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Abstract

Chronic Kidney Disease (CKD) is a major global public health problem and is one of the fastest
rising major causes of death. Worldwide moderate to severe CKD has a prevalence of ~11%,
whereas in the UK it is ~5%. The objective of our study was to identify key risk factors associated
with the progression of kidney disease both across and within primary kidney diseases; ultimately

this could lead to improvements in patient care and a reduction in disease burden.

We used data collected from secondary care patients who were recruited into the Salford Kidney
Study at Salford Royal NHS Foundation Trust, UK. This ongoing study which commenced
in 2002 is one of the largest of its kind worldwide, and consists of over 3000 non-dialysis
patients with moderate to severe CKD, who are followed-up annually until an end point of either
dialysis, kidney transplant or death. The data recorded at follow-up appointments included
comorbidities, medications, lifestyle factors, socio-demographic information and biochemical

marker measurements.

We used longitudinal modelling, specifically a linear mixed effects model which models population
effects alongside patient-specific variability. We identified risk factors within each of eight primary
disease categories including diabetic nephropathy, glomerulonephritis, hypertensive kidney disease,
renovascular disease, polycystic kidney disease and pyelonephritis. The key risk factors for lower
levels of eGFR are biochemical markers and medications, whereas lifestyle factors and physical
attributes are less important. Medications play an important role; in particular ACE inhibitors
and ARBs are key in diabetic nephropathy and glomerulonephritis, but not in the other diseases.
We found that more rapid progression of kidney disease is associated with biochemical markers
including cholesterol and proteinuria. In contrast, medications and comorbidities are not key in
rapid disease progression. We recommend future work should include more in-depth studies of

each disease category including splitting them into subcategories.

Word count approximately 31,000.

ii



Acknowledgements

I would like to express my thanks to all those who have inspired, challenged and helped me

throughout my time at Lancaster University.

Special thanks must go to my main supervisor, Dr Frank Dondelinger, for all his help and support
throughout all aspects of the statistical modelling. I would also like to thank Professor Peter
Diggle and Professor Philip Kalra who have been prepared to spend time guiding my research by

offering helpful and insightful comments.

Additionally T am very grateful to the Medical Research Council for supporting this research
through a Skills Development Fellowship.

iii



Contents

List of tables

List of figures

Abbreviations

Mathematical notation

Variable definitions

1 Introduction and background

2 Summary of SKS data

2.1 Data preparation and cleaning . . . . . . ... ...
2.2 Overview of SKSdata . . . .. .. ... ...
2.3 Primary kidney disease types . . . . . . .. . L o
2.4 Comorbidities . . . . . . . . .
2.5 Medications . . . . . ...
2.6 Biochemical markers . . . . . . .. ... L L L

2.6.1 General biomarkers. . . . . . . .. ...

2.6.2 Estimated glomerular filtration rate (eéGFR) . . . . . ... ... ... ...
2.7 Imputation . . . . .. . L

2.8 Baseline variables . . . . . . ...
3 Linear mixed effects model

4 Inferences regarding changes in eGFR

4.1 Step changes in explanatory variables . . . . . . ... .. ... . 0oL L.
4.1.1 Step changes on log(eGFR) scale . . . . . ... ... ... .........
4.1.2  Step changes on eGFR scale . . . . . . ... ... ... ... L.
4.1.3 Summary of Step changes approaches . . . . . .. ... ... ... ....

4.2 Rates of change over time . . . . . . . .. L L L
4.2.1 Time derivative on log(eGFR) scale . ... ... ... ... ... ....
4.2.2 Time derivative on eGFR scale . . . . . .. ... ... ... ...

4.3 Interpreting sign of regression parameters in terms of temporal progression

4.4 Interpretion of fixed effects temporal interaction terms . . . . . . ... ... ...
4.4.1 Regression model for log(eGFR) . . . ... ... ... ... ... ....
4.4.2 Regression model for rate of change in log(eGFR) over time . . . . . . . .

4.5 Standardised model . . . . . . ...

5 Model selection

iv

vi

vii

xi

cOo o 0o - o vt ot W,

[
N N O

18

22
22
22
23
24
24
25
26
27
28
28
28
29

30



5.1 Dependence among model variables . . . . . .. ... o000 30

5.2  Stepwise regression with bidirectional selection and bootstrapping . . . . . . .. 31
5.3 Training and validation data . . . . . . . . .. ... ... oL, 33
5.4 Summary of model selection procedure . . . . . ... ..o 34
Diagnostics 37
6.1 LME Model assumptions . . . . . . . . . . . . Lo 37
6.2 Tests using validation data . . . . . . . ... oo oo 37
6.3 Examination of confidence intervals . . . . . . . . .. .. ... .. ... ... ... 38
6.4 Observed versus fitted values . . . . . . .. ... Lo oL 41
6.5 Assessment of residual distributional assumptions . . . . . . ... ... 44
6.6 Assessment of random effect distributional assumptions . . . . .. ... ... .. 48

6.7 Robustness of fixed effect parameters and conclusions relating to diagnostic results 51

Results 53
7.1 Introduction . . . . . . . . .. 53
7.2 Overview . . . . .. e 95
7.3 Detailed Estimates of regression parameters . . . . . . . . . ... ... ... .. 63
7.3.1 Diabetic nephropathy . . . . . .. ... . .. o Lo 63
7.3.2  Glomerulonephritis . . . . . . ... Lo o 68
7.3.3 Hypertensive kidney disease . . . . . .. .. ... ... oL L. 73
7.3.4 Other . . . . . . 78
735 PKD . . .o 83
7.3.6  Pyelonephritis . . . . . .. ... 88
7.3.7 Renovascular . . . . .. .. ... 93
7.3.8 Unknown disease . . . . . . . . . ... 98
7.3.9 Single model all diseases . . . . . . . . . ... o 103
7.4 Rates of change over time . . . . . .. ... L Lo o 108
7.4.1 Overall average rate of decline for each disease . . . .. ... .. .. ... 108
7.4.2 Diabetic nephropathy . . . . . . . ... ... . 110
7.4.3 Glomerulonephritis . . . . . .. ... Lo Lo 113
7.4.4 Hypertensive kidney disease . . . . . .. .. ... o L. 116
7.4.5 Other . . . . . . . . e 119
746 PKD . ..o 122
7.4.7 Pyelonephritis . . . . . ..o 125
74.8 Renovascular . . . . .. .. ... o 128
7.4.9 Unknown disease . . . . . . . . . .. L 131
7.4.10 Single model all diseases . . . . . . . . .. ... oL 134
7411 Summary . . . . ... e 137
7.5 Counterintuitive results . . . . . . ... oL o 137



7.6

Correlation between baseline eGFR and its rate of change . . . . . . ... .. ..

8 Discussion

8.1
8.2

8.3

8.4

8.5

8.2.1 Strengths . . . . . . . . L
8.2.2 Limitations and weaknesses . . . . . . . .. ... Lo oL
8.2.3 Recommendations . . . . ... ... L L
Statistical model . . . . . . . ...
8.3.1 Strengths . . . . . . . .
8.3.2 Limitations and weaknesses . . . . .. ... . Lo oL
8.3.3 Recommendations . . .. ... ... L L L o
Implications regarding disease progression . . . . . . . ... ... ... ... ..
8.4.1 Mental Health . . . . ... .. .. ...
8.4.2 Socio-economic factors . . . . ... Lo oL
8.4.3 Disease progression with respect to baseline eGFR . . . . .. .. ... ..
Future work . . . . . . . . L
8.5.1 Joint longitudinal and survival modelling . . . . . . .. ... ... .. ..
8.5.2 Personalised healthcare . . . . .. ... ... .. ... L.
8.5.3 Treatment specific investigations . . . . . . .. ... L L.

8.5.4 Further work relating to counterintuitive results . . . . . ... ... ...

9 Conclusion

References

Appendix

Al

A2
A3
A4

A5
A6
AT

Data cleaning and preparation . . . . . .. . ... Lo oo
A1.1 End of study markers . . . ... ... oo
A.1.2 Primary kidney disease categories . . . . . . . .. .. ... ... . ....
A.1.3 Comorbidity categories . . . . . . . ...
A.1.4 Medication categories . . . . . . . .. Lo e
Trellis plots of eGFR against follow-up for individual patients . . . . . . . . ...
Data imputation . . . . . . . ...
Dependence between all model variables . . . . . . . ... ... ... ...
A4 Correlation . . . . ...
A.4.2 Variance inflation factor . . . . . .. ... oL Lo
Linear mixed effects model: residuals by follow-up year. . . . . . . ... .. ...
Observation counts per factor level for each disease category . . . . . . . . .. ..
Unstandardised model . . . . . .. .. .

AT.1 Overview . . . . . e

vi

141
141
142
142
143
144
146
146
146
149
150
150
151
151
151
151
153
155
156

157

158



A.7.2 Diabetic nephropathy . . . . .. ... ... ... L 211
A.7.3 Glomerulonephritis . . . . . . . . . .. .. 213
A.7.4 Hypertensive kidney disease . . . . . . . .. . ... oL 215
AT5 Other . . . .. e 218
AT6 PKD . .. e 220
A.7.7 Pyelonephritis . . . . . ... 223
A78 Renovascular . . . . ... 226
A79 Unknown disease . . . . . . . . ... 229
A.7.10 Single model all diseases . . . . . . . . . ... . 232

vii



List of tables

S Tt e W N -

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Baseline summary statistics . . . . . . .. ..o L oL
Summary statistics for biochemical markers at baseline . . . . . . .. .. ... ..
Correlation between biochemical markers for all follow-up years . . . . . . .. ..
CKD stage defined by eGFR (mL/min/1.73m?) . . . . ... ... ... ... ...
Proportion of missing values before and after imputation over all follow-up years
Summary statistics, over all follow-up years, for continuous variables before and
after imputation . . . . . .. ...
Comparison of log-likelihood for different models . . . . . . . .. ... ... ...
95% confidence intervals for random effects variance-covariance parameters . . .
95% confidence intervals for within-group standard deviation for parameter o . .
Average effects - standardised model summary for each disease . . .. ... ...
Temporal effects - standardised model summary for each disease . . . ... ...
Standardised model summary for disease diabetic nephropathy . . . . .. .. ..
Standardised model summary for disease glomerulonephritis . . . . . . . ... ..
Standardised model summary for dissase HKD . . . . . . ... ... .. .. ...
Standardised model summary for disease other . . . . . ... ... ... .. ...
Standardised model summary for disease polycystic kidney disease . . . . . . ..
Standardised model summary for disease pyelonephritis . . . . . . ... .. ...
Standardised model summary for disease renovascular . . . . . ... .. .. ...
Standardised model summary for disease unknown . . . . . ... .. ...
Standardised model summary for single model all diseases . . . . . ... .. ...
Summary for rates of change in eGFR across all diseases . . . . . . ... .. ...
Estimated average rate of change over time for disease diabetic nephropathy . . .
Estimated average rate of change over time for disease glomerulonephritis . . . .
Estimated average rate of change over time for disease HKD . . . . . . . . .. ..
Estimated average rate of change over time for disease other . . . . . . . . . . ..
Estimated average rate of change over time for disease PKD . . . . . ... .. ..
Estimated average rate of change over time for disease pyelonephritis . . . . . . .
Estimated average rate of change over time for disease renovascular disease

Estimated average rate of change over time for disease unknown . . . . ... ..
Estimated average rate of change over time for single model all diseases . . . . .
Correlation between variables: sub-matrix(1,1) . . .. ... ... ... ... ...
Correlation between variables: sub-matrix(1,2) . . .. ... ... ... ... ...
Correlation between variables: sub-matrix(1,3) . . .. ... ... ... ... ...

(2,2

Correlation between variables: sub-matrix(2,2) . . ... ... ... ... ... ..

viii



35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50
51
52
53
54
95
o6
57

Correlation between variables: sub-matrix(2,3) . . .. ... ... ... ... ... 184

Correlation between variables: sub-matrix(3,3) . . . ... .. ... ... ... .. 185
Variance inflation factor using all data: threshold 5 . . . . . . .. ... ... ... 186
Variance inflation factor using all data: threshold 2.5 . . . . . .. ... ... ... 188
Count of observations in each factor level for disease diabetic nephropathy . . . . 194
Count of observations in each factor level for disease glomerulonephritis . . . . . 196
Count of observations in each factor level for disease HKD . . . . .. ... .. .. 197
Count of observations in each factor level for disease other . . . . . . .. . .. .. 198
Count of observations in each factor level for disease PKD . . . . . . ... .. .. 199
Count of observations in each factor level for disease pyelonephritis . . . . . . . . 200
Count of observations in each factor level for disease renovascular . . . . . . . .. 201
Count of observations in each factor level for disease unknown . . . . . . . . . .. 202
Count of observations in each factor level for single model all diseases . . . . . . 203
model summary for each disease . . . . . . ... ... oL 206
Estimated changes in outcome for changes in parameters for disease diabetic

nephropathy . . . . . . . . . e 211

Estimated changes in outcome for changes in parameters for disease glomerulonephritis213

Estimated changes in outcome for changes in parameters for disease HKD . . . . 215
Estimated changes in outcome for changes in parameters for disease other . . . . 218
Estimated changes in outcome for changes in parameters for disease PKD . . . . 220
Estimated changes in outcome for changes in parameters for disease pyelonephritis 223

Estimated changes in outcome for changes in parameters for disease renovascular 226
Estimated changes in outcome for changes in parameters for disease unknown . . 229

Estimated changes in outcome for changes in parameters for single model all diseases232

ix



List of figures

S Tt e W N -

10
11
12
13
14
15
16
17
18
19
20

21

22

23

24

25

26

Primary disease type frequency . . . . . . . . ... o oL
Distribution of log(eGFR) for all patients at follow-up . . . . .. ... ... ...
eGFR progression of an arbitrary sample of 10 patients . . . . .. ... ... ..
eGFR values of study cohort grouped by disease . . . .. ... ... ... ....
Correlation between intercept and slope random effects. . . . . . . .. ... ...
Observed values plotted against fitted values obtained using a model with fixed
effectsonly . . . ...
Observed values plotted against fitted values obtained using full model with fixed
and random effects . . . . . . ... Lo
Residuals: disease diabetic nephropathy . . . . .. .. ... . ... ... ...
Residuals: disease glomerulonephritis . . . . . . . ... ... 0oL
Residuals: disease HKD . . . . . . . . ... o
Residuals: disease other . . . . . . . . .. ... L o
Residuals: disease PKD . . . . . . . . .. Lo
Residuals: disease pyelonephritis . . . . . . . . . ... .. ... ... ...
Residuals: disease renovascular . . . . . . .. ... L oL
Residuals: disease unknown . . . . . . .. ..o oL oo
Residuals - single model all diseases . . . . . . . . . ... .. ... ... ...
qq-plot for standardised random effect intercept term . . . . . . . . . .. ... ..
qq-plot for standardised random effect slope term . . . . . . . . .. ... ... ..
Estimated random effects plotted against each other . . . . . . .. ... .. ...
Average effects - relative change in eGFR for standardised model using 95% Cls:
diabetic nephropathy . . . . . . . . .. o
Temporal effects - relative change in eGFR for standardised model using 95% Cls:
diabetic nephropathy . . . . . . . . .. L oo
Average effects - relative change in eGFR for standardised model using 95% Cls:
glomerulonephritis . . . . . . . . . ... L e
Temporal effects - relative change in eGFR for standardised model using 95% Cls:
glomerulonephritis . . . . . . ... L

Average effects - relative change in eGFR for standardised model using 95% Cls:



27

28

29

30

31

32

33

34

35

36

37

38
39
40
41
42
43
44
45
46
47
48
49

50
o1
52
53

Temporal effects - relative change in eGFR for standardised model using 95% Cls:
disease other . . . . . . . .. L 80

Average effects - relative change in eGFR for standardised model using 95% Cls:

Average effects - relative change in eGFR for standardised model using 95% Cls:
pyelonephritis . . . . . . . oL L 89
Temporal effects - relative change in eGFR for standardised model using 95% Cls:
pyelonephritis . . . . . . . .. L 90
Average effects - relative change in eGFR for standardised model using 95% Cls:
renovascular . . ...l oL e 94
Temporal effects - relative change in eGFR for standardised model using 95% Cls:
renovascular . . ... ... L L 95
Average effects - relative change in eGFR for standardised model using 95% Cls:
Unknown . . . ..o e e 99
Temporal effects - relative change in eGFR for standardised model using 95% Cls:
UNKNOWIL . . . . L o o e 100
Average effects - relative change in eGFR for standardised model using 95% Cls:
single model all diseases . . . . . . . . . . . .. e 104

Temporal effects - relative change in eGFR for standardised model using 95% Cls:

single model all diseases . . . . . . . . . ... L L 105
Estimated rate of decline in eGFR by disease . . . . . . ... ... .. ... ... 109
Rate estimates with 95% ClIs for diabetic nephropathy . . . . . . ... ... ... 111
Rate estimates with 95% ClIs for glomerulonephritis . . . . . .. ... ... ... 114
Rate estimates with 95% CIsfor HKD . . . . . . . . ... ... ... ... .... 117
Rate estimates with 95% CIs for disease other . . . . . . . .. .. ... ... ... 120
Rate estimates with 95% Cls for PKD . . . . . . . ... .. .. ... ....... 123
Rate estimates with 95% Cls for pyelonephritis . . . . . .. ... ... ... ... 126
Rate estimates with 95% CIs for renovascular . . . . . . . ... ... ... .... 129
Rate estimates with 95% ClIs for disease unknown . . . .. ... ... ... ... 132
Rate estimates with 95% Cls for single model all diseases . . . . . .. ... ... 135

Average time derivative of log(eGFR) per patient versus average PTH per patient 138

Average time derivative of log(eGFR) per patient versus average time derivative of

PTH per patient . . . . . . . . .. e 138
Average slope in log(eGFR) per patient versus baseline log(eGFR) . . . ... .. 140
[lustration of front-end software for entering data to database . . .. ... ... 145
Residual autocorrelation for Models Cand D . . . . . . .. .. ... ... .... 149
Iustration of web app for predicting personalised kidney disease progression . . 155

Xi



o4
55
56
o7
o8
59
60
61
62
63
64
65
66
67
68
69
70
71
72

73
74
75
76
7
78
79
80

Progression of disease for 24 patients with diabetic nephropathy . . . . . .. .. 174

Progression of disease for 24 patients with glomerulonephritis . . . . . . ... .. 175
Progression of disease for 24 patients with HKD . . . . .. ... ... ... ... 175
Progression of disease for 24 patients with obstruction . . . . . . ... ... ... 176
Progression of disease for 24 patients with disease other . . . . .. .. ... ... 176
Progression of disease for 24 patients with polycystic kidney disease . . . . . .. 177
Progression of disease for 24 patients with pyelonephritis . . . . . . . .. .. ... 177
Progression of disease for 24 patients with renovascular disease . . . . ... ... 178
Progression of disease for 24 patients with disease unknown . . . . . ... .. .. 178
Residuals for diabetic nephropathy model by follow-up year with 95% CIs . . . . 189
Residuals for glomerulonephritis model by follow-up year with 95% CIs . . . . . 190
Residuals for HKD model follow-up year with 95% CIs . . . . . . ... ... ... 190
Residuals for disease Other model by follow-up year with 95% CIs . . ... . .. 191
Residuals for polycystic kidney disease model by follow-up year with 95% CIs . . 191
Residuals for pyelonephritis model by follow-up year with 95% CIs . . . . . . .. 192
Residuals for renovascular model follow-up year with 95% CIs . . . . . ... . .. 192
Residuals for unknown disease model follow-up year with 95% CIs . . . . . . .. 193
Residuals for single model all diseases by follow-up year with 95% CIs . . . . . . 193
Relative change in eGFR for un-standardised model using 95% Cls: diabetic

nephropathy . . . . . . . . . 212
Relative change in eGFR for un-standardised model using 95% CIs: glomerulonephritis214

Relative change in eGFR for un-standardised model using 95% CIs: HKD . . . . 217
Relative change in eGFR for un-standardised model using 95% CIs: other . . . . 219
Relative change in eGFR for un-standardised model using 95% CIs: PKD . . . . 222
Relative change in eGFR for un-standardised model using 95% Cls: pyelonephritis 225

Relative change in eGFR for un-standardised model using 95% CIs: renovascular 228
Relative change in eGFR for un-standardised model using 95% CIs: unknown . . 231
Relative change in eGFR for un-standardised model using 95% CIs for single model

all diseases . . . . . . . 234

xii



Abbreviations

ACE - angiotensin-converting-enzyme (inhibitor)
AIC - Akaike’s information criterion

AKI - acute kidney injury

ARB - angiotensin II receptor blocker

BIC - Bayesian information criterion

BMI - body mass index

CARI - first order continuous-time autoregressive (model)
CC - corrected calcium

CCB - calcium channel blocker

CHO - total cholesterol

CI - confidence interval

CKD - chronic kidney disease

CO2 - total (blood) carbon dioxide

cor - correlation

Cr - creatinine

CRIC - Chronic Renal Insufficiency Cohort (study)
CRP - c-reactive protein

CS - compound symmetry

CVD - cardiovascular disease

df - degrees of freedom

DBP - diastolic blood pressure

DN - diabetic nephropathy

EDTA - EthyleneDiamineTetraAcetic acid (anticoagulant)

eGFR - estimated glomerular filtration rate

xiii



EPO - erythropoietin (treatment)

FBC - full blood count

GEE - generalised estimating equation (method)

GFR - glomerular filtration rate

GN - glomerulonephritis

Hb - haemoglobin

HbAlc - haemoglobin Alc

HKD - hypertensive kidney disease

HT - hypertension

THD - ischemic heart disease

IQR - interquartile range

LFT - liver function test

LME - Linear mixed-effects (model)

MDRD - Modification of Diet in Renal Disease (Study)
MICE - Multiple Imputation by Chained Equations
NHS - National Health Service (UK)

NICE - National Institute for Health and Care Excellence (UK)
ONS - Office for National Statistics (UK)

PKD - polycystic kidney disease

PN - pyelonephritis

PO - phosphate

PP - systemic pulse pressure (systolic minus diastolic blood pressure)
PTH - parathyroid hormone

Pu - proteinuria

RIP - rest in peace - relates to patients who died while part of the study

Xiv



RRT - renal replacement therapy; that is haemodialysis dialysis, peritoneal dialysis or kidney

transplant

RVD - renovascular disease

SBP - systolic blood pressure

sd - standard deviation

se - standard error

SKS - Salford Kidney Study (UK)

SRFT - Salford Royal NHS Foundation Trust (UK)
U&E - urea and electrolytes

UK - United Kingdom

USRDS - United States Renal Data System
VIF - variance inflation factor

var - variance

XV



Mathematical notation

Y - for all

i - patient (subject) index

j - time index

M - number of patients

n; - number of observations for patient i

@(t) - dot denotes time derivative of variable x(t) i.e. 4 (x(t))

3 - estimate of 3

I - identity matrix

1 - matrix of ones

XT - T denotes transpose of matrix X

X ~ N(p,0?) - random variable X distributed normally with mean y and variance o>
E(X) - expectation of random variable X

P(A|B) - conditional probability of A given B

Si(X4) - cubic spline interpolation over time of X;; at time points ¢;; for patient ¢
cor(-, ) - correlation function

var(+) - variance function

|z| - absolute value of =

z - superscript dash denotes x belongs to the standardised model. Note dash does not denote

the derivative of x

xvi



Variable definitions

e The reference level for each categorical variable is denoted using italic font. For example if the
levels are ‘non-smoker’, ‘active’ and ‘ex-smoker’ then the reference level is non-smoker.

e Variables measured only at baseline have names which end in a zero e.g. baseline age is denoted
‘age0’.

e Variables measured at baseline and also subsequent follow-up appointments omit the trailing zero
in their name e.g. ‘age’.

e An interaction between each time varying covariate and time since baseline (followupTime)
is denoted using a colon, e.g. the interaction between Hb and follow-up time is written Hb :

followup Time.

ageO0 - age at baseline appointment in units of years
age - age in units of years at follow-up appointment
bodyMassIndex - body mass index

CC - corrected calcium

comorbidityCancer - denotes if the patient has/had any type of cancer - levels ‘no’, ‘current’, ‘previous

ComorbidityCV - number of cardiovascular conditions the patient has - levels ‘no’, ‘1’; ‘over 1’; more

details Appendix A.1.3

comorbidityDiabetes - denotes if patient has diabetes - levels ‘no’, ‘type 1’, ‘type 2’; note for disease

‘diabetic nephropathy’ the reference level is ‘type 2’ as all patients have diabetes

comorbidityGastrointestinal - denotes if patient has any long-term gastrointestinal disease(s) - levels

‘no’, ‘yes’; more details in Appendix A.1.3

comorbidityOther - denotes if patient has any long-term conditions not included in the above categories

- levels ‘no’, ‘yes’; more details in Appendix A.1.3
Cr - creatinine

CRP - c-reactive protein

DBP - diastolic blood pressure

disease - primary kidney disease of each patient - levels ‘other’, ‘diabetic nephropathy’, ‘glomerulonephri-
tis’, ‘hypertensive kidney disease’, ‘obstruction’; ‘polycystic kidney disease’, ‘pyelonephritis’, ‘renovascular

disease’, ‘unknown’

endDate - date when the patient leaves the study which is always due to either dialysis, kidney transplant

or death (whichever happens first)
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endReason - reason for patient leaving study - levels ‘ONGOING’, ‘LOST’, ‘PRESUME_ LOST’, ‘RIP’,
‘RRT’ - more details in Appendix A.1.1

ethnicity - patients are categorised as either ‘ White’ or ‘nonWhite’
familyHistoryIHDO - family history of ischemic heart disease - recorded at baseline - levels ‘no’, ‘yes’
followup - integer number of years between baseline appointment and a given follow-up appointment

followupTime - time interval between baseline appointment and a given follow-up appointment - this is

a real number with units of years
Hb - haemoglobin
HbA1c - haemoglobin Alc

livingStatus0 - whether or not the patient is living alone - only recorded at baseline - levels ‘with others’,

‘alone’
logeGFR - natural logarithm of the estimated glomerular filtration rate

med.ACE.ARB - patient is on ACE inhibitor and/or ARB medication - levels ‘no’, ‘yes’ - details in
Appendix A.1.4

med.AlphaBlockers - patient is on alpha blocker medication - levels ‘no’, ‘yes’ - details in Appendix

Al4
med.BetaBlockers - patient is on beta blocker medication - levels ‘no’, ‘yes’ - details in Appendix A.1.4

med.CCBs - patient is on calcium channel blocker medication - levels ‘no’, ‘yes’ - details in Appendix

Al4
med.Diuretics - patient is taking a diuretic - levels ‘no’; ‘yes’ - details in Appendix A.1.4
med.Epo - patient had at least one erythropoietin treatment since their last follow-up - levels ‘no’, ‘yes’

med.Iron - patient is taking an oral iron supplement (N.B. does not include iron injections) - levels ‘no’,

LyeS’

med.Other - patient is on medication which does not come under one of the other med.xxx categories

- levels ‘no’, ‘yes’ - details in Appendix A.1.4

med.Parenterallron - patient has been administered iron injections since their previous follow-up (N.B.

does not include iron taken orally) - levels ‘no’, ‘yes’

med.VitaminD - patient is taking a vitamin D supplement - levels ‘no’, ‘yes’ - details in Appendix

Al4
numberAKlepisodes - number of AKI episodes since last follow-up appointment

numberAntihypertensives - count of distinct antihypertensives drugs the patient is taking at each

follow-up appointment
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numberClinicVisits - number of visits to the renal clinic since last follow-up appointment

occupationO - patient’s occupation - only recorded at baseline - levels ‘ RoutineManual’, ‘Managerial-

Professional’, ‘Intermediate’ , ‘NeverWorkedUnemployed’ - more details in Appendix A.1
PO - phosphate

PP - systemic pulse pressure (systolic minus diastolic blood pressure)

PTH - parathyroid hormone

Pu - proteinuria

SBP - systolic blood pressure

sex - patient’s sex - levels ‘male’, ‘female’

smokingStatusO0 - patient’s smoking status - only recorded at baseline - levels ‘non-smoker’, ‘active’,

‘ex-smoker’

StudyID - each patient’s unique identifier in the SKS
totalCholesterol - total Cholesterol

totalCO2 - total CO2

weekly AlcoholO - number of units of alcohol the patient typically consumes within a week - only

recorded at baseline - levels ‘under 1°, ‘1 to 14, ‘over 14’
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1 Introduction and background

CKD is recognised as a major global public health problem with a high economic cost to health
systems (1). The 2015 Global Burden of Disease Study (2) reported kidney disease as the 12th
most common cause of death, with CKD mortality increasing by 31.7% between 2005-2015, it
is now one of the fastest rising major causes of death worldwide (3). This growth is generally
considered to be fuelled by overnutrition, inadequate physical inactivity, and ageing populations
(4,5). More broadly the World Health Organization confirms a global shift in which the majority
of global morbidity and mortality is now caused by chronic diseases as opposed to infectious
diseases (6,7). For moderate to severe CKD, stages 3 to 5, the global prevalence was reported
in 2016 to be 10.6% {95% CI: 9.2-12.2%}; see (8). In 2014 Public Health England estimates,
which took account of both diagnosed and undiagnosed cases, indicated a prevalence of 6.1%
{95% CI: 5.3-7.0%} for adults with CKD stages 3 to 5 who were resident in England (9). This
rate is similar to the actual diagnosed prevalence of 4.3% reported by the Quality and Outcomes
Framework during 2012-2013; see (10,11). The prevalence of CKD dramatically increases with
advancing age (12). For example, (13) reported in 2007 that the prevalence in the United States
of CKD stage 3 stratified by age was: 20-39 years (~1%); 40-59 years (~4%); 60-69 years (~14%);
> 70 years (~37%). This study also showed that stage 3 was by far the most prevalent out of all
the five stages of CKD.

CKD is generally associated with decreased quality of life along with an increased risk of
premature death and cardiovascular disease (14). It follows that a rapid decline in kidney function
is associated with an increased risk of both mortality and cardiovascular events (15,16). Conversely,
cardiovascular disease increases the risk of CKD hence these two diseases are closely interrelated
(17). CKD is also frequently comorbid with other common diseases including hypertension,
diabetes, anaemia and mineral/bone disorders (18,19), in fact diabetes and hypertension are
the leading causes of CKD (20,21). For example, during 2017, the United States Renal Data
System (USRDS) reported (in chapter 1) that given adults with CKD (stages 1-5), about 40%
had diabetes, ~32% had hypertension and ~42% had cardiovascular disease (18). The prevalence
of comorbidities increases as CKD progresses and a majority of patients with moderate to severe
CKD have at least one comorbidity (22). The primary causes of end-stage renal disease, as
reported by USRDS, are diabetes 38.2%, hypertension 25.5% and glomerulonephritis 16%; see
table 1.6 in (23). Mortality rates are also substantially higher for certain groups of CKD patients.
In particular the mortality rate for CKD patients with cardiovascular disease is about 2.5 times
higher than for those without cardiovascular disease or diabetes, similarly the mortality rate for
CKD patients with both cardiovascular disease and diabetes is about 3 times higher than for
those without cardiovascular disease or diabetes; see (23) chapter 3. Given that for CKD patients
the risk of complications increases with decreasing kidney function, early intervention aims to

ameliorate the risk of severe complications and reduce the number of patients progressing to



dialysis or transplant e.g. see (24-26).

To determine how well the kidneys are functioning the level of creatinine in the blood is measured.
This measured value is then used to calculate the estimated glomerular filtration rate (eGFR).
Normal kidney function in healthy adults decreases with age; for example adults of 20-30 years
have an eGFR of ~115 mL/min/1.73m? whereas it has decreased to ~85 mL/min/1.73m? in the
60-69 year age group (27,28). The annual rate of decline of eGFR in the healthy population is
approximately 0.36-1.21 mL/min/1.73m? per year; younger adults tend towards the lower value
and older individuals the upper value; see reviews (28) and (29). It should be noted that in the
general population the aforementioned values vary widely as they not only depend on factors such
age, ethnicity, gender but are also dependent on underlying comorbidities. The National Institute
for Health and Care Excellence (NICE), defines progressive CKD as either an annual fall in eGFR
of > 5 mL/min/1.73m? or a fall of > 10 mL/min/1.73m? within 5 years (30). Furthermore it is
generally accepted, as defined by KDIGO in 2012, that rapid progression is a sustained decline
of > 5 mL/min/1.73m? per year (31). CKD can be divided into several primary disease types
including glomerulonephritis, diabetic nephropathy and polycystic kidney disease. These diseases
are expected to have different rates of decline in eGFR although exact values vary widely in the
literature and are often not directly comparable. However in 2012/13, (32) reported an average
annual decrease for diabetic nephropathy patients of 1.7 mL/min/1.73m? whereas (33) found an
average annual decrease of about 3 mL/min/1.73m? in polycystic kidney disease patients. This
suggests that the progression of CKD is nearly twice as fast in polycystic patients; both rates
were for patients with CKD stages 3 to 5.

In this thesis we study the progression of CKD using data collected by the ongoing Salford
Kidney Study (SKS) (34,35) run by Salford Royal NHS Foundation Trust (SRFT), UK. SKS has
one of the largest cohorts in the world of secondary care CKD patients, with over 3000 patient
records collected since 2002. The data includes patients with all primary kidney disease types.
The aims of the SKS are to investigate factors influencing outcomes and progression of renal
disease in CKD patients, including a focus on risk factors associated with more rapid disease
progression. In particular, SKS is a prospective observational study of outcomes of non-dialysis
adult patients with CKD stages 3 to 5 (10 < eGFR < 60 mL/min/1.73m?). Patients referred
to the renal services at SRFT, and existing CKD patients attending the clinics, are approached
for inclusion in the study and enrolled if written informed consent is obtained. Patients are
followed up annually until they reached predefined study end-points, these are death or initiation
of renal replacement therapy (RRT). SKS defined RRT as chronic haemodialysis, peritoneal
dialysis or kidney transplant. At recruitment and annual nephrology follow-up appointments,
patient socio-demographic and lifestyle choices are recorded along with comorbidities. Concurrent
medications and additionally blood samples are taken and processed to obtain a comprehensive

set of biochemical marker measurements.



In general, longitudinal data such as the SKS data, is comprised of multiple observations collected
over successive time periods on the same individuals. The data may also include baseline variables
that are collected once e.g. age at study entry. However repeated measurements on the same
individual will not be independent and this must be accounted for when building statistical models.
To this end mixed effects models are an appropriate statistical framework and a well-established
approach; for example see textbooks (36-38). These models consist of both fized effects and
random effects, which explain the relationships between an outcome variable and explanatory
variables. Fixed effects describe the whole population whereas random effects are associated with
each individual and capture the dependence of repeated measurements. In terms of longitudinal
data the development of such models is attributed to Laird and Ware in 1982 (39); this paper
considers a causal link between air pollution and pulmonary function measured at specified time
intervals. Later in 1988 Diggle (40) introduced an approach whereby the correlation between
successive random effects is described by stationary Gaussian processes; this approach is applied

to two separate repeated measure studies, body weight of rats and blood pressure of rats.

Mixed effects models have been extensively used to study the progression of kidney disease over
time. A broad literature review of statistical methods used for investigating risk factors of CKD
progression is given by (41). One of their conclusions, given longitudinal data where the outcome
of interest is the entire trajectory of renal function over time, is that linear mixed models are
an appropriate tool for estimating both risk factors and their associated confidence intervals.
Given a choice between linear regression to estimate individual slopes and linear mixed effects
models, (42) concludes the latter are preferred for research questions regarding kidney disease
trajectories over time at population level. Similarly in the context of progression of kidney disease
(43) considers the comparative strengths and weaknesses of the Generalized Estimating Equations
(GEE) approach with linear mixed effects models, in part concluding that the mixed effects model
is preferred in relation to missing data since the GEE makes more restricted assumptions; for
details see Appendix 4 in the supplementary material of (44). A further comparative study by
(45) concludes that the linear mixed model is the preferred method for investigating risk factors
associated with renal function trajectories when individuals leave the study due to initiation of

renal replacement therapy.

In this thesis, we performed a longitudinal analysis of the SKS data, to identify markers for
progression in CKD. The patients were assigned to one of 8 subcategories of CKD, we refer to
these as primary disease categories. We applied a linear mixed model (LME) to analyse each of
the 8 primary disease categories separately, and used model selection techniques to identify the
most pertinent risk factors. As a result we were are able to make comparisons across the primary

disease categories.

We start, in Chapter 2, by exploring and summarising the SKS data. In Chapter 3 we define the
LME which forms the basis of all our modelling. In Chapter 4 we show how to interpret step



changes in the LME model regression parameters in terms of eGFR (rather than log(eGFR)) and
also how to use to estimate the rate of change over time of eGFR from the LME model. We
describe our model selection procedures in Chapter 5 and then having selected the final model
for each primary disease category we then validate each model using diagnostic procedures before
presenting our results in Chapter 6. Our findings are reported in Chapter 7. In Chapter 8 we
discuss our models, results and future research directions. We close, in Chapter 9, with some

concluding remarks.



2  Summary of SKS data

We begin by describing our procedures for cleaning the raw SKS data. This includes removing
obvious erroneous values and consolidating subsets of data into categories such as primary diseases,
comorbidities and medications. The cleaned dataset has approximately 40 potential risk factors
(explanatory variables) which we use during our exploratory analysis. Finally, after completing
the exploratory analysis, the number of complete records was significantly increased by imputing
missing values thereby increasing the power of our statistical models. Throughout this chapter,

unless otherwise stated, missing values are not imputed.

2.1 Data preparation and cleaning

Using the programming language R (46) we extracted and cleaned the SKS data from the
Microsoft Access database provided by the clinicians at Salford Royal NHS Foundation Trust. All
incorrect data were purged, for example a date with year 1066. The units of all measurements were
converted so as to be consistent e.g. patient heights were standardised to metres. We accounted
for spelling variations and commonly misspelt words e.g. medications ‘doxazosin’ and ‘doxasosin’
were both identified as a-blockers. To reduce the complexity of the data we, with guidance from
the clinicians, categorised various items; notably medications, comorbidities and primary kidney
diseases. The breakdown of these categories is given in Appendix A.1. The biochemical marker
data was provided separately from the Microsoft Access database, so where possible we matched
the biochemical data to each patient using their follow-up appointment dates; we allowed for
differences of up to six weeks between the recorded dates of the biochemical markers and follow-up

appointments. Full details regarding data cleaning are given in Appendix A.1.

2.2 Overview of SKS data

The data from 3,166 patients were collected between 01 October 2002 and 27 February 2017,
participants were recruited throughout this period. Of the patients in this study 37.6% were

female, and 95.7% declared their ethnicity as white.

At baseline, when the patient joined the study, a number of health indicators were recorded.
For example the cohort had 12.2% active smokers and 52.7% ex-smokers. Similarly within the
cohort 29.9% of patients declared they consumed 1 to 14 units of alcohol per week while another
14.7% declared they drank over 14 units per week. Further basic summary statistics of the cohort
at baseline are given in Table 1; note IQR refers to interquartile range. These show that the
cohort are on average older adults who are, as defined by NICE, overweight (47). Within the
general UK population pulse pressure (PP) for adults aged around 65 years is expected to be



in the upper fifties (48) so the SKS cohort is a little worse than average but 87.1% are taking

antihypertensives.

Table 1: Baseline summary statistics

item  units min  max median IQR

age year 18.2 945 67.4 20.0
BMI kg/m? 13.3  59.9 28.0 7.8
DBP mmHg 40.5 137.0 74.5 14.0
PP mmHg 17.0 146.0 64.0 28.0
SBP  mmHg 76.0 218.0 139.0 29.0

Given all patients, including those who have not reached an end point, the average time in the
study was 4.6 years, with 7 patients reaching 14 annual follow-up years. There were 606 patients
who left the study to undergo renal replacement therapy (RRT); in the SKS RRT is defined as
haemodialysis dialysis, peritoneal dialysis or kidney transplant. In addition 952 patients died
while part of the study, and 99 patients who were lost to follow-up. The average time patients
were in the study before RRT or death was 3.9 years. Of the remaining 1313 patients in the
study there were 699 with a time span of more than 2 years 6 months since their last follow-up

appointment.

2.3 Primary kidney disease types

We categorised the patients as having one of the following primary kidney diseases: diabetic
nephropathy, glomerulonephritis, hypertensive kidney disease, obstruction, other, polycystic

kidney disease, pyelonephritis, renovascular disease, unknown. Figure 1 shows their frequencies.

400

200

number of patients

DN GN HKD obstruction other PKD PN RVD unknown

disease

Figure 1: Primary disease type frequency



See the Appendix A.1.2 for the clinical breakdown of conditions/diseases within each primary

disease category. The basic characteristics of these diseases are:

o diabetic nephropathy (DN) - chronic loss of kidney function occurring in patients with
diabetes.

o glomerulonephritis (GN) - refers to several kidney diseases many of which are characterised
by inflammation within specific kidney sub-structures.

o hypertensive kidney disease (HKD) - chronic high blood pressure causes damage to the
kidney tissue. Usually these patients do not have a renal biopsy.

e obstruction - obstructive nephropathy - has a number of causes but is characterised by a
blockage in the flow of urine out of the kidney(s).

o polycystic kidney disease (PKD) - is a genetic disorder causing the growth of multiple cysts
within the kidneys.

o pyelonephritis (PN) - inflammation of the kidney often caused by a bacterial infection.

o renovascular disease (RVD) - has a number of causes and is characterised by a progressive
narrowing or blockage of the large renal arteries or veins.

e other - all other primary kidney diseases which are less common and as such they do not
fall into the aforementioned disease categories.

o unknown - refers to chronic renal failure when the aetiology is uncertain, unknown or
unavailable. This is a heterogeneous disease grouping whose common characteristic is that
the patient’s kidney disease is not clinically identified. For example given a patient with
exceptionally slow disease progression it may be unjustified to do an invasive procedure

such as a biopsy to confirm the cause of their disease.

2.4 Comorbidities

Comorbidities were recorded at baseline and thereafter at each follow-up. We collated comorbidities
into the following clinically relevant categories where percentages indicate the proportion of

patients recorded as having a given comorbidity at some point while in the study:

e 78.2% cardiovascular disease

o 35.4% diabetes

o 25.4% other

e 10.1% gastrointestinal disease

e 3.8% had cancer during the study. We note 16.3% had cancer either during the study or at

a previous time.

Under this classification 54.8% of patients have multiple comorbidities. The cancer, cardiovascular
and diabetes categories can be subdivided into specific diseases, for example of the patients with

diabetes 87.2% had type 2. Appendix A.1.3 gives details of the conditions/diseases which are



included in each comorbidity category.

2.5 Medications

Medication and treatment data were also recorded at baseline and thereafter at annual follow-up
appointments. At baseline 87.1% were taking at least one antihypertensive. Here medications
are grouped as follows where percentages indicate the proportion of patients taking a given

medication at some time during the study:

o 69.2% angiotensin-converting-enzyme (ACE) inhibitor and/or angiotensin II receptor blocker
(ARB)

o 58.9% diuretic

o 54.3% calcium channel blocker (CCB)

o 42.1% f-blocker

o 38.6% a-blocker

o 32.4% vitamin D

o 27.4% EPO treatment (for anaemia)

e 24.4% iron taken orally

e 23.1% iron administered by injection

In addition we noted that 68.9% were on statins and 43.7% took aspirin. All other medications
not mentioned above occurred less frequently in the data than iron taken orally. Details of the

drugs in each category can be found in the Appendix A.1.4.

2.6 Biochemical markers

2.6.1 General biomarkers

In addition the study also measured biochemical markers from blood and urine samples during
annual follow-up appointments and other hospital visits e.g. AKI episodes. Standard laboratory
markers from blood samples included: full blood count (FBC), urea and electrolytes (U&E), liver
function test (LFT), calcium, phosphate, cholesterol, Parathyroid Hormone (PTH). Furthermore
EDTA whole blood, serum, plasma, and citrate plasma samples were processed and stored at
-800C. Table 2 lists the biochemicals pertinent to this thesis; except for creatinine they enter into

our models as explanatory (input) variables.



Table 2: Summary statistics for biochemical markers at baseline

biochemical units min  max median IQR
CRP - c-reactive protein mg/L 0.10 195.0 3.4 6.2
CHO - total cholesterol mmol/L 210  16.0 44 1.5
CC - corrected calcium mmol/L 1.21 3.0 2.3 0.2
Cr - creatinine pmol/L 51.00 915.0 179.0 126.0
CO2 - total CO2 mmol /L 10.50  44.5 23.0 4.5
Hb - haemoglobin g/L 10.90 195.0 122.0  24.0
HbAlc - haemoglobin Alc mmol/mol 25.00 154.0 50.0  24.0
PO - phosphate mmol /L 0.43 3.2 1.1 0.3
PTH - parathyroid hormone pmol/L 0.32  99.1 7.1 8.7
Pu - proteinuria g/24hr 0.02 17.2 0.3 0.9

We assume the variables are independent in our statistical models, Table 3 confirms there is
no significant correlation between the biochemicals. The only exception is a strong negative
correlation between creatinine and eGFR which is to be expected given the formula for calculating

eGFR includes a creatinine term; see Equation 1.

Table 3: Correlation between biochemical markers for all follow-up years

CC CHO CO2 Cr CRP eGFR Hb HbAlce PO PTH Pu
CcC 1 0.1 02 -0.2 0.0 0.1 0.0 0.0 -01 -0.2 -0.1
CHO 1.0 0.0 -0.2 0.0 02 0.1 0.0 -01 -0.1 0.2
CcO2 1.0 -0.3 -0.1 0.3 0.1 0.1 -0.3 -0.2 -0.2
Cr 1.0 0.1 -0.8 -0.3 0.0 0.6 0.5 0.2
CRP 1.0 -0.1  -0.2 0.0 0 0.1 0.0
eGFR 1 03 0.0 -05 -04 -0.2
Hb 1.0 0.0 -04 -0.2 -0.1
HbAlc 1.0 0.1 0.0 0.1
PO 1 04 03
PTH 1.0 0.1
Pu 1.0




2.6.2 Estimated glomerular filtration rate (eGFR)

Glomerular Filtration Rate (GFR) is a key indicator of renal function, its estimate eGFR is
derived from a patient’s serum creatinine level, age, sex and race. Creatinine is a compound
produced by metabolism of creatine and is excreted in the urine. In healthy individuals the kidneys
maintain blood creatinine in a normal range, an elevated creatinine level indicates impaired kidney
function. In our statistical models the outcome variable will be eGFR, our primary motivation
for using eGFR as opposed to creatinine is that clinicians advised us that they find eGFR easier
to interpret. Hence eGFR is a clinically reasonable indicator of kidney function. Table 4 gives
the standard definitions of CKD stages in terms of eGFR (30,31); stage 1 is mild impairment

whereas stage 5 signifies kidney failure.

stage 1 2 3 4 )
eGFR =90 89 - 60 59 - 30 29 - 15 <15

Table 4: CKD stage defined by eGFR (mL/min/1.73m?)

There are several equations for estimating GFR (49) however it is mostly agreed that in general the
CKD-EPI equation gives the best estimate (50-52). Additionally given NICE (30) recommends

this equation we use it for calculating eGFR in units mL/min/1.73m?

eGFR = 141 x min(S¢,/k, 1) x max(Se,/k, 1) 71209 x 0.993%8° x

1.018[if female] x 1.159][if black]

where

oS¢ is serum creatinine with units pmol/L

e k is 61.9 for females and 79.6 for males

e «is -0.329 for females and -0.411 for males

o min(S¢,/k, 1) indicates the minimum of either S¢,/x or 1
o max(Se /K, 1) indicates the maximum of either S.,/k or 1

o age has units of years

At follow-up appointments we find the median eGFR across all patients is 28.1 with interquartile
range (IQR) 23.3. Hence the patient’s generally have moderate to severe CKD; stages 3 and 4. In
contrast if we consider only acute kidney injury (AKI) episodes the overall median eGFR drops

to 14.6 with IQR 17.8.

Given all patients at follow-up, eGFR follows a right skewed distribution; e.g. ( mean.grr = 31.5

) > ( median.grr = 28.1 ). Figure 2 is used for exploratory purposes only, the qg-plot in panel
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(a) shows the distribution of the log of eGFR to be approximately normal; visual confirmation of
the distribution’s shape is given by the histogram. Applying the Shapiro—Wilk normality test
(53) to the log(eGFR) distribution yields a p-value <0.0001 hence we reject the null hypothesis
and conclude it significantly deviates from normality. In our statistical models we choose to use
log(eGFR) as the outcome variable. Given log(eGFR) is closer to a normal distribution than
eGFR it is expected to give a better empirical fit of our data to the models, for further details
see Chapter 3. From Equation 1 we note that log(eGFR) is equivalent to creatinine adjusted for
age and sex however in our models we will consider using age and sex as explanatory variables
because Equation 1 has been shown not to be optimal for all sub-populations; e.g. (49) and (54).
Note that when we write log(eGFR) this denotes log, (e; 'eGFR) where constant e equals 1 and
carries the same physical dimensions (units) as eGFR, this ensures the argument of the logarithm
does not have physical dimensions.

(a) Normal g—q plot (b) density

6
0.6

log(eGFR) quantiles
density

0.0
-4 -2 0 2 4 1 2 3 4 5
theoretical quantiles log(eGFR)

Figure 2: Distribution of log(eGFR) for all patients at follow-up

Considering all log(eGFR) values from a random selection of patients, in Figure 3 we see that the
progression of CKD over time is far from a smooth monotonic function. However these figures
include measurements taken between follow-up appointments when the patients will in some
cases be experiencing an acute episode of illness e.g. AKI. Grouped by disease Appendix A.2,
Figures 54 to 62, depicts Trellis plots for an arbitrary selection of patients showing the log of
their eGFR at each follow-up year; these figures show although there is much individual variation

most patients have an approximately linear downward trend in log(eGFR) as time passes.

Given each primary kidney disease, Figure 4 (a) shows log(eGFR) values for every patient at each
follow-up, where red points are the marginal means at each follow-up time. Figure 4 (b) depicts
the corresponding variances. We note that both the mean and variance are less informative when
there are fewer observations for example in later follow-up years. We observe, in Figure 4 (a), that
successive marginal means (red points) for most disease categories exhibit an overall downward
trend as the number of follow-up years increase. If we naively ignore the correlation between
observations on the same individual and fit straight lines through the marginal mean points for
each disease we find, for instance, that on average PKD patients loose kidney function 1.8 times

faster than those with diabetic nephropathy.
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In Chapter 3 we will use rigorous statistical modelling to explore the progression of disease
while accounting for the explanatory variables discussed above e.g. demographics, comorbities,

medications, etc.
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Figure 3: eGFR progression of an arbitrary sample of 10 patients

2.7 Imputation

Prior to this section we have not imputed missing values. In our cleaned version of the SKS
dataset we assumed all missing data values were missing completely at random unless there was
evidence to the contrary. In particular we assumed each missing value was: independent of the
values of other variables (fields); independent of the value of the observation; and independent of
time. The proportion of missing values in our cleaned dataset was 7.4%. This level of missing
values diminishes the potential statistical power of our models. Therefore to improve statistical
power imputation methods were employed. Appendix A.3 lists all continuous and categorical

variables for which missing values were imputed.

Popular imputation methods include Multiple Imputation (55,56) and Expectation-Maximization
(57) of which there are many extensions and algorithms, two examples respectively are Multivariate
Imputation by Chained Equations (58) and Amelia (59). All such methods are intended for
multivariate data and rely on correlations between variables (inter-variable) to estimate missing
values. In our case we treat each variable (field) for a given patient as a timeseries consequently
these methods cannot be directly applied because a timeseries is univariate and exhibits inter-
time (intra-variable) correlations; for example see (60) for an overview of timeseries imputation
methods. In this thesis we employ imputation algorithms which are specifically intended for use
with timeseries data; in particular we use the R-package imputeTS (61) to impute all missing

values.

For continuous variables (e.g. BMI) we use Kalman smoothing on a structural model fitted by
maximum likelihood; for example (62,63) give methodological details. By design this imputation
method accounts for temporal trends, hence it is appropriate for our data where we often observe
trends e.g. a patient’s BMI may gradually increases/deceases over several successive follow-up years.

All our continuous variables have values which are always positive so to overcome the problem

12



log(eGFR)

variance of log(eGFR)

0.6

0.4

0.2

0.0

(a) individual traces (black) with mean (red) at each follow-up

other DN GN HKD obstruction PKD PN

follow-up year

(b) variance at each follow-up

other DN GN HKD obstruction PKD PN

0 5 100 5 100 5 100 5 100 5 100 5 100 5 100

follow—up year

Figure 4: eGFR values of study cohort grouped by disease
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of the imputation producing negative values we did the following: (a) use logarithm function
to transform the variable onto the logarithm scale; (b) impute missing values; (c) transform
the variable back to its original scale with the antilogarithm function. In terms of categorical
variables (e.g. weekly alcohol intake) missing values are estimated with Last Observation Carried
Forward/Backward methods where priority is given to Forward imputation, in other words where

possible the last observed value is carried forward in time to subsequent follow-up appointments.

The SKS data explicitly recorded the existence of a comorbidity but did not explicitly record
if it was not present; an empty comorbidity field implied the patient did not have the given
comorbidity at a particular follow-up year. Each patient’s comorbidities were frequently not, or
only partially, recorded at each follow-up. Consequently, the data suggested that many patients
recovered from, and were often subsequently re-inflicted with, long-term health conditions such
as dementia. Since this is implausible for long-term conditions we assumed that each patient’s
condition(s) persisted for all future time after the follow-up at which it was first recorded; this
approach was applied to all comorbidities listed in Appendix A.1.3. Prior to the first instance of

a comorbidity being recorded we assumed that the patient did not have the condition.

At each follow-up all the medications for each patient were typically documented; we assume if
at least one drug/supplement was recorded then all drugs/supplements were recorded. At a given
follow-up, if at least one medication is recorded then we assign the patient as either taking, or not
taking, a drug/supplement in each of our medication categories. Conversely, if no medications
are recorded we impute using the same approach as we used for comorbidities. This is the reason
all medication categories, except for EPO treatment, have the same number of missing records
before imputation (and also after imputation); see Table 5. We dealt with both EPO treatment
and parenteral iron separately from the other medications as these are not recorded as part of
the SKS medication lists. These are administered intermittently so unless recorded we assume

the patient did not receive the treatment.

Biochemical measurements were recorded at follow-up appointments but unlike the rest of the
SKS data they were also recorded at other hospital/clinic visits. The data recorded outside of
follow-up appointments would sometimes relate to episodes of acute illness (e.g. AKI). During
acute illness some, or all, of the biochemical measurements could potentially be very different, for
example as discussed in Section 2.6.2 the cohort median eGFR is 38% lower during identifiable
AKI episodes compared with follow-up appointments. Finding a method to robustly identify
all acute episodes is beyond the scope of this thesis. Consequently to impute missing values at

follow-up appointments we only used measurements recorded at either past or future follow-ups.

In instances where a patient had no recorded values for a given field (over all their follow-ups) we
did not impute values; creating imputation models for these rare instances was beyond the scope
of this thesis. If a patient’s timeseries had only one recorded value we duplicated this value at

all points in the series, we did this for all relevant continuous and categorical variables except
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medications and comorbidities.

Table 5 shows the proportion of missing values for each variable before and after imputation,
as can be seen imputation substantially reduces the number of missing values. In this table we
include the proportion of missing creatinine values because this directly affects, and is the main

contributor to, the proportion of missing eGFR values.

As is seen in Table 5 HbAlc has a very high number of missing values; this is because it is generally
only recorded in patients with diabetic nephropathy. In this sub-group before imputation the
percentage of missing HbAlc is 68.3% and after imputation 30.7%. In the next chapter we will
only use HbAlc for models relating to diabetic nephropathy patients, however given the high
quantity of missing data it may adversely affect the statistical power of such models and given
the large quantity of imputed values it may not be informative; we reserve judgement until we

obtain the model results.

Summary statistics for each continuous variable before and after imputation confirm the imputed
values did not significantly alter the overall distribution of any continuous variable; see results
tabulated in Table 6. For a given patient and follow-up year we define a ‘complete record’ as
having all values for every variable of interest. If HbAlc is omitted, then before imputation
there were 2024 complete records and after 3121, therefore the imputation of missing values will
substantially increase the statistical power of our models. For the remainder of this thesis we use

the cleaned SKS data augmented with imputed values.
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Table 5: Proportion of missing values before and after imputation over all follow-up years

group item Before (%) After (%)
general BMI 16.1 4.3
DBP 4.0 0.8
number of antihypertensives 4.9 0.4
PP - pulse pressure 4.0 0.8
SBP 3.8 0.8
biochemical CC - corrected calcium 1.9 0.1
CHO - total cholesterol 22.2 3.9
CO2 - total CO2 16.0 2.3
Cr - creatinine 0.0 —
CRP - c-reactive protein 30.9 4.2
eGFR 0.7 —
Hb - haemoglobin 1.6 0.2
HbAlc - haemoglobin Alc 87.8 64.9
PO - phosphate 2.7 0.2
PTH - parathyroid hormone 20.8 2.5
Pu - proteinuria 11.4 2.3
categorical ~ comorbidity cancer 3.8 0.1
comorbidity cardiovasular 3.9 0.0
comorbidity diabetes 4.2 0.1
comorbidity gastrointestinal 4.8 0.0
comorbidity other 3.8 0.1
medication ACE and/or ARB 5.3 0.6
medication alpha blockers 5.3 0.6
medication beta blockers 5.3 0.6
medication CCBs 5.3 0.6
medication diuretics 5.3 0.6
medication EPO 7.8 0.0
medication oral iron 5.3 0.6
medication other 5.3 0.6
medication parenteral iron 4.1 0.3
medication vitamin D 5.3 0.6
weekly alcohol intake 43.2 4.3
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Table 6: Summary statistics, over all follow-up years, for continuous variables before and

after imputation

Before After
item units min  max median IQR min max median IQR
general
anti-HT * 0.0 8.0 20 20 0.0 8.0 20 20
BMI kg/m? 13.3  65.3 279 76 133 653 278 7.6
DBP mmHg 40.5 141.5 72.5 15.0 40.0 142.0 72.0 15.0
PP mmHg 17.0 188.0 63.0 26.5 17.0 188.0 63.0 27.0
SBP mmHg 76.0 255.0 137.0 28.0 76.0 281.0 137.0 28.0
biochemical
cC mmol/L 1.0 3.3 2.3 0.2 1.0 3.3 2.3 0.2
CHO mmol/L 2.1 16.0 43 14 19 16.0 43 14
CO2 mmol/L 6.0 445 22.8 4.7 6.0 445 22.8 45
CRP mg/L 0.1 4715 34 64 0.0 4715 33 6.1
Hb g/L 10.9 204.0 123.0 22.0 11.0 220.0 123.0 22.2
HbAlc mmol/mol 24.6 159.0 48.6 22.8 24.6 192.2 44.3 194
PO mmol/L 0.2 4.2 1.1 03 0.2 4.2 1.1 0.3
PTH pmol/L 0.2 2504 8.1 9.7 0.1 2504 7.6 9.1
Pu f g/24hr 0.0 185 03 08 0.0 185 03 08

* number of antihypertensives
T Due to rounding minimum Pu displays as 0.0 whereas before and after imputation it is actually

0.02.

2.8 Baseline variables

There are a number of reasons that a variable may only be present at baseline e.g. it never changes
over time or was only recorded at the first appointment. However in some instances due to the
sparseness of data we reduced a variable to a baseline value using the first recorded instance of
the variable in the patient’s data. For example, if the variable was not recorded at baseline but
was instead recorded at the first follow-up appointment we used this value as if it were recorded
at baseline. Variables reduced to baseline variables were: occupation, smoking status and weekly

alcohol intake.
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3 Linear mixed effects model

We have longitudinal data where each experimental unit (patient) consists of temporally correlated
measurements over consecutive follow-up years. Classic multivariate models are not appropriate
for analysing this grouped and correlated data. Standard extensions, for longitudinal data, to
classical statistical procedures which estimate the parameters in regression models include the
Generalised Estimating Equations (GEEs) (e.g. see (38,64)) and mixed effects models. A GEE is
used to estimate the parameters of a generalised linear model. Specifically it aims to estimate the
average response over the population rather than the regression parameters, the latter enables
prediction of the effect of changing one or more explanatory variables on a given unit. GEEs are a
widely used alternative to the likelihood-based mixed effects model which have the disadvantage
of being more sensitive to the specification of the variance structure. However in our context
we rejected the GEE approach because it is not robust to missing data due to patients missing
follow-up appointments and/or spend differing lengths of time in the study. Our data contains
both of these characteristics in abundance so we turn our attention to mixed effects models as
they are able to accommodate this variability. In general mixed effects models are a commonly
used class of statistical models that are applicable to a wide range of data structures which include
correlated and/or clustered observations, repeated measurements and longitudinal measurements.
It is not uncommon for longitudinal data to be modelled with mixed effects models consequently

there exists an extensive literature; for example see texts (36-39,65).

Mixed effects models consist of both fized effects and random effects, they describe the relationships
between an outcome variable and explanatory variables. Fixed effects are associated with the
whole population. There can be one or more layers of random effects when the data are grouped
according to one or more classification levels. In this thesis we associate the random effects with
individual experimental units drawn at random from a population. This model allows for clear
identification of both population and individual patient characteristics. From this point onwards
we consider only linear mixed effects (LME) models where the outcome variable is described by a

linear function of the parameters.

Given the dataset described in Section 2 the data are sub-divided into disease categories and
grouped at patient level. The LME model outcome variable is log(eGFR) and all the remaining
variables are potential explanatory variables. In this thesis the combination of fixed effects plus
random effects is interpreted as representing the unobserved GFR, therefore the LME model will

express eGFR as a noisy version of GFR.

Event data which describe patients leaving the study (dropout, RRT or death) are not explicitly
included in the model as we assume these events are missing at random; we did not test this
assumption. It was beyond the scope of this thesis to explore models, e.g. survival models, which

include this time to event data. For reviews relating to event data in the context CKD and mixed
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effects models see for example (41,45).

We consider the following LME model for longitudinal trajectories given ¢ = 1,..., M patients

and j = 1,...,n; observations per patient

Yij = pi(tij) + Uitij) + €ij. (2)

The outcome for patient ¢ at time ¢;; > 0 is denoted Y;;. The time since baseline measurement is
t;;, both n; and ¢;; vary among patients. This allows us to include patients with intermittent
missing data and/or dropout, and also account for the actual individual measurement times. The
expected value of the outcome is a multiple linear regression of the form p;(¢;;) = X;(t;;)8. Term
i (ti;) captures the fixed effects with a set of known explanatory variables X; (n; x p regressor
matrix) and corresponding set of unknown fixed effects regression parameters 8 (p-dimensional
vector) which are to be estimated. We assume any measurement errors in the explanatory

variables are very much less than €;;.

The variability between patients which cannot be explained by the fixed effects is captured by
the random effects described by a second linear regression U;(t;;) = X (t;;)b; with a known
regressor matrix X (size n; x ¢) and corresponding vector of unknown random variables b;
(size g-dimensional vector) which are to be estimated. The distribution of b; are assumed to be
mutually independent multivariate normal random variables with mean zero, that is b; ~ N(0, ¥)
where W is a symmetric positive definite (non-degenerate) matrix hence is invertible. In particular
we choose an intercept-and-slope model, the so-called Laird and Ware model (39), as such
X (tij) = (1,,,t;) where n;-dimensional vector ¢; has elements ¢;;. The first term does not
depend on time so represents the time-constant differences between patients and the second term

represents the time dependent differences (variations in linear slope) between patients.

Random variables ¢;; are mutually independent with €;; ~ N(0,0?), given outcome Y;; they
account for the fact that eGFR is a noisy estimate of GRF. We refer to €; = (€1, ., €ij, ..., €in, )~
as within-group errors therefore without placing further constraints on Equation 2 it follows that
€; ~ N(0,0? I,,,) where I denotes identity matrix. The errors are assumed to be independent
for different groups (patients); independent of repeated measurements within the same group 4;
independent of random effects b;; and homoscedastic, that is having constant variance for both

different groups and repeated measurements within the same group.

Given repeated measurements on patient ¢ it may be necessary to take into account the correlation
and variance of within-group errors to explain the change over time of outcome Y;; not explained

by the aforementioned linear regressions. To this end let

€; ~ N(O,U2Ai) (3)

19



with variance-covariance matrix A;. This matrix is symmetric positive definite and decomposed

such that

A=V, C,V,. (4)

The variance matrix V; is diagonal and the correlation matrix C; has diagonal elements equal
to one. This decomposition therefore allows the variance and correlation structures of the

within-group errors to be modelled separately. It follows that

V&I‘(Q‘j) = 02[Vi]§j (5)

and
cor(€ij, €i5) = [Ciljj (6)
with 7/ = 1,...,n;. Hence the correlation structure accounts for repeated measurements within

group i. This formulation assumes €; is independent for different groups ¢ and independent of
random effects b;. In our study we assume the variance structure is homoscedastic var(e;;) = o>
as we found no evidence to the contrary, therefore in the following we will now focus on the
correlation structure. The correlation between two within-group errors €;; and €;;/ is assumed to
depend on the magnitude of their temporal distance. In particular the correlation structure is
assumed to be isotropic so it depends only on relative distances and not the temporal positions.

This distance is described by the function § = d(p;;, p;;:) where p,;, p;;, are position vectors for

€5, €5+ respectively. With reference to Equation 6 let the correlation structure be defined by

cor(€ij, €i50) = h(d, p) (7)

where autocorrelation function h(-) takes values between -1 and 1 and p is a vector of correlation
parameters. Note 1: if we assume no correlation structure then h(-) will be zero everywhere
except on the diagonal. Note 2: h(-) is defined such that if the distance between the position
vectors is zero then h(0, p) = 1. Given repeated measurements on each patient ¢ a natural choice
of correlation structure would be a zero mean continuous-time stochastic process, such as a first
order continuous-time autoregressive model (CAR1). This model is defined by h(s, p) = p® where
p > 0 and the magnitude of the time difference s > 0 (e.g. s = |t;j41 — t;5]). It can be seen that
the correlation function decreases in absolute value exponentially with decay constant 7 = —1/Inp

—s/T.

since h(s, p) = e’ = ¢ ; i.e. events close together are more correlated than distant events.
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Alternatively given many patients have very few follow-up measurements (see Figures 54 to 62) a
compound symmetry (CS) structure may be more suitable, as suggested by Pinheiro and Bates
(66) (see Chapter 5) who state that CS may be useful if each group’s timeseries is short. The
CS model is defined as 0 < p < 1 with h(k, p) = p Vj # j’ otherwise h(k, p) = 1; integer time
differences are denoted by k = 1,2,...,. In Section 5.4 we investigate whether there is sufficient

evidence to include a correlation structure in our models.

To fit the model in Equation 2 when €; ~ N(0,0? I,,,) we need to estimate 3, b;, ¥ and o. If we
find enough evidence for within-group error correlations then €; ~ N(0, c?A;) hence additional
parameters associated with C; will need estimating. We fit these LME models within the
maximum likelihood framework using R-package nlme (66,67). This approach uses the conditional

modes of the random effects given the data. A full mathematical description is given in Chapter

2 of (66).
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4 Inferences regarding changes in eGFR

Our primary interest is to determine, for each disease model, the degree to which the fixed
effect explanatory variables explain the outcome at population level. As is usual we inspect each
regression parameter value along with its corresponding statistical significance when reporting the
results in Chapter 7. However these results are relative to log(eGFR), it is not possible to directly
interpret them in terms of eGFR which is the unit that clinicians are typically familiar with. As
a consequence results expressed in log(eGFR) are not fully accessible to the intended audience
of this research; for example a clinician may be interested in the benefits in terms of eGFR of
prescribing a given medication. In Section 4.1 we address this by introducing methodology to
assess the average effect on eGFR of a small step change in a given explanatory variable; we make
use of this when reporting our results in Chapter 7. It may also be of interest to interpret the
model in terms of how quickly the model outcome is on average changing over time, therefore in
Section 4.2 we introduce methodology for investigating the temporal trajectory of both log(eGFR)
and eGFR.

With reference to Equation 2 we rewrite the fitted LME model in component form, with intercept-

and-slope random effect, as follows

p—1
Yij = Bo+ D BrX " (i) + bio + binti ®)
r=1

where the model parameters have been estimated by maximum likelihood. The intercept and
slope random effects terms are defined respectively as BiO and 13,»1. The outcome }A’ij represents
log, (g 'eGFR(t)). The constant ey = 1 has units identical to eGFR, this ensures the argument

of the logarithm does not carry physical dimensions (units). The outcome in terms of eGFR(%) is

5};; = eoey“ . (9)

4.1 Step changes in explanatory variables
4.1.1 Step changes on log(eGFR) scale

A standard interpretation of Equation 8 is that if we hold all terms constant except one, e.g. variable
Xi(r) (tij), then for every additional increase of one unit in Xi(r)(tij) we expect the outcome to
change by an average of f,. In other words given a change from Xl-(r) (tij) to Xl-(r) (tij) + 6r, we
define A"Y; = ng — }A/U where }A/,J =By +BT.X£T)(tij) +...and ng =By —I—BT(XZ»(T) (tij) +60r)+..

therefore for the 7" regression term A’"ffi = Hrﬁr. The term A’"f/i describes the amount Y/;j shifts
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when subjected to a change of size 6,.. Given 0, is a constant over time then Yij and }A/;g have
identical time derivatives therefore a step change of size 6, affects only the value of log(eGFR)
and not its rate of change. If 6, is applied to the r** explanatory variable across all i patients, it

follows that on average log(eGFR) changes by

A"Y = 0,0, (10)

Note that A”Y; and ATY are dimensionless.

We could set 6, = 1 for all explanatory variables but given there are orders of magnitude
differences between our variables this could be very misleading when assessing the degree to which
each explanatory variable contributes to changes in either log(eGFR) or eGFR. In practice we
suggest assigning a value to 6, which is commensurate with a typical change in the explanatory
variable of interest. One possibility, for the 7" explanatory variable from all patients, would be
to set 0, equal to the mean of the differences in the absolute value between successive follow-up
appointments; i.e. find the mean of |Xi(r)(tij) - Xi(r) (tij+1)| over all 4 and j. However in this
thesis we use the standard statistical approach of setting 6, equal to one standard deviation
of the distribution of observations from the rt* explanatory variable; i.e. for a given r, one
standard deviation of the distribution of X i(r)(tij) over all 7 and j. The exception is categorical
variables which always have 6, = 1. Furthermore if (non-categorical) explanatory variables are
standardised then for each such variable 6, = 1. Note that standardisation is the process of
putting the variables on the same scale, in this thesis standardisation is performed for each

variable by subtracting the mean and dividing by the standard deviation.

4.1.2 Step changes on eGFR scale

We now extend the ideas in Section 4.1.3 to estimating changes in eGFR as opposed to log(eGFR).
Specifically we want to determine how eGFR varies given a change of size 6,. in an explanatory

variable. We considered three approaches for estimating this change:

e Proportional change, this is obtained by directly transforming A"Y; (see Equation 10) to
the eGFR scale as follows:

eAYi _ Bro,

:eifioj_yij (11)

_ U0 o
VIV

> y 0 . % . . . . . O . .
where Yije = epeYii and Y= eoe¥ii. This is a ratio in eGFR, i.e. Y;’;O/Y;j, that is the

proportional change in eGFR induced by a change of size #,.. We will not use this approach
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when reporting results as we seek a quantity which represents the difference (not a ratio)
in eGFR induced by a change in 6,.. Two such approaches are given in the following two
bullet points.

e Absolute difference, this is obtained by first considering the expression AT)A/Z-’; = }A/i;‘-e — YZ’]‘
Writing this out in full we obtain ATYZ‘. = eg exp(fBo+ BAT(Xi(T)(tij) +0,)+...)—egexp(Bo+
BTXZ-(T)(tij) +...), from which it follows that

T Vk 37.9,.
A"Y =Yii(e - 1). (12)

As such we can assess the effect of 6, on A’"Yij. The absolute difference in eGFR at

population level could be defined as

E(ATY") = E(V3)(eH — 1) (13)

A~

where E(Y}}) is the expected value of f’z’j‘ over the population and all time. For our dataset
E(Y;) = 31.5 mL/min/1.73m%. However a shortcoming of this approach is that the value
of IE()A/;’]‘) is dataset specific and f/;; is highly variable across the population. We therefore
do not report results using this approach.

e Relative change in eGFR, given Equation 12, is defined as

A= A T = &

This approach is not subject to the aforementioned shortcomings therefore we use it when

reporting results in section 7.

Note that YZ;, A’")A/Z; and A”Y* have the same physical dimensions as eGFR.

4.1.3 Summary of Step changes approaches

Given clinicians typically work on the eGFR scale, and not on the log scale, we report our
results relating to step changes in 6, using the relative change approach given in Equation 14.
As described in section 4.1.3 we use 6, equal to one standard deviation of the r*" explanatory
variable distribution, i.e. the distribution of XZ-(T) (ti;) over all < and j. It follows that if this

distribution is standardised then the step size will equal one since the standard deviation is one.

4.2 Rates of change over time

The LME model given in Equation 2 has an error term €; ~ N(0,0?), as already discussed.
This term may have within-group correlations described by a stochastic process such as the
aforementioned CAR1 model. The time derivative of Equation 2 would necessarily need to account

for the stochasticity of the error term. However it is beyond the scope of this current work to
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consider fitting such models. Here we circumvent this issue by focusing on the time derivative of

the fitted model i.e. the derivative of Equation 8.

The trajectory of explanatory variable Xi(r) (t;j) through time may be constant, continuous or

piecewise continuous:

o Each baseline explanatory variable, e.g. ethnicity, is constant over all time hence its time
derivative is zero.

e FEach explanatory variable which changes smoothly over time, e.g. biochemical markers, are
continuous functions of time. Although we only have observations at fixed points in time
we may interpolate, e.g. with a spline, between observations; hence the spline’s derivative
represents the variable’s time derivative.

o Each categorical variable which varies over time is a piecewise continuous function in time.
The derivative of such a variable exists everywhere except at time points where it changes
level; at these points there exists a discontinuity. Outside of the discontinuities the variable
is constant with respect to time hence its derivative is zero.

o In this section we consider interaction terms of the form tini(r) (tij) to be a special case
of Xi(r)(tij). An interaction term between time and a categorical variable is piecewise
continuous function of time whose derivative exists everywhere except where the categorical
variable changes levels; outside of the discontinuities the time derivative! of tini(T) (tij)

equals Xl-(r) (tij)-

4.2.1 Time derivative on log(eGFR) scale

With reference to Equation 8 we seek the time derivative of log, (eg 'eGFR(t)) i.e.

Yij =3B X (1) + b (15)

where dot denotes the first order time derivative e.g. X = dX/dt. We assume Xi(r) (tij) can be
represented by a continuous function which is differentiable. Time independent and categorical
variables essentially have time derivatives of zero. The regression parameters are not estimated
from Equation 15. They are estimated in the usual way, as described in Chapters 3 and 5, including

those whose corresponding explanatory variable has a time derivative of zero in Equation 15.

The additive nature of Equation 15 allows us to focus on the rt" regression term of patient 4; its

contribution to the outcome Y;; is denoted

Yé‘” = BrXi(T)(tij)' (16)

INote: 4 (t.X(t)) =t.X(t) +£.X(t) = t.0+ LX(t) = X(¢).
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We do not compute Xi(r) (tij) using a statistical model, for example an intercept-and-slope linear
model, as estimation of the LME model parameters in Equation 2 assumes explanatory variable
observations exhibit negligible noise (e.g. measurement error) compared with the error terms e;;.
Here we calculate X i(r) (tij) by performing a cubic spline interpolation around the explanatory
variable’s data points, and then compute the spline’s time derivative which we denote SET)(Xt)

where X; = Xi(r) (t;j). Hence Equation 16 is approximated by

Y ) = 3,80 (x,). (17)

The average trajectory is élm = % fT SET) (X¢)dt hence Equation 17 is then

v = 3.7, (18)

At population level, the average rate of change over time of the 7" explanatory variable is

estimated by taking its expected value over all patients

E(Y (") = BEED). (19)

Moreover the distribution of all }A/ET) for the 7" explanatory variable can be used to estimate

confidence intervals.

Similarly we estimate the average trajectory over time of the outcome variable, log(eGFR), as
follows. Given Equation 15 for patient i, we perform spline interpolation on all regression terms,
then sum over all terms and finally calculate the i*" average trajectory by integrating over time.
The population’s overall trajectory is then the expected value of all the i*" average trajectories,

which we denote E(EA/;)

Note that SA/ig-r), E(XA/ET)) and E(Y;) have dimensions of one over time. In our study the unit of

time is a year.

4.2.2 Time derivative on eGFR scale

It follows from Equations 8, 9 and 15 that the time derivative in terms of eGFR(t) for patient 4

is?

. p—1
V=V 008X () +ba). (20)
r=1

2Note: % log,(f(¢t)) = f(t)/f(t)
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The influence of a single term, e.g. BTXi(T)(tij), on the outcome for patient ¢ is given by

Vi) =Y B X (1) (21)
For patient 4, as above performing spline interpolation, leads to Y;k(r) (t) = SZ(}}*) BTSET)(Xt);
given patient i then SZ(Y/*) denotes the spline interpolation of the outcome’s fitted values. Given

the average trajectory é’-"(r) ==/ Si(Y*) SZ(-T) (X;)dt then Equation 21 is estimated with

2

v = gEm. (22)

The analogue at population level is given by the expected value of é: ™) over all i

E(V;") = BEE™) (23)
and distribution of all ?:(r) will be used to estimate confidence intervals. In the results section
7.4 we report rates using Equation 23 and corresponding confidence intervals based on a bootstrap

method which does not assume a normal distribution.

Given Equation 20 the expected average trajectory of the outcome, eGFR, for the population,
denoted E(}Af ¥), is estimated as previously described (see paragraph after Equation 19) i.e. pop-
ulation’s overall trajectory is then the expected value of all the i*" average trajectories. This

quantity is also reported in the results section 7.4.

Note that ?:;T), E(Y:(T)) and E(Yj) have units of eGFR per unit time.

4.3 Interpreting sign of regression parameters in terms of temporal

progression

Here we rewrite Equation 8 with an explicit fixed effect explanatory variable for time, that is

p—1
Yij = Bo+ Buti + Y Br X7 (ti7) + bio + birti;. (24)
r=2

In our data all continuous explanatory variables always have positive values. We focus on
the first three terms of Equation 24 and rewrite it in terms of eGFR(t) as follows Ylj(t) =
eoexp(ﬁo + Bltij + 32X§2)(tij) +...). The prefactor eq exp(BO) determines the intercept at ¢ = 0.
The middle term exp(ﬁltij) with 31 < 0 gives an exponential rate of decay of eGFR(t) over time,

hence larger values of | Bl| result in faster decay rates: consequently kidney function deteriorates
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more rapidly. If Bl > 0 this would indicate an improvement in kidney function. The last term
exp(Bin(Q)(tij)) will indicate decreasing eGFR(t) over time when f; < 0 and xl(-z) (t) > 0is
monotonically increasing over all time. Likewise kidney function will be worsening if Bg > 0 and
x§2)(t) > 0 is monotonically decreasing. Consequently the sign of the regression parameter and
the explanatory variable’s trajectory over time determine whether the regression term contributes

towards an improvement or deterioration in kidney function.

4.4 Interpretion of fixed effects temporal interaction terms

With respect to the log(eGFR) model and its time derivative we consider the interpretation of

the fixed effects interaction terms. In this thesis all interactions are with follow-up time.

4.4.1 Regression model for log(eGFR)

We use interaction terms between a given explanatory variable and follow-up time, which we
denote by explanatoryVariable : followupTime; in mathematical notation this is may be written
x(t) t. For every interaction term we also include the corresponding explanatory variables as
separate terms for example 51t + Sox(t) + fsx(t) t, hence rearranging gives S1t + (82 + Bst)x(t).
The factor (82 + Bst) describes the time-independent (82) and time-dependent (8st) effects on

x(t).

4.4.2 Regression model for rate of change in log(eGFR) over time

A regression model for the rate of change over time of outcome eGFR will be computed by taking
the time derivative of terms such as 1t + Bax(t) + B3x(t) t, the time derivative of this expression
is f1 + (B2 + B3 t)&(t) + Psx(t). Similarly to Section 4.4.1 the factor (82 + B3 t) describes the
time-independent (32) and time-dependent (Sst) effects on #(¢) however there is an additional
time-dependent effect through the S3x(t) term. If x(t) is a categorical variable then &(t) = 0
everywhere except at any discontinuities where it is undefined; therefore 51+ (B2+ B3 t)&(t)+ B3z (t)
reduces to 51 +B3x(t) hence in terms of this rates of change model S5 has no effect. Another way of
looking at this is when y(¢) = S1t + B22(t) + B32(t) t+. . . is differentiated with respect to time, i.e.
y(t) = B1+ Pox(t) + Bad(x(t) t)/dt + . . ., the parameters quantify the rate of change of log(eGFR)
per unit time (year). Although we do not fit the differentiated model this interpretation stands.

4.5 Standardised model

From this point onwards, unless otherwise stated, all regression models will use standardised

continuous explanatory variables. The rationale being that this will allow us to assess the relative
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importance of the fixed effects regression parameters once the model is fitted. To standardise
each variable we subtract its mean and divide by its standard deviation. Standardisation is a
widely used technique when comparing model parameters but is open to criticism, for example
the meaning of one standard deviation may be open to debate especially for small sample sizes or
non-normal distributions. In this thesis we consider standardisation to be a pragmatic method of
rescaling the continuous explanatory variables to the same scale. The standardised variables are

dimensionless (no units of measure).

To aid interpretation follow-up time and baseline age are not standardised hence retain their units
of time i.e. years. Given follow-up time is not standardised the model can still be interpreted
in relation to disease progression per year. Furthermore the outcome variable log(eGFR) is not

standardised.

With reference to Section 4.1 when the variables are standardised a unit step change in the
standardised explanatory variable results in a one standard deviation change in the (unstandard-
ised) variable of interest. It follows that, with the standardised quantities denoted by dash, then
Bror(Xy)or+0/0,) = B.(X,. +6.) therefore 0, = 0, /o,; i.e. if 0, =1 then 6, = o,..

29



5 Model selection

First we checked if there existed any significant dependence between the risk factors. To identify
the factors in our models which best describe the progression of kidney disease for each disease we
used a bi-directional selection procedure (based on the Akaike information criterion) on multiple
bootstrap samples; this allows us to gauge parameter uncertainty and helps to guard against

overfitting to the SKS data.

5.1 Dependence among model variables

In our regression models we need to avoid multicollinearity, that is the phenomenon by which one
variable can be linearly predicted from other variable(s) with a substantial degree of accuracy.
Multicollinearity occurs when two or more covariates are highly correlated which leads to unreliable

and unstable estimates of regression parameters.

To assess the strength of correlation between all pairs of covariates we computed the correlation
matrix; results are tabulated in Tables 31 to 36 of Appendix A.4.1. We did not find any
unexpectedly strong correlations. As expected covariates which were computed from, or strongly
related to, other covariates had strong correlations in particular: log(eGFR) and Cr; PP and

SBP; past cancer and no cancer.

To detect multicollinearity among covariates we used the variance inflation factor (VIF) which is
one of the most widely used methods (68). VIF is calculated for each covariate by performing a
linear regression of that covariate on all the other covariates, and then obtaining the coefficient
of determination R? from that regression. VIF for a given covariate is defined as 1/(1 — R?)
and has a range from 1 upwards where 1 indicates the covariate is completely uncorrelated with
all other covariates. Hence VIF estimates how much the variance of a regression coefficient is
inflated due to its covariate’s association with all the other covariates; for example if the VIF is
1.9 then the variance of the given regression coefficient is 90% larger than would be expected if its
associated covariate was completely uncorrelated with all the others. To compute VIF values for
all potential covariates we employed an algorithm which uses a stepwise procedure, in particular
we use function vifstep from R-package usdm (69). First, the algorithm calculated the VIF for
every variable, then it excluded the variable with the highest VIF provided its VIF exceeded a
predefined threshold, this procedure was repeated until there were no remaining variables with a
VIF greater than the threshold. It is generally agreed that a VIF greater than 10 indicates too
much multicollinearity (e.g. Section 9.4 in (68)) but some authors consider there is too much if
VIF is higher than 5 and others if higher than 2.5; for example see discussion by (70). For our
data with a threshold set at 5 this method excluded SBP, reducing the threshold to 2.5 then
resulted in the exclusion of the number of antihypertensives patients were taking. In addition the

indicator variables derived from the categorical variable for disease also showed some high VIF
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values. Appendix A.4.2 lists the excluded variables and tabulates VIF values for variables whose

VIF values are less than the aforementioned thresholds; see Tables 37 and 38.

In conclusion, having assessed the strength of dependence between variables we decided to exclude
SBP as the clinicians advised their preferred blood pressure measure in the context of this research
was PP. Our VIF analysis indicates that with a threshold of 2.5 we should consider excluding
the number of antihypertensives however we opt to use this variable in our models as the SKS
clinicians advise us of its importance. In this sense we are effectively using a VIF with a threshold
of 5. Some of the indicator variables derived from the categorical variable for disease had relatively
high VIF values however there was an indicator variable for every disease category so some degree
of correlation or anti-correlation is to be expected therefore multicollinearity in this context it is
not a cause for concern. Given log(eGFR) is the outcome variable in our models we will not use
Cr as a covariate, the strong correlation between the two arises because Cr is used to compute
eGFR (Equation 1); if Cr was included it could obscure the effects from other variables which are
our primary interest. We note sex and ethnicity were not strongly correlated with log(eGFR).
This is probably because sex is a small effect in the eGFR formula (Equation 1) and although
ethnicity is a slightly larger effect the vast majority of the SKS cohort were classified as ‘white’

thereby obscuring any strong association.

5.2 Stepwise regression with bidirectional selection and bootstrapping

With the exception of considering dependencies among covariates in the previous section all the
covariate selection has up to this point in the thesis been based on the guidance and expertise
of the renal clinicians at Salford Royal NHS Foundation Trust who designed the SKS study.
This expert knowledge is invaluable for assisting with model selection, but creating statistical
models with a large number of covariates, as we have here, could potentially lead to overfitting.
An overfitted model would describe some of the residual variation (noise) as if this variation
represented part of the underlying model structure or physical process. Hence such models
exaggerate minor fluctuations in the data. Usually there is a trade-off between goodness-of-fit
and parsimony since models with many parameters tend to have a better model fit to the data

but will perform poorly when predicting from other datasets.

Our objective is to create parsimonious models; the simplest models with the least number of
covariates but with greatest explanatory power. There are various methods to estimate the

balance between parsimony and goodness-of-fit, popular methods include:

o Akaike’s Information Criterion, AIC - introduced by Akaike 1973 (71-73) - given the
number of estimated parameters k and the maximum value L of the likelihood function of a
candidate model then AIC = 2k — 2InL. Hence AIC rewards goodness-of-fit as determined

by the likelihood function but includes a penalty which increases with k£ that suppresses
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overfitting. The best model from a set of candidate models is the one with the lowest AIC.
Note that AIC does not describe model quality so given a set of poor models the AIC will
select the best one from the poor-quality set.

« Bayesian Information Criterion, BIC - introduced by Schwarz 1978 (74) - uses a penalty
term, similar to AIC, for the number of parameters in the model but the penalty term is
larger hence BIC will often favour fewer parameters; BIC' = kln(n) — 2InL where n is the

number of data points.

Other popular methods include ‘minimum description length’ and ‘Bayes factors’; for a description

and comparison of these methods, see (75).

In this thesis we use AIC. First, AIC is considered asymptotically optimal for selecting the
regression model (with the least mean squared error) from the set of candidates under the
assumption that this set does not contain the ‘true model’ (i.e the process that generated the
data). In contrast under this assumption BIC is not asymptotically optimal; see for example the
comparison of AIC and BIC given by (76) in relation to regression models. Secondly, the risk of
selecting a bad model is minimised with AIC compared with BIC which carries a significant risk
of selecting a poor model from the candidate models; e.g. see simulation study by (77). Lastly,
(77) suggests AIC is preferred when the ‘true model’ is complex relative to all candidate models,
that is when all the candidates substantially oversimplify the underlying physical processes; this is
most likely the case with our dataset as it is very doubtful we have all the required covariates to
completely model the physical processes driving changes in renal function. It is also improbable
that the complexities of renal function are fully described by the simple structure of our linear

regression models.

To assist with model selection we used stepwise regression which is a method of fitting regression
models in which the choice of covariates is carried out by a systematic procedure. In each step of
the algorithm a covariate is considered for addition to, or subtraction from, the set of covariates
based on AIC. We use, from the R-package MASS (78), the function stepAIC which is briefly
described in (78) on page 175. This function implements a bidirectional selection procedure. To
the author’s knowledge neither (78) or the MASS documentation describe the algorithm so its

steps are outlined here:

1. it computes AIC for the regression model with all covariates;

2. it removes each covariate one at a time (backward selection) from the regression model and
calculates the AIC for each model then selects the one with lowest AIC;

3. it again removes covariates one at a time (backward selection) but also in turn adds
covariates in one at a time which were previously removed (forward selection), then the
regression model with the lowest AIC is selected;

4. the combination of backward-forward selection in step 3. is repeated until the model with

the lowest AIC is found.

32



An exhaustive search where regression models are computed for every possible combination of
covariates will find the global minima in AIC (or whichever statistic is used) but such a search is
computationally impractical for the number of covariates in our dataset. The aforementioned
bidirectional selection procedure, although typically more robust than applying only a forward or
a backward selection procedure, still presents the risk of unknowingly selecting a model with a

local minima in AIC rather than the desired model with the global AIC minima.

To gauge the level of model selection uncertainty we employed a bootstrap method; the principles of
which were first published by Efron 1979 (79) and are now widely used e.g. see texts (80,81). This
method, which is distribution-independent, is a resampling technique which estimates statistics on
an unobserved population by sampling the observed dataset with replacement. In particular the
observed dataset is randomly resampled with replacement, the bootstrap distribution is generated
by repeating this resampling procedure a number of times. Provided the observed dataset is a
representative sample from the true population the bootstrap method works by treating the true
distribution as being analogous to the bootstrap distribution. It is therefore possible to assess

the properties of the unobserved distribution of the population.

The bootstrapping technique typically assumes all observations are from an independent and
identically distributed population. However this assumption is violated by longitudinal data.
There are multiple observations per patient (cluster), and the data are independent between
patients but temporally correlated within each patient’s records. We respect this data structure
by using the so-called m-out-of-n bootstrap where there are a total of n records grouped into m
clusters; for example (81) page 140 and (82) discuss this type of bootstrap. In terms of our data
the patients, i.e. m clusters, are randomly resampled with replacement while the observations for
each patient remained unchanged so as to preserve temporal correlations. It follows that each
bootstrap sample has the same number of patients (clusters) as the original data although some

patients would almost surely occur more than once.

In summary, for a given dataset the final model will be obtained by using the bootstrap to
estimate selection stability for each explanatory variable under bidirectional stepwise regression.

The exact procedure is summarised below in Section 5.4.

5.3 Training and validation data

To help detect the presence of any under- or over-fitting in the aforementioned model selection
procedures, described in Section 5.2, were performed on a subset of data, training data, and the
resulting model was then validated using the remaining data, validation data. Commonly, training
data consists of 75-80% of the entire dataset and the remaining 25-20% forms the validation
data. In our case, for a given dataset, we obtained the training data by randomly selecting the

desired number of patients (without replacement), therefore the remaining patient data formed
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the validation data. The idea is that if the model selected fits similarly to both the training and
validation data then we surmise that the model adequately describes the data without under- or

over-fitting.

Note that the use of training and validation data is no more than a weak test of overfitting. For

a discussion on its limitations see Section 8.3.

5.4 Summary of model selection procedure

We create a separate LME model for each primary kidney disease group (diabetic nephropathy,
glomerulonephritis, hypertensive kidney disease, obstruction, other, polycystic kidney disease,
pyelonephritis, renovascular disease, unknown) with the exception of obstruction which is excluded
because of too little data. Additionally we make an overall model, called ‘single model all diseases’,
which uses the entire dataset including patients with obstruction. We select our final models for

each disease category as followings:

Step 1. Using the full dataset, strong correlations between covariates were eliminated by completely

discarding several covariates; details given above in Section 5.1.

Step 2. Given Equation 2, for each disease we initially use a parsimonious LME model with random
effect X = 1,,, and €; ~ N(0,02 I,,,). Each model is fitted by maximising the log-likelihood
so that we can compare models using AIC. Fixed effects for each disease model are selected as

follows:

1. Wherever the dataset was large enough we apportioned 80% of patients (randomly selected)
to the training data and the remaining 20% to the validation data. With this ratio the PKD
and pyelonephritis disease models contained too few patients in the validation data so we
apportioned 75% of patients to the training data and the remaining 25% to the validation
data.

2. We generated 100 bootstrap samples from the training data.

3. The bidirectional model selection procedure was applied to each bootstrap sample. Given
each bootstrap sample a regression model with the lowest AIC was estimated and its fixed
effect regression parameters recorded.

4. We assessed regression model stability across all bootstrap samples by computing the
proportion of samples in which each explanatory variable was included in the regression.
The final model for each disease category was selected using explanatory variables which
occurred in more than 50% of bootstrap samples.

5. The final models were fitted using the validation data to check the robustness of the model

fit to the data.

Step 3. Given our interest is in the progression of disease over time, we augmented the fixed
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effects with interaction terms between each time varying explanatory variable and time since
follow-up. This allows us to estimate the effects on the slope of log(eGFR) over time. The
rationale for not including interaction terms during Step 2. was to limit the size of the parameter
space so as to reduce the chance of overfitting and/or selecting models in a local, rather than a
global, minima. From this point onwards all models include such interactions which we denote as
expanatory Variable:followup Time. Note that we do not consider all possible interactions between
all explanatory variables as again the parameter space would become too large potentially leading

to sub-optimal models.

Step 4. The fixed effects selected in Step 2. and 3. were for a model with random effect design
matrix X! = 1,, and €; ~ N(0,0?% I,,); below we refer to this as ‘Model A’. Using these fixed
effects we investigated the model fit by undertaking rudimentary exploratory analysis using
log-likelihood estimates. As is customary in longitudinal analysis we considered models with
different random effects and correlation structures including compound symmetry (CS). The
CS results are not presented here as they did not significantly improve the model fit. Here we

consider the following additional complexities to the model structure:
o Model B: X7 (t;5)

e Model C: X:((tm) =
e Model D: Xr(t”) =

1,, with correlation C; described by a CAR1 model
1,,,t;) without within-group correlation

(
(1n,,t:) with correlation C; described by a CAR1 model
Given the training data the log-likelihood estimates for all models are tabulated in Table 7.

Table 7:  Comparison of log-likelihood for different models

Model A Model B Model C  Model D

random ef fect X7 1,, 1., (1,,,t) (1,,t)
correlation C; none CARI1 none CARI1
diabetic nephropathy -17.7 -0.3 -0.8 1.5
glomerulonephritis -79.1 -55.6 -43.2 -41.0
HKD 45.5 57.5 51.6 58.9
other 12.8 16.5 214 22.0
PKD 24.5 34.7 42.8 45.9
pyelonephritis 64.7 67.9 79.0 78.5
renovascular 51.8 61.2 59.5 64.8
unknown -23.7 -23.7 -20.0 -20.1
single model all diseases -488.3 -333.2 -325.8 -302.9

Note: For each disease, the fixed effects derived from Model A are
used in Models B to D.

The model which maximises the log-likelihood for each disease category and so gives the best fit
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to the data is Model D; see Table 7. Model C generally has a higher log-likelihood than Models
A and B, except for diabetic nephropathy, HKD and renovascular where Models C and B have

very similar log-likelihoods.

We acknowledge that simply comparing log-likelihood values between models is naive and that
from a statistical standpoint model comparison requires likelihood ratio tests. However our model
choice is more pragmatic than statistical, in that we took into consideration the known structure
of the data (i.e. we expected to need intercept and slope random effects) and although we would
have preferred to properly consider correlation in the form of a CARI1 model this could not be
achieved within the scope of this thesis as explained below in the second bullet point. Given every
disease category, for our final model structure we chose the more parsimonious model, Model C,

over Model D. This decision was based on the following considerations:

e Given the aforementioned caveats relating to exploring within-group correlations and
likelihood ratio tests we note that the log-likelihood for Model C was only marginally less
than Model D, but still approximately matches or is better than models A and B.

o We encountered problems which we could not resolve when fitting Model D to many of the
bootstrap samples, specifically the R function nlme::lme() for fitting the mixed effects model
reported singularity errors. It is possible that Model D was too complex; a full and detailed
investigation was beyond the scope of this thesis. In contrast a model fit was possible for
all randomly generated bootstrap samples when using Model C.

o For a given fixed effect parameter all 95% confidence intervals overlapped when comparing
these intervals between Models A, B, C and D; note that parameters were selected using
Model A. This comparison held true for all fixed effect parameters in all our disease
categories. We conclude that these parameter distributions are not statistically different
between the models. This means the choice of random effect does not dramatically alter
the distribution of the fixed effect parameter values, therefore from this perspective Models

A to D are all viable choices.

Step 5. Lastly, given the final choice of model, Model C, we repeated the procedure stated in
bullet points of Step 2. above. There was little change in the selected fixed effect terms when
fitting Model C compared with A.

Finally, for the remainder of this thesis we use Model C where the random effects are accounted

for by intercept and slope (followupTime) terms.
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6 Diagnostics

In this chapter we verify the robustness of our models, and hence results, by subjecting them to

diagnostic tests which predominantly aim to check the linear mixed model assumptions.

6.1 LME Model assumptions

Before reporting results we check the models for each disease are robust and adhere to the basic

LME model assumptions, which are:

1. Within-group errors €; are independent and identically normally distributed, with zero
mean and constant variance.
2. Random effects are normally distributed, with mean zero and covariance matrix ¥, and are

also independent of within-group errors.

We mostly follow diagnostic tests recommended by (66) (e.g. Chapter 4.3) so predominantly
concentrate on displaying diagnostic information in plots since, as (66) points out, they are rarely

contradicted by hypothesis tests.

6.2 Tests using validation data

When considering model fits to the validation data we note the limitations raised in Section 8.3.
In particular we acknowledge that the tests detailed below offer no more than a weak test of

overfitting.

On a parameter-by-parameter basis, we compared model estimates fitted using training data with
those fitted using validation data; in particular we examined fixed effect parameter estimates,
standard errors and confidence intervals. All estimates were very similar, with almost all (training

and validation data) confidence intervals overlapping for each parameter.

We examined the residuals of each disease model fit using diagnostic plots (not shown) similar to
those in Section 6.6, Figures 8-16. When fitting the models with either the training or validation
data we did not find any concerning autocorrelations or deviations from normality. Moreover the
plots displayed very similar characteristics for each dataset, these characteristics can also be seen

in Figures 8-16 which were created when fitting models to the full dataset.

In summary, there was no concerning evidence of overfitting to the training data For the remainder

of this thesis we use the full dataset unless otherwise stated.
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6.3 Examination of confidence intervals

Very wide or indeterminate confidence intervals for the LME model parameters indicate numerical
instability, consequently the fitted model could not be expected to reliably describe the data.
Tables 8 and 9 confirm the confidence intervals for the random effects variance-covariance
parameters and o, give no cause for concern. Figure 5 displays correlation values from Table 8, it
clearly shows PKD has a relatively high correlation. The fixed effect confidence intervals, not

shown, were also acceptable for each model.

We note in Table 8 that the correlation between random effects is computed from the variance-
covariance matrix § i.e. correlation matrix R = D™/28 D7'/2 where D = diag(S) and the

elements of D'/? are standard deviations.

Table 8 95% confidence intervals for random effects variance-

covariance parameters

random effects lower CI  estimate upper CI

diabetic nephropathy

sd(Intercept) 0.284 0.318 0.356

sd(followupTime) 0.043  0.056 0.074

cor(Intercept,followupTime) -0.174 0.065 0.296
glomerulonephritis

sd(Intercept) 0.359 0.398 0.441

sd(followupTime) 0.044 0.056 0.071

cor(Intercept,followupTime) -0.046 0.193 0.412
HKD

sd(Intercept) 0.299 0.334 0.373

sd(followupTime) 0.028 0.042 0.062

cor(Intercept,followupTime) -0.219 0.102 0.403
other

sd(Intercept) 0.310 0.345 0.384

sd(followupTime) 0.029 0.040 0.057

cor(Intercept,followupTime) -0.179 0.101 0.366
PKD

sd(Intercept) 0.403 0.472 0.554

sd(followupTime) 0.054 0.077 0.110

cor(Intercept,followupTime) 0.383 0.778 0.932
pyelonephritis
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Table 8 95% confidence intervals for random effects variance-

covariance parameters (continued)

random effects lower CI  estimate upper CI
sd(Intercept) 0.298 0.350 0.410
sd(followupTime) 0.023 0.033 0.046
cor(Intercept,followupTime) -0.267 -0.017 0.236
renovascular disease
sd(Intercept) 0.295 0.342 0.396
sd(followupTime) 0.034 0.048 0.066
cor(Intercept,followupTime) -0.059 0.331 0.633
unknown
sd(Intercept) 0.280 0.314 0.352
sd(followupTime) 0.028 0.041 0.061
cor(Intercept,followupTime) -0.476 -0.169 0.174
single model all diseases
sd(Intercept) 0.350 0.365 0.380
sd(followupTime) 0.048 0.053 0.058
cor(Intercept,followupTime) -0.047 0.012 0.071

Table 9: 95% confidence intervals for within-group standard deviation for parameter o

o lower CI  estimate upper CI
diabetic nephropathy 0.142 0.152 0.164
glomerulonephritis 0.155 0.165 0.175
HKD 0.126 0.136 0.147
other 0.155 0.165 0.177
PKD 0.103 0.116 0.130
pyelonephritis 0.113 0.123 0.135
renovascular 0.125 0.137 0.149
unknown 0.148 0.160 0.173
single model all diseases 0.158 0.162 0.166
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Figure 5: Correlation between intercept and slope random effects
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6.4 Observed versus fitted values

For each disease category we show the relationship between the model fitted values and observed
values i.e. log(eGFR). Figure 6 depicts observed values plotted against fitted values obtained
using a model with fixed effects only (excluding random effects). This gives a summary of the
overall quality of the model fixed effects; in all plots there is a reasonable degree of correlation.
When using the full model the fitted values include both fixed and random effects, in Figure 7
we observe a marked increase in correlation across all disease categories. This provides evidence
that random effects are needed in our models to help explain log(eGFR). For example, given the
category ‘single model all diseases’ the correlation between observed and fitted values without

random effects is 0.73, whereas when random effects are included the correlation increases to 0.97.

Given Figure 6 we observe, that compared with the other diseases, PKD has a noticeably wider
spread of values. We attribute this to the fixed effects describing the data less well. The dominant
determinant for the progression of kidney disease in PKD patients is typically the extent and rate
of growth of cysts in the kidneys. Our data does not contain information relating to kidney cysts,
therefore this factor cannot be included in the PKD model fixed effects. This possibly explains
why we observe a wider spread in values in Figure 6. This wide spread of values for PKD is not
seen in Figure 7 hence the inclusion of the random effects accounts for the additional variability

not accounted for by the fixed effects.
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Figure 6: Observed values plotted against fitted values obtained using a model with fixed effects
only
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Figure 7: Observed values plotted against fitted values obtained using full model with fixed and
random effects
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6.5 Assessment of residual distributional assumptions

Standardised (or Pearson) residuals are found by subtracting the estimated fitted value vector

from the outcome vector, then dividing through by the corresponding estimated within-group

standard errors. Fitted values are obtained by adding the estimated contributions from both fixed

and random effects vectors. We expect the standardised residuals to follow a standard normal

distribution.

In Figures 8-16 we assess, for each disease, the normality assumptions of the residuals using a

panel of four plots:

o Left plot - standardised (or Pearson) residuals against fitted values. From these plots we

Pearson residuals

report that the residuals in our LME models are reasonable given the within-group error
assumptions: the residuals are symmetrically distributed around zero with approximately
constant variance.

Left middle plot - qg-plot with standardised r