐏 from {𝒙}
𝑁0
0 by equation (2);

iv. For 𝑘 = 1 to 𝑁𝑠
0 do

1. Randomly select a pair of neighbouring samples, (𝒑𝑘 , 𝒒𝑘)∗ from 𝐏;

2. Apply Gaussian disturbance to (𝒑𝑘, 𝒒𝑘)∗ by equation (3) and obtain (�̂�𝑘, �̂�𝑘)∗;

3. Create random interpolation between (�̂�𝑘, �̂�𝑘)∗ and obtain 𝒔𝑘;

v. End for

vi. {𝒙}
𝑁0
0 ← {𝒙}

𝑁0
0 ∪ {𝒔}𝑁𝑠

0

Output: {𝒙}𝑁

4. Numerical Examples and Discussion

In this section, we evaluate the performance of SASYNO based on a variety of real-world data sets.

4.1. Numerical examples on imbalanced data sets

Since the imbalanced binary classification problem is the primary focus of the recent researches, SASYNO is

firstly tested on five popular data sets as summarized in Table 1. In this paper, for all binary classification

problems, the minority and majority classes are re-denoted by “Class 0” and “Class 1”, respectively.

Table 1. Details of binary classification data sets used for performance evaluation

Dataset # Samples, 𝑁𝑠 # Minority, 𝑁0

(Class 0)

Majority, 𝑁1

(Class 1)

#Attributes, 𝑀

Wilt (WI)1 Training Set 4339 74 4265 5 + 1 label

Testing Set 500 187 313

Spambase (SB)2 4601 1813 2788 57 + 1 label

German Credit (GC)3 1000 300 7000 24 + 1 label

Mammograph (MG)4 11183 260 10923 6 + 1 label

Occupancy

Detection

(OD)5,6

Training Set 8143 1729 6414 5 + 1 label

Testing Set 1 2665 972 1693

Testing Set 2 9752 2049 7703
1Available from http://archive.ics.uci.edu/ml/datasets/wilt
2Available from https://archive.ics.uci.edu/ml/datasets/Spambase
3Available from https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
4Available from http://odds.cs.stonybrook.edu/mammography-dataset/
5Available from https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+
6Time stamps have been removed in advance

The following six classification approaches are involved as the base classifiers:

1) Self-organizing neuro-fuzzy inference system (SONFIS) [25];

2) Support vector machine classifier (SVM) [26];

3) k-nearest neighbour classifier (KNN) [27];

4) decision tree classifier (DT) [28];

5) Random forest classifier (RF) [29], and;

6) Multilayer perceptron (MLP).

Here SONFIS uses Euclidean distance as the distance measure, and the level of granularity is set as 12; SVM uses

Gaussian kernel; 𝑘 is equal to 1 for KNN; RF uses an ensemble of 100 classification trees; MLP is composed of

one input layer, two hidden layers and one output layer, each hidden layers has 20 neurons.

The quality of the synthetic data generated by the proposed approach is also compared with the synthetic data

generated by the state-of-the-art approaches as follows.

1) ADASYN [7];

2) SMOTE [8];

3) BLSMOTE [17];

4) SLSMOTE [18], and;

http://archive.ics.uci.edu/ml/datasets/wilt
http://archive.ics.uci.edu/ml/datasets/wilt
https://archive.ics.uci.edu/ml/datasets/Spambase
https://archive.ics.uci.edu/ml/datasets/Spambase
https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
http://odds.cs.stonybrook.edu/mammography-dataset/
http://odds.cs.stonybrook.edu/mammography-dataset/
https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+
https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+

5) Random down-sampling (RDS).

In this paper, for ADASYN, SMOTE, BLSMOTE and SLSMOTE algorithms, the number of nearest neighbours

is set as 𝑘 = 5. During the experiments, all the involved over-sampling approaches (SASYNO, ADASYN,

SMOTE, BLSMOTE and SLSMOTE) generate 𝑁1 − 𝑁0 new synthetic samples from the minority class samples

to balance the minority and majority classes. RDS randomly remove 𝑁1 − 𝑁0 majority class samples to achieve

the same purpose.

For imbalanced classification problems, the commonly-used performance criterion, namely, overall accuracy is

insufficient for evaluation. Thus, we further involve a set of assessment metrics related to receiver operating

characteristics graph as follows [7], [8].

1) Sensitivity (SN). SN is the true positive ratio, also known as recall: 𝑆𝑁 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
;

2) Specificity (SP). SP is the true negative ratio measured defined as: 𝑆𝑃 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
;

3) F-Measure (FM): 𝐹𝑀 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑁+𝐹𝑃
;

4) G-mean (GM): 𝐺𝑀 = √
𝑇𝑃

𝑇𝑃+𝐹𝑁
∙

𝑇𝑁

𝑇𝑁+𝐹𝑃
;

5) Overall accuracy (Acc): 𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
;

The definitions of TP, TN, FP, FN are given by Fig. 2, where 𝐾0 and 𝐾1 represent the numbers of minority and

majority class samples in the prediction results, respectively.

Fig. 2. Confusion matrix

In the first numerical example, we use SONFIS as the base classifier to evaluate the performance of the proposed

SASYNO and compare with the alternative data sampling approaches on WI, SB, GC, MG and OD data sets. For

SB, GC and MG data sets, 80% data samples are randomly selected out as the training set, and the remaining are

used for testing. We keep the original splitting for WI and OD data sets, but combine the testing set 1 and 2 of

the OD data set as one. The obtained results after 10 Monte Carlo experiments in terms of the five performance

measures given above are tabulated in Table 1. The performance of SONFIS on original data (denoted as ORIG)

is also reported in Table 1 as the baseline. The respective ranks per performance measure per data set are reported

in the same table (in italic) for visual clarity. The average ranks per performance measure across the five data sets

are also reported at the end of this table. For better illustration, we visualize the obtained synthetic data samples

by SASYNO together with the original data samples using the t-SNE technique [30] in Fig. 3, where one can

clearly see that SASYNO significantly expands the minority class and effectively avoids overlaps with the

majority class.

Table 1. Performance comparison between data sampling approaches using SONFIS as base learner

Dataset Algorithm SN SP GM FM Acc

WI SASYNO 0.7319 0.9183 0.8198 0.7989 0.8344

6 1 6 1 2

ADASYN 0.7887 0.8765 0.8314 0.7914 0.8434

5 2 3 2 1

SMOTE 0.9284 0.7517 0.8354 0.6129 0.7842

2 6 2 6 5

BLSMOTE 0.8409 0.8142 0.8274 0.7305 0.8218

4 3 4 4 4

SLSMOTE 0.8833 0.8085 0.8451 0.7306 0.8282

3 4 1 3 3

RDS 0.5445 0.8024 0.6608 0.6275 0.6696

7 5 7 5 7

ORIG 0.9333 0.7247 0.8224 0.5344 0.7560

1 7 5 7 6

SB SASYNO 0.7016 0.8616 0.7773 0.7492 0.7895

4 2 2 2 2

ADASYN 0.6733 0.8694 0.7650 0.7417 0.7753

6 1 6 4 6

SMOTE 0.7530 0.8470 0.7985 0.7585 0.8096

1 6 1 1 1

BLSMOTE 0.6857 0.8546 0.7653 0.7372 0.7775

5 4 5 5 5

SLSMOTE 0.7083 0.8501 0.7758 0.7431 0.7886

3 5 3 3 3

RDS 0.6620 0.8549 0.7522 0.7267 0.7632

7 3 7 6 7

ORIG 0.7141 0.8284 0.7689 0.7260 0.7818

2 7 4 7 4

GC SASYNO 0.3880 0.7542 0.5397 0.4560 0.5910

6 3 6 3 6

ADASYN 0.4052 0.7596 0.5533 0.4632 0.6120

5 2 3 2 5

SMOTE 0.4474 0.7447 0.5747 0.4244 0.6590

1 6 1 6 1

BLSMOTE 0.4102 0.7504 0.5527 0.4457 0.6220

4 5 4 5 4

SLSMOTE 0.4320 0.7647 0.5735 0.4717 0.6410

2 1 2 1 2

RDS 0.3741 0.7512 0.5289 0.4528 0.5720

7 4 7 4 7

ORIG 0.4132 0.7364 0.5501 0.4082 0.6385

3 7 5 7 3

MG SASYNO 0.3061 0.9947 0.5512 0.4399 0.9532

3 2 3 2 2

ADASYN 0.3366 0.9945 0.5777 0.4685 0.9586

2 3 1 1 1

SMOTE 0.4092 0.9888 0.5658 0.3964 0.8656

1 6 2 3 3

BLSMOTE 0.2788 0.9922 0.4797 0.3608 0.8518

4 4 4 4 4

SLSMOTE 0.1499 0.9921 0.3321 0.2016 0.7463

6 5 5 5 6

RDS 0.07290 0.9958 0.2566 0.1289 0.6353

7 1 7 7 7

ORIG 0.1709 0.9868 0.3310 0.1836 0.7488

5 7 6 6 5

OD SASYNO 0.3061 0.9947 0.5512 0.4399 0.9532

3 2 3 2 2

ADASYN 0.3366 0.9945 0.5777 0.4685 0.9586

2 3 1 1 1

SMOTE 0.4092 0.9888 0.5658 0.3964 0.8656

1 6 2 3 3

BLSMOTE 0.2788 0.9922 0.4797 0.3608 0.8518

4 4 4 4 4

SLSMOTE 0.1499 0.9921 0.3321 0.2016 0.7463

6 5 5 5 6

RDS 0.07290 0.9958 0.2566 0.1289 0.6353

7 1 7 7 7

ORIG 0.1709 0.9868 0.3310 0.1836 0.7488

5 7 6 6 5

Average Rank SASYNO 4.6 1.8 4 2 3

ADASYN 4.8 2.4 3.8 3 3.8

SMOTE 1.6 6.2 2 4.2 3

BLSMOTE 3.8 4.2 3.8 4.2 3.8

SLSMOTE 3.8 3.4 3.2 3.2 3.6

RDS 7 3.2 7 5.8 7

ORIG 2.4 6.8 4.2 5.6 3.8

(a) WI data set

(b) OD data set

Fig. 3. Data visualization with t-SNE

In the second example, we use SVM and KNN as the base classifiers and repeat the experiments under the same

protocol as the previous example. Numerical results are given in Tables 2 and 3, respectively. Additionally, we

calculate the average ranks of the involved data sampling approaches across the three numerical examples and

report it in Table 4.

Table 2. Performance comparison between data sampling approaches using SVM as base learner

Dataset Algorithm SN SP GM FM Acc

WI SASYNO 0.3755 1.0000 0.6128 0.5460 0.3780

2 1 2 1 2

ADASYN 1.0000 0.6273 0.7920 0.0106 0.6280

1 2 1 3 1

SMOTE 1.0000 0.6273 0.7920 0.0106 0.6280

1 2 1 3 1

BLSMOTE 1.0000 0.6273 0.7920 0.0106 0.6280

1 2 1 3 1

SLSMOTE 1.0000 0.6273 0.7920 0.0106 0.6280

1 2 1 3 1

RDS 0.3745 0.3000 0.1838 0.5449 0.3752

3 3 3 2 3

ORIG 1.0000 0.6273 0.7920 0.0106 0.6280

1 2 1 3 1

SB SASYNO 0.9271 0.7388 0.8206 0.5512 0.7377

7 1 6 1 1

ADASYN 0.9560 0.6996 0.8177 0.4987 0.7349

6 2 7 2 2

SMOTE 0.9948 0.6932 0.8303 0.4743 0.7301

2 5 1 6 5

BLSMOTE 0.9868 0.6932 0.8270 0.4748 0.7297

4 6 3 5 6

SLSMOTE 0.9915 0.6955 0.8303 0.4831 0.7328

3 4 2 4 3

RDS 0.9831 0.6958 0.8270 0.4845 0.7326

5 3 4 3 4

ORIG 0.9953 0.6863 0.8264 0.4477 0.7214

1 7 5 7 7

GC SASYNO 0.3135 0.9333 0.5396 0.4764 0.3235

1 1 1 1 3

ADASYN 0.0000 0.6905 0.0000 0.0000 0.6905

3 3 3 3 1

SMOTE 0.0000 0.6905 0.0000 0.0000 0.6905

3 3 3 3 1

BLSMOTE 0.0000 0.6905 0.0000 0.0000 0.6905

3 3 3 3 1

SLSMOTE 0.0000 0.6905 0.0000 0.0000 0.6905

3 3 3 3 2

RDS 0.1512 0.7717 0.2549 0.1941 0.5340

2 2 2 2 1

ORIG 0.0000 0.6905 0.0000 0.0000 0.6905

3 3 3 3 1

MG SASYNO 0.3132 0.9942 0.5573 0.4439 0.9552

4 2 4 4 4

ADASYN 0.2536 0.9933 0.5006 0.3746 0.9426

5 3 5 5 5

SMOTE 0.8075 0.9877 0.8922 0.6005 0.9852

2 6 2 1 1

BLSMOTE 0.2474 0.9924 0.4939 0.3615 0.9421

6 5 6 6 6

SLSMOTE 0.5239 0.9926 0.7185 0.5930 0.9777

3 4 3 2 3

RDS 0.1719 0.9968 0.4121 0.2862 0.8939

7 1 7 7 7

ORIG 0.8200 0.9857 0.8980 0.5324 0.9838

1 7 1 3 2

OD SASYNO 0.2160 1.0000 0.4647 0.3552 0.2372

6 1 6 5 6

ADASYN 0.2214 0.9980 0.4700 0.3625 0.2612

5 6 5 4 5

SMOTE 0.2513 0.9994 0.5011 0.4016 0.3741

2 2 2 1 2

BLSMOTE 0.2292 0.9988 0.4784 0.3729 0.2936

3 4 3 2 3

SLSMOTE 0.2226 0.9982 0.4714 0.3641 0.2666

4 5 4 3 4

RDS 0.2127 0.9991 0.4610 0.3508 0.2222

7 3 7 6 7

ORIG 1.0000 0.7916 0.8897 0.02030 0.7920

1 7 1 7 1

Average Rank SASYNO 4 1.2 3.8 2.4 3.2

ADASYN 4 3.2 4.2 3.4 2.8

SMOTE 2 3.6 1.8 2.8 2

BLSMOTE 3.4 4 3.2 3.8 3.4

SLSMOTE 2.8 3.6 2.6 3 2.6

RDS 4.8 2.4 4.6 4 4.4

ORIG 1.4 5.2 2.2 4.6 2.4

Table 3. Performance comparison between data sampling approaches using KNN as base learner

Dataset Algorithm SN SP GM FM Acc

WI SASYNO 0.7536 0.9335 0.8387 0.8209 0.8528

6 1 6 1 2

ADASYN 0.8205 0.8722 0.8459 0.7995 0.8538

5 3 5 2 1

SMOTE 0.9163 0.7873 0.8494 0.6961 0.8168

2 6 4 6 5

BLSMOTE 0.8758 0.8308 0.8530 0.7647 0.8438

4 4 1 3 3

SLSMOTE 0.9106 0.7990 0.8530 0.7187 0.8262

3 5 2 4 4

RDS 0.6107 0.8901 0.7370 0.7143 0.7408

7 2 7 5 7

ORIG 0.9333 0.7747 0.8503 0.6712 0.8080

1 7 3 7 6

SB SASYNO 0.7439 0.8800 0.8090 0.7829 0.8209

4 2 3 1 2

ADASYN 0.7021 0.8897 0.7902 0.7694 0.8005

7 1 7 4 7

SMOTE 0.7628 0.8547 0.8073 0.7693 0.8180

2 7 4 5 4

BLSMOTE 0.7378 0.8656 0.7990 0.7687 0.8112

5 4 5 6 5

SLSMOTE 0.7598 0.8626 0.8095 0.7753 0.8207

3 5 2 2 3

RDS 0.7226 0.8724 0.7938 0.7671 0.8058

6 3 6 7 6

ORIG 0.7678 0.8573 0.8112 0.7737 0.8216

1 6 1 3 1

GC SASYNO 0.4319 0.7862 0.5820 0.5046 0.6305

5 1 4 1 5

ADASYN 0.4233 0.7706 0.5700 0.4844 0.6245

6 2 6 2 6

SMOTE 0.4589 0.7522 0.5861 0.4447 0.6665

2 6 2 6 2

BLSMOTE 0.4473 0.7637 0.5828 0.4705 0.6535

4 3 3 3 4

SLSMOTE 0.4483 0.7583 0.5815 0.4589 0.6565

3 4 5 5 3

RDS 0.3849 0.7578 0.5386 0.4617 0.5830

7 5 7 4 7

ORIG 0.4621 0.7504 0.5869 0.4386 0.6685

1 7 1 7 1

MG SASYNO 0.05540 0.9940 0.2343 0.1039 0.6629

5 2 5 5 6

ADASYN 0.05380 0.9922 0.2303 0.1005 0.6725

6 3 6 6 5

SMOTE 0.6548 0.9905 0.8043 0.6264 0.9831

2 6 2 3 2

BLSMOTE 0.4737 0.9920 0.6844 0.5531 0.9747

4 4 4 4 4

SLSMOTE 0.6314 0.9919 0.7906 0.6450 0.9830

3 5 3 1 3

RDS 0.04860 0.9961 0.2198 0.09230 0.5829

7 1 7 7 7

ORIG 0.6747 0.9903 0.8164 0.6298 0.9837

1 7 1 2 1

OD SASYNO 0.8433 0.9887 0.9131 0.8975 0.9540

1 2 1 2 1

ADASYN 0.8148 0.9845 0.8957 0.8748 0.9432

7 3 7 6 6

SMOTE 0.8371 0.9702 0.9012 0.8621 0.9404

5 7 6 7 7

BLSMOTE 0.8413 0.9840 0.9099 0.8888 0.9505

4 4 2 3 3

SLSMOTE 0.8416 0.9839 0.9099 0.8886 0.9504

3 5 3 4 4

RDS 0.8289 0.9943 0.9078 0.8979 0.9532

6 1 5 1 2

ORIG 0.8418 0.9835 0.9099 0.8882 0.9503

2 6 4 5 5

Average Rank SASYNO 4.2 1.6 3.8 2 3.2

ADASYN 6.2 2.4 6.2 4 5

SMOTE 2.6 6.4 3.6 5.4 4

BLSMOTE 4.2 3.8 3 3.8 3.8

SLSMOTE 3 4.8 3 3.2 3.4

RDS 6.6 2.4 6.4 4.8 5.8

ORIG 1.2 6.6 2 4.8 2.8

Table 4. Overall ranks of involved data sampling approaches

Algorithm Rank

SN SP GM FM Acc Overall

SASYNO 4.3 1.5 3.9 2.1 3.1 3

ADASYN 5 2.7 4.7 3.5 3.9 3.9

SMOTE 2.1 5.4 2.5 4.1 3 3.4

BLSMOTE 3.8 4 3.3 3.9 3.7 3.7

SLSMOTE 3.2 3.9 2.9 3.1 3.2 3.3

RDS 6.1 2.7 6 4.9 5.7 5.1

ORIG 1.7 6.2 2.8 5 3 3.7

Furthermore, we also involve DT, RF and MLP as base learners to evaluate the effectiveness of the proposed

SASYNO following the similar experimental protocol used by the previous examples and compare the baseline

results obtained with the original data sets. The results are reported in Table 5.

Table 5. Performance of SASYNO with alternative classifiers as base learners

Dataset Base Learner Algorithm SN SP GM FM Acc

WI DT SASYNO 0.7332 0.9452 0.8325 0.8170 0.8454

ORIG 0.8917 0.7895 0.8390 0.6971 0.8140

RF SASYNO 0.7639 0.9714 0.8614 0.8505 0.8738

ORIG 0.9472 0.7935 0.8669 0.7137 0.8282

MLP SASYNO 0.7053 0.9260 0.8080 0.7888 0.8206

ORIG 0.0875 0.6265 0.0745 0.0072 0.6264

SP DT SASYNO 0.8808 0.9394 0.9096 0.8941 0.9159

ORIG 0.8912 0.9336 0.9121 0.8941 0.9170

RF SASYNO 0.9297 0.9451 0.9374 0.9218 0.9392

ORIG 0.9335 0.9443 0.9389 0.9228 0.9402

MLP SASYNO 0.6998 0.8483 0.7419 0.7144 0.8124

ORIG 0.7100 0.8383 0.7371 0.6874 0.7745

GC DT SASYNO 0.4971 0.7724 0.6178 0.4918 0.6860

ORIG 0.4992 0.7763 0.6215 0.5016 0.6880

RF SASYNO 0.6161 0.7934 0.6982 0.5510 0.7485

ORIG 0.6214 0.7854 0.6975 0.5312 0.7470

MLP SASYNO 0.5224 0.8222 0.6544 0.5748 0.7050

ORIG 0.6050 0.7670 0.6797 0.4796 0.7315

MG DT SASYNO 0.3060 0.9931 0.5496 0.4288 0.9549

ORIG 0.6310 0.9897 0.7894 0.5961 0.9821

RF SASYNO 0.3842 0.9940 0.6171 0.5079 0.9659

ORIG 0.8499 0.9895 0.9165 0.6724 0.9874

MLP SASYNO 0.2559 0.9959 0.5035 0.3910 0.9386

ORIG 0.7951 0.9873 0.8857 0.5854 0.9847

OD DT SASYNO 0.8492 0.9677 0.9065 0.8631 0.9418

ORIG 0.8503 0.9646 0.9057 0.8589 0.9401

RF SASYNO 0.8348 0.9707 0.8996 0.8612 0.9392

ORIG 0.8591 0.9824 0.9187 0.8950 0.9542

MLP SASYNO 0.8493 0.9967 0.9196 0.9121 0.9595

ORIG 0.8589 0.9741 0.9128 0.8758 0.9446

4.2. Numerical examples on benchmark image sets

In this subsection, numerical examples on popular benchmark image sets are presented to demonstrate that

SASYNO is a generic approach and can be used to improve the performance of base learners on various

classification problems. The following four mage sets are used for experimental investigation. Details of the four

datasets are summarized in Table 6, one can find problem descriptions and example images from [31]–[34].

1) UCMerced image set (available from http://weegee.vision.ucmerced.edu/datasets/landuse.html) [31];

http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html

2) WHU-RS19 image set (available from http://captain.whu.edu.cn/repository.html) [32];

3) MNIST image set (available from http://yann.lecun.com/exdb/mnist/) [33], and;

4) FashionMNIST image set (available from https://github.com/zalandoresearch/fashion-mnist) [34].

The following three classification algorithms are employed as the base learners:

1) SONFIS [25];

2) SVM [26], and;

3) KNN [27].

Here SONFIS uses Euclidean distance as the distance measure, and the level of granularity is set as 12; SVM uses

linear kernel; 𝑘 is equal to 5 for KNN.

Table 6. Details of benchmark image sets for performance evaluation

Dataset # Images # Classes # Images per Class # Features Resolution

UCMerced 2100 21 100 8192×1 256×256

WHU-RS19 950 19 50 600×600

MNIST Training set 60000 10 Approximately 6000 784×1 28×28

Testing set 10000 Approximately 1000

FashionMNIST Training set 60000 6000

Testing set 10000 10000

In this paper, we use the same approach as described in [25] to extract a 8192 × 1 dimensional feature vector

from each image of UCMerced and WHU-RS19 image sets using an ensemble feature descriptor formed by the

pretrained pre-trained AlexNet [35] and VGG-VD-16 [36] deep learning neural networks. For MNIST and

FashionMNIST image sets, we convert them into 784×1 dimensional feature vectors for classifier training and

testing, and further normalize them with the corresponding L2 norm following [25]. During the numerical

experiments conducted in this subsection, for UCMerced and WHU-RS19, we use SASYNO to create synthetic

feature vectors from the feature vectors of training images from each class to double the size of the training sets.

For MNIST and FashionMNIST, we are able to create synthetic images from the training images directly thanks

to the simpler structure.

Following the common practice, for UCMerced image set, we randomly select out 50% and 80% images per class

for synthetic data generation by SASYNO and classifier training, and use the remaining ones for testing [31]. For

WHU-RS19 image set, 40% and 60% images per class are randomly selected out for synthetic data generation

and classifier training, and the remaining ones are used for testing [32]. The classification accuracy rates on the

testing images by the three classifiers trained with the augmented training sets are reported in Table 7, and the

results obtained by the classifiers trained with the original training sets are reported as the base line. Note that the

reported results in Table 7 are the average of 30 Monte Carlo experiments.

Table 7. Performance of SASYNO on UCMeced and WHU-RS19 image sets

Dataset % Training

Samples

SONFIS SVM KNN

SASYNO ORIG SASYNO ORIG SASYNO ORIG

UCMerced 50 0.9313 0.9267 0.9440 0.9419 0.9108 0.9005

80 0.9565 0.9529 0.9583 0.9583 0.9377 0.9293

WHU-RS19 40 0.9386 0.9370 0.9458 0.9439 0.9282 0.9228

60 0.9500 0.9463 0.9589 0.9570 0.9414 0.9370

In the second numerical example, we randomly select out 10000, 20000, 30000, 40000, 50000 and 60000 images

from the training sets of MNIST and FashionMNIST for training. The classification accuracy rates of the three

base learners trained on the augmented and original training sets under different experimental settings are reported

http://captain.whu.edu.cn/repository.html
http://captain.whu.edu.cn/repository.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist

in Table 8. Examples of original images of the original MNIST and FashionMNIST image sets and the synthetic

ones generated by SASYNO are given in Fig. 4 for better illustration.

Fig. 4. Examples of original and synthetic images of MNIST and FashionMNIST image sets

Table 8. Performance of SASYNO on MNIST and FashionMNIST image sets

Dataset #Training

Samples

SONFIS SVM KNN

SASYNO ORIG SASYNO ORIG SASYNO ORIG

MNIST 10000 0.9512 0.9491 0.9070 0.9037 0.9473 0.9454

20000 0.9593 0.9588 0.9185 0.9163 0.9571 0.9563

30000 0.9632 0.9628 0.9232 0.9222 0.9615 0.9614

40000 0.9659 0.9658 0.9266 0.9261 0.9642 0.9642

50000 0.9671 0.9682 0.9285 0.9284 0.9665 0.9663

60000 0.9692 0.9685 0.9306 0.9303 0.9682 0.9679

FashionMNIST 10000 0.8328 0.8314 0.8314 0.8269 0.8177 0.8164

20000 0.8450 0.8436 0.8424 0.8387 0.8350 0.8345

30000 0.8514 0.8529 0.8462 0.8453 0.8445 0.8440

40000 0.8565 0.8571 0.8490 0.8490 0.8504 0.8499

50000 0.8600 0.8609 0.8510 0.8508 0.8548 0.8544

60000 0.8639 0.8633 0.8511 0.8523 0.8582 0.8578

4.3 Discussions

Numerical examples presented in subsection 4.1 demonstrate that the proposed SASYNO can effectively tackle

the class imbalance problem by creating high-quality synthetic minority class samples and improve the overall

performance of different base learners including SONFIS, KNN, SVM, DT, RF and MLP on various highly

imbalanced data sets. Compared with the state-of-the-art data sampling approaches involved in comparison, one

can see from Tables 1-4 that SASYNO significantly improves the true negative ratio of the classification results

by these base learners (namely, specificity) and outperforms all the comparative data sampling approaches in

terms of specificity, F-measure and the overall ranks.

Numerical examples presented in subsection 4.2 further demonstrate the promise of SASYNO as a generic

approach for data augmentation, even for very high-dimensional problems. As one can see from Table7, the

classification performance of SONFIS, KNN and SVM is improved by involving SASYNO for training set

augmentation. On the other hand, as one can see from Table 8, SASYNO effectively improves the classification

performance of the three base learners when the scale of the training set is relatively small (10000, 20000 training

images). However, the problem of overfitting occurs with the scale of the training set becomes large (30000,

40000, 50000, 60000 training images), and SASYNO is not able to improve the classification performance

furthermore.

5. Conclusion

This paper presented a new over-sampling approach named SASYNO to tackle the imbalance classification

problem. The proposed approach is able to generate high-quality synthetic samples from the empirically observed

minority class samples and effective balance the data set. Numerical examples on benchmark binary classification

problems demonstrate the better performance of SASYNO comparing with the popular alternatives. In addition,

it is justified through numerical examples that SASYNO is a generic approach and can be used for data

augmentation for various classification problems.

As future work, we will explore more on imbalanced multi-class classification problems. Such problems are far

more challenging for standard classification algorithms compared with binary classification problems. It is

important to see how SASYNO perform on these problems. Also, it is shown by numerical examples that

SASYNO can be used for creating synthetic images. Lack of labelling is a major problem in field of image

recognition, it will be very interesting to see how deep convolutional neural networks react to these synthetic

images generated by SASYNO.

6. Author Contributions

P. Angelov conceived the original idea, which was developed further by X. Gu. X. Gu designed and implemented

the algorithms. X. Gu and E. Almeida Soares designed, performed the experiments and interpreted the results. X.

Gu and P. Angelov wrote the manuscript.

References

[1] E. Soares and P. Angelov, “Fair-by-design explainable models for prediction of recidivism,” ArXiv:

191002043, 2019.

[2] Z. Chen, T. Lin, X. Xia, H. Xu, and S. Ding, “A synthetic neighborhood generation based ensemble

learning for the imbalanced data classification,” Appl. Intell., vol. 48, no. 8, pp. 2441–2457, 2018.

[3] E. W. T. Ngai, Y. Hu, Y. H. Wong, Y. Chen, and X. Sun, “The application of data mining techniques in

financial fraud detection: a classification framework and an academic review of literature,” Decis. Support

Syst., vol. 50, no. 3, pp. 559–569, 2011.

[4] M. Zhu et al., “Class weights random forest algorithm for processing class imbalanced medical data,”

IEEE Access, vol. 6, pp. 4641–4652, 2018.

[5] P. Li, W. Hu, R. Hu, and Z. Chen, “Imbalance fault detection based on the integrated analysis strategy for

variable-speed wind turbines,” Int. J. Electr. Power Energy Syst., vol. 116, no. August 2019, p. 105570,

2020.

[6] V. López, A. Fernández, S. García, V. Palade, and F. Herrera, “An insight into classification with

imbalanced data: empirical results and current trends on using data intrinsic characteristics,” Inf. Sci. (Ny).,

vol. 250, pp. 113–141, 2013.

[7] S. He, H., Bai, Y., Garcia, E., & Li, “ADASYN: adaptive synthetic sampling approach for imbalanced

learning,” in International Joint Conference on Neural Networks, 2008, pp. 1322– 1328.

[8] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: synthetic minority over-

sampling technique,” J. Artif. Intell. Res., no. 16, pp. 321–357, 2002.

[9] S. Barua, M. M. Islam, X. Yao, and K. Murase, “MWMOTE - majority weighted minority oversampling

technique for imbalanced data set learning,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 2, pp. 405–425,

2014.

[10] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory undersampling for class-imbalance learning,” IEEE

Trans. Syst. Man, Cybern. Part B, vol. 39, no. 2, pp. 539–550, 2008.

[11] G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard, “A study of the behavior of several methods for

balancing machine learning training data,” ACM SIGKDD Explor. Newsl., vol. 6, no. 1, p. 20, 2004.

[12] F. Li, X. Zhang, X. Zhang, C. Du, Y. Xu, and Y. C. Tian, “Cost-sensitive and hybrid-attribute measure

multi-decision tree over imbalanced data sets,” Inf. Sci. (Ny)., vol. 422, pp. 242–256, 2018.

[13] E. Ramentol et al., “IFROWANN: imbalanced fuzzy-rough ordered weighted average nearest neighbor

classification,” IEEE Trans. Fuzzy Syst., vol. 23, no. 5, pp. 1622–1637, 2015.

[14] Y. Tang, Y. Q. Zhang, and N. V. Chawla, “SVMs modeling for highly imbalanced classification,” IEEE

Trans. Syst. Man, Cybern. Part B Cybern., vol. 39, no. 1, pp. 281–288, 2009.

[15] S. González, S. García, S. T. Li, and F. Herrera, “Chain based sampling for monotonic imbalanced

classification,” Inf. Sci. (Ny)., vol. 474, pp. 187–204, 2019.

[16] B. Das, N. C. Krishnan, and D. J. Cook, “RACOG and wRACOG: two probabilistic oversampling

techniques,” IEEE Trans. Knowl. Data Eng., vol. 27, no. 1, pp. 222–234, 2015.

[17] H. Han, W.-Y. Wang, and B.-H. Mao, “Borderline-SMOTE: a new over-sampling method in imbalanced

data sets learning,” in International conference on intelligent computing, 2005, pp. 878–887.

[18] C. Bunkhumpornpat, K. Sinapiromsaran, and C. Lursinsap, “Safe-level-SMOTE: safe-level-synthetic

minority over-sampling technique for handling the class imbalanced problem,” in Pacific-Asia conference

on knowledge discovery and data mining, 2009, pp. 475–482.

[19] L. Abdi and S. Hashemi, “To combat multi-class imbalanced problems by means of over-sampling

techniques,” IEEE Trans. Knowl. Data Eng., vol. 28, no. 1, pp. 238–251, 2016.

[20] I. Nekooeimehr and S. K. Lai-Yuen, “Adaptive semi-unsupervised weighted oversampling (A-SUWO)

for imbalanced datasets,” Expert Syst. Appl., vol. 46, pp. 405–416, 2016.

[21] T. Zhu, Y. Lin, and Y. Liu, “Synthetic minority oversampling technique for multiclass imbalance

problems,” Pattern Recognit., vol. 72, pp. 327–340, 2017.

[22] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Trans. Knowl. Data Eng., vol. 21, no.

9, pp. 1263–1284, 2009.

[23] H. He and Y. Ma, Imbalanced learning: foundations, algorithms, and applications. John Wiley & Sons,

2013.

[24] X. Gu, P. P. Angelov, and J. C. Principe, “A method for autonomous data partitioning,” Inf. Sci. (Ny).,

vol. 460–461, pp. 65–82, 2018.

[25] X. Gu, P. Angelov, and H. J. Rong, “Local optimality of self-organising neuro-fuzzy inference systems,”

Inf. Sci. (Ny)., vol. 503, pp. 351–380, 2019.

[26] N. Cristianini and J. Shawe-Taylor, An introduction to support vector machines and other kernel-based

learning methods. Cambridge: Cambridge University Press, 2000.

[27] P. Cunningham and S. J. Delany, “K-nearest neighbour classifiers,” Mult. Classif. Syst., vol. 34, pp. 1–

17, 2007.

[28] S. R. Safavian and D. Landgrebe, “A survey of decision tree classifier methodology,” IEEE Trans. Syst.

Man Cybern., vol. 21, no. 3, pp. 660–674, 1991.

[29] L. Breiman, “Random forests,” Mach. Learn. Proc., vol. 45, no. 1, pp. 5–32, 2001.

[30] L. Van Der Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach. Learn. Res., vol. 9, no. 1,

pp. 2579–2605, 2008.

[31] Y. Yang and S. Newsam, “Bag-of-visual-words and spatial extensions for land-use classification,” in

International Conference on Advances in Geographic Information Systems, 2010, pp. 270–279.

[32] G. Xia, W. Yang, J. Delon, Y. Gousseau, H. Sun, and H. Maitre, “Structural High-resolution Satellite

image indexing,” in ISPRS, TC VII Symposium Part A: 100 Years ISPRS—Advancing Remote Sensing

Science, 2010, pp. 298–303.

[33] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document

recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2323, 1998.

[34] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: a novel image dataset for benchmarking machine

learning algorithms,” arXiv Prepr. arXiv1708.07747, 2017.

[35] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural

networks,” in Advances In Neural Information Processing Systems, 2012, pp. 1097–1105.

[36] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,”

in International Conference on Learning Representations, 2015, pp. 1–14.

