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Abstract

We have detailed the development of our method for field profile shaping of longitudinal electric
fields by exploiting the spatial dispersion of wire media. The development of this method involved
a theoretical analysis of the problem where we derived the required variation in the electromagnetic
properties of a medium that can be described by a 1D spatially dispersive model. Integrating this
with information on how the wire radius affects the electromagnetic properties of our structures,
taken from numerical simulations, we were able to develop our field profiling method. This method
allows us to generate a function for the radius variation of our wires that should produce the
desired profile. These profiles come from the solutions of Mathieu’s equation. We have validated
our method for a variety of realisations of wire media, comprising metal and dielectric wires, in
eigenmode simulations, with work also undertaken in the time domain.
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Chapter 1

Thesis outline

In this thesis, we present the work we have undertaken in the development and
testing of our method for field profile shaping using wire media. To thoroughly
detail this process, an extensive number of investigations are detailed in the fol-
lowing chapters. Below we summarize the content of these chapters to aid navi-
gation to relevant information.

Chapter 2 provides an overview of the work that we have done. We describe
how we developed our method for mode profile shaping by a mixture of theoreti-
cal analysis based on the models detailed in Chapter 3 and numerical simulations
which provided us with vital information on how to control the electromagnetic
properties of our wire medium. We also set out the steps taken to test our method
and to extend it to more realistic and varied realisations of wire media.

Chapter 3 contains an exploration of the background knowledge upon which
we built our work. Primarily this chapter focuses on a discussion of wire media,
spatial dispersion and methods for field profile shaping. We have attempted to
provide an introduction to these topics while explaining how they relate to our
work.

Chapter 4 presents the theoretical analysis of wire media that we have carried
out. Building upon the previously predicted existence of plasma-like longitudinal
modes, we show that with a one-dimensional spatially dispersive model we can
predict the required longitudinal variation in the cut-off frequency to produce
our desired field profile. As an aside, these desired field profiles are taken from
Mathieu’s equation, which arises naturally from our theoretical analysis.

Chapter 5 covers our initial simulations of dielectric wire media, which are re-
alised as an infinite lattice of dielectric rods. The rods used in this section have an
extremely high permittivity, εr = 1600, and small radii, r = 0.3 mm. We believed
that these choices would help us find our desired longitudinal modes, but we later
found these modes for a wide variety of material parameters. Despite this, these
simulations did allow us to confirm the existence of longitudinal electric fields
with a plasma-like dispersion relation in our chosen wire medium. We also ex-
amined the effect of different choices for the mesh on these results. We found that
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an increase in mesh size caused no apparent increase in the quality of results. In
this chapter we have confirmed the prediction of plasma-like longitudinal modes,
which was essential as it validated the use of our chosen theoretical framework.

Chapter 6 sets forth the development and initial testing of our field profiling
method. Carrying on from the work and structures in Chapter 5, we investigated
the effect of the wire radius on the dispersion of our longitudinal modes and,
hence, their cut-off frequency in section I. Using the data from Section I, we found
an extremely successful way of describing the relationship between the wire ra-
dius and cut-off frequency. This took the form of an exponential decay function
as detailed in Section II. With an analytic function that described this relationship
well, it was then possible to use our theoretical analysis to solve for a function of
the wire radius that should support our desired field profile as detailed in Section
III.

Before attempting to use our method, we gave some consideration to the fix-
ing of free parameters and how to make sensible choices for these parameters in
Section IV. After considering these choices, it was necessary to test our ability to
produce the desired field profiles in our simulations using these solutions. To
realise the required radius variation, we employed a structure made from a series
of segments, conical frustums, with varying radii. This led to a discrete variation
in the radius of our wires. Despite this, we had a great deal of success repli-
cating our desired profile across a whole range of frequencies, structure lengths
and differing radius variations in Section V. We also investigated the effect of the
chosen number of segments on our field profiling success; finding that our suc-
cess remained remarkably robust for even small numbers of segments as shown
in Section VI. Another critical factor to consider is the quality of the mesh, where
we found that an increase in mesh cells per wavelength did lead to a convergence
in the mesh frequency but erratic changes in the success of the field profile shap-
ing. Both coarse and relatively sparse meshes showed successful profile shaping,
while for some intermediate meshes the mode profile shaping was quite poor. It
seemed that it was more important to allow CST to run its mesh refinement than
specify a large amount of cells per wavelength as discussed in Section VII.

These initial successful results were all based on the replication of the same
field profile, a profile resembling a flattened sinusoidal curve. One of the strengths
of our method is that it is not limited in its support of field profiles. All the solu-
tions to Mathieu’s equation can be easily replicated by solving for the wire radius
function after choosing the appropriate Mathieu parameters q and a, covered more
in Chapter 3. We carried out simulations that showed that our method remained
remarkably successful when tested for a variety of different profiles as detailed in
Section VIII.

Chapter 7 focuses on the extension of our field profiling method to a variety
of realisations of wire media and other steps taken to increase our confidence of
the viability of our method in real world scenarios. This work was motivated
by the fact that our initial results in Chapters 5 and 6 were solely eigenmode

22



results achieved using infinite wire media formed from high permittivity rods.
This raised the prospect that our results would be restricted to a narrow class of
high permittivity wire media.

We were able to show that the results we have obtained can be replicated in
wire media with permittivities as low as εr = 3 in our infinite structures in Sec-
tion I. We analysed the effect of changing lattice parameters on our longitudinal
modes. We showed that these modes are still supported but with a shifted fre-
quency. This raises the possibility of extending our results to different frequency
ranges by changing the lattice parameters as discussed in Section II.

The introduction of various forms of disorder into our infinite structures was
also studied. Our field profiling success proved to be fairly robust to both sys-
tematic and random errors in the wire radius. Although, as we would expect for
extremely large variations in the wire radius (0.2 mm) the field profiling did break
down as shown in Section III. As a possible means to aid fabrication of our dielec-
tric rods, we also examined the effect of introducing a sheath of lower permittivity
material around the varying wires in our infinite lattice. The results showed no
significant decrease in the quality of the results produced as shown in Section IV.

Moving to finite structures is a significant step in our aim to move towards
more realistic wire media. As an intermediary step, we were able to extend our
results to partially finite wire media. By this, we mean that we were able to achieve
successful field profiling in a simulation of a two by two lattice of infinitely long
wires. The transverse boundaries of these simulations were the standard distance
from the nearest rod but had metallic boundary conditions, as shown in Section V.
The extension of our results from a partially finite structure to a completely finite
structure proved to be straightforward. By taking the same structures used to
successfully show field profiling for the partially finite case and applying metallic
boundaries to the longitudinal dimension we were able to achieve field profiling
in a completely finite structure as detailed in Section VI. Having shown that our
method was applicable to finite two by two lattices, we also realised field profile
shaping in a four by four lattice to show that we are not limited in our choice of
lattice size as confirmed in Section VII.

With successful finite structures tested, it was then possible to investigate the
sensitivity of these structures to a variety of different disorders. These included
random errors in the wire radius, and both random and coordinated shifts in the
wire positions. We have laid out the effects we have observed after the introduc-
tion of each of these disorders in Section VIII.

An important aspect of any successful experimental realisation of our method
will be the ability to excite our longitudinal modes. To examine this possibility, we
have performed a series of time domain simulations of modifications of successful
finite structures. We were able to show that we can observe field profiling in our
wire media. Although, despite seeing signs of field profile shaping, our analysis
was incomplete as we have yet to confirm the ease with which these fields can be
transmitted and supported in our wire medium, as covered in Section IX.
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Chapter 8 details the development of our method for achieving field profiling
in metallic wire media. Our first steps in this area were taken with an idealised
infinite lattice of perfectly electrically conducting wires. These structures were
shown to be capable of achieving field profile shaping in Section I. At this stage,
we then switched our attentions to wire media made of copper wires. With copper
wires we were able to replicate all the results achieved with dielectric rods, includ-
ing the realisation of field profile shaping in finite structures and the exploration
of the excitation of a structure, as detailed in sections II, III and IV.

In Chapter 9 we explore some of the ways in which our work could be ex-
tended. We then provide a conclusion of our work in Chapter 10, which sum-
marises the results which we have detailed in this thesis.
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Chapter 2

Introduction

This thesis focuses on our study of wire media and exploitation of their spatially
dispersive nature to form a method for field profile shaping. Here we use the
term “field profile shaping” to mean controlling the spatial variation of typically
sinusoidal electromagnetic fields. Our work on field profile shaping has proved to
be successful, with the developed method shown to reproduce a range of desired
profiles within various realisations of wire media.

We have developed our field profile shaping method around the longitudinal
electric fields that are natively supported by wire media. This is advantageous as
it opens up the possibility of using our shaped fields in applications where the
field interacts with particles, such as in particle acceleration.

The ability to control the spatial variation of a field could be useful in a variety
of scenarios beyond particle acceleration: enhancing ionization in high harmonic
generation, the reduction of non-linearity and improving the resolution of signals
in signal processing. Previous techniques to achieve this control have been limited
by their need for iterative design, i.e. the crab cavity. Our aim when developing
our method for field profile shaping was to create a flexible, prescriptive method.
This prescriptive nature would allow for the realisation of our desired profile
directly without the need for iterative design. Whereas the flexibility of being able
to produce a range of field profiles increases the range of potential applications.
We have focused on the use of Mathieu functions as profiles, but this is just a
choice we have made for reasons of convenience and familiarity.

The theoretical underpinning of our work is centred around the phenomena
of spatial dispersion. Spatial dispersion can be defined for plane waves as the
dependence of the permittivity and other constitutive relations on the wavevector.
Accordingly, the electric displacement field at a point does not just depend on the
electric field at that point but the electric field at other points in the neighbourhood
of the examined point.

Spatial dispersion has been studied for decades since its discovery when con-
sidering excitons in crystals. Since then, it has been known that spatially disper-
sive media should support longitudinal electric fields with a plasma-like disper-
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sion relation. Our theoretical analysis builds upon this knowledge to show that
introducing an inhomogeneity into the plasma frequency can allow us to manip-
ulate the behaviour of the medium to support the desired profile. The medium
will then have a dependence on both position and wavevector. The dependence of
a structure on conjugate Fourier variables has been explored in the literature [3].
We treat the resulting permittivity relation as a differential equation in our work.

Wire media are a well-studied set of metamaterial structures consisting of a
lattice of parallel wires where the wire radius is small compared to the lattice
constants. Here we understand a metamaterial to mean an artificial material
made of inclusions with dimensions such that the structure is experienced as a ho-
mogenised material by electromagnetic waves in the considered frequency range.
One of the interesting properties of wire media is that their homogenised effective
properties are significantly spatially dispersive along the direction of their wires.
Usually, when modelling structures, spatial dispersion effects are treated as neg-
ligible. Ignoring spatial dispersion while modelling wire media compromises the
model’s predictive power. Therefore, wire media are an ideal choice for a spatially
dispersive medium into which we can attempt to introduce an inhomogeneity to
produce our desired field profiles.

Using dielectric wire media as our starting point, we established the existence
of longitudinal modes with a plasma-like dispersion relation in numerical simula-
tions with CST microwave studio. Our work mainly utilised the eigenmode solver
of CST. Using our investigation of the effect of the wire radius on the plasma fre-
quency, we developed a scheme for controlling the plasma frequency; aided by
the discovery that the relationship between these two parameters is remarkably
well described by an exponential decay function. We can use this control to satisfy
the conditions for the support of our desired field profile.

With some careful consideration, we were able to develop a method that given
a desired profile and choice of parameters, typically the field frequency and a
central radius, produces a function for the radius which if implemented in our
wire media should replicate the chosen profile. We tested this method and showed
in numerical simulations that a variety of desired profiles could be replicated
accurately with a variety of chosen parameters.
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Figure 2.1: An image showing the resulting longitudinal mode after the imple-
mentation of the calculated radius function for a flattened profile (given by a so-
lution to Mathieu’s equation characterised by the Mathieu parameter q = 0.8) in
an infinite dielectric wire medium (εr = 1600, ax = 13.06 mm and ay = 15.00 mm).
The field is represented using arrow plots where the arrow direction represents
field direction and colour represents the magnitude of the field strength.

We had therefore successfully demonstrated our method, but this was qualified
by the fact that the structure used was an infinite wire medium of extremely
high permittivity wires. Although these permittivity values are achievable using
barium-strontium-titanate (BST), they do limit the scope of the validity of our
result. Given this, we then worked to extend these successful results to a broader
variety of representations of wire media.

This extension of our work proved to be fruitful; we demonstrated that our
results held for a variety of different dielectric permittivities, as low as εr = 3.
We achieved field profiling in finite wire media, and we made some progress in
exhibiting field profiling in time domain simulations when excited by a waveguide
port. We also extended our method to include the use of metallic wire media. This
work alleviated concerns that our field profile shaping method was limited to a
narrow and difficult to achieve set of wire media.

An example of the electric field supported in one of our dielectric wire media
structures with a varying wire radius designed to produce a flattened profile is
shown in Fig. 2.1.
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Figure 2.2: A plot of the field profile (longitudinal, z, spatial variation of the
electric field strength, Ez) of a longitudinal mode in an infinite dielectric wire
medium (εr = 1600, ax = 13.06 mm and ay = 15.00 mm) for our attempt to
produce a flattened profile (which is a Mathieu function defined by parameter
q = 0.8). The plot includes the field profile observed in our numerical simulation
(solid black) and the desired profile (dotted black).

The profile of this mode is shown in Fig. 2.2 along with a comparison with
the desired profile. This comparison clearly shows the success of our method.
We have replicated our desired profile in our structure, using design parameters
generated directly from the choice of profile, with a high degree of accuracy. In
order to aid comparison the field profile from our simulation and the z coordinate
have been scaled. As with all other plots of this type, the z coordinate has been
scaled by 2π

L where L is the length of the unit cell and the Ez values have been
scaled so that at z = 0 the field is equal to the Mathieu function value.

In total, we have developed and tested in numerical simulations a successful
field profile shaping method that has proven to be incredibly flexible. We have
demonstrated field profile shaping for a wide variety of different realisations of
wire media for a variety of different profiles.
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Chapter 3

Background

Our work touches upon a variety of areas of research that may be unfamiliar, such
as wire media, spatial dispersion and methods for field profile shaping. In this
section, we will endeavour to provide a suitable background to these areas and an
understanding of how they factor into our work.

I. Spatial Dispersion

The existence of spatial dispersion in wire media leads to interesting electromag-
netic properties that we exploit in our field profile shaping method. As such, it is
important to provide an overview of the phenomena of spatial dispersion.

I.1 History and definition of spatial dispersion

We can describe spatial dispersion with a comparison to temporal dispersion.
Temporal dispersion is the well-known phenomena exhibited in media with a
constitutive relation of the form shown in equation 3.1.

D̂(r, ω) = ε̂(ω)Ê(r, ω) (3.1)

Here D̂(r, ω) is the electric displacement field in position-frequency space, Ê(r, ω)
is the electric field in position-frequency space, r is the position vector, ω is the
angular frequency and ε̂(ω) is the position-frequency space permittivity. This
representation of the electric field is related to the position-time representation,
E(r, t), by a Fourier transform as illustrated in equation 3.2.

Ê(r, ω) =
∫ ∞

−∞
E(r, t)eiωtdt (3.2)

Using the same principle, we can find the expression for the position-time rep-
resentation of the displacement field in a temporally dispersive media by applying
the inverse Fourier transform to equation 3.1. This gives, using the convolution
theorem, equation 3.3.
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D(r, t) =
∫ ∞

−∞
ε(t− t

′
)E(r, t

′
)dt

′
(3.3)

Here ε(t) is the permittivity in position-time space, the Fourier transform of ε̂(ω)
and is required by causality to equal zero for t < 0; and t

′
is a dummy variable

used in the integration. The relationship between D and E in equation 3.3 is
described as being local in the spatial argument and nonlocal in the temporal
argument. Here the concept of locality refers to whether the relationship for a
field at a coordinate depends on other coordinates and is closely tied with spatial
dispersion. In the case of equation 3.3, for a given position D only depends on
E at that point, whereas D at a given time depends on E at that time and earlier
times. This leads to the phenomena of the dispersal of a wave packet travelling
through a temporally dispersive medium.

As mentioned, spatial dispersion is related to non-locality. This is because in
spatially dispersive materials the relation between D̂ and Ê is non-local in the
spatial argument. This is shown in the constitutive relation in equation 3.4.

D̂(r, ω) =
∫∫∫ ∞

−∞
ε̂(r− r

′
, ω)Ê(r

′
, ω)d3r

′
(3.4)

We can clearly see from equation 3.4 that with spatial dispersion D̂ at a point will
not only depend on the Ê field at that point but also on the Ê field at other points
in the neighbourhood of our examined point. A Fourier transform of the D̂(r, ω)
field relating it to D̃(k, ω) can be defined, as shown in equation 3.5 where k is
the wavevector. D̂(r, ω) is the function for the D field in position-frequency space,
whereas D̃(k, ω) is the function for the D field in wavevector-frequency space.

D̃(k, ω) =
∫∫∫ ∞

−∞
D̂(r, ω)e−ik·rd3r (3.5)

We can use the Fourier transform defined in equation 3.5 along with the consti-
tutive relation in 3.4 to give a different representation of the spatially dispersive
constitutive relation. This is shown in equation 3.6.

D̃(k, ω) = ε̃(k, ω)Ẽ(k, ω) (3.6)

We will most commonly refer to a medium as spatially dispersive when its per-
mittivity and constitutive relation depends on k. The series of steps above is a
commonly used description of spatial dispersion, as previously laid out in [4].

Spatial dispersion was first described decades ago when considering excitons
in crystals. This analysis by Pekar found that the relationship between the po-
larization field, P, and electric field, E, was not described by a simple direct pro-
portionality, but instead by a differential equation. This had the consequence
of making Maxwell’s equations higher order and leading to new, more compli-
cated solutions. The discovery of spatial dispersion led to the prediction of the
existence of longitudinal waves or fields in these crystals [5]. Our field profile
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shaping method is built around these predicted longitudinal fields as laid out in
Chapter 4.

The theoretical description of spatial dispersion was followed with experimen-
tal verification. Reflection spectra in crystals made of CdS and ZnTe could not be
explained using classical approaches and required the use of a spatially disper-
sive model [6]. Experiments such as this established spatial dispersion as a real
phenomenon that should be considered and could potentially be exploited.

I.2 Weak and strong spatial dispersion

In the literature, there is a distinction made between media with weak and strong
spatial dispersion. This distinction goes beyond the relative magnitudes of the
effects involved. According to [7], the presence of strong spatial dispersion in a
structure destroys the continuity in its effective medium representation, while the
presence of weak spatial dispersion does not.

In this thesis, the structures we consider exhibit strong spatial dispersion. The
wavelengths considered are on the order of the lattice spacings, and the permit-
tivity functions include higher orders of k [8]. It should, therefore, be understood
that mentions of spatial dispersion in descriptions of our work refer to strong
spatial dispersion.

I.3 Work in the area of spatial dispersion

Our interest in spatial dispersion is focused on its existence in wire media and our
attempts to exploit it to achieve field profile shaping. There has been a significant
amount of interest in the phenomena outside these areas. We will give a brief
overview of some other areas of interest in spatial dispersion in this section.

One area of interest which followed straight from the initial description of spa-
tial dispersion by Pekar is the need for additional boundary conditions (ABCs) [5].
As previously mentioned, the presence of spatial dispersion in a medium makes
Maxwell’s equations higher order and leads to the existence of new solutions.
This is not a problem when considering the bulk of a medium or an unbounded
medium, but complications do occur at boundaries and interfaces. The classical
boundary conditions are not sufficient to uniquely describe the problem. This
has major implications when trying to study reflection and transmission in spa-
tially dispersive media and can be solved by introducing ABCs. The develop-
ment and choice of these ABCs was a source of controversy as there is no single
method for their development and different ABCs can be derived for the same
structure. This has caused a significant amount of interest and literature on the
subject [4, 9–20], including the consideration of boundaries in media with weak
spatial dispersion [21].

A large amount of the early work on spatial dispersion continued to consider
insulating crystals [6,22–25]. Pekar extended his description to a cubic crystal [22],
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whereas others focused on experimental observation of the reflectance of crystals
of CdS, ZnTe and GaAs [6] [24]. Thought was also given to how spatial dispersion
would manifest itself in dielectrics that were finite or semi-finite [4, 12, 26, 27]. It
should be noted that often the effects of spatial dispersion are analysed in terms
of their effect on optical properties, such as reflection or absorption [9, 10, 12, 13,
26, 28–34].

Spatial dispersion was discovered in the context of excitons [5] and excitons
continued to be a significant area of interest for the study of spatial dispersion for
many years [23, 30, 35–38]. The interest in excitations continued with the study of
polaritons in the context of spatially dispersive media [9–12, 14, 29, 39].

The work on spatial dispersion has not just focused on dielectric materials;
spatial dispersion has also been considered in the description of plasmas [40, 41].
Nonlocal approaches have also been used in the theoretical study of metallic films
[28, 42]. It has been shown that in a spatially dispersive dielectric the energy
flux cannot be described using only the Poynting vector; it requires another term
that describes the energy transported by excitons [37]. A generalized Poynting
vector that accounts for nonlocal interactions has also been derived [43]. Spatial
dispersion has also been linked to other research areas and phenomena: negative
refraction [44], chirality [45, 46], transformation optics [47, 48] and the study of
graphene [34].

A major area of research in the study of spatial dispersion in recent years is
its effect in the developing field of artificial materials. Spatial dispersion has been
considered in nanostructures [31, 32, 49, 50] and metamaterials [33, 51–56]. For
our work, the most important development in this area was the demonstration
of strong spatial dispersion in wire media [8], which form the foundation of our
field profile shaping method. An illustration of such a wire medium is shown in
Fig. 3.1. The work that has been laid out in this thesis was built upon the proposal
in [20]. This paper was concerned with the theoretical analysis of inhomogeneous
spatially dispersive media, which requires the dependence of ε on fourier conju-
gate variables k and z (in 1D) [3]. The possibility of controlling the field profile
of usually sinusoidal fields was considered and wire media were suggested as a
suitable medium [20].

Figure 3.1: An illustration of a uniaxial wire medium oriented along the z axis.
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II. Metallic wire media

Our method for field profile shaping is based on exploiting the spatial dispersion
of wire media, which should provide longitudinal electric fields with a dispersion
relation that we could manipulate. Wire media consist of a lattice of parallel
wires, as shown in Fig. 3.1. Despite the fact that we first demonstrated field
profile shaping in dielectric wire media, metallic wire media have traditionally
been considered more frequently and have been shown to be strongly spatially
dispersive [8].

Therefore, we will focus on the literature surrounding metallic wire media first.
As a brief introduction, metallic wire media are a well-studied set of structures
consisting of a lattice of parallel conducting wires where the wire radius is small
compared to the lattice constants. Other configurations of wire media exist with
wires spanning across multiple axes.

II.1 Original interest

Metal wire media have been studied for decades. In early papers, metallic wire
media were commonly studied as an example of an artificial dielectric and re-
ferred to as a rodded medium [57–62]. Artificial dielectrics were defined as an ar-
ray of conducting elements that achieves the behaviour that the phase velocity of
light inside the medium differed from the free space phase velocity [57]. Artificial
dielectrics should, therefore, enable the refraction of electromagnetic waves [58].
Rodded media were considered to be capable of achieving refractive indices of
less than one [57]. Later work also considered rodded media to be capable of
acting as an artificial plasma [62].

II.2 Metamaterials and homogenisation

Metallic wire media are now often classified as metamaterials or components of
metamaterials [8]. As before, we understand a metamaterial to be an artificial ma-
terial made of inclusions with dimensions such that the structure is experienced
as a homogenised material by electromagnetic waves in the considered frequency
range. Metamaterials are artificial structures that are formed from a collection of
objects whose spacing and size are much smaller than the electromagnetic wave-
length considered. Crucially these small length scales mean that the metamaterial
can be considered a homogeneous medium characterised by an effective permit-
tivity and permeability. This is analogous to the description of glass interacting
with light as a homogeneous medium where we ignore the atomic detail of glass
because the atomic scale is far smaller than the wavelength of light [63]. Our con-
trol over the elements making up the metamaterial gives us the ability to tune their
properties and achieve properties not usually available in natural materials [64].
The field of metamaterials has attracted significant interest due to the possibility
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of achieving negative refraction [63,65–67], sub-diffraction imaging [65,68–70] and
perfect absorbers [71, 72].

Figure 3.2: An illustration of the representation of a wire medium structure as a
homogenised wire medium.

The process of describing a complex structure as a homogenous effective medium
is called homogenisation, as illustrated in Fig. 3.2. Clearly, homogenisation plays a
vital role in the characterization of metamaterials [73–77]. Homogenisation allows
for the description of the metallic wire medium, which we use for field profile
shaping, as a 1D medium with a non-local permittivity [8]. The approach taken
in [8] is the one adopted in our work, but further work on the homogenisation of
other realisations of wire media has been carried out by others [78–82].

II.3 Modern interest in metallic wire media

As we have mentioned, modern interest in metallic wire media structures has
mainly been driven by their use as metamaterials. Here we will try to give an
overview of the work done in this area and some of the possible applications
of wire media. Our work has focused on uniaxial wire media that contain one
lattice of parallel wires directed along a single axis [8]. Interest in wire media
extends to other wire media geometries: two-dimensional [83], three-dimensional
[84–87], crossed wires [88–96], mushroom type [97–101] and composite structures
[102, 103]. A number of different wire media geometries are shown in Fig. 3.3. A
more comprehensive review of the field of metal wire media structures up until
2012 is given in [104].
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Figure 3.3: An illustration of a variety of different wire media geometries. (a)
is a double connected wire media, (b) is a triple connected wire media, (c) is a
double disconnected wire media and (d) is a triple disconnected wire media. This
illustration initially appeared in [104].

The resurgence in the study of metallic wire media was partly due to a renewal
in the interest of the plasmonic properties of wire media [85, 105–109]. Along
with this, metallic wires were part of composite metamaterial structures involved
with the exploration of left handed media and negative refraction [83, 102, 103].
Subsequently, there have been a large number of studies and homogenisations of
various metallic wire media geometries [84, 86, 87, 100, 110–120]

One of the possible applications of metallic wire media that has been explored
is the use of wire media as lenses with unique imaging properties [69, 89, 90, 93,
95, 96, 101, 121–136]. Some of these applications focus on subwavelength imaging
of the near field [69, 94, 95, 123, 125, 129, 134, 135], whereas others focus on the
transport of the near field, using a canalization regime, over several wavelengths
[93, 122, 128, 132, 136]. An illustration of a subwavelength imaging scheme using
wire media is shown in Fig. 3.4.
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Figure 3.4: An illustration of a subwavelength imaging scheme using wire media
[78].

Metallic wire media have also found applications in a large number of other
areas. They have been shown to exhibit unique properties such as negative re-
fraction [92, 99, 137–141], partial focusing [96, 142], extremely high refractive in-
dices [88, 89] and anomalous dispersion [91]. Metallic wire media have also been
studied in the realisation of antenna [143, 144], impedance surfaces [97, 98, 145],
electromagnetic absorbers [146], periscope-like endoscopes [147] and image split-
ters [148]. There has also been some interest in their use in accelerator applica-
tions [149].

II.4 Spatial dispersion in metallic wire media

The most important area of research involving metallic wire media, for our pur-
poses, is the exploration of their spatially dispersive properties. The work in [8]
established the presence of strong spatial dispersion in uniaxial wire media, lat-
tices of wire aligned along one axis, and provided a nonlocal model for the permit-
tivity of the structure along the spatially dispersive axis. Based on an analysis of
the polarization of the fields they establish a dyadic, or tensor, shown in equation
3.7 to describe the anisotropic nature of the permittivity of the structure.

ε = εuzuz + ε0(uxux + uyuy) (3.7)

Here ε is the axial permittivity and ux,y,z are the base vectors of the coordinate
system. From this dyadic, with reference to [150], they establish that the medium
will have the dispersion relation given in equation 3.8 for an extraordinary plane
wave (Ez 6= 0) with k =(kx,ky,kz) and E =(Ex,Ey,Ez).

ε0β2c2(k2
x + k2

y) = ε(ω2 −ω2
0 − β2c2k2

z) (3.8)
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Here βc is the polariton velocity and ω0 is the polariton resonance frequency.
Polaritons are quasiparticles relating the the coupling of electromagnetic waves
with excitations which are related to spatial dispersion. In the paper they note the
use of the local model given in equation 3.9 for the permittivity along the wire
axis [62, 111].

ε = ε0

(
1−

4π2 f 2
p

ω2 −ω2
0

)
(3.9)

Here 4π2 f 2
p is the plasma frequency.

As Helmholtz’s equation should also apply to the extraordinary plane waves
they derive another condition for the wave. It is shown that equation 3.9 is in-
compatible with this new condition. This is solved in the paper by introducing a
new non-local model for the axial permittivity, ε, in equation 3.10. The rigorous
derivation of equation 3.10 is based on the work in [112].

ε(ω, kz) = ε0

(
1−

4π2 f 2
p

ω2 −ω2
0 − β2c2k2

z

)
(3.10)

This permittivity is consistent with the condition from Helmholtz’s equation and
when substituted into equation 3.8 gives the dispersion relation in equation 3.11.

β2c2k2 = ω2 −ω2
0 − 4π2 f 2

p (3.11)

The use of these two different models leads to significantly different descrip-
tions of the behaviour of metallic wire media. The non-local model predicts a stop
band for extraordinary waves, at 4π2 f 2

p , that does not exist when using the local
model. This established strong spatial dispersion as a significant effect in uniaxial
metallic wire media and provided a model for their nonlocal permittivity [8].

After the discovery of the spatially dispersive properties of metallic wire media
more work followed, including the realisation that all geometries of metallic wire
media exhibit spatial dispersion to some degree [16, 80]. As with the discovery
of spatial dispersion in crystals this led to an interest in the reflection properties
of metallic wire media and the need for additional boundary conditions [16–19,
151–154], as well as other studies of the spatial dispersion in metallic wire media
geometries [74, 78, 81, 83, 97, 98, 119, 120, 145, 155–160].

The spatial dispersion in metallic wire media has proved useful in some cases.
It has allowed for the development of subwavelength imaging schemes [69, 122–
125, 136], impedance surfaces [16, 17, 97, 145] and the exploration of epsilon-near-
zero materials [144, 161]. The spatial dispersion in a crossed wire mesh has led
to possible applications in the realisation of extreme refractive indices [88], sub-
wavelength waveguides [88, 89], superlensing [90], negative refraction [92] and
anomalous dispersion [91]. However, spatial dispersion is not always welcome
with some making efforts to suppress the spatial dispersion in metallic wire me-
dia [108, 162].
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Of the work following the demonstration of spatial dispersion in metallic wire
media, one of the most relevant to this thesis is the work in [163]. In this paper
the general outline of our field profile shaping method was first proposed. Spatial
dispersion in wire media is considered and the possibility of modifying the radius
of the wires, as shown in Fig. 3.5, to give a desired profile is suggested. The work
in [163] does not attempt to demonstrate the field profile shaping effect but does
propose it.

Figure 3.5: An illustration of a wire medium where the radius of the wires varies
longitudinally [163].

III. Dielectric wire media

The wires in the structures we have considered have been metallic or dielectric. In
the case of dielectric wire media, it may be more appropriate to refer to dielectric
rods populating the lattice as the use of the word wire may suggest conductivity.
These dielectric structures do not have as extensive a body of literature as their
metal counterparts.

In the case of dielectric wire media, which was the starting point for the de-
velopment of our field profile shaping method, the regime of its behaviour is
dependent on the particular structural configuration. One scheme for the distinc-
tion of these regimes is that when a dielectric wire medium consists of tightly
spaced rods with low permittivity or sparsely spaced rods with high permittivity
the wire medium will behave as a metamaterial. Otherwise, they will behave as
a photonic crystal. In the case when they act as metamaterials, this is due to the
Bragg scattering length being less than the Mie scattering wavelength [164]. This
concept is illustrated well in Fig. 3.6.
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Figure 3.6: An illustration of the transition between different dielectric wire media
regimes where the structures either act as metamaterials or photonic crystals [164].

Interest in dielectric wire media, or rodded media, has grown in recent years
with attempts to realise metamaterial structures in the optical frequency range
[164,165]. High permittivity dielectrics can be used to avoid the losses and satura-
tion effects that occur in metals at this frequency range [166]. The high permittiv-
ity is also motivated by the desire to ensure these materials can be considered as
effective media [165, 167]. It should be noted that the presence of Mie resonances
is critical to the electromagnetic behaviour of these structures [168].

These structures have been shown to exhibit interesting properties such as neg-
ative permeabilities, negative refractive indices and left-handed behaviour [165,
167, 169–174]. This is not the only interest in artificial media made from dielectric
wire lattices [175–181]. A review of the field of dielectric metamaterials up until
2018 is available in [182].

As far as we are aware, there is not an extensive body of literature of spa-
tial dispersion in dielectric wire media. Although, in [165] it is demonstrated
that strong spatial dispersion is a factor in dielectric wire media even in the long
wavelength regime. This fits well with our experience of metallic wire media [8].

IV. Field profile shaping

The realisation of field profile shaping is the aim of the design of our structures.
By field profile shaping we mean the support of fields, in our case longitudinal
electric fields, where the variation in field strength is given by a function chosen
by ourselves rather than the usual sinusoidal variation. The spatial variation in
the strength of a field is the field profile.

The attempt to control the electromagnetic properties of fields is an area of
significant interest. Photonic crystals are used to control properties such as the
transmission and the band gap [183–185]. In the emerging field of metaphotonics
a greater level of control could enable zero electromagnetic response, chirality
control and cloaking [186]. In the case of the field profile shaping method that
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we have developed, a desired field profile can be generated directly using design
parameters which result from the choice of profile. This direct method avoids the
need for an iterative design of our structures and can be applied to a large variety
of profiles [1, 2, 187].

This degree of control over the profile of an electromagnetic field could lend it-
self to a number of applications. In the case of accelerator application, crab cavities
are currently used to tailor field profiles for the control of the particle bunch [188].
"Nose cone” profiles are used to concentrate the electric field, but these structures
require an iterative design process not necessary for our profiling [189, 190]. This
could lead to an interest in accelerator applications such as the shaping of electron
bunches or use in plasma ionisation in laser wakefield accelerators [191, 192]. An
illustration of a possible use of wire media in controlling the electric fields used in
acceleration is shown in Fig. 3.7. Accelerator applications are complicated by the
fact that we have little control over the temporal profile of the field experienced
by particles. Other potential applications are the enhancing of ionisation in high
harmonic generation [193–198]. It could also be imagined that flattened profiles
with high gradients but minimised peak field values could be useful in applica-
tions where non-linearity is harmful. A field with a pronounced peak could also
find use in signal processing where it could increase resolution [1, 2].

Figure 3.7: An illustration of the use of wire media to optimise electric fields in a
particle acceleration setting [163].

The use of wire media to achieve field profile shaping is a unique approach,
as far as the authors are aware. Although, it is interesting to note that there has
been some interest in the study of electromagnetic fields resulting from charges
travelling through spatially dispersive metallic wire media [199–207]. These pa-
pers have comprised studies of Cherenkov radiation in the structures with pos-
sible uses in diagnostics [199–202], studies of the radiation in planar and other
geometries [203–206], and a proposal of a theoretical approach for describing the
radiation associated with bunches travelling in wire media structures [207]. There
has also been work on the effect of sinusoidally varying permittivities in photonic
structures, but without considering the effect on the field profiles supported [208].

Other methods for achieving some level of control over the field profile do
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exist. As already mentioned, the use of crab cavities and "nose-cones" is common
in accelerators [188–190]. Sometimes radio-frequency quadrupoles are used that
can give some degree of field profile control by the iterative design of their vane
modulation [209–213]. The replication of a field profile has also been achieved
using harmonic synthesis [214, 215]. A similarly prescriptive method for field
profile shaping has been demonstrated that is limited to the control of transverse
field profiles using blocks of different permittivities [216].

The method we have developed involves the use of spatially dispersive wire
media. Based on the prediction of plasma-like longitudinal modes, we showed
how an appropriate variation in the plasma frequency could give a desired profile.
This desired profile is given by a solution to Mathieu’s equation,

d2y
dσ2 + (a− 2q cos(2σ)) y(σ) = 0 (3.12)

which is a differential equation with a well-known set of solutions characterised
by the choice of a and q. Here, y corresponds to the z component of the electric
field and sigma to the z coordinate.

After confirming the existence of these modes in numerical simulations and
exploring the effect of the wire radius, we were able to develop our method link-
ing a desired profile with a required radius function. We have explored this work
in some detail for dielectric wire media in [1, 2]. This thesis will expand on our
previous publications, including the use of metal wire media and other develop-
ments.

V. Finite Element Analysis

The work carried out in this thesis largely centres on the use of CST microwave
studio to simulate wire media structures [217]. This is an electromagnetic mod-
elling software that utilises finite element analysis. It has several solvers available,
but we have mainly used the eigenmode solver supplemented with some results
from the time domain solver. In this section, we will give a brief overview of finite
element analysis and the operation of these solvers.

Finite element analysis is a tool for studying systems that can be described by
differential equations. The technique can be applied to a range of problems such
as heat flow, structural analysis and, in our case, electromagnetism. What this
method has in common for all these applications is that the model being analysed
is first broken into small cells, on which the applicable governing equation is
solved. In our simulations, this is Maxwell’s equations. This set of discrete cells
which make up the model is known as the mesh [218].

We have used tetrahedral meshing for our eigenmode simulations, where the
model is broken up into tetrahedrons, and hexahedral meshing in our time do-
main simulations, where the model is broken up into hexahedrons. In the case of
the tetrahedral mesh, CST first meshes the edges and faces of the elements in the
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structure before then meshing the volume of the elements. This ensures that the
mesh produced is consistent between different elements [219]. When modelling a
structure with a hexahedral mesh, the mesh will not necessarily conform to mate-
rial jumps. This is taken care of by the use of the finite integration technique and
the Perfect Boundary Approximation. These techniques allow for a single cell to
represent different materials, so avoiding the issues usually associated with ‘stair-
case’ approximation where a cell is filled with just one material causing problems
when encountering curved surfaces [220].

Now that we have discussed the meshing of our structure, we will move onto
the solvers used. The eigenmode solver, which was used for the bulk of our work,
allows us to calculate the frequencies and field patterns of the modes supported in
our structure. It does this by solving the eigenvalue equation, shown in equation
3.13, on our tetrahedral mesh.

∇× [v (∇× E)] = ω2εE (3.13)

In equation 3.13 ε is the complex permittivity, v is the complex reluctivity and
ω is the complex angular frequency. These quantities are defined further below
in equations 3.14-3.16.

ε = ε
′
(ω0)− iε

′′
(ω0) (3.14)

v = v
′
(ω0)− iv

′′
(ω0) (3.15)

ω = ω

(
1 + i

1
2Q

)
(3.16)

Where ω0 is the evaluation frequency at which the permittivity and reluctivity
are evaluated, x

′
is the real part of the complex quantities, x

′′
is the imaginary

part of the complex quantities, and Q is the Q-factor, which is the ratio of stored
energy and dissipated energy at the resonance frequency [219, 221].

As we have mentioned, the time domain solver utilises the finite integration
technique on a hexagonal mesh. We have used the time domain solver to find field
patterns at specific frequencies and for some limited analysis of the scattering
parameters for our structures. In the time domain solver, as well as setting up
our structure it is also necessary to define an excitation signal and ports for the
entry of this signal. The solver solves a discretised version of integral Maxwell’s
equation on the mesh, to calculate the fields through time [219].
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Chapter 4

Theory of spatial dispersion and
profile shaping

Our aim is to develop a method for controlling the field profile of longitudinal
electric modes, Ez(z), by making changes to the geometry of our structure. We
should mention that although our calculations are based on purely longitudinal
electric modes, the modes in our simulation are largely longitudinal with some
transverse components. This small perturbation from our theory has not proved
to be a problem. We believed that we could achieve this for the modes defined in
equations 4.1-4.4 in a direct manner using wire media.

E = E(t, z)ez (4.1)
P = P(t, z)ez (4.2)

B = 0 (4.3)
H = 0 (4.4)

Given the fields defined in equations 4.1-4.4, we can now consider the source
free version of Maxwell’s equations.

∇ · D = 0 (4.5)
∇ · H = 0 (4.6)

∇× E = −∂B
∂t

(4.7)

∇× H =
∂D
∂t

(4.8)

Our definition of the fields mean equations 4.6 and 4.7 are automatically satis-
fied. The other two equations, 4.5 and 4.8, can be reduced to the following:
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∂D
∂t

= 0 (4.9)

∂D
∂x

= 0 (4.10)

These conditions can be satisfied if D = 0. Alternatively, the condition for this
solution can be written in terms of E and P by using the conventional definition
of D, shown below in equation 4.11.

D = εE = ε0E + P = 0 (4.11)

Equation 4.11 is the condition for the existence of longitudinal electric modes,
which we want to build our method around. To explore whether we can observe
these modes in our wire medium, we must introduce a theoretical model for the
electromagnetic response. We have taken this model from the literature [8]. Our
chosen model describes a wire medium as a one dimensional spatially dispersive
medium. It also describes them as an epsilon-near-zero material for certain values
of frequency. All this information is encoded into the constitutive relation shown
in equation 4.12.

P̂(ω, k) =
−4π2 f 2

p ε0

ω2 −ω2
0 − β2c2k2

Ê(ω, k) (4.12)

Where fp is the plasma frequency of the medium, ω0 is the angular polariton
frequency and cβ is the polariton velocity. Comparing equation 4.12 with equation
4.11, we can see that the condition for the existence of longitudinal modes is
satisfied for a mode with the following dispersion relation:

4π2 f 2
p = ω2 −ω2

0 − β2c2k2 (4.13)

As we will be simulating our wire media in CST, where mode frequency is not
given in terms of the angular frequency, it is helpful for us to rewrite equation
4.13. We can do this by introducing f = ω

2π , f0 = ω0
2π and κ = k

2π .

f 2
p = f 2 − f 2

0 − β2c2κ2 (4.14)

Equation 4.14 is the predicted dispersion relation for longitudinal electric modes
in a wire medium, as derived from our one dimensional spatially dispersive
model.

Before we can develop a method for mode profile shaping, we need to choose
our profiles. We want our choice to give us a large variety of profiles which are all
mathematically defined in as simple a manner as possible. Given this we chose to
use the solution to Mathieu’s equation, shown in equation 4.15.

d2y
dσ2 + (a− 2q cos(2σ)) y(σ) = 0 (4.15)
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We can find a differential equation describing fields which have solutions of
Mathieu’s equation as their profile by making a change of variables and, to make
things clearer, relabelling the function y. Changing y to P and introducing the
change σ = 2πz

L , with differential dz
dσ = L

2π where L is a characteristic length scale
of the system, gives:

L2

4π2
∂2P
∂z2 +

(
a− 2q cos

(
4πz

L

))
P = 0 (4.16)

Similarly, we can find a differential equation describing the behaviour of fields
in wire media by Fourier transforming equation 4.12. With a little rearrangement
this gives:

c2β2 ∂2P
∂z2 + 4π2

(
f 2 − λ2

)
P = 0 (4.17)

Where λ2 = f 2
0 + f 2

p and corresponds to the cut-off frequency of the structure.
We can now see the similarity between the Fourier transformed Constitutive rela-
tion and this form of Mathieu’s equation that was a key reason for using Mathieu’s
equation as a source of profiles. If we compare equations 4.16 and 4.17 then we
find the following relation for their agreement:

f 2 − λ2 =
c2β2

L2

(
a− 2q cos

(
4πz

L

))
(4.18)

When looking at equation 4.18, we can see that the right hand side varies with
z, whereas the left hand side is constant. In order to solve this, we can introduce
a varying cut-off frequency, Λ(z).

f 2 −Λ2(z) =
c2β2

L2

(
a− 2q cos

(
4πz

L

))
(4.19)

Introducing the appropriate function Λ(z) will satisfy this equation and will
enable the support of our desired mode profiles in our wire media structure.

Equation 4.18 represents the culmination of our theoretical analysis of wire
media. Using our simple one-dimensional model for wire media, we have derived
a condition which if satisfied, will support field profiling. In other words, given a
chosen Mathieu solution as a profile and after choosing fixed values for the free
parameters, we can find a function for the plasma frequency that should support
our desired field profile.

This theoretical analysis represents one half of the development of our field
profiling method, as can be seen in Fig. 4.1. Knowing the plasma frequency
variation required is not enough without knowing how to achieve the required
values in our wire medium. This information can be gained from our numerical
simulations of three-dimensional wire media structures. In these simulations, we
expect to find these longitudinal modes with a dispersion relation as shown in
equation 4.20.
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Figure 4.1: The steps used for generating and then validating our field profiling
model.

β2c2κ2 = f 2 − λ2
s (4.20)

If we make the reasonable assumption, which we will attempt to verify in our
simulations, that the simulation cut-off frequency, λs, has a radius dependency
then we have a route to satisfy equation 4.19. With an analytic function for this
relationship, λs(r), we can find a radius function, R(z), that will satisfy equation
4.19 by solving equation 4.21. These steps for developing a mode field profile
shaping method are illustrated in a flowchart in Fig. 4.1.

λ2
s (R(z)) = Λ2(z) (4.21)
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Chapter 5

Confirming the existence of
longitudinal electric modes

In Chapter 4, the prediction of the existence of longitudinal electric fields in wire
media was detailed. This prediction was based on the use of a one-dimensional
inhomogeneous spatially dispersive model of wire media. It was important to
test this prediction was true for dielectric wire media, especially as the work this
prediction was based on considered metallic wire media. In order to verify these
predictions, we simulated our structure in the electromagnetic simulation soft-
ware CST microwave studio.

A convenient starting point for these simulations was provided by the case of
a single dielectric wire—or rod—in a system with periodic boundary conditions.
Given such a set-up, we were effectively simulating an infinite lattice of dielectric
wires. This is simple from a design and computational point of view, while also
resembling the work providing the theoretical underpinning of our predictions.

Figure 5.1: A typical representation of wire media in CST, consisting of a section
of dielectric wire in a unit cell with periodic boundary conditions. This effectively
represents an infinite dielectric wire medium.

There are a number of parameters we can vary when looking for our predicted
longitudinal modes: the relative permittivity of the dielectric wires εr, the radius
of the wires r, the wire spacings of the structure ax and ay, and the length L of our

47



unit cell. For an infinite periodic system, the length L of the unit cell should have
no material effect on the results found.

An image from CST of a typical uniform radius wire medium structure, shown
in Fig. 5.1, illustrates how simple these initial structure are to construct in CST.
Eigenmode simulations show that the majority of the modes in such a structure
are transverse modes, such as the one shown in Fig. 5.2. We should note that
these simulations were carried out with a mesh generated based on the choice of
four mesh cells per wavelength. After trying several combinations of parameter
values, we were able to confirm the existence of longitudinal electric modes in
our structure. It is worth noting that these modes were originally found with
structural parameters εr = 1600, r = 0.3 mm and with zero loss tangent. These
material values are achievable using ceramics such as barium-strontium-titanate
(BST), but we will later show that we are not confined to this choice of material.

(a)

(b)

Figure 5.2: Numerical results showing a transverse electric mode, with a fre-
quency of 6.85 GHz, in a representation of an infinite array of dielectric wires
of relative permittivity 1600, radius 0.3mm, and wire spacings ax = 13.06mm and
ay = 15.00mm. The electric field is represented using a vector plot where the
arrow direction represents field direction and colour represents the magnitude of
the field strength. (a) shows a perspective view of a y-z slice of the unit cell and
(b) a view from the side of the same slice.

48



By looking at the longitudinal mode shown in Fig. 5.3, we can identify a few
key features of the modes beyond its defining longitudinal nature. Firstly, they
have a significant longitudinal component outside the wire in the region of free
space. Also, comparing the field outside the wire with the field inside the wire
we can see that they are anti-parallel, which is made clearer by Fig. 5.3b. In other
words, the field inside the wire is oriented in the opposite direction to the field
outside the wire.

(a)

(b)

(c) (d)

Figure 5.3: A series of images illustrating the characteristics of the longitudinal
electric mode, with simulation frequency f = 6.03 GHz, we have found in our
eigenmode simulation of an infinite dielectric wire medium (εr = 1600, r = 0.3
mm, ax = 13.06mm and ay = 15.00mm). (a) is an arrow plot of the field on
a y-z slice of the structure where the electric field is represented using a vector
plot where the arrow direction represents field direction and colour represents the
magnitude of the field strength. (b) shows a colour plot of the longitudinal field
on an x-y slice of the structure where the direction and magnitude of the field is
represented by colour. (c) is a plot of the electric field strength along a line at the
top of the structure directed along the axis of the wire, showing the profile of the
mode. (d) is a plot of the electric field strength along a line from the bottom to the
top of the structure passing through the dielectric rod.

Having confirmed the existence of longitudinal modes in our structure, we
then needed to confirm that these longitudinal modes had the plasma-like disper-
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sion relation that was predicted. This required varying the longitudinal phase set
in our simulations and, hence, simulating the structure for different κ values. By
doing this, we built up a plot of f against κ, shown in Fig. 5.4a.

(a)

(b)

Figure 5.4: Plots of the dispersion relation of the longitudinal mode found in
an infinite dielectric wire medium (εr = 1600, r = 0.3 mm, ax = 13.06mm and
ay = 15.00mm) that demonstrate the mode’s plasma-like dispersion relation. (a)
is a plot of the frequency, f , against our wavenumber, κ, and (b) is a plot of f 2

against κ2 along with a straight line fit which helps to demonstrate the plasma-like
nature of the dispersion relation.
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Figure 5.5: A band plot showing the dispersion curves of both transverse (black)
and longitudinal (red) electric modes in an infinite dielectric wire medium (εr =
1600, r = 0.3 mm, ax = 13.06 mm and ay = 15.00 mm).

In order to confirm that the dispersion relation was correct we plotted f 2

against κ2, as the curve should then obey the classic straight line formula—
y = mx + c. We can see that this is true by looking at the predicted disper-
sion relation in equation 4.20. If we set f 2 as y and κ2 as x then we will retrieve
the straight line equation with m = β2c2 and C = λ2

s . Fig. 5.4b clearly shows that
the relationship between f 2 and κ2 is a straight line and, therefore, the dispersion
relation for the simulated longitudinal modes is plasma-like. From this plot we
can also find the plasma frequency, λs = 6.02 GHz, and phase velocity, β = 0.94,
from the y intercept, C, and slope, m, of the line.

As well as finding the dispersion relation of the longitudinal modes, we ran
simulations to observe the entire band structure of our structure, shown in Fig.
5.5. This was complicated by CST not being able to differentiate between differ-
ent modes; modes are numbered in order of their frequency, so two modes can
swap mode numbers as their frequencies cross with increasing κ. It is, therefore,
necessary to adjust the plots manually to unpick the mode crossings. We can also
see from Fig. 5.5 that the bands fold back on each other as a result of the periodic
boundary conditions and the effect of the Brillouin zone.

One important factor to consider is the effect of the mesh on our results. There-
fore, we have done a mesh analysis of our structure. Using our 0.3 mm radius
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Mesh cells/wavelength mN f (GHz)
4 34657 6.0247
5 47076 6.0237
6 58535 6.0240
7 72675 6.0245
8 91384 6.02425
9 110014 6.0237

Table 5.1: Table showing the cells per wavelength setting, total number of mesh
cells (mN) and the resulting frequency of the longitudinal mode found in an
infinite dielectric wire medium (εr = 1600, r = 0.3 mm, ax = 13.06mm and
ay = 15.00mm).

structures, we have ran repeated simulations while varying the mesh cells per
wavelength setting in CST. The cells per wavelength examined, the resulting total
number of mesh cells, mN, and the resulting mode frequency of our longitudinal
modes are shown in Table 5.1.

Figure 5.6: A plot of the frequency, f , of the longitudinal modes found in an
infinite dielectric wire medium (εr = 1600, r = 0.3 mm, ax = 13.06mm and
ay = 15.00mm) against the inverse of the total number of mesh cells, which has
been scaled for ease of display.

As shown in Table 5.1, the frequency of our longitudinal mode does not vary
significantly or with any discernible pattern. We can see this even more clearly
in Fig. 5.6, which shows a plot of the longitudinal mode frequency against the
reciprocal of the total number of mesh cells. As the reciprocal goes to zero, repre-
senting an infinite mesh, we would expect the frequency to converge on a value.
What we observe is the frequency seemingly randomly varying in small degrees
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around 6.024 GHz. This suggests that the meshes studied are already working
well enough to give us an accurate result for our longitudinal mesh frequency.
We have concluded that we can be satisfied with the mesh we are currently using
(4 mesh cells per wavelength) and its ability to accurately model our system.

This work was a critical first step as it not only confirmed the existence of the
modes that form the basis of our method, but it also validated our chosen theo-
retical model and its ability to predict the behaviour of our structure accurately.
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Chapter 6

Mode profile shaping in infinite
dielectric wire media

I. Investigating the radius dependence of our longitudinal

modes

In Chapter 5, we confirmed the existence of the longitudinal electric modes de-
scribed in Chapter 4. We believed these modes and their properties could pro-
vide a route to mode profile shaping because their plasma frequency, a parameter
present in our theoretical model, can be determined from our simulations and it
is reasonable to think that it would be structurally dependent. This would pro-
vide a link between our theoretical model, which we can easily manipulate in
order to find a condition for the support of our desired mode profiles, and the 3D
simulated structure we are designing.

The structural parameter we chose to focus on was the radius of the dielectric
wires. Therefore, it was necessary to confirm that the plasma frequency of our
wire media does depend on wire radius. To do this, we ran simulations of our
structures with different radii, keeping all other parameters constant. In Fig. 6.1
we can see the longitudinal modes found for several wire radii. It is clear that
the key features of these modes are unchanged by the varying of the radius; there
is a strong longitudinal component in the wire and between the wires, and the
fields in these regions are anti-parallel. One observation we can make from these
images is that the field in the wires seems to be stronger for smaller radii. This
is clearer in Fig. 6.2 where the longitudinal field strength of the modes for each
radii is plotted along a line from the top to the bottom of the structure.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.1: A series of images from numerical simulations in CST showing the
longitudinal modes found in infinite dielectric wire media (εr = 1600, ax = 13.06
mm and ay = 15.00 mm) with a variety of radii. The fields are either represented
using arrow plots where the arrow direction represents field direction and colour
represents the magnitude of the field strength, or colour plots where the direction
and magnitude of the longitudinal field is represented by colour. (a) and (b) show
a longitudinal mode ( f = 6.60 GHz) in a wire medium with r = 0.2 mm, with
(a) showing a y-z slice and (b) an x-y slice. (c) and (d) show a longitudinal mode
( f = 6.02 GHz) in a wire medium with r = 0.3 mm, with (c) showing a y-z slice
and (d) an x-y slice. (e) and (f) show a longitudinal mode ( f = 5.89 GHz) in a
wire medium with r = 0.4 mm, with (e) showing a y-z slice and (f) an x-y slice.
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Figure 6.2: A plot of the variation of the electric field strength of the longitudinal
modes found in infinite dielectric wire media (εr = 1600, ax = 13.06 mm and
ay = 15.00mm), with a variety of radii, against the position, y, along a line from
the top to the bottom of the structure, which passes through the dielectric rod.
The radii are 0.2 mm (red), 0.3 mm (black) and 0.4 mm (blue).

Figure 6.3: The dispersion plots, frequency ( f ) against wavenumber (κ), of the
longitudinal modes in infinite dielectric wire media (εr = 1600, ax = 13.06 mm
and ay = 15.00 mm) with a variety of radii. The radii are 0.2 mm (red), 0.3 mm
(black) and 0.4 mm (blue).
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(a)
(b)

Figure 6.4: Plots of frequency squared, f 2, against wavenumber squared, κ2, for
the longitudinal modes in infinite dielectric wire media (εr = 1600, ax = 13.06 mm
and ay = 15.00 mm) with a variety of radii. Straight line fitting curves have been
included for each radii. The radii shown are 0.2 mm (red), 0.3 mm (black) and 0.4
mm (blue). (a) shows the plots and the fitting curves, whereas (b) shows only the
fitting curves as they cross the y-axis to emphasise their different intercept values.

Having found these longitudinal modes for a variety of radii, we then plotted
their dispersion relation. It is clear from Fig. 6.3 that the radius of the wires affects
the dispersion relation of the longitudinal modes. We then repeated the method
established in Chapter 5 of plotting κ2 against f 2, the results of which are shown
in Fig. 6.4. The agreement between this data and their straight line fitting curves
can be quantified by looking at the R2 value for these comparisons. R2 values
closer to 1 mean a greater agreement between the data and the fitting curve. The
R2 values for the 0.2 mm, 0.3 mm and 0.4 mm plots are 0.9997, 0.9999, 0.9999
respectively.

The definition of the R2 value, which quantifies the agreement between a data
set and a fitting function, we have used in this thesis is set out below:

R2 = 1−
SSreg

SStot
(6.1)

yav =
1
N

N

∑
i=1

yi (6.2)

SStot =
N

∑
i=1

(yi − yav)
2 (6.3)

SSreg =
N

∑
i=1

( f (xi)− yav)
2 (6.4)

Where SSreg is the regression sum of squares, SStot is the total sum of squares, N
is the number of data points, xi is the x coordinate of the ith data point, yi is the
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y coordinate of the ith data point, yav is the average value of the y coordinates of
the data and f (x) is the fitting function evaluated.

By looking at Fig. 6.4b, we can see the effect of varying the wire radius on the
y-intercept and, hence, the cut-off frequency, λs. We have shown that changing
the radius does affect λs. More importantly, this allows us to build up a set of
data relating the plasma frequency of infinite dielectric wire media and the wire
radius, as shown in Fig. 6.5.

Figure 6.5: A plot of the plasma frequency, λs, of infinite dielectric wire media
(εr = 1600, ax = 13.06 mm and ay = 15.00 mm) against wire radius, r.

As covered in Chapter 4, our method for mode profile shaping relies on us
finding an analytic relationship between the plasma frequency and wire radius.
As plasma frequency appears in our calculations as a squared quantity, the rela-
tionship we are most interested in is λ2

s vs. r. We can easily take the data from
Fig. 6.5 and produce the required data, which is shown in Fig. 6.6.
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Figure 6.6: A plot of the plasma frequency squared, λ2
s , of infinite dielectric wire

media (εr = 1600, ax = 13.06 mm and ay = 15.00 mm) against wire radius, r.

Figure 6.7: A plot of the phase velocity, β, of infinite dielectric wire media (εr =
1600, ax = 13.06 mm and ay = 15.00 mm) against wire radius, r.

As well as obtaining the plasma frequency for each radius, we can also find the
β value. β is the polariton velocity which appears in the dispersion relation of our
longitudinal modes. As mentioned in Chapter 4, our method for achieving mode
profile shaping assumes a constant β value. We can see from Fig. 6.7 that this is a
simplification. The actual relationship between β and r is an irregular but steady
decline as r increases. In the range of data examined β decreases from 0.966 to
0.923, a percentage decrease of 4.5 %. Despite this not insignificant decrease in
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β across our examined range, we have assumed a constant β value of 0.96. Our
results in later chapters show this simplification does not cause any significant
hindrance to our method.

II. Finding an accurate analytic relationship to describe

the radius dependency

To find the required analytic relationship between the plasma frequency and wire
radius of dielectric wire media, we needed to find an accurate fit for the data
shown in Fig. 6.6. Our initial idea was to fit the data with a second order polyno-
mial, shown in equation 6.5 where ai are the fitting parameters. Fig. 6.8 shows an
attempt to use a second order polynomial to fit the data shown in Fig. 6.6. It is
clear from looking at Fig. 6.8 that a second order polynomial is a weak fit to the
data.

λ2
s (r) ≈ a0 + a1r + a2r2 (6.5)

Figure 6.8: A plot of the plasma frequency squared, λ2
s , of infinite dielectric wire

media (εr = 1600, ax = 13.06 mm and ay = 15.00 mm) against wire radius, r, with
a polynomial fitting curve.

After some initial efforts to use the second order polynomial fit, a first order
exponential decay curve, of the form shown in equation 6.6, was attempted as a
fitting curve. The results of this attempt are shown in Fig. 6.9 and it is clear even
from a qualitative standpoint that this a far more successful method of fitting the
data.

λ2
s (r) ≈ δ + σ exp

(
− r

ρ

)
(6.6)
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Our initial impression of the relative merits of the two fitting curves is only
emphasised by looking at quantitative measures of their accuracy. Table 6.1 shows
a series of figures of merit for the two fitting curves: χ2, or the residual sum of
squares, is an indicator of how tight the curve fits the data, with a small value
being a tighter fit; R2 is a measure of how well the fitting curve explains the
variation of the data, with values closer to 1 being most accurate; and the RMSE,
root mean square error, is a measure of how well the curve predicts the behaviour
of the data, with values closer to 0 being better. Looking at the figures of merit
in Table 6.1 confirms that the exponential decay curve is a vastly superior fitting
curve. Also, looking purely at the figures of merit for the exponential decay curve,
we can see that it is an accurate fit for the data. This degree of accuracy suggests
that there is an underlying physical reason for this relationship between λ2

s and r.

Figure 6.9: A plot of the plasma frequency squared, λ2
s , of infinite dielectric wire

media (εr = 1600, ax = 13.06 mm and ay = 15.00 mm) against wire radius, r, with
an exponential decay fitting curve.

Fitting Curve χ2 R2 RMSE
Polynomial 362 0.901 5.27

Exponential Decay 7.12 0.998 0.740

Table 6.1: A comparison of figures of merits for polynomial and exponential decay
fitting curves for the λ2

s vs. r data for infinite dielectric wire media (εr = 1600,
ax = 13.06 mm and ay = 15.00 mm).
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III. Developing a method for mode profile shaping

With an analytic expression that relates the plasma frequency and radius accu-
rately, we were able to develop our method for controlling the field profile of our
longitudinal modes. As covered in more detail in Chapter 4, we have shown that
the longitudinal profile of these modes will be given by the solutions of Math-
ieu’s equation, if equation 4.21 is satisfied. This condition has been reproduced in
equations 6.7 and 6.8, below, for convenience.

Λ2(z) = f 2 − β2c2

L2

[
a− 2q cos

(
4πz

L

)]
(6.7)

λ2
s (R(z)) = Λ2(z) (6.8)

Introducing the approximate, but highly accurate, function for the radius de-
pendency of λ2

s , shown in equation 6.6, into equations 6.7 and 6.8 gives:

δ + σ exp
(
−R(z)

ρ

)
= f 2 − β2c2

L2

[
a− 2q cos

(
4πz

L

)]
(6.9)

We can solve equation 6.9 to give an R(z) function that if satisfied will give
our desired profile, as specified by our choice of the Mathieu parameters a and q.
The resulting R(z) function is shown in equation 6.10.

R(z) = −ρ ln
(

f 2 − δ

σ
− β2c2

L2σ

[
a− 2q cos

(
4πz

L

)])
(6.10)

This can be written more simply, to emphasise the form of the R(z) solution, as:

R(z) = −Γ1 ln (Γ2 + Γ3 cos(Γ4z)) (6.11)
Γ1 = ρ (6.12)

Γ2 =
f 2L2 − δL2 − β2c2a

L2σ
(6.13)

Γ3 =
2β2c2q

L2σ
(6.14)

Γ4 =
4π

L
(6.15)

IV. Fixing the parameters of our mode profiling condition

Before it is possible to use equation 6.10, we need to fix some of the free parame-
ters. The chosen solution to Mathieu’s equation specifies the parameters a and q.
In our calculations, we have treated the phase velocity, β, as a constant with the
value 0.96.
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With a, q and β fixed, we only have to specify the design frequency fd and the
unit cell length L. It helps us to choose sensible values for these parameters if we
look at the minimum and maximum required values of Λ2(z), found by taking
the minimum and maximum values of the cosine function in equation 6.7.

Λ2
+ = f 2

d −
β2c2

L2 [a− 2q] (6.16)

Λ2
− = f 2

d −
β2c2

L2 [a + 2q] (6.17)

Equations 6.16 and 6.17 become especially important when you consider that
the range of values for λ2

s is limited. As can be seen from Fig. 6.9 our function
for λ2

s has a lower bound where the function reaches an asymptote, λ2
s = C, and

an upper bound at r = 0, λ2
s = C + A. Therefore, if we were to naively choose

f and L values without any consideration for these bounds, it is possible that
the required minimum and maximum values of the plasma frequency would fall
outside of the possible range. This would result in the need for imaginary radii
and would make the solution useless.

We can avoid these problems by fixing Λ2
+ and Λ2

− with values which fall in
the allowed range given by the expression for the plasma frequency in equation
6.6:

C < Λ2
+ < C + A (6.18)

C < Λ2
− < C + A (6.19)

We can take the sum and difference of equations 6.16 and 6.17 to find equations
6.20 and 6.21 that specify fd and L, which are now guaranteed to give a solution
for R(z) with purely real values.

L2 =
4β2c2q

Λ2
+ −Λ2

−
(6.20)

f 2
d =

Λ2
+ + Λ2

−
2

+

(
Λ2

+ −Λ2
−
)

a
4q

(6.21)

It is also possible to fix any two other free variables in equations 6.16 and 6.17.
Choosing a different set of variables requires reworking the conditions set out in
equations 6.18 and 6.18, and finding a new set of equations, 6.20 and 6.21, for
specifying the remaining two variables. It is also possible to create new variables
that we would prefer to use.

λ2
C =

Λ2
+ + Λ2

−
2

(6.22)

λ2
W = Λ2

+ −Λ2
− (6.23)
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In particular, the actual method we have implemented in our work involves the
introduction of new variables defined in equations 6.22 and 6.23. λ2

C represents
a central value for the range of λ2

s values, whereas λ2
W is the width of the range.

As the relationship between λ2
s and r is monotonically decreasing, λ2

C can also be
related to a central radius RC with λ2

s (RC) = λ2
C. We chose to make fd and λ2

C
our independent variables, as we prefer to work with less abstract quantities. fd
is the design frequency for the shaped mode and λ2

C, as has been mentioned, can
be chosen by picking a central radius RC.

With our new variables and choice of independent variables, the conditions in
equations 6.18 and 6.19 become:

C < λ2
C +

2q
a
( f 2

d − λ2
C) < C + A (6.24)

C < λ2
C −

2q
a
( f 2

d − λ2
C) < C + A (6.25)

This choice of variables lead to the following equation for fixing the other
parameters:

L2 =
β2c2a

f 2
d − λ2

C
(6.26)

λ2
W =

4q
a
( f 2

d − λ2
C) (6.27)

This approach is based on an exponential decay relation taken from a fit of
a limited range of radius values. It is, therefore, good practice to only rely on
solutions which require radii in this range as we cannot be sure the relationship
will hold outside of this range. As our model is based on wire media with small
radii compared to the lattice constants, we would not expect it to be valid for
much larger radii.

Figure 6.10: An image from CST showing a conical frustum shape, which we use
as the building blocks for our varying radius dielectric rods.

64



Figure 6.11: An example of a dielectric rod with a varying radius that has been
formed from a series of conical frustums.

V. Testing the mode profile shaping method

Now that we have a method for relating a chosen profile to a radius function, R(z),
for infinite dielectric wire media, it was necessary to test its effectiveness. In our
CST simulations, the continuous variation of our R(z) solution was approximated
by a dielectric rod made up of a collection of conical frustums, shown in Fig.
6.10. A conical frustum is essentially a truncated cone where two circular faces
of differing radii are linearly connected. The resulting wire with a varying radius
is shown in Fig. 6.11. Usually, a hundred of these segments are used to form
our varying radius wires; the effect of the number of segments is considered in
Section VI.

Figure 6.12: A solution to Mathieu’s equations (distinguished by the choice of
Mathieu parameters q = 0.8, a = 1.711853605) that can be loosely described as a
flattened sinusoidal curve.

Our initial attempts at mode profile shaping were aimed at replicating a flat
profile (q = 0.8, a = 1.711853605), with the desired profile shown in Fig. 6.12;
the dielectric rods had a relative permittivity ε = 1600, and the lattice spacings
were ax = 15 mm and ay = 13.06 mm. The fitting parameters for this permittivity
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fd (GHz) RC (mm) λC (GHz) Γ1 (µm) Γ2 Γ3 Γ4 (mm−1) L (mm)
8.90 0.150 7.54 54.1 6.24 · 10−2 5.94 · 10−2 0.157 79.8
7.70 0.150 7.54 54.1 6.24 · 10−2 6.33 · 10−2 0.0514 244
7.70 0.180 6.90 54.1 3.58 · 10−2 3.12 · 10−2 0.114 110
6.10 0.300 6.03 54.1 0.389 · 10−2 0.211 · 10−2 0.0297 423
6.14 0.300 6.03 54.1 0.389 · 10−2 0.342 · 10−2 0.0378 333
6.14 0.270 6.12 54.1 0.678 · 10−2 0.720 · 10−2 0.0173 725

Table 6.2: A table summarising some of the key parameters related to the im-
plemented radius functions for a flattened profile (q = 0.8) in infinite dielectric
wire media (εr = 1600, ax = 13.06 mm and ay = 15.00 mm). The first set of
parameters listed are design parameters we chose: design frequency ( fd), central
radius (RC) and the corresponding central plasma frequency (λc). The rest are
the resulting structural parameters: the parameters specifying the corresponding
radius function (Γ1−4) and the length of our unit cell (L).

are as follows: δ = 35.1 (GHz2), σ = 350 (GHz2) and ρ = 0.0541 (mm−1). The
parameters Γi of the R(z) solutions we tested are shown in Table 6.2 for a variety
of values for our chosen independent values fd and λc.

Our first attempt at mode profiling had a design frequency, fd, of 8.9 GHz;
central radius, Rc, of 0.15 mm; and, therefore, a central cut-off frequency, λC, of
7.54 GHz. The parameters for the corresponding R(z) function are listed in Table
6.2 as well as the resulting length of the unit cell, 79.8 mm. The corresponding
R(z) function is plotted in Fig. 6.13.

Figure 6.13: The radius function calculated for a flattened profile (q = 0.8) in an
infinite dielectric wire medium (εr = 1600, ax = 13.06 mm and ay = 15.00 mm)
for the parameter choice of fd = 8.9 GHz, Rc = 0.15 mm and λC = 7.54 GHz.

Having the wire radius in our CST simulations vary according to this R(z)
function should result in the field profile we desired. As previously discussed, we
can achieve an approximately equal variation by using a wire made up of a series
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of conical frustum segments. Unless otherwise stated 100 frustum segments have
been used to approximate the required radius variation. The mode found in this
structure are shown in Fig. 6.14.

(a)

(b) (c) (d)

Figure 6.14: Images showing the resulting longitudinal mode (simulation fre-
quency f = 8.74 GHz) after the implementation of the calculated radius function
for a flattened profile (q = 0.8) in an infinite dielectric wire medium (εr = 1600,
ax = 13.06 mm and ay = 15.00 mm) for the parameter choice of fd = 8.9 GHz,
Rc = 0.15 mm and λC = 7.54 GHz. The fields are either represented using arrow
plots where the arrow direction represents field direction and colour represents
the magnitude of the field strength, or colour plots where the direction and mag-
nitude of the longitudinal field is represented by colour. (a) shows the field on a
y-z slice of the structure, whereas (b) and (c) show the field at two different x-y
slices. The z coordinate of these slices are z = 30 mm and z = 40 mm respectively,
where z = 0 mm is at the edge of the box. (d) is a colour key for the electric field
colour plots (b) and (c), where red is a strongly positive electric field and blue a
strongly negative electric field.

The images in Fig. 6.14 are of limited value. It is promising that we have
found a longitudinal mode with the expected characteristics around our design
frequency fd = 8.9 GHz as opposed to the mode frequency of f = 8.74 GHz.
A 0.16 GHz, or 1.83 %, difference is acceptable for our first attempt at profiling.
The closeness between our design frequency and the mode frequency is in itself
a validation of our chosen model and the method we have developed. Also, from
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Fig. 6.14b and 6.14c, we can see that the varying radius along the longitudinal
direction does seem to affect the field profile. Ultimately, we aimed to control
the longitudinal profile—how the longitudinal field strength, Ez, along the longi-
tudinal direction, z, changes—and, in particular, to gain a degree of control that
allows us to specify a specific profile shape. We cannot determine whether these
aims have been met by looking at the images in Fig. 6.14.

Figure 6.15: A unit cell of a varying radius wire in a representation of an infinite
dielectric wire medium (εr = 1600, ax = 13.06 mm and ay = 15.00 mm). A blue
line has been introduced into the unit cell along which the field strength of our
longitudinal field will be evaluated in order to better determine the field profile
of a longitudinal mode.

Previously, in Fig. 5.3c, we have represented the longitudinal profile of a mode
by a line plot, which more clearly illustrated the simple sinusoidal shape of our
original unmodified longitudinal modes. We can use the same technique to repre-
sent the profile of the modes in Fig. 6.14. To produce these graphs, we introduce
a line into our CST models, as shown in Fig. 6.15. By plotting the field strength
on this line, we can produce plots such as Fig. 5.3c. Using this technique for the
modes shown in Fig. 6.14, we were able to produce the plot in Fig. 6.16.

Fig. 6.16 is extremely useful in determining the success of our attempts at
mode profiling. From a qualitative standpoint, we can see by comparing the sim-
ulation results and the desired Mathieu function that there has been considerable
success in shaping the mode profile. This is especially true if we consider the
mode profile of a longitudinal mode for a uniform wire medium, which is gen-
erally sinusoidal, as shown in Fig. 5.3c. It is also possible to gain a quantitative
measure of our mode profiling success by calculating the R2 value, discussed pre-
viously in II, of our simulation results compared to the desired Mathieu function.
For the case of the mode profile in Fig. 6.16 the R2 value is 0.9907. Profiles with R2

values closer to 1 are most similar to the desired profile, so this represents a close
similarity between the profiles. This reinforces the success of our first attempt at
mode profiling.
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Figure 6.16: A plot of the field profile (longitudinal, z, spatial variation of the
electric field strength, Ez) of the longitudinal mode ( f = 8.74 GHz) in an infinite
dielectric wire medium (εr = 1600, ax = 13.06 mm and ay = 15.00 mm) for our
attempt to produce a flattened profile (q = 0.8) with a radius function based on
the parameter choice of fd = 8.9 GHz, Rc = 0.15 mm and λC = 7.54 GHz. The
plot includes the field profile observed in our numerical simulation (solid black)
and the desired profile (dotted black). In order to aid comparison the field profile
from our simulation and the z coordinate have been normalised.

Figure 6.17: A comparison of the flattened Mathieu profile (dotted black), q = 0.8,
with a sinusoidal curve with an identical peak value (solid black).

We can put the success of this mode profiling into context by comparing the
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desired profile with a sinusoidal curve. This comparison is shown in Fig. 6.17.
The comparison has an R2 value of 0.9712. Our simulation profile is, therefore,
closer to our desired profile than a sinusoidal curve.

Figure 6.18: A plot of the variation of the different components of the electric field
strength of a longitudinal mode found in infinite dielectric wire media (εr = 1600,
ax = 13.06 mm and ay = 15.00mm) for our attempt to produce a flattened profile
(q = 0.8) with a radius function based on the parameter choice of fd = 8.9 GHz,
Rc = 0.15 mm and λC = 7.54 GHz.

We also considered how longitudinal our field is at this position at the top of
the unit cell. A plot of the different component of the electric field at this position
are shown in Fig. 6.18. We can see that the field is dominated by the z component
of the electric field as we would hope.

As covered previously, for every desired profile we have a choice of free param-
eters. We have had great success with one choice of parameters. It seems sensible
to now explore the parameter space to confirm the flexibility in our choice of pa-
rameters and to observe any obvious effects these different parameters may have
on the results. As listed in rows 2 and 3 of Table 6.2, we started exploring in
the area around our initial choice of parameters. Row 2 represents a shift in the
choice of design frequency while keeping the Rc value constant. Whereas row 3
represents, in comparison to row 2, a small shift of the Rc value, while the design
frequency is kept constant. The resulting radius functions are shown in Figs. 6.19
and 6.20, along with the original radius function of row 1 for comparison.

70



(a) (b)

(c)

Figure 6.19: A series of plots of radius functions calculated for a flattened profile
(q = 0.8) in infinite dielectric wire media (εr = 1600, ax = 13.06 mm and ay = 15.00
mm) for a variety of parameter choices. (a) shows the radius function for a choice
of fd = 8.9 GHz, Rc = 0.15 mm and λC = 7.54 GHz (black); (b), for a choice of
fd = 7.7 GHz, Rc = 0.15 mm and λC = 7.54 GHz (red); and (c), for a choice of
fd = 7.7 GHz, Rc = 0.18 mm and λC = 6.90 GHz (blue).
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Figure 6.20: A plot of some of the radius functions calculated for a flattened
profile (q = 0.8) in infinite dielectric wire media (εr = 1600, ax = 13.06 mm and
ay = 15.00 mm) for a variety of parameter choices. The radius functions shown
are based on a choice of fd = 8.9 GHz, Rc = 0.15 mm and λC = 7.54 GHz (black);
fd = 7.7 GHz, Rc = 0.15 mm and λC = 7.54 GHz (red); and fd = 7.7 GHz,
Rc = 0.18 mm and λC = 6.90 GHz (blue).

We can see from Fig. 6.19 that these different radius functions do have some
similar traits, as we would expect. They are all roughly centred around their RC
value, and the R(z) functions in Figs. 6.19a and 6.19c have very similar shapes,
with Fig. 6.19b showing a more rounded function. The difference between these
functions is more clearly shown in Fig. 6.20 where the differing lengths over which
the radius functions are defined is more clearly shown. This variety of shapes and
length scales could be an asset for our method as it gives the user greater choice.

Having produced these alternate radius functions, we then tested them. We
implemented them into CST simulations using our established method. The
modes found are shown in Fig. 6.21. As we would hope, Fig. 6.21 shows that
the modes all have the expected traits and have been found near our design fre-
quency.
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(a)

(b)

Figure 6.21: Images showing the resulting longitudinal modes after the implemen-
tation of two different calculated radius function for a flattened profile (q = 0.8)
in infinite dielectric wire media (εr = 1600, ax = 13.06 mm and ay = 15.00 mm)
based on different parameter choices. The fields are represented using arrow plots
on a y-z slice of the structure where the arrow direction represents field direction
and colour represents the magnitude of the field strength. (a) shows the result-
ing longitudinal mode ( f = 7.63 GHz) for implementation of the radius function
based on a choice of fd = 7.7 GHz, Rc = 0.15 mm and λC = 7.54 GHz; and (b), the
resulting longitudinal mode ( f = 7.59 GHz) for the implementation of the radius
function based on a choice of fd = 7.7 GHz, Rc = 0.18 mm and λC = 6.90 GHz.

Having found the longitudinal modes for our new radius functions, we checked
their mode profiles. Repeating the method we have previously outlined, we can
produce the mode profile plots in Fig. 6.22. We can see from looking at Fig.
6.22 that the simulations of both radius functions have shown great success in
achieving mode profiling success. In particular, in comparison with Fig. 6.16 the
simulation results seem to be an even closer fit to the desired Mathieu function. It
should be noted that despite showing the same shape the two profiles in Fig. 6.16
show a phase shift between each other. This difference in phase has no physical
significance and the phase found in the simulation is arbitrary. This is confirmed
by looking at our quantitative measure of the mode profiling accuracy; the R2

values for Fig. 6.22a and 6.22b are 0.9991 and 0.9987 respectively.
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(a)

(b)

Figure 6.22: Two plots of the field profiles (longitudinal, z, spatial variation of the
electric field strength, Ez) of longitudinal modes in infinite dielectric wire media
(εr = 1600, ax = 13.06 mm and ay = 15.00 mm) for our attempts to produce a
flattened profile (q = 0.8) with two different radius functions. The plots include
the field profile observed in our numerical simulation (solid) and the desired
profile (dotted). In order to compare these the field profile and z coordinate have
been normalised. (a) shows the field profile of the longitudinal mode ( f = 7.63
GHz) resulting from the implementation of the radius function based on a choice
of fd = 7.7 GHz, Rc = 0.15 mm and λC = 7.54 GHz (red); and (b), the field profile
of the longitudinal mode ( f = 7.59 GHz) resulting from the implementation of the
radius function based on a choice of fd = 7.7 GHz, Rc = 0.18 mm and λC = 6.90
GHz (blue).
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(a) (b)

(c)

Figure 6.23: A series of plots of radius functions calculated for a flattened profile
(q = 0.8) in infinite dielectric wire media (εr = 1600, ax = 13.06 mm and ay = 15.00
mm) for a variety of parameter choices. (a) shows the radius function for a choice
of fd = 6.1 GHz, Rc = 0.3 mm and λC = 6.03 GHz (green); (b), for a choice of
fd = 6.14 GHz, Rc = 0.3 mm and λC = 6.03 GHz (magenta); and (c), for a choice
of fd = 6.14 GHz, Rc = 0.27 mm and λC = 6.12 GHz (orange).

Figure 6.24: A plot of some of the radius functions calculated for a flattened
profile (q = 0.8) in infinite dielectric wire media (εr = 1600, ax = 13.06 mm and
ay = 15.00 mm) for a variety of parameter choices. The radius functions shown
are based on a choice of fd = 6.1 GHz, Rc = 0.3 mm and λC = 6.03 GHz (green);
fd = 6.14 GHz, Rc = 0.3 mm and λC = 6.03 GHz (magenta); and fd = 6.14 GHz,
Rc = 0.27 mm and λC = 6.12 GHz (orange).
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So far, our examination of the parameter space in which we can produce valid
R(z) functions has been very successful, but we have only examined a small re-
gion of the parameter space, as we have produced our new radius functions by
introducing small shifts in our original chosen parameters. To more fully explore
the parameter space, we should explore parameters far removed from our original
choice.

(a)

(b)
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(c)

Figure 6.25: A series of plots of the field profiles (longitudinal, z, spatial variation
of the electric field strength, Ez) of the longitudinal modes in infinite dielectric
wire media (εr = 1600, ax = 13.06 mm and ay = 15.00 mm) for our attempt to
produce a flattened profile (q = 0.8) with a variety of different radius functions.
The plots include the field profile observed in our numerical simulation (solid)
and the desired profile (dotted). In order to compare these the field profile and z
coordinate have been normalised. (a) shows the field profile of the longitudinal
mode ( f = 6.09 GHz) resulting from the implementation of the radius function
based on a choice of fd = 6.10 GHz, Rc = 0.3 mm and λC = 6.03 GHz (green);
(b), the field profile of the longitudinal mode ( f = 6.12 GHz) resulting from the
implementation of the radius function based on a choice of fd = 6.14 GHz, Rc =
0.3 mm and λC = 6.03 GHz (magenta); and (c), the field profile of the longitudinal
mode ( f = 6.14 GHz) resulting from the implementation of the radius function
based on a choice of fd = 6.14 GHz, Rc = 0.27 mm and λC = 6.12 GHz (orange).

If we look at the parameters chosen for our tested radius functions, we can see
that the parameters have stayed in a region corresponding to radius values on the
steeper part of the curve in Fig. 6.9. It makes sense to now explore parameters
corresponding to the flatter region of the curve. This is what motivated the choice
of parameters shown in row 4 of Table 6.2, with the RC value being shifted sig-
nificantly towards the flatter region of the λ2

s curve. From this choice we shifted
the frequency, though not by a large degree due to restrictions associated with the
narrow range of allowed frequencies for the given RC, to produce row 5. Similarly,
by shifting the RC value of row 5 we obtained the values in row 6 of Table 6.2.

The resulting radius function from the choice of parameters are plotted indi-
vidually in Fig. 6.23 and plotted together in Fig. 6.24. These plots are as we would
expect. They are similar in shape to previous radius functions we have examined
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while their range of radius values has been shifted by the large shift in RC values
compared to our original radius functions.

As before, we can implement these radius function into CST using a series
of conical frustums. Our eigenmode simulations found longitudinal modes with
the expected characteristics around the design frequencies for all three radius
functions. Further details on the mode frequencies can be found in Table 6.3,
which is a summary of the simulation results and measures of success for all six
simulated radius functions. The mode profiles for the resulting radius function are
plotted individually in Fig. 6.25. Once again, we can see that our mode profiling
attempts have been very successful. The quantitative measures of their success
are listed in Table 6.3.

Figure 6.26: A plot of all of the radius functions calculated for a flattened profile
(q = 0.8) in infinite dielectric wire media (εr = 1600, ax = 13.06 mm and ay = 15.00
mm) for a variety of parameter choices. The radius functions shown are based on
a choice of fd = 8.9 GHz, Rc = 0.15 mm and λC = 7.54 GHz (black); fd = 7.7
GHz, Rc = 0.15 mm and λC = 7.54 GHz (red); fd = 7.7 GHz, Rc = 0.18 mm and
λC = 6.90 GHz (blue); fd = 6.1 GHz, Rc = 0.3 mm and λC = 6.03 GHz (green);
fd = 6.14 GHz, Rc = 0.3 mm and λC = 6.03 GHz (magenta); and fd = 6.14 GHz,
Rc = 0.27 mm and λC = 6.12 GHz (orange).

We have demonstrated success in achieving mode profiling with our method,
confirming this success by qualitative and quantitative steps. We have also tested
the robustness of our method for a variety of different parameter choices. These
differing parameters choices have also shown the wide range of radius variations
that can be used to achieve the same mode profile, as illustrated in Fig. 6.26.
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# fd (GHz) λC (GHz) L (mm) f (GHz) R2

1 8.90 7.54 79.8 8.74 0.9907
2 7.70 7.54 244 7.63 0.9991
3 7.70 6.90 110 7.59 0.9987
4 6.10 6.03 423 6.09 0.9968
5 6.14 6.03 333 6.12 0.9943
6 6.14 6.12 725 6.14(3) 0.9963

Table 6.3: A table summarising some of the key parameters related to the results
of our implemented radius functions for a flattened profile (q = 0.8) in infinite
dielectric wire media (εr = 1600, ax = 13.06 mm and ay = 15.00 mm). The param-
eters listed are attempt number, design frequency ( fd), central plasma frequency
(λc), length of our unit cell (L), longitudinal mode frequency ( f ) and a figure of
merit for the agreement between our field profile and the desired profile (R2).

Table 6.3 shows the parameters for the radius functions previously listed in Ta-
ble 6.2 along with measures of the success of the mode profiling achieved through
their implementation. This underscores the fact that we have demonstrated re-
markable accuracy in our mode profiling method for a variety of radius func-
tions, with even the worst-performing functions still doing very well in absolute
terms. It would be tempting to attempt to use Table 6.3 to determine some area
of the parameter space where our method is particularly accurate, but there is no
clear pattern to my eyes, and it is too small a sample size to draw any definitive
conclusions. This sort of analysis would require a more rigorous and methodical
probing of the parameter space, which is made difficult by the manual nature of
much of the work involved in producing a profile and the problem of untangling
the effect of differing mesh qualities in the simulations. Given these problems,
this is not an analysis that we have attempted.

VI. Studying the effect of the number of frustums

Our method for field profiling produces a required radius function, which if re-
alised in our wire media should produce the desired profile for the chosen pa-
rameters. These radius functions describe wires with continuously varying radii.
An example radius function is shown in Fig. 6.27 that is designed to produce a
flattened profile with the parameters fd = 6.14 GHz and Rc = 0.3 mm.
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Figure 6.27: A radius function calculated for a flattened profile (q = 0.8) in an
infinite dielectric wire medium (εr = 1600, ax = 15.00mm and ay = 13.06mm) for
the parameter choice of fd = 6.14 GHz, Rc = 0.3 mm and λC = 6.03 GHz. This
is the radius function for our control case in our analysis of the number of conical
frustums used to approximate our required radius function.

As we have previously discussed, we do not implement these functions in our
simulations exactly, but instead, we approximate the variation with a series of
conical frustums. We have already shown the results of implementing our exam-
ple radius function with 100 conical frustums. The results of these simulations
exhibited successful mode profiling at a frequency within 0.4% of the design fre-
quency. Despite this success, it is reasonable to consider the effect of the number
of frustums used on our results.

In this section, we will examine the effect of the number of conical frustums
used by implementing the same radius function with different numbers of conical
frustum segments. We have simulated the following values N = (10, 50, 90, 100, 110,
150, 200), where N is the number of conical frustum segments used to approxi-
mate the required radius function. We have again simulated the case of N = 100 in
an attempt to keep all the simulation comparable by using the same mesh settings
in CST.

80



Figure 6.28: A plot of the frequency of the longitudinal modes ( f ) found in our at-
tempts to achieve a flattened profile (q = 0.8) in an infinite dielectric wire medium
(εr = 1600, ax = 13.06 mm and ay = 15.00 mm) against the number of conical
frustums used to approximate the required radius function. The required radius
function was based on the parameter choice of fd = 6.14 GHz, Rc = 0.3 mm and
λC = 6.03 GHz. A black dashed line has been included to indicate the design
frequency ( fd).
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Figure 6.29: A log-log plot of the frequency of the longitudinal modes (Ln( f ))
found in our attempts to achieve a flattened profile (q = 0.8) in an infinite dielec-
tric wire medium (εr = 1600, ax = 13.06 mm and ay = 15.00 mm) against the
number of conical frustums used to approximate the required radius function.
The required radius function was based on the parameter choice of fd = 6.14
GHz, Rc = 0.3 mm and λC = 6.03 GHz.

The frequency of the longitudinal modes found are plotted against N in Fig.
6.28. We can see that that the number of frustums seems to have little difference
on the frequency of the modes with most found around 6.16 GHz, while for N =
10 the mode is found at the slightly lower frequency of 6.15 GHz. All these
frequencies are very close to the design frequency of 6.14 GHz. We also examined
a log-log plot of this relationship, as shown in Fig. 6.29, but it also showed no
clear trend in the data. The field profiles for the cases of N = 10, 100, 200 are
shown in Fig. 6.30.
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(a) (b)

(c)

Figure 6.30: A series of plots of the field profiles (longitudinal, z, spatial variation
of the electric field strength, Ez) of the longitudinal modes in an infinite dielectric
wire medium (εr = 1600, ax = 13.06 mm and ay = 15.00 mm) for our attempt to
produce a flattened profile (q = 0.8) with a radius function based on the parameter
choice of fd = 8.9 GHz, Rc = 0.15 mm and λC = 7.54 GHz. The plots include
the field profile observed in our numerical simulations (solid) and the desired
profile (dotted). In order to compare these the field profile and z coordinate have
been normalised. The difference between these plots is the number of conical
frustums used to approximate the required radius function. (a) is the profile of
the longitudinal mode ( f = 6.15 GHz) for a dielectric rod formed by 10 conical
frustums (blue), (b) is the profile of the longitudinal mode ( f = 6.16 GHz) for
a dielectric rod formed by 100 conical frustums (black) and (c) is the profile of
the longitudinal mode ( f = 6.16 GHz) for a dielectric rod formed by 200 conical
frustums.

The profiles in Fig. 6.30 clearly show that even at the extreme ends of the
range examined, the frustum number does not seem to impact the general shape
of the profile produced. The R2 value for these profiles and the profiles for all
cases considered are plotted in Fig. 6.31 along with a dashed line representing
the sinusoidal benchmark value. Fig. 6.31 shows that for all N the profiles are
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very close to the desired profile and are an improvement on the comparison with
a sinusoidal curve. There are no clear patterns in the data, although there is
a small dip around N = 100. There is no apparent reason why 100 segments
should produce worse results than 90 or 150. It seems safe to assume this is not a
significant trend and that it most probably arose from an unpredictable decrease
in the quality of the mesh for these cases. Moving forward, this analysis suggests
that the use of 100 frustums to approximate the required radius function should
be adequate.

Figure 6.31: A plot of a figure of merit for the comparison between our field profile
and our desired profile (R2) in our attempts to achieve a flattened profile (q = 0.8)
in an infinite dielectric wire medium (εr = 1600, ax = 13.06 mm and ay = 15.00
mm) against the number of conical frustums used to approximate the required
radius function. The required radius function was based on the parameter choice
of fd = 6.14 GHz, Rc = 0.3 mm and λC = 6.03 GHz. A black dashed line has
been included to indicate the benchmark R2 value of the comparison between a
sinusoidal curve and our desired profile.

VII. Mesh analysis

It was important to investigate the effect of the mesh used on our field profiling
results. We simulated one of our previous varying radius structures multiple
times while varying the mesh cells per wavelength setting in CST. The structure
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Mesh cells per wavelength mN f (GHz) R2

5 59134 8.7360 0.9981
6 80832 8.7133 0.9187
7 117252 8.6982 0.9944
8 147274 8.6887 0.7888
9 177007 8.6855 0.1754

10 205721 8.6842 0.4717
11 247151 8.6797 0.9829
12 291936 8.6803 0.9960

Table 6.4: A table summarising the result of our mesh analysis of an infinite
dielectric wire medium (εr = 1600, ax = 13.06 mm and ay = 15.00 mm) for our
attempt to produce a flattened profile (q = 0.8) with a radius function based on
the parameter choice of fd = 8.9 GHz, Rc = 0.15 mm and λC = 7.54 GHz. The
parameters listed are the number of mesh cells per wavelength, the total number
of mesh cells (mN), the frequency of the longitudinal mode ( f ) and a figure of
merit for the comparison between our field profile and the desired profile (R2).

we chose to simulate was based on the choice of parameters Rc = 0.15 mm and
fd = 8.9 GHz. The relevant parameters and results from our mesh analysis are
summarised in Table 6.4. Also, following on from the conclusion of Section VI we
are using 100 frustums to approximate the required variation, as we will for all
following simulations.

We can see from Table 6.4 that as the mesh increases in size we do see a
convergence around a longitudinal mode frequency of 8.68 GHz. Although the
difference between this converged value and the mode frequency at 5 mesh cells
per wavelength is only ≈ 0.05 GHz. The development of the R2 values for the field
profiles is more complex. The agreement is actually very successful for 5 cells per
wavelength and is significantly worse for some of the more dense meshes. We
are unsure of the reasons for the poor performance for 8, 9 and 10 mesh cells per
wavelength, but assume this is due to an increase in numerical error and may
be related to problems involving stiff equations, where there are complications
associated with introducing a reduced spatial step.
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VIII. Using the method for alternative mode profiles

(a)
(b)

(c)

Figure 6.32: A series of plots of different Mathieu functions that we have at-
tempted to replicate using our field shaping method with infinite dielectric wire
media. (a) is a triangular profile where q = −0.329 and a = 0.6580176262 (red),
(b) is a profile with multiple turning points where q = 4.0 and a = 2.318008170
(green) and (c) is a profile with a pronounced peak where q = −10.0 and
a = −13.93655248 (blue).

One of the advantages of using Mathieu’s equation as a source of mode profiles
is that it has a large set of known solutions providing a large number of possible
profiles. After confirming the success of mode profile shaping for a flat profile, we
then wanted to attempt to replicate other profiles. Fig. 6.32 shows the solutions to
Mathieu’s equation that we attempted to replicate. These solutions are a triangular
profile, a profile with multiple turning points and a profile with a pronounced
peak. Table 6.5 shows our choice of design parameters for these profiles and the
resulting parameters for the required radius functions. These radius functions
have been plotted in Fig. 6.33.
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q fd (GHz) RC (mm) λC (GHz) Γ1 (µm) Γ2 · 10−3 Γ3 · 10−3 Γ4 (m−1) L (m)
-0.329 6.80 0.2 6.61 54.1 24.7 -7.18 85.3 0.147

4 7.70 0.15 7.54 54.1 62.4 23.4 44.2 0.284
-10 6.50 0.2 6.61 54.1 24.7 -6.04 14.2 0.885

Table 6.5: A table summarising some of the key parameters related to the imple-
mented radius functions for a variety of profiles in infinite dielectric wire media
(εr = 1600, ax = 13.06 mm and ay = 15.00 mm). The first set of parameters
listed are design parameters we chose: the Mathieu parameter characterising the
profile (q), design frequency ( fd), central radius (RC) and the corresponding cen-
tral plasma frequency (λc). The rest are the resulting structural parameters: the
parameters specifying the corresponding radius function (Γ1−4) and the length of
our unit cell (L). The profiles considered are a triangular profile (q = −0.329), a
profile with multiple turning points (q = 4.0) and a profile with a pronounced
peak (q = −10.0).

(a) (b)

(c)

Figure 6.33: A series of plots of radius functions calculated for a variety of desired
profiles in infinite dielectric wire media (εr = 1600, ax = 13.06 mm and ay = 15.00
mm). (a) shows the radius function for a triangular profile with a parameter
choice of fd = 6.8 GHz, Rc = 0.2 mm and λC = 6.61 GHz (red); (b), for a profile
with multiple turning points with a parameter choice of fd = 7.7 GHz, Rc = 0.15
mm and λC = 7.54 GHz (green); and (c), for a profile with a pronounced peak
with a parameter choice of fd = 6.5 GHz, Rc = 0.2 mm and λC = 6.61 GHz (blue).

In Fig. 6.34 we can see the longitudinal modes resulting from our calculated
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radius functions for the attempts to replicate a triangular profile and a profile with
multiple turning points. The mode profiles for these modes are shown in Fig. 6.35.
It can be seen that, once again, our method has proved to be very successful. This
is underscored by the R2 values of 0.9730 and 0.9814 for the profiles in Figs. 6.35a
and 6.35b respectively. Although the R2 value for Fig. 6.35b is good, we can see
some substructure to the plot in the form of a bumpy pattern. In our experience
with other profiles, when we experience this sort of substructure it is related to
the mesh. In these cases, the substructure disappears when refining the mesh, but
we do not run mesh refinements on all our results as it is time consuming.

(a)

(b)

(c)

(d)

Figure 6.34: Images showing the resulting longitudinal modes after the imple-
mentation of the calculated radius functions for a triangular profile (q = −0.329)
and a profile with multiple turning points (q = 4.0) in infinite dielectric wire me-
dia (εr = 1600, ax = 13.06 mm and ay = 15.00 mm). The fields are represented
using arrow plots on an x-z slice of the structure where the arrow direction repre-
sents field direction and colour represents the magnitude of the field strength, and
colour plots on an x-y slice where the strength and magnitude of the longitudinal
field is represented by colour. (a) and (b) shows the resulting longitudinal mode
( f = 6.81 GHz) for the attempt to demonstrate a triangular profile by the imple-
mentation of a radius function based on the choice of fd = 6.8 GHz, Rc = 0.2 mm
and λC = 6.61 GHz; and (c) and (d), the resulting longitudinal mode ( f = 7.72
GHz) for the attempt to achieve a profile with multiple turning points by the im-
plementation of a radius function based on the choice of fd = 7.7 GHz, Rc = 0.15
mm and λC = 7.54 GHz.

We can put the mode profiling success we have had in some context by com-
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(a)

(b)

Figure 6.35: Plots of the field profiles (longitudinal, z, spatial variation of the elec-
tric field strength, Ez) of the longitudinal modes in infinite dielectric wire media
(εr = 1600, ax = 13.06 mm and ay = 15.00 mm) for our attempts to produce a tri-
angular profile (q = −0.329) and a profile with multiple turning points (q = 4.0).
The plots include the field profile observed in our numerical simulation (solid)
and the desired profile (dotted). In order to compare these the field profile and z
coordinate have been normalised. (a) shows the field profile of the longitudinal
mode ( f = 6.81 GHz) for the attempt to demonstrate a triangular profile by the
implementation of a radius function based on the choice of fd = 6.8 GHz, Rc = 0.2
mm and λC = 6.61 GHz (red); and (b), the field profile of the longitudinal mode
( f = 7.72 GHz) for the attempt to achieve a profile with multiple turning points
by the implementation of a radius function based on the choice of fd = 7.7 GHz,
Rc = 0.15 mm and λC = 7.54 GHz (green).
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paring our desired profiles with a sinusoidal curve. These comparisons for the
triangular profile and the profile with more turning points are shown in Fig. 6.36.
The R2 values for these comparisons are 0.9971 for the triangular profile and
0.6001 for the profile with more turning points. The extreme similarity between
the sine curve and the triangular profile does make it hard to judge for these
profiles whether the profiling has made a significant change. Although even get-
ting close to such a high R2 value is a success, especially as a normal sinusoidal
mode would not have a perfect sine curve profile like our comparison curve. The
excellent R2 value of our multiple turning point simulation profile is especially
impressive considering how poor the comparison is between the desired profile
and a sine curve. Although, we should mention that in this result and future re-
sults for the turning point profile the peaks are slightly shallower than expected.
We are unsure why this occurs.
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(a)

(b)

Figure 6.36: (a) shows a comparison of the triangular Mathieu profile, q = −0.329,
(dotted black) with a sinusoidal curve with an identical peak value (solid black),
and (b) shows a comparison of the Mathieu profile with multiple turning points,
q = 4.0, (dotted black) with a sinusoidal curve with an identical peak value (solid
black).

Our attempt to achieve a profile with a pronounced peak suffered from com-
plications. We find that in the range around the design frequency where we expect
to find our longitudinal mode, we find two longitudinal modes with very similar
frequencies. These longitudinal modes occur at 6.5060 and 6.5064 GHz, a differ-
ence of 0.0004 GHz or, equivalently, a percentage difference of 0.00615 % from the
second mode’s frequency to the first’s. These modes are unusual in only having
a significant electric field in certain regions of the structure. The profiles of these
modes are shown in Fig. 6.37.
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(a)
(b)

Figure 6.37: Plots of the field profiles (longitudinal, z, spatial variation of the
electric field strength, Ez) of the longitudinal modes in an infinite dielectric wire
medium (εr = 1600, ax = 13.06 mm and ay = 15.00 mm) for our attempts to
produce a profile with a pronounced peak (q = −10.0) with the parameter choice
of fd = 6.5 GHz, Rc = 0.2 mm and λC = 6.61 GHz. (a) shows the field profile of
one of the longitudinal modes ( f = 6.5060 GHz); and (b), the field profile of the
other longitudinal mode ( f = 6.5064 GHz).

From Fig. 6.37 it can be seen that taken together these modes would give
us something close to the expected behaviour. We have concluded that CST has
recognised one mode as two partly due to issues that arise for high negative q
Mathieu solutions. If we linearly superimpose with no weighting the profiles of
the two modes, we can compare it to our desired profiles as usual, as shown in Fig.
6.38. Looking at Fig. 6.38 we can see that there is good agreement between our
combined profile and the desired Mathieu solution, underlined by the calculated
R2 value of 0.9266.
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Figure 6.38: A plot of the combined field profile (longitudinal, z, spatial variation
of the electric field strength, Ez) of the two longitudinal modes ( f = 6.5060 GHz
and f = 6.5064 GHz) in an infinite dielectric wire medium (εr = 1600, ax = 13.06
mm and ay = 15.00 mm) for our attempts to produce a profile with a pronounced
peak (q = −10.0) with the parameter choice of fd = 6.5 GHz, Rc = 0.2 mm and
λC = 6.61 GHz.

The comparison between our desired profile with a pronounced peak and a
sine curve is shown in Fig. 6.39. The R2 value for this comparison is 0.7536. This
makes the R2 valued achieved by our simulation profile even more impressive.

Figure 6.39: A comparison of the Mathieu function with a pronounced peak (dot-
ted black), q = −10.0, with a sinusoidal curve with an identical peak value (solid
black).
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IX. Conclusions

In this chapter, we have presented the development and initial testing of our mode
profile shaping method with infinite dielectric wire media. We have shown that
the wire radius has an effect on the plasma frequency and quantified this effect
with an exponential decay relationship for εr = 1600 wires. We have related
this to our previous theoretical analysis to find a function for the required radius
variation to support a desired field profile in our wire media. After setting forth
considerations taken in fixing our free parameters, we have tested the method
for a variety of different parameter choices in simulations. The results of these
simulations were successful, as we have confirmed via qualitative and quantitative
means. We have shown that these results are stable with regards to changes in the
mesh and the number of segments which form our varying dielectric wire. Having
tested our method for a flattened profile initially, we then tested it for a variety of
profile with similar success.
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Chapter 7

Method verification in practical
dielectric wire media

The results described in Chapter 6 were promising. They provided strong valida-
tion of our theoretical model, as it had successfully predicted the existence of our
longitudinal modes, the dispersion relation of those modes and how these fields
could be controlled with a varying plasma frequency. This success was qualified
by the fact that these were simulations of idealised structures that would require
specific material parameters.

All the results listed in Chapter 6 were achieved in simulations of an infinite
lattice. This consisted of a unit cell with periodic boundary conditions and con-
taining a thin dielectric wire that had an extremely large value for the relative
permittivity. This raised the prospect of two possible problems for the potential
realisation of our mode profiling method: these results would no longer hold in
a realistic structure that would necessarily be finite, or that the results would be
prohibitively difficult to replicate due to the extreme values of radius and permit-
tivity required. This necessitated simulations of more easily fabricated realisations
of wire media.

I. Replicating results with different permittivity values

Our first step in this process was to see if we could replicate our results for dif-
ferent values of the relative permittivity of our dielectric rods. It was reasonable
to expect that if the radius and lattice parameters affect the electromagnetic be-
haviour of our structure, so should the permittivity. Therefore, we assumed we
could not just use the data taken for εr = 1600 and apply it to structures with
wires that have different permittivities. As such, we started from the beginning of
the process detailed in Chapter 6.

We ran simulations to find longitudinal modes for these new structures. In
Fig. 7.1 there are images of the longitudinal modes found in dielectric wire media
with a variety of different permittivity values, where otherwise the wire radius
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and lattice parameters are identical. The permittivity values shown are εr = 1600,
εr = 400 and εr = 100. Fig. 7.1 shows that for each permittivity, we can find our
desired longitudinal mode, although they are found at different frequencies.

(a) (b)

(c) (d)

(e) (f)

Figure 7.1: A series of images from numerical simulations in CST showing the
longitudinal modes found in infinite dielectric wire media (r = 0.4 mm, ax = 13.06
mm and ay = 15.00 mm) for a variety of dielectric permittivities. The fields are
either represented using arrow plots where the arrow direction represents field
direction and colour represents the magnitude of the field strength, or colour
plots where the direction and magnitude of the longitudinal field is represented
by colour. (a) and (b) show a longitudinal mode ( f = 6.72 GHz) in a wire medium
with εr = 1600, with (a) showing a y-z slice and (b) an x-y slice. (c) and (d) show
a longitudinal mode ( f = 8.11 GHz) in a wire medium with εr = 400, with (c)
showing a y-z slice and (d) an x-y slice. (e) and (f) show a longitudinal mode
( f = 11.7 GHz) in a wire medium with εr = 100, with (e) showing a y-z slice and
(f) an x-y slice.

We then plotted the dispersion relation of these longitudinal modes to confirm
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they had the predicted plasma-like dispersion relation. These dispersion relations
are shown in Fig. 7.2; it is fairly clear that these relations are plasma-like, but, as
we have done previously, we plotted f 2 vs k2 graphs for these modes to confirm
our judgement. Fig. 7.2 clearly shows that changing the permittivity of the wires
in our wire medium has the effect of shifting the dispersion relations of our longi-
tudinal modes. This will influence the plasma frequencies of these modes and the
radius values required for a given profile, justifying the need to repeat the method
laid out in Chapter 6 for each permittivity.

Figure 7.2: The squared dispersion plots, frequency ( f 2) against wavenumber (κ2),
of the longitudinal modes in infinite dielectric wire media (r = 0.4 mm, ax =
13.06 mm and ay = 15.00 mm) for a variety of dielectric permittivities. These
permittivities are εr = 1600 (blue), εr = 400 (red) and εr = 100 (black).

As for the original case of εr = 1600, we explored the relationship between
plasma frequency and radius for these new structures. A plot of the relationship
between plasma frequency and wire radius for a variety of different permittivity
values, εr = (1600, 400, 100, 50, 5, 3), is shown in Fig. 7.3. One important aspect
of Fig. 7.3 to note is that the relationship for all the permittivity values can still
be well described by an exponential decay curve, as shown by the inclusion of
our fitting curves for each set of data. This means we do not need to change our
method for calculating the radius function required; instead, we can input the
new fitting parameters for a given permittivity into the existing method. These
new fitting parameters for the different permittivity values are shown in Table 7.1,
along with the original fitting parameters for εr = 1600.
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Figure 7.3: Plots of the plasma frequency squared, λ2
s , of infinite dielectric wire

media (ax = 13.06 mm and ay = 15.00 mm) against wire radius, r, for a variety of
dielectric permittivities. These permittivities are εr = 1600 (blue), εr = 400 (red),
εr = 100 (black), εr = 50 (green), εr = 5 (orange) and εr = 3 (magenta).

We were then able to test our mode profiling method for these new permittivity
values. For our test case of each permittivity, we attempted to replicate a flattened
mode profile (Mathieu parameter q = 0.8), which is shown in Fig. 7.4. We have
listed the parameters used for our mode profiling attempts for each permittivity
value in Table 7.2.

εr δ (GHz2) σ (GHz2) ρ (mm−1) R2

1600 35.1 350 0.0541 0.9981
400 50.9 721 0.0776 0.9985
100 67.6 703 0.162 0.9995
50 78.9 608 0.256 0.9995
5 182 426 0.890 0.9982
3 227 335 1.24 0.9990

Table 7.1: A table summarising some of the key parameters related to the expo-
nential decay fit

(
δ + σ exp

(
− r

ρ

))
for the plasma frequency against radius data

of infinite dielectric wire media (ax = 13.06 mm and ay = 15.00 mm) with a variety
of dielectric permittivities. The parameters listed are: the dielectric permittivity
(εr), the exponential decay function parameters (δ, σ and ρ) and a figure of merit
for the agreement between our exponential decay fit and the data (R2).
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εr fd (GHz) RC (mm) λC (GHz) Γ1 (µm) Γ2 · 10−2 Γ3 · 10−2 Γ4 (m−1) L (mm)
400 9.0 0.3 8.13 77.6 2.09 1.94 129 97.3
100 11 0.5 10.0 162 4.59 2.80 153 82.1
50 12.5 0.6 11.7 256 9.56 2.94 146 86.1
5 14 2.0 13.1 890 10.6 5.36 165 76.2
3 18 2.3 16.7 1410 19.7 13.2 221 56.7

Table 7.2: A table summarising some of the key parameters related to the im-
plemented radius functions for a flattened profile (q = 0.8) in infinite dielectric
wire media (ax = 13.06 mm and ay = 15.00 mm) for a variety of dielectric per-
mittivities. The first set of parameters listed are design parameters we chose: the
dielectric permittivity (εr), design frequency ( fd), central radius (RC) and the cor-
responding central plasma frequency (λc). The rest are the resulting structural
parameters: the parameters specifying the corresponding radius function (Γ1−4)
and the length of our unit cell (L).

Figure 7.4: A solution to Mathieu’s equations (q = 0.8) that can be loosely de-
scribed as a flattened sinusoidal curve.

The radius functions for the mode profiling attempts detailed in Table 7.2 are
plotted in Fig. 7.5.
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(a) (b)

(c) (d)

(e)

Figure 7.5: A series of plots of radius functions calculated for a flattened profile
(q = 0.8) in infinite dielectric wire media (ax = 13.06 mm and ay = 15.00 mm) for
a variety of dielectric permittivities. (a) shows the radius function for a choice of
εr = 400, fd = 9 GHz, Rc = 0.3 mm and λC = 8.13 GHz (red); (b), for a choice of
εr = 100, fd = 11 GHz, Rc = 0.5 mm and λC = 10.0 GHz (black); (c), for a choice
of εr = 50, fd = 12.5 GHz, Rc = 0.6 mm and λC = 11.7 GHz (green); (d), for a
choice of εr = 5, fd = 14 GHz, Rc = 2 mm and λC = 13.1 GHz (orange); and (e),
for a choice of εr = 3, fd = 18 GHz, Rc = 2.3 mm and λC = 16.7 GHz (magenta).

We implemented these radius functions in CST and the modes found are
shown in Fig. 7.6. The profiles of these longitudinal modes are plotted in Fig.
7.7, and the results of these simulations are summarised in Table 7.3, where it can
be seen that the field profile shaping has been successful for all permittivities at-
tempted. We have shown that we can use our method for a variety of permittivity
values as low as εr = 3. As well as this, it can be seen that as we start using lower
permittivity wires, the radius required increases. This is useful as the small radii
required for εr = 1600 would have caused difficulties with fabrication.
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Figure 7.6: Images showing the resulting longitudinal modes after the implemen-
tation of the calculated radius functions for a flattened profile (q = 0.8) in infinite
dielectric wire media (ax = 13.06 mm and ay = 15.00 mm) for a variety of di-
electric permittivities. The fields are represented using arrow plots on a y-z slice
of the structure where the arrow direction represents field direction and colour
represents the magnitude of the field strength. (a) shows the resulting longitu-
dinal mode ( f = 8.99 GHz) for the attempt to demonstrate a flattened profile by
the implementation of a radius function based on the choice of εr = 400, fd = 9
GHz, Rc = 0.3 mm and λC = 8.13 GHz; (b) shows the resulting longitudinal
mode ( f = 10.96 GHz) for the attempt to demonstrate a flattened profile by the
implementation of a radius function based on the choice of εr = 100, fd = 11
GHz, Rc = 0.5 mm and λC = 10.0 GHz; (c) shows the resulting longitudinal mode
( f = 12.34 GHz) for the attempt to demonstrate a flattened profile by the imple-
mentation of a radius function based on the choice of εr = 50, fd = 12.5 GHz,
Rc = 0.6 mm and λC = 11.7 GHz; (d) shows the resulting longitudinal mode
( f = 15.71 GHz) for the attempt to demonstrate a flattened profile by the imple-
mentation of a radius function based on the choice of εr = 5, fd = 14 GHz, Rc = 2
mm and λC = 13.1 GHz; and (e) shows the resulting longitudinal mode ( f = 17.84
GHz) for the attempt to demonstrate a flattened profile by the implementation of
a radius function based on the choice of εr = 3, fd = 18 GHz, Rc = 2.3 mm and
λC = 16.7 GHz.
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Figure 7.7: Plots showing the field profiles of the longitudinal modes after the im-
plementation of the calculated radius functions for a flattened profile (q = 0.8) in
infinite dielectric wire media (ax = 13.06 mm and ay = 15.00 mm) for a variety of
dielectric permittivities. The plots include the field profile observed in our numer-
ical simulation (solid) and the desired profile (dotted). In order to compare these
the field profile and z coordinate have been normalised. (a) shows the field profile
of the resulting longitudinal mode ( f = 8.99 GHz) for the attempt to demonstrate
a flattened profile by the implementation of a radius function based on the choice
of εr = 400, fd = 9 GHz, Rc = 0.3 mm and λC = 8.13 GHz; (b) shows the field
profile of resulting longitudinal mode ( f = 10.96 GHz) for the attempt to demon-
strate a flattened profile by the implementation of a radius function based on the
choice of εr = 100, fd = 11 GHz, Rc = 0.5 mm and λC = 10.0 GHz; (c) shows
the field profile of resulting longitudinal mode ( f = 12.34 GHz) for the attempt to
demonstrate a flattened profile by the implementation of a radius function based
on the choice of εr = 50, fd = 12.5 GHz, Rc = 0.6 mm and λC = 11.7 GHz;
(d) shows the field profile of resulting longitudinal mode ( f = 15.71 GHz) for
the attempt to demonstrate a flattened profile by the implementation of a radius
function based on the choice of εr = 5, fd = 14 GHz, Rc = 2 mm and λC = 13.1
GHz; and (e) shows the field profile of resulting longitudinal mode ( f = 17.84
GHz) for the attempt to demonstrate a flattened profile by the implementation of
a radius function based on the choice of εr = 3, fd = 18 GHz, Rc = 2.3 mm and
λC = 16.7 GHz.
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εr fd (GHz) λC (GHz) L (mm) f (GHz) R2

400 9 8.13 97.3 8.99 0.9935
100 11 10.0 82.1 11.0 0.9996
50 12.5 11.7 86.1 12.3 0.9986
5 14 13.1 76.2 15.7 0.9997
3 18 16.7 56.7 17.8 0.9988

Table 7.3: A table summarising some of the key parameters related to the results
of the implemented radius functions for a flattened profile (q = 0.8) in infinite di-
electric wire media (ax = 13.06 mm and ay = 15.00 mm) for a variety of dielectric
permittivities. The parameters listed are: the dielectric permittivity (εr), design
frequency ( fd), central plasma frequency (λc), the length of our unit cell (L), lon-
gitudinal mode frequency ( f ) and a figure of merit for the agreement between our
field profile and the desired profile (R2).

II. Examining the effect of the lattice constants

Our method for mode profile shaping relies on the effect of the wire radius on
the properties of our longitudinal electric modes. It was natural to expect that
other structural parameters, such as the lattice spacing, could affect these modes.
With this in mind, simulations were run to probe the dependence of our longitu-
dinal modes on the lattice spacing. These simulations all involve the previously
explored set-up of a unit cell with periodic boundary conditions applied to all
boundaries, effectively representing an infinite lattice of dielectric wires.

Figure 7.8: A typical representation of wire media in CST, consisting of a section
of dielectric wire in a unit cell with periodic boundary conditions (ax = 13.06
mm and ay = 15.00 mm). The dielectric wire has a radius (r) of 0.3 mm and a
relative permittivity (εr) of 400. This is our control structure for our lattice constant
analysis.
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It makes sense to compare our results when varying the lattice parameters to a
familiar set of results. Therefore, we used as our comparison case the simulations
involving our commonly used values for the lattice parameters (ax = 13.06 mm
and ay = 15.00 mm). Our comparison unit cell contains a uniform dielectric wire
of radius 0.3 mm and a relative permittivity of 400. This structure is shown in Fig.
7.8. The longitudinal mode supported by this structure is shown in Fig. 7.9, with
a frequency of 8.21 GHz.

(a)

(b)

Figure 7.9: Images from numerical simulations in CST showing the longitudinal
mode ( f = 8.21 GHz) found in an infinite dielectric wire medium (εr = 400,
r = 0.3 mm, ax = 13.06 mm and ay = 15.00 mm). The fields are either represented
using arrow plots where the arrow direction represents field direction and colour
represents the magnitude of the field strength, or colour plots where the direction
and magnitude of the longitudinal field is represented by colour. (a) shows a y-z
slice of the structure and (b) an x-y slice. This is the longitudinal mode found in
our control structure.

We then ran simulations where one lattice constant was kept constant (ax =
13.06 mm) while the other was varied. The other lattice constant, ay, was varied
from 2 mm to 24 mm. Images of the structures at the extremes of this range are
shown in Fig. 7.10.
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(a)

(b)

Figure 7.10: Two different representations of infinite dielectric wire media in CST
(εr = 400, r = 0.3 mm, and ax = 13.06mm). (a) shows a wire medium with
ay = 2 mm and (b) shows a wire medium with ay = 24 mm. These two structures
represent the edge cases in our analysis of varying one lattice parameter.

The longitudinal modes supported by these structures at the extremes of our
range are shown in Fig. 7.11. These modes were found at 12.1 GHz, for ay = 2
mm, and 7.04 GHz, for ay = 24 mm.

Altering the lattice constant ay does not stop the support of our longitudinal
modes, but it does alter their frequency. This is illustrated in Fig. 7.12 where
the frequency of our longitudinal mode is plotted against the value of ay. This
relationship can be fitted with an exponential decay curve, as represented by the
black fitting curve. This fit has an R2 value of 0.9992.

As well as varying one lattice constant value, we also changed both lattice
constants by scaling their value by the scaling factor ζ. The new lattice constants
are therefore ζ13.06 mm and ζ15 mm. We did this for a variety of ζ values,
ranging from 0.4 to 2.1. The structures corresponding to the extremes of these
scaling factors are shown in Fig. 7.13.
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(a) (b)

(c)

(d)

(e)

(f)

Figure 7.11: A series of images from numerical simulations in CST showing the
longitudinal modes found in infinite dielectric wire media (εr = 400, r = 0.3
mm and ax = 13.06 mm) for a variety of lattice constants ay. The fields are either
represented using arrow plots where the arrow direction represents field direction
and colour represents the magnitude of the field strength, or colour plots where
the direction and magnitude of the longitudinal field is represented by colour.
(a) and (b) show a longitudinal mode ( f = 12.1 GHz) in a wire medium with
ay = 2 mm, with (a) showing a y-z slice and (b) an x-y slice. (c) and (d) show
a longitudinal mode ( f = 8.21 GHz) in a wire medium with ay = 15 mm, with
(c) showing a y-z slice and (d) an x-y slice. (e) and (f) show a longitudinal mode
( f = 7.04 GHz) in a wire medium with ay = 24 mm, with (e) showing a y-z slice
and (f) an x-y slice.
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Figure 7.12: A plot of the frequency, f , of the longitudinal modes found in infinite
dielectric wire media (εr = 400, r = 0.3 mm, and ax = 13.06mm) against the
lattice constant ay. An exponential fitting curve has been included that describes
the data well (black).

(a)

(b)

Figure 7.13: Two different representations of infinite dielectric wire media in CST
(εr = 400 and r = 0.3 mm). (a) shows a wire media structure with ζ = 0.4,
ax = ζ13.06 mm and ay = ζ15.00 mm; and (b) shows a wire media structure with
ζ = 2.1, ax = ζ13.06 mm and ay = ζ15.00 mm. These two structure represent the
edge cases in our analysis of scaling both lattice parameters of a wire medium.

The longitudinal modes supported by the structures shown in Fig. 7.13 are
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shown in Fig. 7.14. These longitudinal modes were found at 17 GHz, for ζ = 0.4,
and 6 GHz, for ζ = 2.1.

(a)

(b)

(c)

(d)

Figure 7.14: A series of images from numerical simulations in CST showing the
longitudinal modes found in infinite dielectric wire media (εr = 400, r = 0.3 mm,
ax = ζ13.06 mm and ay = ζ15.00 mm) for a variety of scaling constants ζ. The
fields are either represented using arrow plots where the arrow direction repre-
sents field direction and colour represents the magnitude of the field strength, or
colour plots where the direction and magnitude of the longitudinal field is repre-
sented by colour. (a) and (b) show a longitudinal mode ( f = 17.0 GHz) in a wire
medium with ζ = 0.4, with (a) showing a y-z slice and (b) an x-y slice. (c) and (d)
show a longitudinal mode ( f = 6.00 GHz) in a wire medium with ζ = 2.1, with
(c) showing a y-z slice and (d) an x-y slice.

Again, we see an effect on the frequency of the longitudinal modes supported
by our structures when varying ζ. This effect is shown in Fig. 7.15, where the
frequency at which our longitudinal modes are supported is plotted against the
scaling factor ζ. This relationship can also be fitted with an exponential decay
curve. The R2 value for this fit is 0.9951. Although, we can see that there seems
to be a small systematic shift between the data and the fitting curve.
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Figure 7.15: A plot of the frequency, f , of the longitudinal modes found in infinite
dielectric wire media (εr = 400, r = 0.3 mm, ax = ζ13.06 mm and ay = ζ15.00
mm) against the scaling factor ζ. An exponential fitting curve has been included
that describes the data accurately (black).

These results clearly show the importance of the choice of lattice parameters.
We cannot take our analysis of the plasma frequency of a structure with one
set of lattice parameters and apply it to another. It is necessary to analyse the
specific structure you want to use. These simulations also present a possible route
for tuning the frequencies supported by our wire medium. For example, if we
have a structure which supports longitudinal modes, but we want to operate in a
different frequency regime, it seems possible to scale our system to achieve this.

III. Introducing disorder into our infinite wire media

III.1 Random error in the radii

In this section, we will overview our attempts to explore how resilient our mode
profile shaping results are to the introduction of the disorder. By disorder, we
mean deviations in our structures from our prescribed structural design. This
is to be expected in any physical realisation of our structure as fabrication will
introduce minor variations in structural parameters. In particular, we are looking
at the effect of minor differences in the wire radius from our specified radius
values. This will give us an idea of acceptable engineering tolerances for our
wires.
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Figure 7.16: Radius function calculated for a flattened profile (q = 0.8) in an
infinite dielectric wire medium (εr = 50, ax = 13.06 mm and ay = 15.00 mm) for
the parameter choice of fd = 12 GHz, Rc = 0.6 mm and λC = 11.7 GHz. This is
the radius function of our control case.

Figure 7.17: A plot of the field profile (longitudinal, z, spatial variation of the
electric field strength, Ez) of the longitudinal mode ( f = 11.86 GHz) in an infinite
dielectric wire medium (εr = 50, ax = 13.06 mm and ay = 15.00 mm) for our
attempt to produce a flattened profile (q = 0.8) with a radius function based on
the parameter choice of fd = 12 GHz, Rc = 0.6 mm and λC = 11.7 GHz. The
plot includes the field profile observed in our numerical simulation (solid black)
and the desired profile (dotted black). In order to aid comparison the field profile
from our simulation and the z coordinate have been normalised. This the field
profile of our control case.

One way to introduce disorder is to add a random variation to each of the de-
sired radius values we calculate. This can be done simply in Maple, the software
we use for our calculations, by using a random number generator. It is reason-
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able to believe that any fabrication errors might manifest as seemingly random
variations in the wire radius.

Our control case against which we will compare our disordered results is the
case of a lattice of dielectric wires, with εr = 50, with a variation designed to
produce a flat profile (q = 0.8) with lattice parameters ax = 15 mm and ay =
13.1 mm. In our simulations, this is represented by a unit cell with a length
encompassing two periods of the radius variation, L = 143 mm, with periodic
boundary conditions for all dimensions. With this choice of lattice properties and
profile, we then chose the following values for our free parameters: RC = 0.6 mm
and fd = 12 GHz. This choice of parameters results in a necessary radius function
that is shown in Fig. 7.16. Implementing this radius function into CST, with no
variations from the calculated radius values, gives the field profile shown in Fig.
7.17. It is clear from looking at Fig. 7.17 that our mode profile shaping efforts
have been successful, which is affirmed by calculating the R2 value of 0.9958. As
previously defined in Chapter 6, the R2 value is a measure of how well a function,
in this case our chosen Mathieu function, fits a set of data, the simulation data,
with values closer to 1 signifying better fits. It is possible for R2 be negative; this
means the chosen function is a worse fit than a horizontal line y = C where the
constant C is the average of the y values of the data set.

Figure 7.18: A plot of the resulting radius functions when different levels of dis-
order are introduced into our control radius function calculated for a flattened
profile (q = 0.8) in an infinite dielectric wire medium (εr = 50, ax = 13.06 mm
and ay = 15.00 mm) for the parameter choice of fd = 12 GHz, Rc = 0.6 mm
and λC = 11.7 GHz (black). The levels of disorder shown are ±0.01 mm (dashed
magenta) and ±0.05 mm (dotted red).

When introducing our random disorder we used four levels of disorder: errors
in the range of ±0.01 mm; errors, of ±0.05 mm; errors, of ±0.1 mm; and errors,
of ±0.2 mm. As the radius values are centred around a value of 0.6 mm these
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represent significant variations. The resulting radius functions have been plotted
in Figs. 7.18, 7.19 and 7.20 with the control radius function.

Figure 7.19: A plot of the resulting radius functions when different levels of dis-
order are introduced into our control radius function calculated for a flattened
profile (q = 0.8) in an infinite dielectric wire medium (εr = 50, ax = 13.06 mm
and ay = 15.00 mm) for the parameter choice of fd = 12 GHz, Rc = 0.6 mm and
λC = 11.7 GHz (black). The levels of disorder shown are ±0.1 mm (dashed blue)
and ±0.2 mm (dash-dot green).

We can implement the radius functions shown in Fig. 7.20 in CST in the usual
way by using a series of wire segments which approximate the desired radius
variation. Fig. 7.21 is a CST image of a segment of the resulting wire after the
implementation of the radius function with ±0.05 mm disorder, which shows the
effect this disorder has on the shape of the wire.

The modes profiles resulting from the inclusion of these levels of disorder are
shown in Figs. 7.22 and 7.23. It can be seen that while mode profiling continues
to perform well with a variation of the order ±0.05 mm, Fig. 7.22b, there is signif-
icant deterioration for ±0.1 mm, Fig. 7.23a, and profiling completely fails for ±0.2
mm, Fig. 7.23b. This analysis is reinforced by the R2 values for these attempts, as
shown in Table 7.4 along with the frequency of the longitudinal modes associated
with the different levels of disorder.
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Figure 7.20: A plot of the resulting radius functions when different levels of dis-
order are introduced into our control radius function calculated for a flattened
profile (q = 0.8) in an infinite dielectric wire medium (εr = 50, ax = 13.06 mm
and ay = 15.00 mm) for the parameter choice of fd = 12 GHz, Rc = 0.6 mm
and λC = 11.7 GHz (black). The levels of disorder shown are ±0.01 mm (dashed
magenta) and ±0.05 mm (dotted red), ±0.1 mm (dashed blue) and ±0.2 mm
(dash-dot green).

Figure 7.21: A segment of the resulting dielectric wire for the inclusion of ±0.05
mm disorder into the radius function calculated for a flattened profile (q = 0.8) in
an infinite dielectric wire medium (εr = 50, ax = 13.06 mm and ay = 15.00 mm)
for the parameter choice of fd = 12 GHz, Rc = 0.6 mm and λC = 11.7 GHz.

Given the results of this analysis, it would be sensible to aim to ensure fabri-
cation errors are at most on the order of ±0.05 mm. This seems like a reasonable
level of accuracy to aim for, although the requirement for materials with certain
permittivity values could be a complicating factor.
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Disorder f (GHz) R2

None 11.86 0.9958
±0.01 mm 11.86 0.9980
±0.05 mm 11.89 0.9945
±0.1 mm 12.00 0.8937
±0.2 mm 11.92 -0.1716

Table 7.4: Table summarising the results of the implementation of radius functions
when different levels of disorder are introduced into our control radius function
calculated for a flattened profile (q = 0.8) in an infinite dielectric wire medium
(εr = 50, ax = 13.06 mm and ay = 15.00 mm) for the parameter choice of fd = 12
GHz, Rc = 0.6 mm and λC = 11.7 GHz. The parameters listed are: the level of
disorder introduced, longitudinal mode frequency ( f ), and a figure of merit for
the agreement between our field profile and the desired profile (R2).
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(a)

(b)

Figure 7.22: Plots showing the field profiles of the longitudinal modes when dif-
ferent levels of disorder are introduced into our control radius function for a flat-
tened profile (q = 0.8) in infinite dielectric wire media (εr = 50, ax = 13.06 mm
and ay = 15.00 mm) for the choice of fd = 12 GHz, Rc = 0.6 mm and λC = 11.7
GHz, with a number of different levels of disorder. The plots include the field pro-
file observed in our numerical simulation (solid) and the desired profile (dotted).
In order to compare these the field profile and z coordinate have been normalised.
(a) shows the field profile of the resulting longitudinal mode ( f = 11.86 GHz) for a
disorder of ±0.01 mm and (b) shows the field profile of the resulting longitudinal
mode ( f = 11.89 GHz) for a disorder of ±0.05 mm.
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(a)

(b)

Figure 7.23: Plots showing the field profiles of the longitudinal modes when dif-
ferent levels of disorder are introduced into our control radius function for a flat-
tened profile (q = 0.8) in infinite dielectric wire media (εr = 50, ax = 13.06 mm
and ay = 15.00 mm) for the choice of fd = 12 GHz, Rc = 0.6 mm and λC = 11.7
GHz, with a number of different levels of disorder. The plots include the field pro-
file observed in our numerical simulation (solid) and the desired profile (dotted).
In order to compare these the field profile and z coordinate have been normalised.
(a) shows the field profile of the resulting longitudinal mode ( f = 12.00 GHz) for
a disorder of ±0.1 mm and (b) shows the field profile of the resulting longitudinal
mode ( f = 11.92 GHz) for a disorder of ±0.2 mm.
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III.2 Systematic errors in the radii

Figure 7.24: A plot of the resulting radius functions when different levels of sys-
tematic error are introduced into our control radius function calculated for a flat-
tened profile (q = 0.8) in an infinite dielectric wire medium (εr = 50, ax = 13.06
mm and ay = 15.00 mm) for the parameter choice of fd = 12 GHz, Rc = 0.6
mm and λC = 11.7 GHz (black). The levels of systematic error are −0.2Rc
mm (dashed crimson), −0.1Rc mm (dashed dark blue), −0.05Rc mm (dashed
magenta), −0.01Rc mm (dashed dark green), +0.01Rc mm (dotted dark green),
+0.05Rc mm (dotted magenta), +0.1Rc mm (dotted dark blue) and +0.2Rc mm
(dotted crimson).

Another type of disorder that we have studied is the introduction of systematic
errors into the radius of our wires. Systematic errors could easily occur when fab-
ricating our wires, making this a valuable scenario to study. We have introduced
several levels of systematic error into a varying wire configuration, using the same
control case as the previous analysis, that are defined in terms of the central radius
parameter RC: +0.01RC, +0.05RC, +0.1RC, +0.2RC, −0.01RC, −0.05RC, −0.1RC
and −0.2RC. We have plotted the resulting radius functions when the systematic
error has been introduced for all cases in Fig. 7.24. It is important to note that
as this analysis is based on a specific varying radius medium the exact results
will not hold for all wire media, but we should be able to make some general
observations.

The resulting mode profiles for these new radius functions are shown in Figs.
7.25- 7.32.
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Figure 7.25: A plot of the field profile (longitudinal, z, spatial variation of the
electric field strength, Ez) of the longitudinal mode ( f = 13.3 GHz) in an infinite
dielectric wire medium (εr = 50, ax = 13.06 mm and ay = 15.00 mm) for our
attempt to produce a flattened profile (q = 0.8) with a radius function based
on the parameter choice of fd = 12 GHz, Rc = 0.6 mm and λC = 11.7 GHz,
and a systematic error of −0.2RC (crimson). The plot includes the field profile
observed in our numerical simulation (solid) and the desired profile (dotted). To
aid comparison the field profile from our simulation and the z coordinate have
been normalised.

Figure 7.26: A plot of the field profile (longitudinal, z, spatial variation of the
electric field strength, Ez) of the longitudinal mode ( f = 12.5 GHz) in an infinite
dielectric wire medium (εr = 50, ax = 13.06 mm and ay = 15.00 mm) for our
attempt to produce a flattened profile (q = 0.8) with a radius function based on
the parameter choice of fd = 12 GHz, Rc = 0.6 mm and λC = 11.7 GHz, and a
systematic error of−0.1RC (dark blue). The plot includes the field profile observed
in our numerical simulation (solid) and the desired profile (dotted).
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Figure 7.27: A plot of the field profile (longitudinal, z, spatial variation of the
electric field strength, Ez) of the longitudinal mode ( f = 12.2 GHz) in an infinite
dielectric wire medium (εr = 50, ax = 13.06 mm and ay = 15.00 mm) for our
attempt to produce a flattened profile (q = 0.8) with a radius function based
on the parameter choice of fd = 12 GHz, Rc = 0.6 mm and λC = 11.7 GHz,
and a systematic error of −0.05RC (magenta). The plot includes the field profile
observed in our numerical simulation (solid) and the desired profile (dotted).

Figure 7.28: A plot of the field profile (longitudinal, z, spatial variation of the
electric field strength, Ez) of the longitudinal mode ( f = 12 GHz) in an infinite
dielectric wire medium (εr = 50, ax = 13.06 mm and ay = 15.00 mm) for our
attempt to produce a flattened profile (q = 0.8) with a radius function based on
the parameter choice of fd = 12 GHz, Rc = 0.6 mm and λC = 11.7 GHz, and
a systematic error of −0.01RC (dark green). The plot includes the field profile
observed in our numerical simulation (solid) and the desired profile (dotted).
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Figure 7.29: A plot of the field profile (longitudinal, z, spatial variation of the
electric field strength, Ez) of the longitudinal mode ( f = 11.8 GHz) in an infinite
dielectric wire medium (εr = 50, ax = 13.06 mm and ay = 15.00 mm) for our
attempt to produce a flattened profile (q = 0.8) with a radius function based on
the parameter choice of fd = 12 GHz, Rc = 0.6 mm and λC = 11.7 GHz, and
a systematic error of +0.01RC (dark green). The plot includes the field profile
observed in our numerical simulation (solid) and the desired profile (dotted).

Figure 7.30: A plot of the field profile (longitudinal, z, spatial variation of the
electric field strength, Ez) of the longitudinal mode ( f = 11.6 GHz) in an infinite
dielectric wire medium (εr = 50, ax = 13.06 mm and ay = 15.00 mm) for our
attempt to produce a flattened profile (q = 0.8) with a radius function based
on the parameter choice of fd = 12 GHz, Rc = 0.6 mm and λC = 11.7 GHz,
and a systematic error of +0.05RC (magenta). The plot includes the field profile
observed in our numerical simulation (solid) and the desired profile (dotted).
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Figure 7.31: A plot of the field profile (longitudinal, z, spatial variation of the
electric field strength, Ez) of the longitudinal mode ( f = 11.3 GHz) in an infinite
dielectric wire medium (εr = 50, ax = 13.06 mm and ay = 15.00 mm) for our
attempt to produce a flattened profile (q = 0.8) with a radius function based on
the parameter choice of fd = 12 GHz, Rc = 0.6 mm and λC = 11.7 GHz, and a
systematic error of +0.1RC (dark blue). The plot includes the field profile observed
in our numerical simulation (solid) and the desired profile (dotted).

Figure 7.32: A plot of the field profile (longitudinal, z, spatial variation of the
electric field strength, Ez) of the longitudinal mode ( f = 10.9 GHz) in an infinite
dielectric wire medium (εr = 50, ax = 13.06 mm and ay = 15.00 mm) for our
attempt to produce a flattened profile (q = 0.8) with a radius function based on
the parameter choice of fd = 12 GHz, Rc = 0.6 mm and λC = 11.7 GHz, and a
systematic error of +0.2RC (crimson). The plot includes the field profile observed
in our numerical simulation (solid) and the desired profile (dotted).
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The results of these simulations are summarised in Table 7.5. One conclusion
we can make is that the introduction of a systematic error in the radius function
affects the frequency of the resulting longitudinal mode. Modes resulting from
wires that have had a decrease in radii have a larger frequency, whereas those
with increased radii have a lower frequency. There is no clear pattern in the R2

value of our profile plots. We can say that the mode profile shaping seems to have
been very resilient to the introduction of disorder with the worst performance
being a respectable R2 value of 0.9607. The effect on the mode profiling also
seems to be asymmetric with regards to the introduction of a systematic radius
error. Systematic errors which decrease the radii have minimal impact on the R2

values, whereas there is a more visible effect when the radii is increased. This
may be because our method assumes a small wire radius as compared to the
lattice constants of the wire medium.

Systematic error f (GHz) R2

-0.2RC 13.3 0.9918
-0.1RC 12.5 0.9929
-0.05RC 12.2 0.9989
-0.01RC 12.0 0.9944
None 11.9 0.9958

0.01RC 11.8 0.9836
0.05RC 11.6 0.9975
0.1RC 11.3 0.9607
0.2RC 10.9 0.9718

Table 7.5: Table summarising the results of the implementation of radius functions
when different levels of systematic error are introduced into our control radius
function calculated for a flattened profile (q = 0.8) in an infinite dielectric wire
medium (εr = 50, ax = 13.06 mm and ay = 15.00 mm) for the parameter choice of
fd = 12 GHz, Rc = 0.6 mm and λC = 11.7 GHz. The parameters listed are: the
level of systematic error introduced, longitudinal mode frequency ( f ) and a figure
of merit for the agreement between our field profile and the desired profile (R2).

IV. Including cladding around our wires

Our previous simulations reassured us that we have flexibility in terms of the
permittivity and radius values required for our wire media. Here we consider the
possibility of introducing a low permittivity sheath to aid fabrication; possibly for
use as a mould for our higher permittivity varying radius wire.

We assumed that the effect of the sheath would be negligible on the electro-
magnetic fields in our structure. Therefore, we added a sheath to structures that
had already been shown to be successful with mode profile shaping. The structure
chosen is shown in Fig. 7.33 and shows a unit cell with a dielectric wire, εr = 50,
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that has a varying radius which has been designed to produce a flattened profile
(Mathieu parameter q = 0.8). The radius function for this wire is shown in Fig.
7.34. This function results from fixing the parameters Rc = 0.6 mm and fd = 12.5
GHz.

Figure 7.33: A typical representation of wire media in CST, consisting of a section
of dielectric wire in a unit cell with periodic boundary conditions. The dielectric
wire has a radius variation specified by a function calculated for a flattened profile
(q = 0.8) in an infinite dielectric wire medium (εr = 50, ax = 13.06 mm and
ay = 15.00 mm) for the parameter choice of fd = 12.5 GHz, Rc = 0.6 mm and
λC = 11.7 GHz. This is our control structure for our cladding analysis.

Figure 7.34: Radius function calculated for a flattened profile (q = 0.8) in an
infinite dielectric wire medium (εr = 50, ax = 13.06 mm and ay = 15.00 mm) for
the parameter choice of fd = 12.5 GHz, Rc = 0.6 mm and λC = 11.7 GHz. This is
the radius function of our control case.

The longitudinal mode supported by this structure is shown in Fig. 7.35, which
was found at 12.34 GHz. The profile of this mode is shown in Fig. 7.36. This
attempt at mode profiling has been very successful, with an R2 value of 0.9986.
These results represent our control case of a structure without any cladding.
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(a)

(b)

Figure 7.35: Images showing the resulting longitudinal mode (simulation fre-
quency f = 12.34 GHz) after the implementation of the calculated radius function
for a flattened profile (q = 0.8) in an infinite dielectric wire medium (εr = 50,
ax = 13.06 mm and ay = 15.00 mm) for the parameter choice of fd = 12.5 GHz,
Rc = 0.6 mm and λC = 11.7 GHz. The fields are either represented using arrow
plots where the arrow direction represents field direction and colour represents
the magnitude of the field strength, or colour plots where the direction and mag-
nitude of the longitudinal field is represented by colour. (a) shows the field on
an x-z slice of the structure, and (b) shows the field on an x-y slice. This is the
longitudinal mode found in our control structure.

To have a limited effect on our modes; the cladding must have a relatively low
permittivity. We have chosen for our cladding material a dielectric with εr = 2.
This is an easily achievable permittivity value, with plastics such as polyethylene
having a similar permittivity [222]. We also do not want the cladding to be too
thick. As such, we have used a cladding that covers our varying dielectric wire
and extends to an outer radius of 2 mm. The resulting structure with a clad wire
is shown in Fig. 7.37.
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Figure 7.36: A plot of the field profile (longitudinal, z, spatial variation of the
electric field strength, Ez) of the longitudinal mode ( f = 12.34 GHz) in an infinite
dielectric wire medium (εr = 50, ax = 13.06 mm and ay = 15.00 mm) for our
attempt to produce a flattened profile (q = 0.8) with a radius function based on
the parameter choice of fd = 12.5 GHz, Rc = 0.6 mm and λC = 11.7 GHz (green).
The plot includes the field profile observed in our numerical simulation (solid)
and the desired profile (dotted). In order to aid comparison the field profile from
our simulation and the z coordinate have been normalised. This is the field profile
of the longitudinal mode found in our control structure.

Figure 7.37: A representation of a clad wire medium in CST, consisting of a section
of dielectric wire surrounded by a cladding material (εr = 2 and outer radius
rO = 2 mm) in a unit cell with periodic boundary conditions. The dielectric wire
has a radius variation specified by a function calculated for a flattened profile
(q = 0.8) in an infinite dielectric wire medium (εr = 50, ax = 13.06 mm and
ay = 15.00 mm) for the parameter choice of fd = 12.5 GHz, Rc = 0.6 mm and
λC = 11.7 GHz.

The longitudinal modes found in our new structure with a clad wire are shown
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in Fig. 7.38, along with images showing the longitudinal mode of the control case
for comparison. The mode in our clad wire medium was found at a frequency of
12.05 GHz. The introduction of the cladding has had a significant effect on the
frequency of our longitudinal mode, although it does still exhibit the features that
characterise our mode.

(a)

(b)

(c)

(d)

Figure 7.38: Images showing the resulting longitudinal modes after the imple-
mentation of the calculated radius function for a flattened profile (q = 0.8) in an
infinite dielectric wire medium (εr = 50, ax = 13.06 mm and ay = 15.00 mm) for
the parameter choice of fd = 12.5 GHz, Rc = 0.6 mm and λC = 11.7 GHz with
and without cladding. The fields are either represented using arrow plots on a y-z
slice, where the arrow direction represents field direction and colour represents
the magnitude of the field strength; or colour plots on an x-y slice, where the di-
rection and magnitude of the longitudinal field is represented by colour. (a) and
(b) show the resulting longitudinal mode ( f = 12.34 GHz) for no cladding, and
(c) and (d) show the resulting longitudinal mode ( f = 12.05 GHz) when cladding
(εr = 2 and rO = 2 mm) is included.

The profile of the longitudinal mode in our clad structure is shown in Fig.
7.39. We can see from Fig. 7.39 that the success of our mode profiling efforts has
continued, with an R2 value of 0.9976.
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Figure 7.39: A plot of the field profile (longitudinal, z, spatial variation of the
electric field strength, Ez) of the longitudinal mode ( f = 12.05 GHz) in an infinite
dielectric wire medium (εr = 2, ax = 13.06 mm and ay = 15.00 mm) with cladding
(εr = 50 and rO = 2 mm) for our attempt to produce a flattened profile (q = 0.8)
with a radius function based on the parameter choice of fd = 12.5 GHz, Rc = 0.6
mm and λC = 11.7 GHz (crimson). The plot includes the field profile observed in
our numerical simulation (solid) and the desired profile (dotted). In order to aid
comparison the field profile from our simulation and the z coordinate have been
normalised.

The results of the comparison between an unclad and clad wire are shown
in Table 7.6. We can see that the introduction of cladding does affect the mode
frequency while leaving the mode profile largely unchanged. This result seems
encouraging for the possibility of using cladding to aid fabrication. A shift in
frequency can be accounted for if it can be anticipated, while the main aim of our
method has still been achieved.

Cladding f (GHz) R2

None 12.34 0.9986
εr = 2, rO = 2 mm 12.5 0.9976

Table 7.6: Table summarising the results of the implementation of cladding
(εr = 50 and rO = 2 mm) around our varying wires based on a radius function
calculated for a flattened profile (q = 0.8) in an infinite dielectric wire medium
(εr = 50, ax = 13.06 mm and ay = 15.00 mm) for the parameter choice of fd = 12
GHz, Rc = 0.6 mm and λC = 11.7 GHz. The parameters listed are: the presence of
cladding, longitudinal mode frequency ( f ) and a figure of merit for the agreement
between our field profile and the desired profile (R2).
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V. Extending our method to partially finite wire media

As already mentioned, it was important to confirm that our method was valid
for finite structures. The first step towards this aim was to verify that our results
could be extended to a partially finite structure. Our use of the term partially
finite structure refers to a structure made up of a finite number of infinitely long
wires. In this case, the transverse boundaries are now given metallic boundary
conditions.

We would expect the existence of these metallic boundaries to affect the modes
in the structure. We spent some time considering the placement of the boundaries
as well as trying different placements in our simulations. The boundaries were
eventually placed a quarter lattice parameter away from the nearest wire, as usual.
Even with appropriately set boundaries, the effect of the introduction of these
boundaries necessitated us starting our process, detailed in Chapter 6, from its
start.

(a) (b)

Figure 7.40: A representation of a partially finite wire medium in CST, consisting
of a two by two lattice of dielectric wires in a unit cell with transverse metallic
boundary conditions and longitudinal periodic boundary conditions (ax = 13.06
mm and ay = 15.00 mm). This is effectively a finite lattice of infinitely long wires
in an infinite metallic waveguide. The dielectric wire has a radius (r) of 0.5 mm
and a relative permittivity (εr) of 100. (a) shows the unit cell used in CST, and (b)
shows the boundaries of the structure with green representing metallic boundaries
and orange, periodic boundary conditions.

Before starting our simulations, we had to choose a lattice size. We started
with the simplest finite lattice, a two by two grid, as this would be the least
computationally challenging. The permittivity of the wires was set to εr = 100
as this struck a balance between the higher epsilon wires that require a higher
mesh, which could potentially slow simulations down, and the low epsilon wires
that we have found to be somewhat less reliable in terms of the frequency of the
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simulation modes. The realisation of this structure in CST is shown in Fig. 7.40.
Fig. 7.40b shows the different boundary conditions on the surfaces of our unit
cell. The green outlines denote surfaces with metallic boundary conditions, and
orange, periodic boundary conditions.

Figure 7.41: Numerical results showing a transverse electric mode, with a fre-
quency of 4.98 GHz, in a representation of a partially finite two by two array of
dielectric wires (εr = 100) of radius 0.5mm, and wire spacings ax = 13.06 mm and
ay = 15.00 mm. The electric field is represented using a vector plot of an x-y slice
of the structure where the arrow direction represents field direction and colour
represents the magnitude of the field strength.

The first step in our study was examining the modes of this structure in order
to find the longitudinal modes predicted. As usual, when running eigenmode
simulations of our structure, we found a large number of transverse modes, such
as the one shown in Fig. 7.41. The longitudinal modes found in a two by two
array with a wire radius of 0.5 mm are shown in Fig. 7.42. We can see from Fig.
7.42 that these modes have the same characteristics as our previous longitudinal
modes. We confirmed the dispersion relation of this mode was plasma-like, as
shown in Fig. 7.43.
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(a) (b)

(c)

Figure 7.42: Images from numerical simulations in CST showing the longitudinal
mode ( f = 11.24 GHz) found in a partially finite dielectric wire medium (2× 2,
εr = 100, r = 0.5 mm, ax = 13.06 mm and ay = 15.00 mm). The fields are either
represented using arrow plots where the arrow direction represents field direction
and colour represents the magnitude of the field strength, or colour plots where
the direction and magnitude of the longitudinal field is represented by colour. (a)
shows a y-z slice through the centre of the structure, (b) an x-y slice and (c) a y-z
slice through two of the wires.
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Figure 7.43: A plot of frequency squared ( f 2) against the wavenumber squared
(κ2), of the longitudinal mode in a partially finite dielectric wire medium (2× 2,
εr = 100, r = 0.5 mm, ax = 13.06 mm and ay = 15.00 mm) along with a fitting
curve that demonstrates the mode’s plasma-like dispersion relation.

Once again, we investigate how the radius of the dielectric wires affects the
longitudinal modes supported by our structure. Figs. 7.44 and 7.45 show the
longitudinal modes for two more radii, 0.4 and 0.6 mm. These modes have the
key characteristics we expect of our longitudinal modes while their frequencies
clearly show the effect of the different wire radii. The squared dispersion relations
for these modes, along with our original mode, are shown in Fig. 7.46.
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(a) (b)

(c)

Figure 7.44: Images from numerical simulations in CST showing the longitudinal
mode ( f = 11.90 GHz) found in a partially finite dielectric wire medium (2× 2,
εr = 100, r = 0.4 mm, ax = 13.06 mm and ay = 15.00 mm). The fields are either
represented using arrow plots where the arrow direction represents field direction
and colour represents the magnitude of the field strength, or colour plots where
the direction and magnitude of the longitudinal field is represented by colour. (a)
shows a y-z slice through the centre of the structure, (b) an x-y slice and (c) a y-z
slice through two of the wires.
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(a) (b)

(c)

Figure 7.45: Images from numerical simulations in CST showing the longitudinal
mode ( f = 10.89 GHz) found in a partially finite dielectric wire medium (2× 2,
εr = 100, r = 0.6 mm, ax = 13.06 mm and ay = 15.00 mm). The fields are either
represented using arrow plots where the arrow direction represents field direction
and colour represents the magnitude of the field strength, or colour plots where
the direction and magnitude of the longitudinal field is represented by colour. (a)
shows a y-z slice through the centre of the structure, (b) an x-y slice and (c) a y-z
slice through two of the wires.

Fig. 7.46 shows that the wire radius does affect the dispersion relation of our
modes. The shift in the dispersion curves leads to a shift in the plasma frequency,
which is related to the y-intercept of these plots. By extending our analysis to
more wire radii values, we built up a set of data relating wire radius and plasma
frequency squared. A plot of this data is shown in Fig. 7.47. Using this plot,
we can see that the relationship between the wire radius and plasma frequency
is well described by an exponential decay curve, which has been included in Fig.
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Figure 7.46: The squared dispersion plots, frequency squared ( f 2) against
wavenumber squared (κ2), of the longitudinal modes in partially finite dielectric
wire media (2× 2, εr = 100, ax = 13.06 mm and ay = 15.00 mm) with a variety of
radii along with fitting curves. The radii are 0.4 mm (red), 0.5 mm (black) and 0.6
mm (blue).

7.47. This is as we would hope, as our infinite case showed this same relationship.
In this case, we can see the fit to the data is somewhat weaker for the final data
point, r = 1 mm. In general, the curve does fit the data well with an R2 value
of 0.9973. The fitting parameters for this exponential decay curve are as follows:
δ = 97.1 (GHz2), σ = 462(GHz2) and ρ = 0.153 (mm−1). With this information,
we can apply our previous method for finding the required radius function to
produce the desired mode profile.
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Figure 7.47: A plot of the plasma frequency squared, λ2
s , of partially finite dielec-

tric wire media (2× 2, εr = 100, ax = 13.06 mm and ay = 15.00 mm) against wire
radius, r, with an exponential decay fitting curve.

Figure 7.48: A solution to Mathieu’s equations (q = 0.8) that can be loosely de-
scribed as a flattened sinusoidal curve.

We followed the precedent we have previously set of first attempting to verify
our structure’s mode profiling capabilities by attempting to produce a flattened
mode profile (Mathieu parameter q = 0.8). This desired profile is shown in Fig.
7.48. With our profile chosen, we then fixed the parameters of design frequency
and central radius, fd = 11 GHz and RC = 0.5 mm. The corresponding radius
function for this choice of parameters and profile is shown in Fig. 7.49. The
parameters for this radius function are shown in Table 7.7.
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Figure 7.49: Radius function calculated for a flattened profile (q = 0.8) in a par-
tially finite dielectric wire medium (2× 2, εr = 100, ax = 13.06 mm and ay = 15.00
mm) for the parameter choice of fd = 11 GHz, Rc = 0.5 mm and λC = 10.7 GHz.

Having calculated the required radius function for our desired flattened pro-
file, we can implement this profile into our CST simulations in the same way as
previously detailed. By doing this and running an eigenmode simulation, we can
find our desired longitudinal mode. Fig. 7.50 shows images of this mode in CST,
which has the characteristics we expect of our mode, although it is difficult to
judge the success of our mode profiling efforts from these images.
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(a) (b)

(c)

Figure 7.50: Images showing the resulting longitudinal mode ( f = 10.98 GHz)
after the implementation of the calculated radius function for a flattened profile
(q = 0.8) in a partially finite dielectric wire medium (2× 2, εr = 100, ax = 13.06
mm and ay = 15.00 mm) for the parameter choice of fd = 11 GHz, Rc = 0.5 mm
and λC = 10.7 GHz. The fields are either represented using arrow plots where the
arrow direction represents field direction and colour represents the magnitude
of the field strength, or colour plots where the direction and magnitude of the
longitudinal field is represented by colour. (a) shows a y-z slice through the centre
of the structure, (b) an x-y slice and (c) a y-z slice through two of the wires.

Our previous method for evaluating the success of our mode profiling method
involved introducing a line into CST to plot the longitudinal component of the
field along. This proved to be very useful in determining qualitatively the success
of the profiling, as well as opening up the possibility of calculating a quantitative
measure of our simulated profiles similarity to our desired profile by calculating
the R2 value for the two profiles. Previously, the line was placed at the top of the
unit cell. This method worked well and can be adapted to our new partially finite
structure, but we have to reconsider the placement of our line as the top of our
unit cell is now a metallic boundary where the longitudinal component should be
zero by definition.

We expect that both the metallic boundaries and dielectric wires will have a
distorting effect on the longitudinal field around them. Therefore, it would be
sensible not to place our evaluation line near either of these objects. We should
especially avoid the corners of our structure where the field evaluated will be
distorted by its close position to two metallic boundaries. Given this, we would
expect a desirable position to place our line to be in the centre of the structure
between the four wires, as shown in blue in Fig. 7.51.
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Figure 7.51: A representation of a partially finite wire medium in CST (2 × 2,
εr = 100, r = 0.5 mm, ax = 13.06 mm and ay = 15.00 mm) shown from the end.
The areas where we expect to observe good field profile shaping are shown in
blue with the rest of the free space shaded black and the wires shown in cyan.

The position at which the field is evaluated has been explored for our simula-
tion of a flattened mode. In Fig. 7.52b we show the field profile observed when
a line spanning the length of the structure is placed at the coordinates x = 1.5ax
and y = 2ay, where ax and ay are the lattice constants. As shown in Fig. 7.52a,
this line is in the usual position used, with it being directly above a varying wire
at the extreme of the structure. We can see, even without comparison or any
quantitative measure, that the profiling is not successful at this position, as we
expected. Although, since we are evaluating the longitudinal component at the
metal boundary, we would expect the field to be zero, but the field is a few magni-
tudes of order lower than our usual fields. We assume this is just numerical noise,
possibly due to the mesh cells covering the boundary also covering some of the
inner structure.

A line was also placed near the corner of the structure (x = 1.75ax, y = 1.55ay),
as shown in Fig. 7.53a. We expect this position to be a particularly poor place
to evaluate the field profile as it is close to two metallic boundaries. This was
confirmed by the field profile shown in Fig. 7.53b, with an R2 value of 0.7676.

Another line was placed with the same x-coordinate, x = 1.75ax, but a smaller
y-coordinate, y = 1.25ay. This means that the evaluation line is further away from
the metallic boundary at the top of the structure, as seen in Fig. 7.54a. As we had
predicted, being near only one metallic boundary greatly improves the quality of
the mode profile observed, which is shown in Fig. 7.54. The R2 value at this
position is 0.9965. Despite not being placed in the area we expect to be ideal, the
mode profiling evaluated at this line is very successful.

A line was placed at the coordinates x = ax and y = 1.9ay. This evaluation
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(a) (b)

Figure 7.52: Images showing the position in the partially finite wire medium (2×
2, εr = 100, ax = 13.06 mm and ay = 15.00 mm) at which the field profile of
the longitudinal mode ( f = 10.98 GHz), which results from the implementation
of the calculated radius function for a flattened profile (q = 0.8) based on the
parameter choice of fd = 11 GHz, Rc = 0.5 mm and λC = 10.7 GHz, is examined
and the resulting field profile. The coordinate system is centred at the bottom
left of the structure as seen in (a) with the wires situated at the (x, y) positions of
(0.5ax, 0.5ay), (0.5ax, 1.5ay), (1.5ax, 0.5ay) and (1.5ax, 1.5ay). (a) shows an evaluation
position of (1.5ax, 2ay), and (b) shows the resulting field profile (grey).

142



(a)
(b)

Figure 7.53: Images showing the position in the partially finite wire medium
(2× 2, εr = 100, ax = 13.06 mm and ay = 15.00 mm) at which the field profile of
the longitudinal mode ( f = 10.98 GHz), which results from the implementation of
the calculated radius function for a flattened profile (q = 0.8) based on the param-
eter choice of fd = 11 GHz, Rc = 0.5 mm and λC = 10.7 GHz, is examined and
the resulting field profile. The coordinate system is centred at the bottom left of
the structure as seen in (a) with the wires situated at the (x, y) positions of (0.5ax,
0.5ay), (0.5ax, 1.5ay), (1.5ax, 0.5ay) and (1.5ax, 1.5ay). (a) shows an evaluation posi-
tion of (1.75ax, 1.55ay), and (b) shows the resulting field profile scaled to compare
with the desired profile along with the R2 value of 0.7676 (brown).
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(a) (b)

Figure 7.54: Images showing the position in the partially finite wire medium
(2× 2, εr = 100, ax = 13.06 mm and ay = 15.00 mm) at which the field profile of
the longitudinal mode ( f = 10.98 GHz), which results from the implementation of
the calculated radius function for a flattened profile (q = 0.8) based on the param-
eter choice of fd = 11 GHz, Rc = 0.5 mm and λC = 10.7 GHz, is examined and
the resulting field profile. The coordinate system is centred at the bottom left of
the structure as seen in (a) with the wires situated at the (x, y) positions of (0.5ax,
0.5ay), (0.5ax, 1.5ay), (1.5ax, 0.5ay) and (1.5ax, 1.5ay). (a) shows an evaluation posi-
tion of (1.75ax, 1.25ay), and (b) shows the resulting field profile scaled to compare
with the desired profile along with the R2 value of 0.9965 (brown).
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(a) (b)

Figure 7.55: Images showing the position in the partially finite wire medium (2×
2, εr = 100, ax = 13.06 mm and ay = 15.00 mm) at which the field profile of
the longitudinal mode ( f = 10.98 GHz), which results from the implementation
of the calculated radius function for a flattened profile (q = 0.8) based on the
parameter choice of fd = 11 GHz, Rc = 0.5 mm and λC = 10.7 GHz, is examined
and the resulting field profile. The coordinate system is centred at the bottom
left of the structure as seen in (a) with the wires situated at the (x, y) positions of
(0.5ax, 0.5ay), (0.5ax, 1.5ay), (1.5ax, 0.5ay) and (1.5ax, 1.5ay). (a) shows an evaluation
position of (ax, 1.9ay), and (b) shows the resulting field profile scaled to compare
with the desired profile along with the R2 value of 0.9932 (pink).

line is halfway between two of the metallic boundaries, as far away from each of
them as possible and extremely close to the metallic boundary at the top of the
structure. This is shown in Fig. 7.55a. Despite being very close to one metallic
boundary the mode profiling observed at this position is still very good, with an
R2 value of 0.9932.

Two lines have been used to evaluate the field with the coordinates of (1.5ax,
ay) and (ax, 1.5ay). These lines are similar to the lines used to evaluate our longi-
tudinal fields in our analysis of infinite lattices. Each line is displaced by either
a shift in the x and y coordinate by half of the corresponding lattice constant, ax

2
or ay

2 . This is shown in Fig.7.56. Evaluating the field at these positions, we find
the mode profiles shown in Fig. 7.56. The mode profiling at these positions is
exceptionally successful, with R2 values of 0.9989 and 0.9991.

Another of the line positions we tested was a line that is very close to the wires,
with the coordinates (1.45ax,1.45ay). This line position is shown in Fig. 7.57a. As
we had predicted, the mode profiling observed at this position is quite poor. This
is shown in Fig. 7.57b, with the mode profile having an R2 value of 0.5501.

Finally, we also introduced three lines in the region of the structure we had
predicted to be the most suitable for evaluating the field, with the coordinates
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(a) (b)

(c) (d)

Figure 7.56: Images showing the positions in the partially finite wire medium
(2× 2, εr = 100, ax = 13.06 mm and ay = 15.00 mm) at which the field profile of
the longitudinal mode ( f = 10.98 GHz), which results from the implementation
of the calculated radius function for a flattened profile (q = 0.8) based on the
parameter choice of fd = 11 GHz, Rc = 0.5 mm and λC = 10.7 GHz, is examined
and the resulting field profiles. The coordinate system is centred at the bottom
left of the structure as seen in (a) with the wires situated at the (x, y) positions of
(0.5ax, 0.5ay), (0.5ax, 1.5ay), (1.5ax, 0.5ay) and (1.5ax, 1.5ay). (a) shows an evaluation
position of (1.5ax, ay), and (b) shows the resulting field profile scaled to compare
with the desired profile along with the R2 value of 0.9989 (green). (c) shows an
evaluation position of (ax, 1.5ay), and (d) shows the resulting field profile scaled
to compare with the desired profile along with the R2 value of 0.9991 (magenta).
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(b)

Figure 7.57: Images showing the position in the partially finite wire medium
(2× 2, εr = 100, ax = 13.06 mm and ay = 15.00 mm) at which the field profile of
the longitudinal mode ( f = 10.98 GHz), which results from the implementation of
the calculated radius function for a flattened profile (q = 0.8) based on the param-
eter choice of fd = 11 GHz, Rc = 0.5 mm and λC = 10.7 GHz, is examined and
the resulting field profile. The coordinate system is centred at the bottom left of
the structure as seen in (a) with the wires situated at the (x, y) positions of (0.5ax,
0.5ay), (0.5ax, 1.5ay), (1.5ax, 0.5ay) and (1.5ax, 1.5ay). (a) shows an evaluation posi-
tion of (1.45ax, 1.45ay), and (b) shows the resulting field profile scaled to compare
with the desired profile along with the R2 value of 0.5501 (dark green).
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(ax, ay), (1.1ax, 1.1ay) and (1.2ax, 1.2ay). These lines are shown in Fig. 7.58. Fig.
7.58 show that the mode profiling observed at these positions is very successful.
The R2 values for the mode profiles at (ax, ay), (1.1ax, 1.1ay) and (1.2ax, 1.2ay) are
0.9984, 0.9983 and 0.9989 respectively.

One conclusion we can draw from this analysis is that our method for achiev-
ing mode profile shaping is exceptionally successful for our new scenario of a
partially finite structure. The mode profile observed at several points in the struc-
ture, including in the central channel where we may want to interact with our
field, was remarkably similar to our desired profile as confirmed by both quali-
tative and quantitative measures. We have also confirmed that near the dielectric
wires and metal boundaries the mode profiling is poor, as even for this generally
successful attempt the mode profile near these objects was not close to our desired
profile. By evaluating the field profile at several points, we have shown that the
quality of our mode profiling is very stable with regards to the evaluation posi-
tion. We had expected the most accurate field profiles to be found in the central
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(e)
(f)

Figure 7.58: Images showing the positions in the partially finite wire medium
(2× 2, εr = 100, ax = 13.06 mm and ay = 15.00 mm) at which the field profile of
the longitudinal mode ( f = 10.98 GHz), which results from the implementation
of the calculated radius function for a flattened profile (q = 0.8) based on the
parameter choice of fd = 11 GHz, Rc = 0.5 mm and λC = 10.7 GHz, is examined
and the resulting field profiles. The coordinate system is centred at the bottom
left of the structure as seen in (a) with the wires situated at the (x, y) positions of
(0.5ax, 0.5ay), (0.5ax, 1.5ay), (1.5ax, 0.5ay) and (1.5ax, 1.5ay). (a) shows an evaluation
position of (ax, ay), and (b) shows the resulting field profile scaled to compare
with the desired profile along with the R2 value of 0.9984 (black). (c) shows an
evaluation position of (1.1ax, 1.1ay), and (d) shows the resulting field profile scaled
to compare with the desired profile along with the R2 value of 0.9983 (crimson).
(e) shows an evaluation position of (1.2ax, 1.2ay), and (d) shows the resulting field
profile scaled to compare with the desired profile along with the R2 value of
0.9989 (blue).
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Figure 7.59: A plot of the field profiles (longitudinal, z, spatial variation of the
electric field strength, Ez) of the longitudinal mode ( f = 10.98 GHz) in a partially
finite dielectric wire medium (2× 2, εr = 100, ax = 13.06 mm and ay = 15.00 mm)
for our attempt to produce a flattened profile (q = 0.8) with a radius function
based on the parameter choice of fd = 11 GHz, Rc = 0.5 mm and λC = 10.7 GHz
for a variety of different evaluation positions. The field profiles shown are for the
evaluation position of (ax, ay) in black, (1.1ax, 1.1ay) in red, (1.2ax, 1.2ay) in blue,
(1.5ax, ay) in green, (ax, 1.5ay) in green, (1.75ax, 1.25ay) in brown and (ax, 1.9ay) in
pink.

channel, but even those evaluated outside this region showed great similarity to
our desired profile.

The stability of the success of the mode profiling calls into question what po-
sition we should use as our standard position of evaluation. There are several
positions where the mode profiling is very successful. We have chosen to use the
central line with the coordinates of (ax, ay). Although there are positions where
the mode profiling is marginally more successful, as judged by changes in the R2

value of approximately 0.0007, this is where the field strength is at its peak, as
shown in Fig. 7.59.

150



(a)
(b)

(c)

Figure 7.60: A series of plots of different Mathieu functions that we have at-
tempted to replicate using our field shaping method with partially finite dielectric
wire media comprising a two by two lattice. (a) is a triangular profile q = −0.329
(crimson), (b) is a profile with multiple turning points q = 4.0 (dark blue) and (c)
is a profile with a pronounced peak q = −10.0 (dark green).

q fd (GHz) RC (mm) λC (GHz) Γ1 (µm) Γ2 · 10−2 Γ3 · 10−2 Γ4 (m−1) L (m)
0.8 11 0.5 10.7 153 3.81 -1.27 83.6 0.150

-0.329 11.3 0.5 10.7 153 3.81 -2.81 194 0.0649
4 10.8 0.5 10.7 153 3.81 1.43 39.7 0.316

-10 10.5 0.5 10.7 153 3.81 -1.39 24.7 0.509

Table 7.7: A table summarising some of the key parameters related to the imple-
mented radius functions for a variety of profiles in partially finite dielectric wire
media (2× 2, εr = 100, ax = 13.06 mm and ay = 15.00 mm). The first set of param-
eters listed are design parameters we chose: the Mathieu parameter characterising
the profile (q), design frequency ( fd), central radius (RC) and the corresponding
central plasma frequency (λc). The rest are the resulting structural parameters: the
parameters specifying the corresponding radius function (Γ1−4) and the length of
our unit cell (L). The profiles considered are a triangular profile (q = −0.329), a
profile with multiple turning points (q = 4.0) and a profile with a pronounced
peak (q = −10.0).
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We have shown that our field profiling method is still successful for a two by
two lattice of infinitely long dielectric wires for a flattened mode profile. Given
that one of the proposed strengths of our method is that it allows us to produce
a wide range of desired profile without the need for iteration, we attempted to
show that the method could be applied for a variety of profiles. The profiles we
attempted to replicate were: a triangular profile (Mathieu parameter q = −0.329),
a profile with a large number of turning points (Mathieu parameter q = 4) and
a profile with a pronounced peak (Mathieu parameter q = −10). These are the
same profiles that have been replicated in the case of an infinite lattice of dielectric
wires. Fig. 7.60 is a reproduction of a previous figure which shows the Mathieu
profiles we are attempting to replicate with our field profiles. The parameters for
the calculated radius function of these profiles, along with those required for the
flat profile, are listed in Table 7.7. These radius functions have also been plotted
in Fig. 7.61.

(a) (b)

(c)

Figure 7.61: A series of plots of radius functions calculated for a variety of desired
profiles in partially finite dielectric wire media (2× 2, εr = 100, ax = 13.06 mm
and ay = 15.00 mm). (a) shows the radius function for a triangular profile with a
parameter choice of fd = 11.3 GHz, Rc = 0.5 mm and λC = 10.7 GHz (crimson);
(b), for a profile with multiple turning points with a parameter choice of fd = 10.8
GHz, Rc = 0.5 mm and λC = 10.7 GHz (dark blue); and (c), for a profile with a
pronounced peak with a parameter choice of fd = 10.5 GHz, Rc = 0.5 mm and
λC = 10.7 GHz (dark green).
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Having calculated the required radius functions, we can implement them into
CST and examine the field profiles that are produced. The modes found when
implementing these radius functions are shown in Figs. 7.62, 7.63 and 7.64. This
process was very successful, as can be seen from the mode profiles plotted in
Fig. 7.65, with all the mode profiles being very similar to the desired profiles.
As usual with our efforts at achieving mode profiling for the pronounced peak
profile, two modes were found. The frequencies of these modes were 10.5295 and
10.5302 GHz, a separation of 0.0007 GHz, and the profile in Fig. 7.65c represents a
superposition of the mode profiles of these two modes. For a quantitative measure
of the success of the mode profiling for each mode profile, we have listed the R2

value for each profile in Table 7.8. These results clearly show that our method
retains its ability to provide accurate mode profiling for a variety of profiles when
applied to partially finite structures.
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(a)

(b)

(c)

Figure 7.62: Images showing the resulting longitudinal mode ( f = 11.36 GHz)
after the implementation of the calculated radius function for a triangular profile
(q = −0.329) in a partially finite dielectric wire medium (2× 2, εr = 100, ax =
13.06 mm and ay = 15.00 mm) for the parameter choice of fd = 11.3 GHz, Rc = 0.5
mm and λC = 10.7 GHz. The fields are either represented using arrow plots where
the arrow direction represents field direction and colour represents the magnitude
of the field strength, or colour plots where the direction and magnitude of the
longitudinal field is represented by colour. (a) shows a y-z slice through the centre
of the structure, (b) an x-y slice and (c) a y-z slice through two of the wires.
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(a)

(b)

(c)

Figure 7.63: Images showing the resulting longitudinal mode ( f = 10.81 GHz)
after the implementation of the calculated radius function for a profile with mul-
tiple turning points (q = 4.0) in a partially finite dielectric wire medium (2× 2,
εr = 100, ax = 13.06 mm and ay = 15.00 mm) for the parameter choice of fd = 10.8
GHz, Rc = 0.5 mm and λC = 10.7 GHz. The fields are either represented using
arrow plots where the arrow direction represents field direction and colour repre-
sents the magnitude of the field strength, or colour plots where the direction and
magnitude of the longitudinal field is represented by colour. (a) shows a y-z slice
through the centre of the structure, (b) an x-y slice and (c) a y-z slice through two
of the wires.

(a)

(b)

Figure 7.64: Images showing the resulting longitudinal modes after the imple-
mentation of the calculated radius function for a profile with a pronounced peak
(q = −10.0) in a partially finite dielectric wire medium (2× 2, εr = 100, ax = 13.06
mm and ay = 15.00 mm) for the parameter choice of fd = 10.5 GHz, Rc = 0.5 mm
and λC = 10.7 GHz. The fields are represented using arrow plots on an y-z slice
of the structure where the arrow direction represents field direction and colour
represents the magnitude of the field strength. (a) shows one of the resulting
longitudinal modes ( f = 10.5295 GHz); and (b), the other ( f = 10.5302 GHz).
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q fd (GHz) λC (GHz) L (mm) f (GHz) R2

0.8 11 10.7 150 10.98 0.9984
-0.329 11.3 10.7 64.9 11.36 0.9982

4 10.8 10.7 316 10.81 0.9769
-10 10.5 10.7 509 10.53 0.7517

Table 7.8: A table summarising some of the key parameters related to the results
of our implemented radius functions for a variety of profiles in partially finite
dielectric wire media (2 × 2, εr = 100, ax = 13.06 mm and ay = 15.00 mm).
The parameters listed are: the Mathieu parameter characterising the profile (q),
design frequency ( fd), the central plasma frequency (λc), the length of our unit
cell (L), longitudinal mode frequency ( f ) and a figure of merit for the agreement
between our field profile and the desired profile (R2). The profiles considered are
a triangular profile (q = −0.329), a profile with multiple turning points (q = 4.0)
and a profile with a pronounced peak (q = −10.0).

(a)
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(b)

(c)

Figure 7.65: Plots of the field profiles (longitudinal, z, spatial variation of the
electric field strength, Ez) of the longitudinal modes in partially finite dielectric
wire media (2× 2, εr = 100, ax = 13.06 mm and ay = 15.00 mm) for our attempts
to produce a triangular profile (q = −0.329), a profile with multiple turning points
(q = 4.0) and a profile with a pronounced peak (q = −10.0). The plots include
the field profile observed in our numerical simulation (solid) and the desired
profile (dotted). In order to compare these the field profile and z coordinate have
been normalised. (a) shows the field profile of the longitudinal mode ( f = 11.36
GHz) for the attempt to demonstrate a triangular profile by the implementation
of a radius function based on the choice of fd = 11.3 GHz, Rc = 0.5 mm and
λC = 10.7 GHz (crimson); (b), the field profile of the longitudinal mode ( f = 10.8
GHz) for the attempt to achieve a profile with multiple turning points by the
implementation of a radius function based on the choice of fd = 10.5 GHz, Rc =
0.5 mm and λC = 10.7 GHz (dark blue); and (c), the field profile of the longitudinal
mode ( f = 10.8 GHz) for the attempt to achieve a profile with multiple turning
points by the implementation of a radius function based on the choice of fd = 10.8
GHz, Rc = 0.5 mm and λC = 10.7 GHz (dark green).
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This was very promising as a first step towards demonstrating that our results
could be achieved in a realistic structure. The next step to take was to attempt to
simulate a completely finite structure.

VI. Extending our method to finite wire media

To go from partially finite to completely finite structures, we introduced more
metallic boundary conditions. This means the longitudinal dimension is now
bounded by metallic boundaries, as shown in Fig. 7.66. This will force the trans-
verse component of the E field at these boundaries to be zero, but this is not a
problem as we are interested in longitudinal modes. Therefore, we should not
expect the introduction of these boundaries to cause a significant change to the
results we have found in our partially finite structures. As such, when attempting
to extend our work to finite simulations, we have taken the varying radius struc-
tures from Section V and applied new boundary conditions. These structures are
formed from dielectric wires with a relative permittivity of εr = 100 and are ar-
ranged in a two by two lattice, with the transverse boundaries placed at a distance
of half of the relevant lattice parameter away.

Figure 7.66: A representation of a finite wire medium in CST, consisting of a two
by two lattice of dielectric wires in a unit cell with metallic boundary conditions
(εr = 100, ax = 13.06 mm and ay = 15.00 mm). The dielectric wire has a radius
variation based on a function generated using data from partially finite structures
for the attempt to demonstrate a flattened profile based on the choice of fd = 11
GHz, Rc = 0.5 mm and λC = 10.7 GHz. The image shows the boundaries of the
structure with green representing metallic boundary conditions.

As we have already stated, our attempts at mode profile shaping in a com-
pletely finite structure are an extension of our work with partially finite structures.
We have attempted to replicate all the same profiles as previously, starting with
a flattened mode profile (Mathieu parameter q=0.8). Our desired flattened mode
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Figure 7.67: A solution to Mathieu’s equations (q = 0.8) that can be loosely de-
scribed as a flattened sinusoidal curve.

profile is shown in Fig. 7.67. The radius function we have used for this mode
profile is identical to the one used for our partially finite structure, as is the case
with the radius functions implemented for the other profiles attempted. A plot of
this radius function is shown in Fig. 7.68.

q fd (GHz) RC (mm) λC (GHz) Γ1 (µm) Γ2 · 10−2 Γ3 · 10−2 Γ4 (m−1) L (m)
0.8 11 0.5 10.7 153 3.81 -1.27 83.6 0.150

-0.329 11.3 0.5 10.7 153 3.81 -2.81 194 0.0649
4 10.8 0.5 10.7 153 3.81 1.43 39.7 0.316

-10 10.5 0.5 10.7 153 3.81 -1.39 24.7 0.509

Table 7.9: A table summarising some of the key parameters related to the imple-
mented radius functions for a variety of profiles in finite dielectric wire media
(2× 2, εr = 100, ax = 13.06 mm and ay = 15.00 mm). It should be noted that
these radius functions were generated using data from partially finite dielectric
wire media. The first set of parameters listed are design parameters we chose: the
Mathieu parameter characterising the profile (q), design frequency ( fd), central
radius (RC) and the corresponding central plasma frequency (λc). The rest are the
resulting structural parameters: the parameters specifying the corresponding ra-
dius function (Γ1−4) and the length of our unit cell (L). The profiles considered are
a triangular profile (q = −0.329), a profile with multiple turning points (q = 4.0)
and a profile with a pronounced peak (q = −10.0).

159



Figure 7.68: Radius function calculated for a flattened profile (q = 0.8) in a finite
dielectric wire medium (2× 2, εr = 100, ax = 13.06 mm and ay = 15.00 mm) for
the parameter choice of fd = 11 GHz, Rc = 0.5 mm and λC = 10.7 GHz.

(a) (b)

(c)

Figure 7.69: Images showing the resulting longitudinal mode ( f = 10.99 GHz)
after the implementation of the calculated radius function for a flattened profile
(q = 0.8) in a finite dielectric wire medium (2× 2, εr = 100, ax = 13.06 mm and
ay = 15.00 mm) for the parameter choice of fd = 11 GHz, Rc = 0.5 mm and
λC = 10.7 GHz. The fields are either represented using arrow plots where the
arrow direction represents field direction and colour represents the magnitude
of the field strength, or colour plots where the direction and magnitude of the
longitudinal field is represented by colour. (a) shows a y-z slice through the centre
of the structure, (b) an x-y slice and (c) a y-z slice through two of the wires.

This radius function has already been implemented in a two by two structure
of infinite length in Section V. We can now take this structure and apply metallic
boundaries conditions to all the boundaries, as shown in Fig. 7.66, to get our

160



desired finite structure. Having done this, we ran an eigenmode simulation to
find our longitudinal mode, shown in Fig. 7.69, and evaluated its profile, shown
in Fig. 7.70. As can be seen from Fig. 7.70 the mode profiling success we have
previously experienced is replicated with our new structure. This is reaffirmed by
calculating the R2 value for this comparison which is 0.9997. This is a promising
result as it shows that we can achieve mode profiling in a finite structure by simply
enclosing one unit of our partially finite structure in metallic boundaries.

Figure 7.70: Plot of the field profile (longitudinal, z, spatial variation of the electric
field strength, Ez) of the longitudinal mode (10.99 GHz) in a finite dielectric wire
medium (2× 2, εr = 100, ax = 13.06 mm and ay = 15.00 mm) for our attempt to
produce a flattened profile (q = 0.8) by the implementation of a radius function
based on the choice of fd = 11 GHz, Rc = 0.5 mm and λC = 10.7 GHz (black).
The plot includes the field profile observed in our numerical simulation (solid)
and the desired profile (dotted). In order to compare these the field profile and z
coordinate have been normalised.

Given our success in achieving the replication of a flattened mode profile, we
then moved onto attempts to replicate other profiles. The profiles we attempted
to replicate were a triangular profile (q = −0.329), a profile with more turning
points (q = 4) and a profile with a pronounced peak (q = −10). These are the
same profiles we have previously replicated for our partially finite structure. As
with the case of the flattened mode, we are using the radius functions previously
used for our partially finite structures. These radius functions have been plotted
in Fig. 7.71.
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(a) (b)

(c)

Figure 7.71: A series of plots of radius functions calculated for a variety of de-
sired profiles in finite dielectric wire media (2× 2, εr = 100, ax = 13.06 mm and
ay = 15.00 mm). (a) shows the radius function for a triangular profile with a pa-
rameter choice of fd = 11.3 GHz, Rc = 0.5 mm and λC = 10.7 GHz (crimson); (b),
for a profile with multiple turning points with a parameter choice of fd = 10.8
GHz, Rc = 0.5 mm and λC = 10.7 GHz (dark blue); and (c), for a profile with a
pronounced peak with a parameter choice of fd = 10.5 GHz, Rc = 0.5 mm and
λC = 10.7 GHz (dark green).

Implementing these radius functions into our CST structures and running
eigenmode simulations allows us to find our desired longitudinal modes. The
longitudinal modes found in our simulations for the triangular profile and the
profile with more turning points are shown in Figs. 7.72 and 7.73. The profiles for
these two modes are shown in Fig. 7.74. We can see from Fig. 7.74 that the mode
profiling has been successful, which is reflected in their R2 value of 0.9987 for the
triangular profile and 0.9772 for the profile with more turning points.

As usual, our attempt to replicate the profile with a pronounced peak was
more complicated. We have previously experienced CST splitting our desired
longitudinal into two modes, but on this occasion the mode seems to have been
split into three modes. Longitudinal modes were found at frequencies of 10.5303,
10.5306 and 10.5318 GHz. These modes, which span a 0.0015 GHz band, are
shown in Fig. 7.75. We can see that they all have significant longitudinal fields in
separate parts of the structure and resemble our desired mode split across three
modes. In Fig. 7.76 we show the combined profile of these three modes compared
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(a) (b)

(c)

Figure 7.72: Images showing the resulting longitudinal mode ( f = 11.36 GHz)
after the implementation of the calculated radius function for a triangular profile
(q = −0.329) in a finite dielectric wire medium (2× 2, εr = 100, ax = 13.06 mm
and ay = 15.00 mm) for the parameter choice of fd = 11.3 GHz, Rc = 0.5 mm
and λC = 10.7 GHz. The fields are either represented using arrow plots where the
arrow direction represents field direction and colour represents the magnitude
of the field strength, or colour plots where the direction and magnitude of the
longitudinal field is represented by colour. (a) shows a y-z slice through the centre
of the structure, (b) an x-y slice and (c) a y-z slice through two of the wires.
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(a)
(b)

(c)

Figure 7.73: Images showing the resulting longitudinal mode ( f = 10.81 GHz)
after the implementation of the calculated radius function for a profile with mul-
tiple turning points (q = 4.0) in a finite dielectric wire medium (2× 2, εr = 100,
ax = 13.06 mm and ay = 15.00 mm) for the parameter choice of fd = 10.8 GHz,
Rc = 0.5 mm and λC = 10.7 GHz. The fields are either represented using arrow
plots where the arrow direction represents field direction and colour represents
the magnitude of the field strength, or colour plots where the direction and mag-
nitude of the longitudinal field is represented by colour. (a) shows a y-z slice
through the centre of the structure, (b) an x-y slice and (c) a y-z slice through two
of the wires.

against the desired profile. Fig. 7.76 clearly shows that the combined profile is
very close to our desired profile, as reflected by the calculated R2 value of 0.9458.

The results of our mode profiling attempts for completely finite structures are
summarised in Table 7.10. It is clear from Table 7.10 that our method continues
to be extremely successful at replicating a variety of profiles. This is especially
pleasing as we were able to obtain these results by simply applying new boundary
conditions to our existing partially finite structures. These results confirm that our
method for mode profiling can be extended to finite structures, which had been a
potential area of concern.

164



(a)

(b)

Figure 7.74: Plots of the field profiles (longitudinal, z, spatial variation of the
electric field strength, Ez) of the longitudinal modes in finite dielectric wire media
(2× 2, εr = 100, ax = 13.06 mm and ay = 15.00 mm) for our attempts to produce a
triangular profile (q = −0.329) and a profile with multiple turning points (q = 4.0).
The plots include the field profile observed in our numerical simulation (solid)
and the desired profile (dotted). In order to compare these the field profile and z
coordinate have been normalised. (a) shows the field profile of the longitudinal
mode ( f = 11.36 GHz) for the attempt to demonstrate a triangular profile by the
implementation of a radius function based on the choice of fd = 11.3 GHz, Rc =
0.5 mm and λC = 10.7 GHz (crimson); and (b), the field profile of the longitudinal
mode ( f = 10.8 GHz) for the attempt to achieve a profile with multiple turning
points by the implementation of a radius function based on the choice of fd = 10.8
GHz, Rc = 0.5 mm and λC = 10.7 GHz (dark blue).
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(a)

(b)

(c)

Figure 7.75: Images showing the resulting longitudinal modes after the imple-
mentation of the calculated radius function for a profile with a pronounced peak
(q = −10.0) in a finite dielectric wire medium (2× 2, εr = 100, ax = 13.06 mm
and ay = 15.00 mm) for the parameter choice of fd = 10.5 GHz, Rc = 0.5 mm
and λC = 10.7 GHz. The fields are represented using arrow plots on an x-z slice
of the structure where the arrow direction represents field direction and colour
represents the magnitude of the field strength. (a) shows one of the resulting lon-
gitudinal modes ( f = 10.5303 GHz); (b), another ( f = 10.5306 GHz); and (c), the
mode with the highest frequency ( f = 10.5318 GHz).

Figure 7.76: Plot of the combined field profile (longitudinal, z, spatial variation
of the electric field strength, Ez) of the longitudinal modes ( f = 10.5303 GHz,
f = 10.5306 GHz and f = 10.5318 GHz) in finite dielectric wire media (2× 2,
εr = 100, ax = 13.06 mm and ay = 15.00 mm) for our attempt to produce a profile
with a pronounced peak (q = −10.0) by the implementation of a radius function
based on the choice of fd = 10.5 GHz, Rc = 0.5 mm and λC = 10.7 GHz (dark
green). The plot includes the field profile observed in our numerical simulation
(solid) and the desired profile (dotted).
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q fd (GHz) λC (GHz) L (mm) f (GHz) R2

0.8 11 10.7 150 10.98 0.9997
-0.329 11.3 10.7 64.9 11.36 0.9989

4 10.8 10.7 316 10.81 0.9772
-10 10.5 10.7 509 10.53 0.9458

Table 7.10: A table summarising some of the key parameters related to the results
of our implemented radius functions for a variety of profiles in finite dielectric
wire media (2 × 2, εr = 100, ax = 13.06 mm and ay = 15.00 mm). It should
be noted that these radius functions were generated using data from partially
finite dielectric wire media. The parameters listed are: the Mathieu parameter
characterising the profile (q), design frequency ( fd), the central plasma frequency
(λc), the length of our unit cell (L), longitudinal mode frequency ( f ) and a figure of
merit for the agreement between our field profile and the desired profile (R2). The
profiles considered are a triangular profile (q = −0.329), a profile with multiple
turning points (q = 4.0) and a profile with a pronounced peak (q = −10.0).

VII. Using a finite wire medium with a four by four lattice

(a) (b)

Figure 7.77: A representation of a partially finite wire medium in CST, consisting
of a four by four lattice of dielectric wires in a unit cell with transverse metallic
boundary conditions and longitudinal periodic boundary conditions (ax = 13.06
mm and ay = 15.00 mm). This is effectively a finite lattice of infinitely long wires
in an infinite metallic waveguide. The dielectric wires have a radius (r) of 0.6
mm and a relative permittivity (ε) of 100. (a) shows the unit cell used in CST,
and (b) shows the boundaries of the structure with green representing metallic
boundaries and orange, periodic boundary conditions.
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We have shown that our mode profiling method can be extended to completely
finite structures. This has been done by replicating chosen mode profiles in a
finite two by two lattice of dielectric wires. We will now explore the ability of four
by four lattices, shown in Fig. 7.77, to do the same. Exploring multiple different
lattice sizes proved useful in our later work in time domain simulations where we
attempted to simulate the excitation of our structure.

We will first consider a structure made up of a four by four lattice of infinitely
long dielectric wires in an infinitely long metallic waveguide. This is represented
in CST by a unit cell containing our lattice of wires with the transverse bound-
aries given metallic boundary conditions and the longitudinal boundaries given
periodic boundary conditions. The placement of the boundaries is half a lat-
tice constant from the nearest row or column of wires, identical to the boundary
placements for our infinite lattices. The dielectric wires used have a permittivity
of εr = 100.

Figure 7.78: Numerical results showing a transverse electric mode, with a fre-
quency of 4.30 GHz, in a representation of a partially finite four by four array of
dielectric wires (εr = 100) of radius 0.5mm, and wire spacings ax = 13.06 mm and
ay = 15.00 mm. The electric field is represented using a vector plot of an x-y slice
of the structure where the arrow direction represents field direction and colour
represents the magnitude of the field strength.

The modes in this structure can be found by running an eigenmode simulation.
A large number of modes in our structures are transverse modes, such as the one
shown in Fig. 7.78. We also can find our desired longitudinal modes, such as
the one shown in Fig. 7.79 for a wire radius of 0.6 mm. These modes have the
same characteristics as the modes we have found in the infinite case: a significant
longitudinal component in the regions of free space, and the longitudinal field in
the wire has the opposite orientation to the field in free space.
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(a)
(b)

(c)

Figure 7.79: Images from numerical simulations in CST showing the longitudinal
mode ( f = 10.05 GHz) found in a partially finite dielectric wire medium (4× 4,
εr = 100, r = 0.6 mm, ax = 13.06 mm and ay = 15.00 mm). The fields are either
represented using arrow plots where the arrow direction represents field direction
and colour represents the magnitude of the field strength, or colour plots where
the strength and magnitude of the longitudinal field is represented by colour. (a)
shows a y-z slice through the centre of the structure, (b) an x-y slice and (c) a y-z
slice through two of the wires.
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Confirming the existence of modes which resemble our desired modes is im-
portant, but it is also important that these modes have the expected dispersion
relation. The squared dispersion relation of the mode found for a wire radius of
0.6 mm is shown in Fig. 7.80. This does appear to be a plasma-like dispersion
relation, but we can confirm this by plotting f 2 vs κ2. We have confirmed that
this dispersion relation is plasma-like and have also found the associated plasma
frequency.

Figure 7.80: A plot of the squared dispersion relation, frequency squared ( f 2)
against our wavenumber squared (κ2), of the longitudinal mode in a partially
finite dielectric wire medium (4× 4, εr = 100, r = 0.6 mm, ax = 13.06 mm and
ay = 15.00 mm) that demonstrates the mode’s plasma-like dispersion relation.

Having an analytic expression to link the plasma frequency and the wire radius
is vital to our method for mode profile shaping. By repeating the process of
finding longitudinal modes and their plasma frequencies for a variety of wire
radii we can attempt to find a fit for this data. The data for the relationship
between the plasma frequency squared and the wire radius has been plotted in
Fig. 7.81. As with our other dielectric wire structures, this relationship is well
described by an exponential decay curve. The fitting parameters for this data are
δ = 72.3 (GHz2), σ = 565 (GHz2) and ρ = 0.171 (mm−1). This fitting curve, like
the previous fits, is successful at describing the relationship of the data with an
R2 value of 0.9998.
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Figure 7.81: A plot of the plasma frequency squared, λ2
s , of partially finite dielec-

tric wire media (4× 4, εr = 100, ax = 13.06 mm and ay = 15.00 mm) against wire
radius, r, with an exponential decay fitting curve.

Figure 7.82: Radius function calculated for a flattened profile (q = 0.8) in a par-
tially finite dielectric wire medium (4× 4, εr = 100, ax = 13.06 mm and ay = 15.00
mm) for the parameter choice of fd = 11 GHz, Rc = 0.5 mm and λC = 10.1 GHz.

Now that we have an approximate expression relating the plasma frequency
and wire radius, we can use our established method to produce a radius function
that if implemented, will give us our desired mode profile. Usually, we would
attempt to replicate a variety of profiles, but as we have already shown that our
mode profiling works for partially finite lattices, it should be sufficient to demon-
strate mode profiling for one profile. The profile we have attempted to replicate
is the flatter mode profile (Mathieu parameter q=0.8). We have chosen to fix the
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parameters RC = 0.5 mm and fd = 11 GHz. Given this choice of profile and fixed
parameters, the resulting radius function is plotted in Fig. 7.82, with the follow-
ing parameter values Γ1 = 1.71 · 10−1 (mm), Γ2 = 5.40 · 10−2, Γ3 = 3.01 · 10−2 and
Γ4 = 1.42 · 10−1 (mm−1).

By implementing the radius function shown above, we should be able to repli-
cate our desired field profile. We implemented the radius function using a series
of conical frustums. Around the frequency range of our design frequency, we ob-
served the longitudinal mode in Fig. 7.83. As we have done previously, we judged
this mode to be longitudinal due to our observation in these images of the signif-
icant longitudinal component of the electric field at the centre of the structure an
the minimal transverse components.
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(a)

(b)

(c)

Figure 7.83: Images showing the resulting longitudinal mode ( f = 10.98 GHz)
after the implementation of the calculated radius function for a flattened profile
(q = 0.8) in a partially finite dielectric wire medium (4× 4, εr = 100, ax = 13.06
mm and ay = 15.00 mm) for the parameter choice of fd = 11 GHz, Rc = 0.5 mm
and λC = 10.1 GHz. The fields are either represented using arrow plots where the
arrow direction represents field direction and colour represents the magnitude
of the field strength, or colour plots where the direction and magnitude of the
longitudinal field is represented by colour. (a) shows a y-z slice through the centre
of the structure, (b) an x-y slice and (c) a y-z slice through two of the wires.

We evaluated the field along a line through the centre of the structure. Eval-
uating the field profile along this line gives the profile shown in Fig. 7.84. Our
mode profiling attempt has been successful with an R2 value of 0.9915.
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Figure 7.84: Plot of the field profile (longitudinal, z, spatial variation of the electric
field strength, Ez) of the longitudinal mode (10.98 GHz) in a partially finite dielec-
tric wire medium (4× 4, εr = 100, ax = 13.06 mm and ay = 15.00 mm) for our
attempt to produce a flattened profile (q = 0.8) by the implementation of a radius
function based on the choice of fd = 11 GHz, Rc = 0.5 mm and λC = 10.1 GHz
(black). The plot includes the field profile observed in our numerical simulation
(solid) and the desired profile (dotted). In order to compare these the field profile
and z coordinate have been normalised.

Having extended our results to a four by four lattice of infinitely long wires
in a metallic waveguide, the next step was to attempt to extend our results to
a four by four lattice of finite wires in a metallic cavity. This only requires the
introduction of metallic boundary conditions on the longitudinal boundaries of
our previous unit cells. We can also reuse our plasma frequency data from the
previous infinitely long structures and, thus, reuse the required radius functions.
We introduced the new boundaries to the structure we have previously used to
achieve mode profiling success. After doing this, we were able to find the longi-
tudinal mode shown in Fig. 7.85.
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(a)

(b)

(c)

Figure 7.85: Images showing the resulting longitudinal mode ( f = 10.98 GHz)
after the implementation of the calculated radius function for a flattened profile
(q = 0.8) in a finite dielectric wire medium (4× 4, εr = 100, ax = 13.06 mm and
ay = 15.00 mm) for the parameter choice of fd = 11 GHz, Rc = 0.5 mm and
λC = 10.1 GHz. The fields are either represented using arrow plots where the
arrow direction represents field direction and colour represents the magnitude
of the field strength, or colour plots where the direction and magnitude of the
longitudinal field is represented by colour. (a) shows a y-z slice through the centre
of the structure, (b) an x-y slice and (c) a y-z slice through two of the wires.

Evaluating the field profile in the same way as previously, we find the profile
shown in Fig. 7.86. Again, we have been successful in our mode profiling efforts,
with an R2 value of 0.9935.
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Figure 7.86: Plot of the field profile (longitudinal, z, spatial variation of the electric
field strength, Ez) of the longitudinal mode (10.98 GHz) in a finite dielectric wire
medium (4× 4, εr = 100, ax = 13.06 mm and ay = 15.00 mm) for our attempt to
produce a flattened profile (q = 0.8) by the implementation of a radius function
based on the choice of fd = 11 GHz, Rc = 0.5 mm and λC = 10.1 GHz (black).
The plot includes the field profile observed in our numerical simulation (solid)
and the desired profile (dotted). In order to compare these the field profile and z
coordinate have been normalised.

The results contained in this section show that our mode profiling method is
successful for a four by four lattice of infinite or finite length.

VIII. Introducing disorder into finite wire media

VIII.1 Random errors in the wire radius

Previously, we have studied the effect of introducing disorder to our infinite wire
media structures. In that case, any disorder we introduce into a wire will be
reproduced across all the wires due to the periodic boundary conditions used. A
scenario where the exact same series of errors in the radius of a wire is replicated
across all wires is not realistic. Now that we have extended our method to finite
structures, we can perform an analysis of the introduction of radius errors to our
finite structures.

In the case of a finite structure, we can introduce a different set of randomly
generated radius errors for each wire. In all our studies in this section, we have
used partially finite structures where the wires are infinitely long, but there are
a finite number. The lattices used are all four by four lattices with the transverse
boundaries given metallic boundary conditions. As for the case of the infinite
structures, the randomly generated radius errors introduced into each segment of
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the wire are generated by taking a randomly generated number between -1 and 1,
then multiplying it by our tolerance. One of the tolerances we have chosen to use
is 0.05 mm. The control structure we have decided to use is based on the choice
of parameters Rc = 0.5 mm and f = 11 GHz. This structure has been shown to
produce a flattened mode profile in previous simulations.

Figure 7.87: A view of the resulting dielectric wire structure for the inclusion
of ±0.05 mm disorder into the radius functions calculated for a flattened profile
(q = 0.8) in a partially finite dielectric wire medium (4× 4, εr = 100, ax = 13.06
mm and ay = 15.00 mm) for the parameter choice of fd = 11 GHz, Rc = 0.5 mm
and λC = 10.1 GHz.

We can get an idea of the effect of introducing this error on the structure from
Fig. 7.87 where there are small but noticeable bumps in the wires with the random
error introduced. In Fig. 7.88 two of the modified radius functions for the wires in
the ±0.05 mm analysis are shown along with a comparison with the unperturbed
radius function from our control case. These plots demonstrate the impact of the
introduction of the radius errors and the difference in the errors introduced for
each wire.
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Figure 7.88: A plot of the resulting radius functions when disorder is introduced
into our control radius function calculated for a flattened profile (q = 0.8) in
a partially finite dielectric wire medium (4 × 4, εr = 100, ax = 13.06 mm and
ay = 15.00 mm) for the parameter choice of fd = 11 GHz, Rc = 0.5 mm and
λC = 10.1 GHz. The level of disorder shown is ±0.05 mm (blue), with two of
the radius functions shown (dashed and dotted) to emphasise the different radius
variations resulting from the introduction of random disorder in the radius. The
original radius function is also shown (black).

Figure 7.89: A plot of the resulting radius functions when different levels of dis-
order are introduced into our control radius function calculated for a flattened
profile (q = 0.8) in a partially finite dielectric wire medium (4 × 4, εr = 100,
ax = 13.06 mm and ay = 15.00 mm) for the parameter choice of fd = 11 GHz,
Rc = 0.5 mm and λC = 10.1 GHz (black). The levels of disorder shown are ±0.05
mm (blue) and ±0.2 mm (green).

We also investigated the introduction of radius error with a greater tolerance
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of 0.2 mm. An example of a radius function after introducing this disorder is
shown in Fig. 7.89 along with a radius function with 0.05 mm tolerance radius
error and the original unperturbed radius function.

After producing these perturbed radius functions for each wire for each tol-
erance, we were able to run simulations to examine the effect of these changes.
The field profiles found in these simulations are shown in Figs. 7.90 and 7.91. For
the case of the smaller tolerance of 0.05 mm, we can see that the field profiling is
still quite successful, with an R2 value of 0.9677. As we might expect, when the
error tolerance is increased to 0.2 mm, the field profiling attempt breaks down, as
shown in Fig. 7.91.

Figure 7.90: Plot showing the field profile of the longitudinal mode ( f = 11.01
GHz) when disorder of the order ±0.05 mm is introduced into our control radius
function for a flattened profile (q = 0.8) in a partially finite dielectric wire medium
(4× 4, εr = 100, ax = 13.06 mm and ay = 15.00 mm) for the parameter choice of
fd = 11 GHz, Rc = 0.5 mm and λC = 10.1 GHz (blue).
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Figure 7.91: Plot showing the field profile of the longitudinal mode ( f = 11.13
GHz) when disorder of the order ±0.2 mm is introduced into our control radius
function for a flattened profile (q = 0.8) in a partially finite dielectric wire medium
(4× 4, εr = 100, ax = 13.06 mm and ay = 15.00 mm) for the parameter choice of
fd = 11 GHz, Rc = 0.5 mm and λC = 10.1 GHz (blue).

We can conclude that based on our simulations, we would expect our method
to be robust to fabrication errors on the order of 0.05 mm. This should be an
acceptable level of tolerance. We have already discussed the advantages of this
method of analysing the effect of radius errors, the fact that it is far more realistic,
but it has the downside of being more time consuming to carry out and taxing for
the software involved. In particular, the small variations in the segments of our
wires proved to be especially challenging to mesh. These problems are the reason
we have limited our analysis to just two different tolerances. Ideally, we would
have explored in more detail at what level of error tolerance the field profiling
breaks down. Also, it would have been useful to try many different ensembles of
disordered radius functions for each tolerance rather than just one.

VIII.2 Random errors in the wire positions

Another area of potential disorder in our structure is the placement of the wires.
It was not possible to properly study this in the infinite case. As we had purely
periodic boundary conditions, a shift in the wire position would not change the
relative positions of all the wires in the effective lattice. All that would be achieved
is that if the position of field evaluation were kept constant it would effectively
be observing the field at different positions as the wire shifted. We have already
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studied the effect of evaluation position on field profiling, so it made no sense to
carry out a further study on the same effect.

In the case of a partially finite lattice, if we randomly shift the position of each
of the wires their relative positions will be changed. Similar to our exploration
of radius errors, we have introduced random errors in the position of our wires
by generating a series of random numbers between -1 and 1. In this case, we
generate two numbers per wire. The first number is multiplied by Tax√

2
and the

second by Tay√
2

, with T being a tolerance parameter, to produce our shifts in the
x and y dimensions respectively. In our study we have examined a variety of
magnitudes of position error characterised by T values of T = 0.01, 0.05, 0.1, 0.2.
The resulting structure caused by the introduction of the greatest level of disorder,
T = 0.2, is shown in Fig. 7.92.

Figure 7.92: A view of the resulting dielectric wire structure for the inclusion of
disorder of the order ± 0.2√

2
ai mm (i = x, y) into the position of the dielectric wires

with a radius function calculated for a flattened profile (q = 0.8) in a partially
finite dielectric wire medium (4× 4, εr = 100, ax = 13.06 mm and ay = 15.00 mm)
for the parameter choice of fd = 11 GHz, Rc = 0.5 mm and λC = 10.1 GHz.

The field profiles resulting from these structures are shown in Figs. 7.93-7.96.
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Figure 7.93: Plot showing the field profile of the longitudinal mode ( f = 10.99
GHz) when disorder of the order ±0.01√

2
ai mm (i = x, y) is introduced into the

position of the dielectric wires with a radius function for a flattened profile (q =
0.8) in a partially finite dielectric wire medium (4× 4, εr = 100, ax = 13.06 mm
and ay = 15.00 mm) for the parameter choice of fd = 11 GHz, Rc = 0.5 mm and
λC = 10.1 GHz (magenta).

Figure 7.94: Plot showing the field profile of the longitudinal mode ( f = 10.97
GHz) when disorder of the order ±0.05√

2
ai mm (i = x, y) is introduced into the

position of the dielectric wires with a radius function for a flattened profile (q =
0.8) in a partially finite dielectric wire medium (4× 4, εr = 100, ax = 13.06 mm
and ay = 15.00 mm) for the parameter choice of fd = 11 GHz, Rc = 0.5 mm and
λC = 10.1 GHz (blue).
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Figure 7.95: Plot showing the field profile of the longitudinal mode ( f = 10.92
GHz) when disorder of the order ± 0.1√

2
ai mm (i = x, y) is introduced into the

position of the dielectric wires with a radius function for a flattened profile (q =
0.8) in a partially finite dielectric wire medium (4× 4, εr = 100, ax = 13.06 mm
and ay = 15.00 mm) for the parameter choice of fd = 11 GHz, Rc = 0.5 mm and
λC = 10.1 GHz (red).

Figure 7.96: Plot showing the field profile of the longitudinal mode ( f = 10.92
GHz) when disorder of the order ± 0.2√

2
ai mm (i = x, y) is introduced into the

position of the dielectric wires with a radius function for a flattened profile (q =
0.8) in a partially finite dielectric wire medium (4× 4, εr = 100, ax = 13.06 mm
and ay = 15.00 mm) for the parameter choice of fd = 11 GHz, Rc = 0.5 mm and
λC = 10.1 GHz (blue).
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We can see from these profiles that the structures field profiling remains very
consistent for T = 0.01 and T = 0.05. There is some noticeable deterioration at
T = 0.1 and a complete collapse for T = 0.2. These results are summarised in Ta-
ble 7.11 along with the R2 value for each plot. We can conclude from this analysis
that our results can cope with a position error of 5% of the lattice parameters in
each dimension, with some clear deterioration when approaching a position error
of 10%. Similar to our analysis of random radius, this analysis could have been
improved by trying more ensembles of disorder for each tolerance.

T f (GHz) R2

0 10.98 0.9806
0.01 10.99 0.9983
0.05 10.97 0.9960
0.1 10.92 0.9559
0.2 10.92 -0.4125

Table 7.11: Table summarising the results of the implementation of radius func-
tions when different levels of disorder are introduced into the position of the
dielectric wire with a radius function calculated for a flattened profile (q = 0.8) in
a partially finite dielectric wire medium (εr = 50, ax = 13.06 mm and ay = 15.00
mm) for the parameter choice of fd = 11 GHz, Rc = 0.5 mm and λC = 10.1 GHz.
The parameters listed are: the level of disorder introduced (T), longitudinal mode
frequency ( f ) and a figure of merit for the agreement between our field profile
and the desired profile (R2).

VIII.3 Coordinated shift in the wire positions

As well as considering random errors, we have examined a coordinated error in
the position of the rods. We have considered a collective movement of all the
wires either closer together or further away from each other. The lattice becomes
either sparser or denser.

We have made these changes by introducing a scaling constant ξ, which is used
to shift the position of each wire relative to the centre of the structure while the
boundaries remain unchanged. This effectively represents a shifting in the lattice
parameters of the wire medium and a change in the position of the boundaries.
When the lattice is made denser it represents a wire medium with smaller lattice
constants and boundaries that are placed further away.

We have run simulations for a variety of different ξ values. The frequency of
the longitudinal modes for these values are shown in Fig. 7.98. The data shown
fits an exponential decay curve well, although it should be noted that ξ values
outside this range were simulated but it became difficult to identify comparable
longitudinal modes.

184



Figure 7.97: A plot of the longitudinal mode frequency, f , found in a modified
partially finite dielectric wire medium (4× 4, εr = 100, ax = 13.06 mm and ay =
15.00 mm) with a radius function calculated for a flattened profile (q = 0.8) for
the parameter choice of fd = 11 GHz, Rc = 0.5 mm and λC = 10.1 GHz, against
the parameter ξ. The dielectric wire medium has been modified by scaling the
position of the dielectric wires (X · ax, Y · ay), where X and Y are integers, relative
to the centre of the structure by the factor ξ. An exponential fitting curve has also
been included (black).

Figure 7.98: A plot of a figure of merit for the agreement between our desired
profile and the longitudinal mode profile (R2) found in a modified partially finite
dielectric wire medium (4 × 4, εr = 100, ax = 13.06 mm and ay = 15.00 mm)
with a radius function calculated for a flattened profile (q = 0.8) for the parameter
choice of fd = 11 GHz, Rc = 0.5 mm and λC = 10.1 GHz, against the parameter
ξ. The dielectric wire medium has been modified by scaling the position of the
dielectric wires (X · ax, Y · ay), where X and Y are integers, relative to the centre
of the structure by the factor ξ.

The R2 values for the longitudinal modes at these ξ values are shown in Fig.
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7.98. The graph shows an asymmetric response to the introduction of our coor-
dinated disorder. For ξ < 1, which leads to a denser lattice, the effects on the
field profiling appears to be minimal, whereas shifts where ξ > 1 cause a serious
deterioration in the quality of the field profiling. This is understandable as sparser
lattices have rods which are closer to the distorting effects of the metallic bound-
aries. A sample of a few of the resulting field profiles from these coordinated
shifts in wire position are shown in Figs. 7.99-7.101.

Figure 7.99: Plot showing the field profile of the longitudinal mode ( f = 11.25
GHz) in a modified partially finite dielectric wire medium (ξ = 0.95, 4× 4, εr =
100, ax = 13.06 mm and ay = 15.00 mm) with a radius function for a flattened
profile (q = 0.8) for the parameter choice of fd = 11 GHz, Rc = 0.5 mm and
λC = 10.1 GHz.
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Figure 7.100: Plot showing the field profile of the longitudinal mode ( f = 10.98
GHz) in an unmodified partially finite dielectric wire medium (ξ = 1, 4 × 4,
εr = 100, ax = 13.06 mm and ay = 15.00 mm) with a radius function for a
flattened profile (q = 0.8) for the parameter choice of fd = 11 GHz, Rc = 0.5 mm
and λC = 10.1 GHz.

Figure 7.101: Plot showing the field profile of the longitudinal mode ( f = 10.77
GHz) in a modified partially finite dielectric wire medium (ξ = 1.05, 4× 4, εr =
100, ax = 13.06 mm and ay = 15.00 mm) with a radius function for a flattened
profile (q = 0.8) for the parameter choice of fd = 11 GHz, Rc = 0.5 mm and
λC = 10.1 GHz.
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IX. Time domain simulations of finite wire media

IX.1 Observing field profiling in a time domain simulation

One more area in which we wanted to reassure ourselves is our ability to excite
our structures. All our previous work has been based on eigenmode simulations
which shows us that our modes are valid solutions. We will now investigate
whether it is possible to excite our desired longitudinal electric modes in our
structures.

The structure we are using in our time domain simulations is based on one of
the finite structures that was able to achieve field profile shaping. This structure
is a four by four lattice with the wire variation produced using the parameters
Rc = 0.5 and fd = 11 GHz for a flattened profile (q=0.8). This wire variation is
plotted in Fig. 7.102. It should be noted that the radius variation shown contains
only a single period. A full unit cell of our structures has two periods of the wire
variation, but now we are only using a half structure. This was done in an attempt
to increase the speed of our simulations. Accordingly, using a half structure, we
would only expect to produce half a period of our desired profile.

Figure 7.102: A single period of the radius function calculated for a flattened
profile (q = 0.8) in a finite dielectric wire medium (4× 4, εr = 100, ax = 13.06
mm and ay = 15.00 mm) for the parameter choice of fd = 11 GHz, Rc = 0.5 mm
and λC = 10.1 GHz. This is the wire radius variation used in the following time
domain simulations, although the lattice configurations used differ from the basis
of the calculated function.
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(a) (b)

(c)

(d)

Figure 7.103: A representation of a finite wire medium in CST, consisting of three
vertically stacked units of four by four lattices of dielectric wires. The unit cell
has one set of metallic transverse boundary conditions, one set of open trans-
verse boundary conditions and metallic longitudinal boundary conditions. The
dielectric wires have a radius function calculated for a flattened profile (q = 0.8)
in a partially finite dielectric wire medium (4× 4, εr = 100, ax = 13.06 mm and
ay = 15.00 mm) for the parameter choice of fd = 11 GHz, Rc = 0.5 mm and
λC = 10.1 GHz. A small section has been attached to the bottom of the structure
with dimensions xdim = 19 mm, ydim = 10 mm and zdim = 9.5 mm, where a
waveguide port has been placed. (a) shows a perspective the unit cell of the struc-
ture in CST; (b) shows the boundaries of the structure with green representing
metallic boundaries and purple, open boundary conditions; (c) shows a side view
of the structure in CST, where the extra section can be more clearly seen; and (d)
a view of the structure from below with the waveguide port shown in red.
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The structure we have used is formed by taking the unit cell from these finite
simulations and introducing two transformed copies of the unit cell, to form a
structure with three of these unit cells stacked on top of each other. This creates a
four by twelve lattice of wires which can be seen in Fig 7.103a. The decision to use
three unit cells was motivated by the experience we had with other periodic struc-
tures [216]. The boundaries of this structure are all metallic, apart from the top
and the bottom of the structure which were given open boundaries as illustrated
in 7.103b. In addition to our usual lattice structure, we included an extra section
that with the set boundary conditions acts as a waveguide attached to the bottom
of the structure. This section can be seen more clearly in Fig. 7.103c. Attached to
the bottom of this section is the waveguide port through which CST allows us to
excite our structure, which is shown in Fig. 7.103d.

Having set up our structure, we defined the excitation signal we will use. CST
allows the user to define a frequency range that can be used to generate a default
excitation signal. Given that the basis unit cells were designed to support field
profiling for a mode at 11 GHz, we chose a frequency range of 10.5-11.5 GHz. The
resulting excitation signal, which was used, is shown in Fig. 7.104.

Figure 7.104: The default excitation signal generated by CST for a choice of fre-
quency range of 10.5-11.5 GHz. This is the signal we will use to excite a finite
dielectric wire medium structure (3 units of 4× 4; εr = 100, ax = 13.06 mm and
ay = 15.00 mm; q = 0.8, fd = 11 GHz, Rc = 0.5 mm and λC = 10.1 GHz; open
y boundaries, and metallic x and z boundaries; and a waveguide port, which is
distanced 10 mm from the lattice, with dimension 19× 9.5 mm).

At this stage, CST can be used to calculate port modes. These are the modes
supported by our waveguide port which can be used to excite our structure. We
used the fundamental mode shown in Fig. 7.105. It was important that the elec-
tric field of our port mode was directed along the wire. This meant choosing a
waveguide port position which meant that the propagation of the excitation will
be transverse to the wire direction.
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Figure 7.105: The fundamental port mode found for our chosen waveguide port
(19× 9.5 mm). The field is represented using an arrow plots on the surface of
the waveguide port. This is the mode we will use to excite a finite dielectric wire
medium structure (3 units of 4× 4; εr = 100, ax = 13.06 mm and ay = 15.00 mm;
q = 0.8, fd = 11 GHz, Rc = 0.5 mm and λC = 10.1 GHz; open y boundaries, and
metallic x and z boundaries; and a waveguide port, which is distanced 10 mm
from the lattice, with dimension 19× 9.5 mm).

With a chosen port mode it is possible to run a time domain simulation. Time
domain simulations simulate the evolution of an excitation until an end point is
reached which is set either in terms of the achievement of a minimum energy or
a maximum time. This means that it will simulate the excitation of the structure
until a set minimum energy level is hit after the initial increase of energy due to
the excitation or until a maximum time has elapsed. Our energy limit was set at
-30 dB, but usually the maximum time setting was the limiting factor. For these
simulations, we set a time limit of t=200 ns. This is shown in Fig. 7.106 where the
evolution of the system energy is plotted.
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Figure 7.106: A plot of the energy (E) of a finite dielectric wire medium structure
(3 units of 4× 4; εr, ax = 13.06 mm and ay = 15.00 mm; q = 0.8, fd = 11 GHz,
Rc = 0.5 mm and λC = 10.1 GHz; open y boundaries, and metallic x and z
boundaries; and a waveguide port, which is distanced 10 mm from the lattice,
with dimension 19× 9.5 mm) against time (t).

When these simulations have finished, CST produces s-parameter plots for the
excitation. S-parameters communicate the reflection or transmittance of a field
through a structure. We are interested in the S11 parameter which denotes the re-
flection of the excitation. In Fig. 7.107 the S parameter plot for the frequency range
examined is shown, with coloured squares used to mark frequencies at which we
have examined the fields produced. Despite producing this S11 plot, it became
clear that due to various considerations we have not examined in detail, we can-
not make a clear judgement on the quality of transmission at a given frequency.
This is an area of improvement in our time domain analysis that we would have
liked to address given more time. A more full analysis would consider the S21
parameter, the transmission parameter, and phases.
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Figure 7.107: A plot of the S11 parameter, representing the energy remaining at the
waveguide port, against the field frequency ( f ) for a finite dielectric wire medium
structure (3 units of 4× 4; εr = 100, ax = 13.06 mm and ay = 15.00 mm; q = 0.8,
fd = 11 GHz, Rc = 0.5 mm and λC = 10.1 GHz; open y boundaries, and metallic
y and z boundaries; and a waveguide port, which is distanced 10 mm from the
lattice, with dimension 19× 9.5 mm) with t = 200 ns. Coloured squares have been
included to represent some of the frequency monitors included in our simulation
and the S11 parameter at that frequency: red ( f = 10.934 GHz, S11 = −8.5857
dB), blue ( f = 11.027 GHz, S11 = −8.1792 dB) and green ( f = 11.263 GHz,
S11 = −17.807 dB).

Field monitors introduced into our CST simulations allow us to look at the
fields supported at particular frequencies. Fig. 7.108 shows logarithmic colour
plots of some of the fields at frequencies we have examined. All of these fields
show a significant longitudinal component and, qualitatively, have a longitudinal
profile that we would expect. Given only half a period of the flattened profile
should be supported, we would expect a variation from a high negative longitu-
dinal field to a high positive longitudinal field or vice versa.
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(a) (b) (c) (d) (e) (f)

Figure 7.108: Images from numerical simulations in CST showing the fields found
using different frequency monitors in a time domain simulation of a finite dielec-
tric wire medium (3 units of 4× 4; εr = 100, ax = 13.06 mm and ay = 15.00 mm;
q = 0.8, fd = 11 GHz, Rc = 0.5 mm and λC = 10.1 GHz; open y boundaries,
and metallic x and z boundaries; and a waveguide port, which is distanced 10
mm from the lattice, with dimension 19× 9.5 mm) with t = 200 ns. The fields are
represented using logarithmic colour plots where the longitudinal field direction
and magnitude is represented by colour. (a) shows a y-z slice ( f = 10.934 GHz);
(b), an x-y slice ( f = 10.934 GHz); (c), a y-z slice ( f = 11.027 GHz); (d), an x-y
slice ( f = 11.027 GHz); (e), a y-z slice ( f = 11.263 GHz); and (f), an x-y slice
( f = 11.263 GHz).

The fields at 10.934 GHz and 11.027 GHz do not demonstrate the behaviour
we expect around the wires, where the field should be strongly longitudinal in
the wires but oriented in the opposite direction to the field surrounding the wires.
This behaviour is shown in the field at 11.263 GHz. This was the reason that we
decided to focus on examining the field profile of the field at 11.263 GHz, which
was done in a similar way to our eigenmode simulations. Lines were defined
spanning across the length of our structure and situated halfway between the
lattice. These lines spanned from the bottom of the first lattice unit cell (none
were placed within the waveguide section) to the top of the structure and were
separated by ax/4. Then, as we have previously done, the field was evaluated
along the lines, and the R2 value for the comparison with our desired profile
were calculated. A plot of these R2 values for our chosen field is shown in Fig.
7.109.
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(a)

(b)

Figure 7.109: A plot of a figure of merit (R2) for the comparison between the
desired profile and the field profile (longitudinal, z, spatial variation of the electric
field strength, Ez) of the field (11.263 GHz) in a finite dielectric wire medium (t =
200 ns; 3 units of 4× 4; εr = 100, ax = 13.06 mm and ay = 15.00 mm; q = 0.8, fd =
11 GHz, Rc = 0.5 mm and λC = 10.1 GHz; open y boundaries and, metallic x and
z boundaries; and a waveguide port, which is distanced 10 mm from the lattice,
with dimension 19× 9.5 mm) at the evaluation position against the y position of
the evaluation line given in terms of quarter lattice parameters from the bottom
of the structure (ay/4). Coloured squares are included to represent a few of the
profiles we have plotted separately: maroon (y = 16ay/4, R2 = 0.9991), orange
(y = 18ay/4, R2 = 0.9757) and magenta (y = 19ay/4, R2 = −2.059). (a) is a full
plot and (b) only shows R2 values above 0.95.

This plot shows that for large sections of the structure, the field profiles pro-
duced are a very good fit for our desired profile. In Fig. 7.109 there are a series of
coloured squares that indicate a few evaluation positions, and their correspond-
ing R2 values, for which we have plotted the field profiles in Figs. 7.110-7.112.
These plots help to give a qualitative view of our field profiling success. These
results give us some confidence that our replicated field profiles can be excited in
our structure, although as mentioned, we are unsure of whether these fields will
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be transmitted well. We should also not that Fig. 7.112 clearly shows a signifi-
cant difference between the field profile observed at this position and the desired
field profile. We are not sure why this, although it does seem that the profiling is
less successful in the regions where the electric field is weak in the gap between
regions of high field with different directions.

Figure 7.110: Plot of the field profile (longitudinal, z, spatial variation of the elec-
tric field strength, Ez) of the field (11.263 GHz) in a finite dielectric wire medium
(t = 200 ns; 3 units of 4× 4; εr = 100, ax = 13.06 mm and ay = 15.00 mm; q = 0.8,
fd = 11 GHz, Rc = 0.5 mm and λC = 10.1 GHz; open y boundaries, and metallic
x and z boundaries; and a waveguide port, which is distanced 10 mm from the
lattice, with dimension 19× 9.5 mm) at the evaluation position y = 16ay/4 (ma-
roon). The plot includes the field profile observed in our numerical simulation
(solid) and the desired profile (dotted). In order to compare these the field profile
and z coordinate have been normalised.
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Figure 7.111: Plot of the field profile (longitudinal, z, spatial variation of the elec-
tric field strength, Ez) of the field (11.263 GHz) in a finite dielectric wire medium
(t = 200 ns; 3 units of 4× 4; εr = 100, ax = 13.06 mm and ay = 15.00 mm; q = 0.8,
fd = 11 GHz, Rc = 0.5 mm and λC = 10.1 GHz; open y boundaries, and metallic
x and z boundaries; and a waveguide port, which is distanced 10 mm from the
lattice, with dimension 19× 9.5 mm) at the evaluation position y = 18ay/4 (or-
ange). The plot includes the field profile observed in our numerical simulation
(solid) and the desired profile (dotted). In order to compare these the field profile
and z coordinate have been normalised.

Figure 7.112: Plot of the field profile (longitudinal, z, spatial variation of the elec-
tric field strength, Ez) of the field (11.263 GHz) in time domain simulations of a
finite dielectric wire medium (t = 200 ns; 3 units of 4× 4; εr, ax = 13.06 mm and
ay = 15.00 mm; q = 0.8, fd = 11 GHz, Rc = 0.5 mm and λC = 10.1 GHz; open
y boundaries and, metallic x and z boundaries; and a waveguide port, which is
distanced 10 mm from the lattice, with dimension 19× 9.5 mm) at the evaluation
position y = 19ay/4 (magenta). The plot includes the field profile observed in our
numerical simulation (solid) and the desired profile (dotted). In order to compare
these the field profile and z coordinate have been normalised.
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IX.2 Examining the effect of simulation time

After achieving some qualified success with our time domain results, it was im-
portant to examine the choices made to determine which were vital to the replica-
tion of our field profiles. This should help with the reproducibility of our results.
The first factor that we have studied is the choice of simulation time. We have re-
peated our previous simulation with an identical structure, but with a maximum
simulation time of t=100 ns.

As we have previously discussed the limiting factor in our simulations run is
the time limit; therefore, the excitation was now allowed to progress for 100 ns
in the simulation. The fields found at some of our included frequency monitors
are shown in Fig. 7.113. Both fields appear to show the features we would expect
from our field.

Figure 7.113: Images from numerical simulations in CST showing the fields found
using different frequency monitors in a time domain simulation of a finite dielec-
tric wire medium (3 units of 4× 4; εr = 100, ax = 13.06 mm and ay = 15.00 mm;
q = 0.8, fd = 11 GHz, Rc = 0.5 mm and λC = 10.1 GHz; open y boundaries,
and metallic x and z boundaries; and a waveguide port, which is distanced 10
mm from the lattice, with dimension 19× 9.5 mm) with t = 100 ns. The fields are
represented using logarithmic colour plots where the longitudinal field direction
and magnitude is represented by colour. (a) shows a y-z slice ( f = 11.265 GHz);
(b), an x-y slice ( f = 11.265 GHz); (c), a y-z slice ( f = 11.274 GHz); and (d), an x-y
slice ( f = 11.274 GHz).

We have evaluated the profiles for both frequencies monitored. The R2 plots
for these two frequencies are shown in Figs. 7.114 and 7.115. These plots both
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include a comparison with our successful t=200 ns plot. It is clear that allowing
the excitation to progress for 100 ns has led to a severe reduction in field pro-
filing success, with a high agreement with the desired profile only being shown
sporadically.

Figure 7.114: A plot of a figure of merit (R2) for the comparison between the
desired profile and the field profile (longitudinal, z, spatial variation of the elec-
tric field strength, Ez) of the field (11.265 GHz) in time domain simulations of a
finite dielectric wire medium (t = 100 ns; 3 units of 4× 4; εr = 100, ax = 13.06
mm and ay = 15.00 mm; q = 0.8, fd = 11 GHz, Rc = 0.5 mm and λC = 10.1
GHz; open y boundaries and, metallic x and z boundaries; and a waveguide port,
which is distanced 10 mm from the lattice, with dimension 19× 9.5 mm) at the
evaluation position against the y position of the evaluation line given in terms of
quarter lattice parameters from the bottom of the structure (ay/4). A comparison
is included with the plot resulting from a field (11.263 GHz) in our original time
domain simulations of a finite dielectric wire medium (t = 200 ns; 3 units of 4× 4;
εr = 100, ax = 13.06 mm and ay = 15.00 mm; q = 0.8, fd = 11 GHz, Rc = 0.5
mm and λC = 10.1 GHz; open y boundaries and, metallic x and z boundaries;
and a waveguide port, which is distanced 10 mm from the lattice, with dimension
19× 9.5 mm)
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Figure 7.115: A plot of a figure of merit (R2) for the comparison between the
desired profile and the field profile (longitudinal, z, spatial variation of the elec-
tric field strength, Ez) of the field (11.274 GHz) in time domain simulations of a
finite dielectric wire medium (t = 100 ns; 3 units of 4× 4; εr = 100, ax = 13.06
mm and ay = 15.00 mm; q = 0.8, fd = 11 GHz, Rc = 0.5 mm and λC = 10.1
GHz; open y boundaries and, metallic x and z boundaries; and a waveguide port,
which is distanced 10 mm from the lattice, with dimension 19× 9.5 mm) at the
evaluation position against the y position of the evaluation line given in terms of
quarter lattice parameters from the bottom of the structure (ay/4). A comparison
is included with the plot resulting from a field (11.263 GHz) in our original time
domain simulations of a finite dielectric wire medium (t = 200 ns; 3 units of 4× 4;
εr = 100, ax = 13.06 mm and ay = 15.00 mm; q = 0.8, fd = 11 GHz, Rc = 0.5
mm and λC = 10.1 GHz; open y boundaries and, metallic x and z boundaries;
and a waveguide port, which is distanced 10 mm from the lattice, with dimension
19× 9.5 mm)

We have also repeated our simulation for a time limit of t = 20 ns. Given
our experience with t = 100 ns, we would not expect these simulations to be
successful. The fields resulting from the frequency monitors introduced are shown
in Fig. 7.116.
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(a)
(b)

(c)
(d)

Figure 7.116: Images from numerical simulations in CST showing the fields found
using different frequency monitors in a time domain simulation of a finite dielec-
tric wire medium (3 units of 4× 4; εr = 100, ax = 13.06 mm and ay = 15.00 mm;
q = 0.8, fd = 11 GHz, Rc = 0.5 mm and λC = 10.1 GHz; open y boundaries,
and metallic x and z boundaries; and a waveguide port, which is distanced 10
mm from the lattice, with dimension 19× 9.5 mm) with t = 20 ns. The fields are
represented using logarithmic colour plots where the longitudinal field direction
and magnitude is represented by colour. (a) shows a y-z slice ( f = 11.021 GHz);
(b), an x-y slice ( f = 11.021 GHz); (c), a y-z slice ( f = 11.267 GHz); and (d), an x-y
slice ( f = 11.267 GHz).

The resulting R2 plots for the fields produced at our monitored frequencies
are shown in Figs. 7.117 and 7.118. As we had expected, these plots show that
with this amount of time elapsed there are only a few instances of successful field
profile shaping.
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(a)

Figure 7.117: A plot of a figure of merit (R2) for the comparison between the
desired profile and the field profile (longitudinal, z, spatial variation of the elec-
tric field strength, Ez) of the field (11.021 GHz) in time domain simulations of a
finite dielectric wire medium (t = 20 ns; 3 units of 4× 4; εr = 100, ax = 13.06
mm and ay = 15.00 mm; q = 0.8, fd = 11 GHz, Rc = 0.5 mm and λC = 10.1
GHz; open y boundaries, and metallic x and z boundaries; and a waveguide port,
which is distanced 10 mm from the lattice, with dimension 19× 9.5 mm) at the
evaluation position against the y position of the evaluation line given in terms of
quarter lattice parameters from the bottom of the structure (ay/4). A comparison
is included with the plot resulting from a field (11.263 GHz) in our original time
domain simulations of a finite dielectric wire medium (t = 200 ns; 3 units of 4× 4;
εr = 100, ax = 13.06 mm and ay = 15.00 mm; q = 0.8, fd = 11 GHz, Rc = 0.5
mm and λC = 10.1 GHz; open y boundaries and, metallic x and z boundaries;
and a waveguide port, which is distanced 10 mm from the lattice, with dimension
19× 9.5 mm)
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(a)

Figure 7.118: A plot of a figure of merit (R2) for the comparison between the
desired profile and the field profile (longitudinal, z, spatial variation of the elec-
tric field strength, Ez) of the field (11.267 GHz) in time domain simulations of a
finite dielectric wire medium (t = 20 ns; 3 units of 4× 4; εr = 100, ax = 13.06
mm and ay = 15.00 mm; q = 0.8, fd = 11 GHz, Rc = 0.5 mm and λC = 10.1
GHz; open y boundaries, and metallic x and z boundaries; and a waveguide port,
which is distanced 10 mm from the lattice, with dimension 19× 9.5 mm) at the
evaluation position against the y position of the evaluation line given in terms of
quarter lattice parameters from the bottom of the structure (ay/4). A comparison
is included with the plot resulting from a field (11.263 GHz) in our original time
domain simulations of a finite dielectric wire medium (t = 200 ns; 3 units of 4× 4;
εr = 100, ax = 13.06 mm and ay = 15.00 mm; q = 0.8, fd = 11 GHz, Rc = 0.5
mm and λC = 10.1 GHz; open y boundaries and, metallic x and z boundaries;
and a waveguide port, which is distanced 10 mm from the lattice, with dimension
19× 9.5 mm)

IX.3 Investigating the need for a waveguide section

Another important aspect to investigate is whether the inclusion of the waveg-
uide section is necessary. This section of the structure was included because we
had been struggling to observe field profiling without it. The dimensions of the
waveguide, 9.5 by 19 mm, were chosen to support modes around our desired
frequency. To investigate the importance of this inclusion, we have repeated our
simulations with an identical structure bar the removal of the waveguide section.
The resulting structure is shown in Fig. 7.119. The waveguide port is now situated
over the entire bottom boundary of the structure.
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(a) (b)

Figure 7.119: A representation of a finite wire medium in CST, consisting of three
vertically stacked units of four by four lattices of dielectric wires. The unit cell
has one set of metallic transverse boundary conditions, one set of open trans-
verse boundary conditions and metallic longitudinal boundary conditions. The
dielectric wires have a radius function calculated for a flattened profile (q = 0.8)
in a partially finite dielectric wire medium (4× 4, εr = 100, ax = 13.06 mm and
ay = 15.00 mm) for the parameter choice of fd = 11 GHz, Rc = 0.5 mm and
λC = 10.1 GHz. This structure is identical to the one used in our initial time
domain simulation except for the removal of the extra section upon which the
waveguide port was placed. (a) shows the the unit cell of the structure in CST and
(b) shows the unit cell with the waveguide port highlighted in red.

(a) (b) (c) (d)

Figure 7.120: The fundamental port modes in a finite dielectric wire medium
structure (3 units of 4× 4; εr = 100, ax = 13.06 mm and ay = 15.00 mm; q = 0.8,
fd = 11 GHz, Rc = 0.5 mm and λC = 10.1 GHz; and open y boundaries, and
metallic x and z boundaries). The field is represented using arrow plots on the
surface of the waveguide port. (a) shows the first mode; (b), the second mode; (c),
the third mode; and (d), the fourth mode, which we have found the most suitable
for exciting our structure.

A selection of the modes supported by this new port are shown in Fig. 7.120.
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The port mode that we have found to be most successful at achieving field profile
shaping is the fourth port mode shown in Fig. 7.120d.

We have modified the simulation to run for a lesser amount of time, t = 100
ns, due to concerns about the energy of the system diverging. The modes found
at our frequency monitors are shown in Fig. 7.121.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 7.121: Images from numerical simulations in CST showing the fields found
using different frequency monitors in a time domain simulation of a finite dielec-
tric wire medium (3 units of 4× 4; εr = 100, ax = 13.06 mm and ay = 15.00 mm;
q = 0.8, fd = 11 GHz, Rc = 0.5 mm and λC = 10.1 GHz; and open y boundaries,
and metallic x and z boundaries) with t = 100 ns. The fields are represented using
logarithmic colour plots where the longitudinal field direction and magnitude is
represented by colour. (a) shows a y-z slice ( f = 11.309 GHz); (b), an x-y slice
( f = 11.309 GHz); (c), a y-z slice ( f = 11.324 GHz); (d), an x-y slice ( f = 11.324
GHz); (e), a y-z slice ( f = 11.338 GHz); and (f), an x-y slice ( f = 11.338 GHz).

The field produced by the monitor at the frequency of 11.338 GHz looks
promising as an example of field profiling. The R2 plot for this frequency is
shown in Fig. 7.122.
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(a)

(b)

Figure 7.122: Plots (black) of a figure of merit (R2) for the comparison between
the desired profile and the field profile (longitudinal, z, spatial variation of the
electric field strength, Ez) of the field (11.338 GHz) in time domain simulations of
a finite dielectric wire medium (t = 100 ns; 3 units of 4× 4; εr = 100, ax = 13.06
mm and ay = 15.00 mm; q = 0.8, fd = 11 GHz, Rc = 0.5 mm and λC = 10.1
GHz; and open y boundaries, and metallic x and z boundaries) at the evaluation
position against the y position of the evaluation line given in terms of quarter
lattice parameters from the bottom of the structure (ay/4). (a) is the plot with
a comparison included with the plot (dotted blue) resulting from a field (11.265
GHz) in time domain simulations of a finite dielectric wire medium (t = 100 ns;
3 units of 4× 4; εr = 100, ax = 13.06 mm and ay = 15.00 mm; q = 0.8, fd = 11
GHz, Rc = 0.5 mm and λC = 10.1 GHz; open y boundaries and, metallic x and
z boundaries; and a waveguide port, which is distanced 10 mm from the lattice,
with dimension 19× 9.5 mm), and (b) is the plot with a comparison included with
the plot (dashed magenta) resulting from a field (11.263 GHz) in time domain
simulations of a finite dielectric wire medium (t = 200 ns; 3 units of 4× 4; εr =
100, ax = 13.06 mm and ay = 15.00 mm; q = 0.8, fd = 11 GHz, Rc = 0.5 mm
and λC = 10.1 GHz; open y boundaries and, metallic x and z boundaries; and
a waveguide port, which is distanced 10 mm from the lattice, with dimension
19× 9.5 mm)
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The comparison of the R2 plot for the case with no funnel and our original
control case progressed by t=100 ns shows a greater performance for the structure
with no funnel. Meanwhile, the comparison with the original structure allowed to
progress for t=200 ns shows the no-funnel case being noticeably worse. Given the
added complications of exciting with a higher order mode and the inability to ex-
cite the structure for longer times where better field profiling can be achieved, we
conclude that the inclusion of the waveguide section has helped the performance
of the structure.

IX.4 The effect of multiple units

Figure 7.123: A representation of a finite wire medium in CST, consisting of a four
by four lattices of dielectric wires. The unit cell has one set of metallic transverse
boundary conditions, one set of open transverse boundary conditions and metallic
longitudinal boundary conditions. The dielectric wires have a radius function cal-
culated for a flattened profile (q = 0.8) in a partially finite dielectric wire medium
(4× 4, εr = 100, ax = 13.06 mm and ay = 15.00 mm) for the parameter choice of
fd = 11 GHz, Rc = 0.5 mm and λC = 10.1 GHz. A small section has been attached
to the bottom of the structure with dimensions xdim = 19 mm, ydim = 10 mm and
zdim = 9.5 mm, where a waveguide port has been placed.

As mentioned previously, the structure used to find field profiling in our time
domain simulations was formed by three unit cells of a four by four lattice which
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had previously been successful. We were unsure whether this inclusion was nec-
essary. Therefore, we ran simulations where only one unit of the lattice was used.
This new structure is shown in Fig. 7.123.

We simulated this structure for a simulation time of t = 200 ns, but the system
became unstable. Re-running the simulation for t=100 ns avoided this problem.
The field produced by the field monitors introduced into our simulation is shown
in Fig. 7.124.

(a)
(b)

Figure 7.124: Images from numerical simulations in CST showing the field found
using a frequency monitor ( f = 11.263 GHz) in a time domain simulation of a
finite dielectric wire medium (4× 4; εr = 100, ax = 13.06 mm and ay = 15.00 mm;
q = 0.8, fd = 11 GHz, Rc = 0.5 mm and λC = 10.1 GHz; open y boundaries,
and metallic x and z boundaries; and a waveguide port, which is distanced 10
mm from the lattice, with dimension 19× 9.5 mm) with t = 100 ns. The fields are
represented using logarithmic colour plots where the longitudinal field direction
and magnitude is represented by colour. (a) shows a y-z slice; and (b), an x-y slice.

We can see the R2 plot for this frequency in Fig. 7.125. Looking at the compar-
ison with our successful control structure, we see that they are remarkably similar
apart from at positions near the top of our single-unit structure. This discrepancy
could be explained by the fact that it is an unfair comparison. The field shape at
the top of the single-unit structure will be affected by the fact that it is nearing the
edge of the structure, whereas it is being compared to a position in the three-unit
structure that is two full lattice units away from reaching the area where it would
be distorted by edge effects. It seems safe to conclude that there is minimal dis-
tortion in the quality of the results by using just one unit cell of our four by four
base structure. There are significant advantages to using a smaller structure due
to it being less computationally intensive.
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(a)

(b)

Figure 7.125: A plot of a figure of merit (R2) for the comparison between the
desired profile and the field profile (longitudinal, z, spatial variation of the electric
field strength, Ez) of the field (11.263 GHz) in a finite dielectric wire medium
(t = 100 ns; 3 units of 4 × 4; εr = 100, ax = 13.06 mm and ay = 15.00 mm;
q = 0.8, fd = 11 GHz, Rc = 0.5 mm and λC = 10.1 GHz; open y boundaries and,
metallic x and z boundaries; and a waveguide port, which is distanced 10 mm
from the lattice, with dimension 19× 9.5 mm) at the evaluation position against
the y position of the evaluation line given in terms of quarter lattice parameters
from the bottom of the structure (ay/4). (a) is a full plot with a comparison
included with the plot (dashed magenta) resulting from a field (11.263 GHz) in
time domain simulations of a finite dielectric wire medium (t = 200 ns; 3 units
of 4× 4; εr = 100, ax = 13.06 mm and ay = 15.00 mm; q = 0.8, fd = 11 GHz,
Rc = 0.5 mm and λC = 10.1 GHz; open y boundaries and, metallic x and z
boundaries; and a waveguide port, which is distanced 10 mm from the lattice,
with dimension 19× 9.5 mm), and (b) only shows R2 values above 0.95.

IX.5 The importance of the choice of base structure

We would expect the choice of the base structure to have little role in the field
profiling success in our time domain simulations assuming the base structure
was found to be able to support field profile shaping in eigenmode simulations.
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Despite this, we have seen the opposite, with certain choices of base structure
performing much worse than others. Due to the time required to run these sim-
ulations, we have not been able to run a detailed analysis of this problem to
determine what factors in the choice of a base structure are important.

We will illustrate this effect by detailing an example simulation where the base
lattice unit used leads to poor field profile shaping. We have created a model with
a setup identical to our control case except the wire radius variation for the four
by four lattice base was based on a parameter choice of Rc = 0.7 mm and f = 9.4
GHz for a flattened profile. This radius variation is plotted in Fig. 7.126 and the
resulting structure is shown in Fig. 7.127.

Figure 7.126: Half a period of the radius function calculated for a flattened profile
(q = 0.8) in a partially finite dielectric wire medium (4× 4, εr = 100, ax = 13.06
mm and ay = 15.00 mm) for the parameter choice of fd = 9.4 GHz, Rc = 0.7 mm
and λC = 9.05 GHz. This is the wire radius variation used in the following time
domain simulations, although the lattice configurations used differ from the basis
of the calculated function.
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Figure 7.127: A representation of a finite wire medium in CST, consisting of three
vertically stacked units of four by four lattices of dielectric wires. The unit cell
has one set of metallic transverse boundary conditions, one set of open trans-
verse boundary conditions and metallic longitudinal boundary conditions. The
dielectric wires have a radius function calculated for a flattened profile (q = 0.8)
in a partially finite dielectric wire medium (4× 4, εr = 100, ax = 13.06 mm and
ay = 15.00 mm) for the parameter choice of fd = 9.4 GHz, Rc = 0.7 mm and
λC = 9.05 GHz. A small section has been attached to the bottom of the structure
with dimensions xdim = 19 mm, ydim = 10 mm and zdim = 9.5 mm, where a
waveguide port (red) has been placed.

As with our control case, we chose a frequency range for our excitation signal
that spanned 2 GHz with our design frequency at the centre of this range. The
resulting excitation signal is shown in Fig. 7.128.
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Figure 7.128: The default excitation signal generated by CST for a choice of fre-
quency range of 8.4-10.4 GHz. This is the signal we will use to excite a finite
dielectric wire medium structure (3 units of 4× 4; εr = 100, ax = 13.06 mm and
ay = 15.00 mm; q = 0.8, fd = 9.4 GHz, Rc = 0.7 mm and λC = 9.05 GHz; open
y boundaries, and metallic x and z boundaries; and a waveguide port, which is
distanced 10 mm from the lattice, with dimension 19× 9.5 mm).

(a)
(b)

(c)
(d)

(e)
(f)

Figure 7.129: Images from numerical simulations in CST showing the fields found
using different frequency monitors in a time domain simulation of a finite dielec-
tric wire medium (3 units of 4× 4; εr = 100, ax = 13.06 mm and ay = 15.00 mm;
q = 0.8, fd = 9.4 GHz, Rc = 0.7 mm and λC = 9.05 GHz; open y boundaries,
and metallic x and z boundaries; and a waveguide port, which is distanced 10
mm from the lattice, with dimension 19× 9.5 mm) with t = 70 ns. The fields are
represented using logarithmic colour plots where the longitudinal field direction
and magnitude is represented by colour. (a) shows a y-z slice ( f = 9.614 GHz);
(b), an x-y slice ( f = 9.614 GHz); (c), a y-z slice ( f = 9.661 GHz); (d), an x-y slice
( f = 9.661 GHz); (e), a y-z slice ( f = 9.78 GHz); and (f), an x-y slice ( f = 9.78
GHz).
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As we have seen in other cases, our original time setting of t = 100 ns results in
a system which became unstable. We, therefore, chose a shorter simulation time
which avoids this problem, t=70 ns. The fields found at our frequency monitors
are shown in Fig. 7.129. These fields seem promising, with all of them displaying
the features expected from our field and having the expected variation.

When we look at the R2 plots for these frequencies, their field profiling is
significantly worse than our control case. Some successful field profiling does
occur, but it is more sporadic. This may be due to the inability to progress the
simulation for a longer time. We have not established why some choices of four
by four unit cells become unstable before others.

Figure 7.130: A plot of a figure of merit (R2) for the comparison between the
desired profile and the field profile (longitudinal, z, spatial variation of the electric
field strength, Ez) of the field (9.78 GHz) in time domain simulations of a finite
dielectric wire medium (t = 70 ns; 3 units of 4 × 4; εr = 100, ax = 13.06 mm
and ay = 15.00 mm; q = 0.8, fd = 9.4 GHz, Rc = 0.7 mm and λC = 9.05
GHz; open y boundaries and, metallic x and z boundaries; and a waveguide port,
which is distanced 10 mm from the lattice, with dimension 19× 9.5 mm) at the
evaluation position against the y position of the evaluation line given in terms of
quarter lattice parameters from the bottom of the structure (ay/4). A comparison
is included with the plot resulting from a field (11.263 GHz) in our original time
domain simulations of a finite dielectric wire medium (t = 200 ns; 3 units of 4× 4;
εr = 100, ax = 13.06 mm and ay = 15.00 mm; q = 0.8, fd = 11 GHz, Rc = 0.5
mm and λC = 10.1 GHz; open y boundaries and, metallic x and z boundaries;
and a waveguide port, which is distanced 10 mm from the lattice, with dimension
19× 9.5 mm)

IX.6 Full structure

We have attempted to run a simulation identical to our control case, but with
two periods of the wire variation, as is usually done in our eigenmode simula-
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tions. The full wire radius variation used is shown in Fig. 7.131 and the resulting
structure is shown in Fig. 7.132.

Figure 7.131: Two periods of the radius function calculated for a flattened profile
(q = 0.8) in a partially finite dielectric wire medium (4× 4, εr = 100, ax = 13.06
mm and ay = 15.00 mm) for the parameter choice of fd = 11 GHz, Rc = 0.5 mm
and λC = 10.1 GHz. This is the wire radius variation used in the following time
domain simulations, although the lattice configurations used differ from the basis
of the calculated function.
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Figure 7.132: A representation of a finite wire medium in CST, consisting of three
vertically stacked units of four by four lattices of dielectric wires. The unit cell
has one set of metallic transverse boundary conditions, one set of open trans-
verse boundary conditions and metallic longitudinal boundary conditions. The
dielectric wires have a radius function calculated for a flattened profile (q = 0.8)
in a partially finite dielectric wire medium (4× 4, εr = 100, ax = 13.06 mm and
ay = 15.00 mm) for the parameter choice of fd = 11 GHz, Rc = 0.5 mm and
λC = 10.1 GHz. A small section has been attached to the bottom of the struc-
ture with dimensions xdim = 19 mm, ydim = 10 mm and zdim = 9.5 mm, where
a waveguide port has been placed. This structure has dielectric wires with two
periods of the radius variation.

We have initially used the same time setting as our control case, t=200 ns. The
fields produced by our frequency monitors are shown in Fig. 7.133.
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Figure 7.133: Images from numerical simulations in CST showing the fields found
using different frequency monitors in a time domain simulation of a finite dielec-
tric wire medium (3 units of 4× 4; εr = 100, ax = 13.06 mm and ay = 15.00 mm;
two periods, q = 0.8, fd = 11 GHz, Rc = 0.5 mm and λC = 10.1 GHz; open y
boundaries, and metallic x and z boundaries; and a waveguide port, which is dis-
tanced 10 mm from the lattice, with dimension 19× 9.5 mm) with t = 200 ns. The
fields are represented using logarithmic colour plots where the longitudinal field
direction and magnitude is represented by colour. (a) shows a y-z slice ( f = 11.017
GHz); (b), an x-y slice ( f = 11.017 GHz); (c), a y-z slice ( f = 11.252 GHz); (d), an
x-y slice ( f = 11.252 GHz); (e), a y-z slice ( f = 11.269 GHz); and (f), an x-y slice
( f = 11.269 GHz).

The R2 plot for the field produced by the frequency monitor at 11.269 GHz is
shown in Fig. 7.130. This plot shows a significantly worse performance compared
to the single period structure.
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Figure 7.134: A plot of a figure of merit (R2) for the comparison between the
desired profile and the field profile (longitudinal, z, spatial variation of the electric
field strength, Ez) of the field (11.269 GHz) in time domain simulations of a finite
dielectric wire medium (t = 200 ns; 3 units of 4× 4; εr = 100, ax = 13.06 mm and
ay = 15.00 mm; two periods, q = 0.8, fd = 11 GHz, Rc = 0.5 mm and λC = 10.1
GHz; open y boundaries and, metallic x and z boundaries; and a waveguide port,
which is distanced 10 mm from the lattice, with dimension 19× 9.5 mm) at the
evaluation position against the y position of the evaluation line given in terms of
quarter lattice parameters from the bottom of the structure (ay/4). A comparison
is included with the plot resulting from a field (11.263 GHz) in our original time
domain simulations of a finite dielectric wire medium (t = 200 ns; 3 units of 4× 4;
εr = 100, ax = 13.06 mm and ay = 15.00 mm; q = 0.8, fd = 11 GHz, Rc = 0.5
mm and λC = 10.1 GHz; open y boundaries and, metallic x and z boundaries;
and a waveguide port, which is distanced 10 mm from the lattice, with dimension
19× 9.5 mm)

One possible reason for this deterioration in performance is that despite run-
ning for the same time, the situations are not equivalent, as the full structure is
twice as long and therefore it will take more time for the excitation to progress. It
would make sense to simulate for 400 ns, but we have done this, and the structure
becomes unstable. Instead, we ran the simulation for 300 ns. The field produced
by the frequency monitor in this new simulation is shown in Fig. 7.135.
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Figure 7.135: Images from numerical simulations in CST showing the field found
using a frequency monitor in a time domain simulation of a finite dielectric wire
medium (3 units of 4 × 4; εr = 100, ax = 13.06 mm and ay = 15.00 mm; two
periods, q = 0.8, fd = 11 GHz, Rc = 0.5 mm and λC = 10.1 GHz; open y
boundaries, and metallic x and z boundaries; and a waveguide port, which is
distanced 10 mm from the lattice, with dimension 19× 9.5 mm) with t = 300 ns.
The fields are represented using logarithmic colour plots where the longitudinal
field direction and magnitude is represented by colour. (a) shows a y-z slice
( f = 11.262 GHz); and (b), an x-y slice ( f = 11.262 GHz).

The R2 plot for the field observed by this frequency monitor is shown in Fig.
7.136. This plot shows a significant improvement, although the performance is
still slightly weaker than for our original structure. One clear conclusion is that
we were right to think that it would be easier to observe field profiling with a
single period structure.
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Figure 7.136: A plot of a figure of merit (R2) for the comparison between the
desired profile and the field profile (longitudinal, z, spatial variation of the electric
field strength, Ez) of the field (11.262 GHz) in time domain simulations of a finite
dielectric wire medium (t = 300 ns; 3 units of 4× 4; εr = 100, ax = 13.06 mm and
ay = 15.00 mm; two periods, q = 0.8, fd = 11 GHz, Rc = 0.5 mm and λC = 10.1
GHz; open y boundaries and, metallic x and z boundaries; and a waveguide port,
which is distanced 10 mm from the lattice, with dimension 19× 9.5 mm) at the
evaluation position against the y position of the evaluation line given in terms of
quarter lattice parameters from the bottom of the structure (ay/4). A comparison
is included with the plot resulting from a field (11.263 GHz) in our original time
domain simulations of a finite dielectric wire medium (t = 200 ns; 3 units of 4× 4;
εr = 100, ax = 13.06 mm and ay = 15.00 mm; q = 0.8, fd = 11 GHz, Rc = 0.5
mm and λC = 10.1 GHz; open y boundaries and, metallic x and z boundaries;
and a waveguide port, which is distanced 10 mm from the lattice, with dimension
19× 9.5 mm)

X. Conclusions

In this chapter, we have verified that our method can be extended to a variety of
different realisations of dielectric wire media while also examining several other
factors which impact on the practicality of our method. We started by confirming
that our method could be applied with wire media with a variety of permittivities
as low as εr = 3. By considering several different lattice parameters, we showed
that our longitudinal modes can be supported in a wide range of lattices with
different frequencies. We have considered the introduction of disorder into our
infinite wire media, in the form of random and systematic errors in the radii of
our wires, and the presence of cladding around our wires. Our method proved
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to be stable to these perturbations. We have shown that our method is applicable
for both partially finite and finite wire media, with a variety of lattice sizes. This
allowed us to also consider the effect of the introduction of a variety of disorders
into partially finite wire media, with our method again proving to be quite stable.
Finally, we have shown some success in observing field profile shaping in finite
wire media in time domain simulations, although we have not fully considered
the transmission of these fields.
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Chapter 8

Mode profile shaping method with
metallic wire media

We have developed a method for mode profile shaping using dielectric wires that
has proved to be very successful. We wanted to see if we could extend this method
to metallic wires. This seemed a reasonable step to take as the theoretical work
underpinning our method was based on an analysis of metal wires. If we could
confirm that our method can be extended to metal wires, then it would allow
for greater flexibility when attempting to achieve a physical realisation of our
structures and the mode profiling they facilitate.

I. Establishing our method with wires made of a perfect

electrical conductor (PEC)

Figure 8.1: A typical representation of a wire medium in CST, consisting of a
section of a wire made of a perfect electrical conductor (PEC) in a unit cell with
periodic boundary conditions. This effectively represents an infinite PEC wire
medium.
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To start our exploration of metal wire media, we had to pick what material to
use. We first chose the idealised material available in CST that is defined to be a
perfect electrical conductor (PEC). This material is an idealised version of a metal.
With the material chosen, we then started with an infinite lattice of wires. This
is achieved in CST by using a unit cell centred on our PEC wire, with periodic
boundary conditions applied to all boundaries. The transverse dimensions of the
unit cell define the lattice parameters of the lattice. Throughout all the simulations
in this section, the lattice parameters are set as ax = 13.06 mm and ay = 15 mm.
This set-up can be seen in Fig. 8.1.

Figure 8.2: Numerical results showing a transverse electric mode, with a fre-
quency of 3.53 GHz, in a representation of an infinite array of PEC wires of radius
0.3mm, with wire spacings ax = 13.06 mm and ay = 15.00 mm. The electric field
is represented using a vector plot of a y-z slice of the structure where the arrow
direction represents field direction and colour represents the magnitude of the
field strength.

Having settled on an initial structure to explore, we ran eigenmode simulations
to explore the modes supported by our structure and find our longitudinal electric
modes. The majority of the modes found in these structures are transverse modes,
such as the mode shown in Fig. 8.2. For structures with radii in an appropriate
range, we can also find our desired longitudinal modes, as shown in Fig. 8.3 for
a radius of 1 mm. As can be seen from Fig. 8.3 these modes have a significant
longitudinal component outside of the wire near the boundaries of the unit cell,
but, unlike the longitudinal modes found in our dielectric wire medium, the field
in the wire is zero. This is to be expected from a metal wire.
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(a) (b)

Figure 8.3: Images from numerical simulations in CST showing the longitudinal
mode ( f = 7.94 GHz) found in an infinite PEC wire medium (r = 1 mm, ax =
13.06 mm and ay = 15.00 mm). The fields are either represented using arrow plots
where the arrow direction represents field direction and colour represents the
magnitude of the field strength, or colour plots where the direction and magnitude
of the longitudinal field is represented by colour. (a) shows a y-z slice of the
structure and (b) an x-y slice.

One of the key predictions made about these modes is the form of their disper-
sion relation. The expected dispersion relation is a plasma-like dispersion relation
given by f 2 = β2c2κ2 + λ2

s . Where f is the frequency, c is the speed of light in
a vacuum, κ is the wavenumber divided by 2π and λs is the plasma frequency
or cut-off frequency. By varying the phase associated with the longitudinal di-
mension in our simulations, we can vary κ and build up a plot of the dispersion
relation. A dispersion plot of the longitudinal mode found with a wire radius of
1 mm was found. As in the dielectric case in Chapter 6, we can confirm whether
this dispersion is plasma-like by plotting f 2 vs κ2, as the curve should then obey
the classic straight line formula—y = mx + c. We can see that this is true by look-
ing at the predicted dispersion relation in equation 4.20. If we set f 2 as y and κ

as x, then we will retrieve the straight line equation with m = β2c2 and C = λ2
s .

The plot of f 2 vs κ2 for the longitudinal mode found is shown in Fig. 8.4. Fig.
8.4 confirms that the longitudinal mode found does have the expected dispersion
relation and by taking the intercept of the straight line fit in the figure we can find
the value for the plasma frequency.

Our method for mode profiling relies on us being able to manipulate the
plasma frequency and, in particular, make it vary longitudinally. As with the
development of our method with dielectric wires, we will attempt to achieve this
control by changing the radius of the wires. Before we can do this, we need to
study the effect of the wire radius on the plasma frequency. To do this, we need to
find our longitudinal modes for a variety of PEC wire radii. In Fig. 8.5 we show
the longitudinal modes for wires of radius r = 0.8, 1, 1.2 mm. These modes have
been found for the same κ value but are at different frequencies.

We can see that the change in radius has affected the dispersion relation of
these modes. This is clear in Fig. 8.6 where the dispersion relation of modes
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Figure 8.4: A plot of f 2 against κ2 for a longitudinal mode found in an infinite
PEC wire medium (r = 1 mm, ax = 13.06 mm and ay = 15.00 mm) along with a
straight line fit which helps to demonstrate the plasma-like nature of the disper-
sion relation.

associated with different radii has been plotted. The change in radius produces a
shift in the dispersion curve, which will result in a shift in the plasma frequency.
This is shown in Fig. 8.7 where f 2 vs. κ2 is plotted for different radii, and the
cut-off of their straight line fits are shown. As we have discussed, the cut-off of
these straight lines is directly related to the plasma frequency.

λ2
s (r) ≈ ∆ + Θr (8.1)

By plotting the dispersion relation for a variety of radii, we can determine the
relationship between the plasma frequency, λs, and the wire radius, r. It is clear
from Fig. 8.8 that the relationship can be extremely well described by a straight
line. In this figure the data has been plotted with a straight line, of the form shown
in equation 8.1 where ∆ and Θ are the fitting parameters, fitted to the data. The
fitting parameters for this line are ∆ = 18.3 (GHz2) and Θ = 32.7 (GHz2/mm).
This straight line fit clearly describes the data extremely well, which is confirmed
quantitatively by the R2 of 0.9992.

For our previous attempts at mode profile shaping the relationship between the
plasma frequency and the wire radius has been well described by an exponential
decay curve. As we have seen for a PEC wire this relationship is well described
by a straight line fit.

This does not present any problems in implementing our previously estab-
lished method, but it will change the form of our required radius functions. As
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Figure 8.5: A series of images from numerical simulations in CST showing the lon-
gitudinal modes found in infinite PEC wire media (ax = 13.06 mm and ay = 15.00
mm) with a variety of radii. The fields are either represented using arrow plots
where the arrow direction represents field direction and colour represents the
magnitude of the field strength, or colour plots where the direction and magni-
tude of the longitudinal field is represented by colour. (a) and (b) show a longitu-
dinal mode ( f = 7.53 GHz) in a wire medium with r = 0.8 mm, with (a) showing
a y-z slice and (b) an x-y slice. (c) and (d) show a longitudinal mode ( f = 7.94
GHz) in a wire medium with r = 1 mm, with (c) showing a y-z slice and (d) an
x-y slice. (e) and (f) show a longitudinal mode ( f = 8.35 GHz) in a wire medium
with r = 1.2 mm, with (e) showing a y-z slice and (f) an x-y slice.
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Figure 8.6: The dispersion plots, frequency ( f ) against wavenumber (κ), of the
longitudinal modes in infinite PEC wire media (ax = 13.06 mm and ay = 15.00
mm) with a variety of radii. The radii are 0.8 mm (red), 1 mm (black) and 1.2 mm
(blue).

(a) (b)

Figure 8.7: Plots of frequency squared, f 2, against wavenumber squared, κ2, for
the longitudinal modes in infinite PEC wire media (ax = 13.06 mm and ay = 15.00
mm) with a variety of radii. Straight line fitting curves have been included for
each radii. The radii shown are 0.8 mm (red), 1 mm (black) and 1.2 mm (blue). (a)
shows the plots and the fitting curves, whereas (b) shows only the fitting curves
as they cross the y-axis to emphasise their different intercept values.
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Figure 8.8: A plot of the plasma frequency squared, λ2
s , of infinite PEC wire media

(ax = 13.06 mm and ay = 15.00 mm) against wire radius, r, with a straight line
fitting curve.

usual, to achieve mode profiling in our structure the condition set out in equations
8.2 and 8.3 must be satisfied.

Λ2(z) = f 2 − β2c2

L2

[
a− 2q cos

(
4πz

L

)]
(8.2)

λ2
s (R(z)) = Λ2(z) (8.3)

For the case of our PEC wires this condition will be satisfied if equation 8.4 is
satisfied.

∆ + ΘR(z) = f 2 − β2c2

L2

[
a− 2q cos

(
4πz

L

)]
(8.4)

This condition for the support of our desired mode profile can be solved to
give the following condition for the wire radius function required.

R(z) =
f 2 − ∆

Θ
− β2c2

ΘL2

[
a− 2q cos

(
4πz

L

)]
(8.5)

Equation 8.5 has been rewritten in equation 8.6 in order to emphasise the form
of the function.
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Figure 8.9: Radius function calculated for a flattened profile (q = 0.8) in an infinite
PEC wire medium (ax = 13.06 mm and ay = 15.00 mm) for the parameter choice
of fd = 7.2 GHz, Rc = 0.9 mm and λC = 6.90 GHz.

R(z) = η1 + η2 cos(η3) (8.6)

η1 =
f 2L2 − ∆L2 − β2c2a

L2Θ
(8.7)

η2 =
2β2c2q

L2Θ
(8.8)

η4 =
4π

L
(8.9)

We have been able to solve for a radius function which should allow our struc-
ture to support our desired longitudinal field profiles for a given choice of param-
eters. The value of a and q is specified by our choice of profile. We have to take
care to fix the other parameters appropriately.

To test our method, we will implement a radius function into our CST models
using a series of conical frustums. Our first attempt at validating our method for
PEC wires was based on a flat Mathieu solution (Mathieu parameter q = 0.8).
Having chosen our desired profile, we then fixed our parameters: fd = 7.2 GHz
and RC = 0.9 mm. The required radius function given by our method is plotted
in Fig. 8.9. The related parameters for this radius function are listed in Table 8.1.

Having implemented our required radius function into a CST model of an
infinite PEC wire medium, we then ran an eigenmode simulation to examine the
modes found. Extremely close to the design frequency of 7.2 GHz, we found a
longitudinal mode, f = 7.22 GHz, which is shown in Fig. 8.10.

Using our usual method of evaluating the field strength of the field along a
line along the top of the unit cell, we can examine the mode profile. This is shown
in Fig. 8.11 along with a comparison with the desired Mathieu profile. We can see
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(a)
(b)

Figure 8.10: Images showing the resulting longitudinal mode ( f = 7.22 GHz) after
the implementation of the calculated radius function for a flattened profile (q =
0.8) in an infinite PEC wire medium (ax = 13.06 mm and ay = 15.00 mm) for the
parameter choice of fd = 7.2 GHz, Rc = 0.9 mm and λC = 6.90 GHz. The fields
are either represented using arrow plots where the arrow direction represents
field direction and colour represents the magnitude of the field strength, or colour
plots where the direction and magnitude of the longitudinal field is represented
by colour. (a) shows the field on a y-z slice of the structure, and (b) shows the
field on an x-y slice.

from Fig. 8.11 that our mode profile shaping method has been very successful,
which is confirmed by the R2 value for these two curves of 0.9955.

Figure 8.11: A plot of the field profile (longitudinal, z, spatial variation of the
electric field strength, Ez) of the longitudinal mode ( f = 7.22 GHz) in an infinite
PEC wire medium (ax = 13.06 mm and ay = 15.00 mm) for our attempt to produce
a flattened profile (q = 0.8) with a radius function based on the parameter choice
of fd = 7.2 GHz, Rc = 0.9 mm and λC = 6.90 GHz. The plot includes the field
profile observed in our numerical simulation (solid black) and the desired profile
(dotted black). In order to aid comparison the field profile from our simulation
and the z coordinate have been normalised.

Following the success of our mode profiling method with one profile, we
wanted to explore if the method could be used to support a variety of mode
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profiles. The other profiles we attempted to replicate were a triangular profile
(Mathieu parameter q = −0.329), a profile with an increased number of turning
points (Mathieu parameter q = 4) and a profile with a pronounced peak (Mathieu
parameter q = −10).

The choice of fixed parameters for each of these profiles, and the resulting
parameters for the required radius function and structure are listed in Table 8.1.
The required radius functions have also been plotted in Fig. 8.12.

q fd (GHz) RC (mm) λC (GHz) η1 (mm) η2 (mm) η3 (mm−1) L (mm)
0.8 7.2 0.9 6.9 0.9 0.119 0.0680 185

-0.329 7.2 0.9 6.9 0.9 -0.127 0.110 115
4 7 0.9 6.9 0.9 0.140 0.0329 381

-10 6.5 0.9 6.9 0.9 -0.238 0.0272 461

Table 8.1: A table summarising some of the key parameters related to the im-
plemented radius functions for a variety of profiles in infinite PEC wire media
(ax = 13.06 mm and ay = 15.00 mm). The first set of parameters listed are de-
sign parameters we chose: the Mathieu parameter characterising the profile (q),
design frequency ( fd), central radius (RC) and the corresponding central plasma
frequency (λc). The rest are the resulting structural parameters: the parameters
specifying the corresponding radius function (η1−3) and the length of our unit
cell (L). The profiles considered are a triangular profile (q = −0.329), a profile
with multiple turning points (q = 4.0) and a profile with a pronounced peak
(q = −10.0).
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(c)

Figure 8.12: A series of plots of radius functions calculated for a variety of desired
profiles in infinite PEC wire media (ax = 13.06 mm and ay = 15.00 mm). (a) shows
the radius function for a triangular profile with a parameter choice of fd = 7.2
GHz, Rc = 0.9 mm and λC = 6.90 GHz (crimson); (b), for a profile with multiple
turning points with a parameter choice of fd = 7 GHz, Rc = 0.9 mm and λC = 6.90
GHz (dark blue); and (c), for a profile with a pronounced peak with a parameter
choice of fd = 6.5 GHz, Rc = 0.9 mm and λC = 6.90 GHz (dark green).

We can now implement these radius functions to build a wire medium with
the required radius variation. The modes found in eigenmode simulations for our
attempts at replicating the triangular profile and profile with a larger number of
turning points are shown in Fig. 8.13.
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(b)

(c)

(d)

Figure 8.13: Images showing the resulting longitudinal modes after the imple-
mentation of the calculated radius function for a triangular profile (q = −0.329)
and a profile with multiple turning points (q = 4.0) in infinite PEC wire media
(ax = 13.06 mm and ay = 15.00 mm). The fields are represented using arrow plots
on a y-z slice of the structure where the arrow direction represents field direction
and colour represents the magnitude of the field strength, and colour plots on
an x-y slice where the direction and magnitude of the longitudinal field is rep-
resented by colour. (a) and (b) shows the resulting longitudinal mode ( f = 7.17
GHz) for the attempt to demonstrate a triangular profile by the implementation
of a radius function based on the choice of fd = 7.2 GHz, Rc = 0.9 mm and
λC = 6.90 GHz; and (c) and (d), the resulting longitudinal mode ( f = 7.02 GHz)
for the attempt to achieve a profile with multiple turning points by the implemen-
tation of a radius function based on the choice of fd = 7 GHz, Rc = 0.9 mm and
λC = 6.90 GHz.

The profiles of these modes are shown in Fig. 8.14 along with the desired pro-
files. These plots show that our attempts at mode profiling have been successful.
A quantitative measure of our mode profiling success is given by the R2 values
for the triangular profile and the turning point profile of 0.9992 and 0.9187 respec-
tively. We should note, the performance of the turning point profiling is clearly
not perfect, especially near the peaks, but it is still clearly closer to the desired
profile than a sinusoidal profile.
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(b)

Figure 8.14: Plots of the field profiles (longitudinal, z, spatial variation of the
electric field strength, Ez) of the longitudinal modes in infinite PEC wire media
(ax = 13.06 mm and ay = 15.00 mm) for our attempts to produce a triangular
profile (q = −0.329) and a profile with multiple turning points (q = 4.0). The
plots include the field profile observed in our numerical simulation (solid) and
the desired profile (dotted). In order to compare these the field profile and z
coordinate have been normalised. (a) shows the field profile of the longitudinal
mode ( f = 7.17 GHz) for the attempt to demonstrate a triangular profile by the
implementation of a radius function based on the choice of fd = 7.2 GHz, Rc = 0.9
mm and λC = 6.90 GHz (crimson); and (b), the field profile of the longitudinal
mode ( f = 7.02 GHz) for the attempt to achieve a profile with multiple turning
points by the implementation of a radius function based on the choice of fd = 7
GHz, Rc = 0.9 mm and λC = 6.90 GHz (dark blue).
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As we have previously found, assessing the mode profiling success for our
attempts to replicate a profile with a pronounced peak is complicated. Instead of
finding one longitudinal mode near our design frequency, we find two with very
similar frequencies that have significant field strength only in certain, complemen-
tary areas of the structure. These modes are shown in Fig. 8.15. They were found
around the design frequency of 6.5 GHz at 6.4960 GHz and 6.4968 GHz. This is a
mode separation of just 0.0008 GHz.

(a)

(b)

Figure 8.15: Images showing the resulting longitudinal modes after the imple-
mentation of the calculated radius function for a profile with a pronounced peak
(q = −10.0) in an infinite PEC wire medium (ax = 13.06 mm and ay = 15.00 mm)
with the parameter choice of fd = 6.5 GHz, Rc = 0.9 mm and λC = 6.90 GHz. The
fields are represented using arrow plots on a y-z slice of the structure where the
arrow direction represents field direction and colour represents the magnitude of
the field strength. (a) shows one of the resulting longitudinal modes ( f = 6.4960
GHz); and (b), the other ( f = 6.4968 GHz).

We can see from Fig. 8.15 that the fields in these modes are localised in dif-
ferent areas. In these areas, the fields resemble what we would expect from our
desired mode. If we combine the profiles of these two modes, then we can see
that the result is very similar to our desired profile, with an R2 value of 0.9768.
This is shown in Fig. 8.16. This seems to be an error with CST mislabelling our
desired mode as two different modes.
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Figure 8.16: A plot of the combined field profile (longitudinal, z, spatial variation
of the electric field strength, Ez) of the two longitudinal modes ( f = 6.4960 GHz
and f = 6.4968 GHz) in an infinite PEC wire medium (ax = 13.06 mm and ay =
15.00 mm) for our attempts to produce a profile with a pronounced peak (q =
−10.0) with the parameter choice of fd = 6.5 GHz, Rc = 0.9 mm and λC = 6.90
GHz (dark green).

The results of these simulations show that our mode profiling method has been
successful for a variety of profiles with an infinite lattice of PEC wires. These re-
sults have been summarised in Table 8.2. This is a promising step in our efforts
to extend our results to metallic wires. In our examination of dielectric wires, we
moved from examining infinite lattices to finite lattices. In this case, we decided
to investigate infinite lattices of actual metal before attempting to simulate par-
tially or fully finite structures, as we wanted to confirm our results hold for more
realistic material properties.
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q fd (GHz) λC (GHz) L (mm) f (GHz) R2

0.8 7.2 6.9 185 7.21 0.9955
-0.329 7.2 6.9 115 7.17 0.9992

4 7 6.9 381 7.02 0.9187
-10 6.5 6.9 461 6.50 0.9768

Table 8.2: A table summarising some of the key parameters related to the results
of our implemented radius functions for a variety of profiles in infinite PEC wire
media (ax = 13.06 mm and ay = 15.00 mm). The parameters listed are: the
Mathieu parameter characterising the profile (q), design frequency ( fd), the central
plasma frequency (λc), the length of our unit cell (L), longitudinal mode frequency
( f ) and a figure of merit for the agreement between our field profile and the
desired profile (R2). The profiles considered are a triangular profile (q = −0.329),
a profile with multiple turning points (q = 4.0) and a profile with a pronounced
peak (q = −10.0).

II. Extending our method to infinite copper wire media

We have had success replicating our original method for mode profile shaping,
which was developed using dielectric wire media, with wire media consisting of
metal wires. In particular, we have been able to successfully shape mode profiles
in simulations of PEC wire media. This is an idealised material that cannot be
replicated in reality. We, therefore, extended this work to include the use of copper
wires. In CST a material is defined for use in simulations which has the material
properties of copper, such as the thermal and electrical conductivity, heat capacity,
density and other properties.

Figure 8.17: Numerical results showing a transverse electric mode, with a fre-
quency of 3.73 GHz, in a representation of an infinite array of copper wires of
radius 0.3 mm, and wire spacings ax = 13.06 mm and ay = 15.00 mm. The electric
field is represented using a vector plot of a y-z slice of the structure where the
arrow direction represents field direction and colour represents the magnitude of
the field strength.

With a representation of copper available to us, we can then attempt to repli-
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cate our previous results. The most simple case to begin with is a unit cell with
periodic boundary conditions. Our first step is to find the expected longitudinal
modes for our choice of structure and wire material. As we would expect, the
structure supports a large number of transverse modes, such as the one shown in
Fig. 8.17. Fig. 8.18 shows a longitudinal mode, f = 7.62 GHz, found in a simula-
tion of a copper wire lattice with lattice parameters ax = 15 mm and ay = 13.01
mm, and wire radius r = 0.8 mm. It can be seen that it has the expected charac-
teristics of our longitudinal mode. Fig. 8.19 shows the squared dispersion relation
for the longitudinal mode. It is clear from Fig. 8.19 that the dispersion relation
has the correct behaviour.

(a) (b)

Figure 8.18: Images from numerical simulations in CST showing the longitudinal
mode ( f = 7.62 GHz) found in an infinite copper wire medium (r = 0.8 mm, ax =
13.06 mm and ay = 15.00 mm). The fields are either represented using arrow plots
where the arrow direction represents field direction and colour represents the
magnitude of the field strength, or colour plots where the direction and magnitude
of the longitudinal field is represented by colour. (a) shows a y-z slice of the
structure and (b) an x-y slice.

Having found the dispersion relation of a longitudinal mode for one wire ra-
dius, we can do the same for a variety of radii. The modes for a selection of
different radii we examined are shown in Fig. 8.20. We can then build up the rela-
tionship between the plasma frequency, taken from the y-intercept of the disper-
sion curve, and the wire radius. The dispersion relations for the three longitudinal
modes shown in Fig. 8.20 are shown in Fig. 8.21. The relationship between the
square of the plasma frequency, λ2

s , and wire radius, r, is shown in Fig. 8.22, this
is the relationship that is most important for our mode profiling calculations. For
a copper wire, this relationship takes the form of a simple linear relationship and,
as such, can be well described by an appropriate straight line equation. This fit has
the form shown in equation 8.1 with the following fitting parameters, ∆ = 18.5
(GHz2) and Θ = 32.4 (GHz2/mm). The R2 value for this straight line fit is 0.9995.
We also plotted a version of Fig. 8.22 with the data from the PEC version included
as well. On the scale of the plot the two lines overlapped so closely that showing
them both is unhelpful.
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Figure 8.19: A plot of the squared dispersion relation, frequency squared ( f 2)
against our wavenumber squared (κ2), of the longitudinal mode in an infinite cop-
per wire medium (r = 0.8 mm, ax = 13.06 mm and ay = 15.00 mm) that demon-
strates the mode’s plasma-like dispersion relation along with a fitting curve.

(a) (b)

(c) (d)
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(e) (f)

Figure 8.20: A series of images from numerical simulations in CST showing the
longitudinal modes found in infinite copper wire media (ax = 13.06 mm and
ay = 15.00 mm) with a variety of radii. The fields are either represented using
arrow plots where the arrow direction represents field direction and colour repre-
sents the magnitude of the field strength, or colour plots where the direction and
magnitude of the longitudinal field is represented by colour. (a) and (b) show a
longitudinal mode ( f = 7.41 GHz) in a wire medium with r = 0.7 mm, with (a)
showing a y-z slice and (b) an x-y slice. (c) and (d) show a longitudinal mode
( f = 7.62 GHz) in a wire medium with r = 0.8 mm, with (c) showing a y-z slice
and (d) an x-y slice. (e) and (f) show a longitudinal mode ( f = 7.82 GHz) in a
wire medium with r = 0.9 mm, with (e) showing a y-z slice and (f) an x-y slice.

Figure 8.21: The dispersion plots, frequency ( f ) against wavenumber (κ), of the
longitudinal modes in infinite copper wire media (ax = 13.06 mm and ay = 15.00
mm) with a variety of radii. The radii are 0.7 mm (red), 0.8 mm (black) and 0.9
mm (blue).
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Figure 8.22: A plot of the plasma frequency squared, λ2
s , of infinite copper wire

media (ax = 13.06 mm and ay = 15.00 mm) against wire radius, r, with a straight
line fitting curve.

Now that we have an analytic relationship for the relationship between λ2
s

and r, we can use our previously established method to calculate a function for
the radius variation of our copper wires which should give us a chosen mode
profile. As we have done previously, we originally tested this method for a flat
profile (Mathieu parameter q = 0.8). The free parameters we have chosen to fix
are Rc = 0.9 mm and fd = 7.2 GHz. The radius function resulting from this
choice of parameters is shown in Fig. 8.23. Implementing this radius variation
with copper wires in CST, we found a longitudinal mode at simulation frequency,
f , 7.22 GHz, as shown in Fig. 8.24. The profile of this mode is shown in Fig.
8.25. The agreement with the desired profile is very good qualitatively, and the
calculated R2 value of 0.9988 confirms the success of the mode profile shaping.
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Figure 8.23: Radius function calculated for a flattened profile (q = 0.8) in an infi-
nite copper wire medium (ax = 13.06 mm and ay = 15.00 mm) for the parameter
choice of fd = 7.2 GHz, Rc = 0.9 mm and λC = 6.90 GHz.

(a)

(b)

Figure 8.24: Images showing the resulting longitudinal mode ( f = 7.22 GHz) after
the implementation of the calculated radius function for a flattened profile (q =
0.8) in an infinite copper wire medium (ax = 13.06 mm and ay = 15.00 mm) for the
parameter choice of fd = 7.2 GHz, Rc = 0.9 mm and λC = 6.90 GHz. The fields
are either represented using arrow plots where the arrow direction represents
field direction and colour represents the magnitude of the field strength, or colour
plots where the direction and magnitude of the longitudinal field is represented
by colour. (a) shows the field on a y-z slice of the structure, and (b) shows the
field on an x-y slice.
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Figure 8.25: A plot of the field profile (longitudinal, z, spatial variation of the
electric field strength, Ez) of the longitudinal mode ( f = 7.22 GHz) in an infinite
copper wire medium (ax = 13.06 mm and ay = 15.00 mm) for our attempt to pro-
duce a flattened profile (q = 0.8) with a radius function based on the parameter
choice of fd = 7.2 GHz, Rc = 0.9 mm and λC = 6.90 GHz. The plot includes
the field profile observed in our numerical simulation (solid black) and the de-
sired profile (dotted black). In order to aid comparison the field profile from our
simulation and the z coordinate have been normalised.

Having demonstrated mode profile shaping with one profile, we wanted to
show that our method works for other profiles. With this aim in mind, we
attempted to achieve mode profiling with several profiles: a triangular profile
(Mathieu parameter q = −0.329), a profile with an increased number of turning
points (Mathieu parameter q = 4.0) and a profile with a pronounced peak (Math-
ieu parameter q = −10.0). This is the same method used in previous chapter
for verifying that our method supports a variety of profiles. The free parameters
we have chosen to fix are listed in Table 8.3 along with the resulting parameters
for the required radius function and the structure. The radius functions resulting
from these choices of parameters are shown in Fig. 8.26.
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q fd (GHz) RC (mm) λC (GHz) η1 (mm) η2 (mm) η3 (mm−1) L (mm)
0.8 7.2 0.9 6.9 0.900 0.122 0.0686 183

-0.329 7.5 0.9 6.9 0.900 -0.267 0.158 79.5
4 7 0.9 6.9 0.900 0.149 0.0338 371

-10 6.2 0.9 6.9 0.900 -0.407 0.0354 355

Table 8.3: A table summarising some of the key parameters related to the imple-
mented radius functions for a variety of profiles in infinite copper wire media
(ax = 13.06 mm and ay = 15.00 mm). The first set of parameters listed are de-
sign parameters we chose: the Mathieu parameter characterising the profile (q),
design frequency ( fd), central radius (RC) and the corresponding central plasma
frequency (λc). The rest are the resulting structural parameters: the parameters
specifying the corresponding radius function (η1−3) and the length of our unit
cell (L). The profiles considered are a triangular profile (q = −0.329), a profile
with multiple turning points (q = 4.0) and a profile with a pronounced peak
(q = −10.0).

(a) (b)

(c)

Figure 8.26: A series of plots of radius functions calculated for a variety of desired
profiles in infinite copper wire media (ax = 13.06 mm and ay = 15.00 mm). (a)
shows the radius function for a triangular profile with a parameter choice of fd =
7.5 GHz, Rc = 0.9 mm and λC = 6.90 GHz (crimson); (b), for a profile with
multiple turning points with a parameter choice of fd = 7 GHz, Rc = 0.9 mm and
λC = 6.90 GHz (dark blue); and (c), for a profile with a pronounced peak with a
parameter choice of fd = 6.2 GHz, Rc = 0.9 mm and λC = 6.90 GHz (dark green).
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Now that we have calculated our required radius functions, we can implement
them into CST and observe the mode profiles obtained. The modes found for the
implementation of the radius functions for the triangular profile and the profile
with a greater number of turning points are shown in Fig. 8.27. As usual, we can
evaluate their profile using a line along the top of the unit cell. These profiles are
plotted in Fig. 8.28 along with the desired profiles. These figures clearly show
that our mode profiling has been very successful, which is reinforced by the R2

values for these profiles of 0.9986 for the comparison between the simulated and
desired triangular profiles, and 0.9556 for the comparison between the simulated
and desired multiple turning point profiles.

(a)

(b)

(c)

(d)

Figure 8.27: Images showing the resulting longitudinal modes after the imple-
mentation of the calculated radius function for a triangular profile (q = −0.329)
and a profile with multiple turning points (q = 4.0) in infinite copper wire media
(ax = 13.06 mm and ay = 15.00 mm). The fields are represented using arrow plots
on a y-z slice of the structure where the arrow direction represents field direction
and colour represents the magnitude of the field strength, and colour plots on
an x-y slice where the direction and magnitude of the longitudinal field is rep-
resented by colour. (a) and (b) shows the resulting longitudinal mode ( f = 7.39
GHz) for the attempt to demonstrate a triangular profile by the implementation
of a radius function based on the choice of fd = 7.5 GHz, Rc = 0.9 mm and
λC = 6.90 GHz; and (c) and (d), the resulting longitudinal mode ( f = 7.02 GHz)
for the attempt to achieve a profile with multiple turning points by the implemen-
tation of a radius function based on the choice of fd = 7 GHz, Rc = 0.9 mm and
λC = 6.90 GHz.
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(a)

(b)

Figure 8.28: Plots of the field profiles (longitudinal, z, spatial variation of the
electric field strength, Ez) of the longitudinal modes in infinite copper wire media
(ax = 13.06 mm and ay = 15.00 mm) for our attempts to produce a triangular
profile (q = −0.329) and a profile with multiple turning points (q = 4.0). The
plots include the field profile observed in our numerical simulation (solid) and
the desired profile (dotted). In order to compare these the field profile and z
coordinate have been normalised. (a) shows the field profile of the longitudinal
mode ( f = 7.39 GHz) for the attempt to demonstrate a triangular profile by the
implementation of a radius function based on the choice of fd = 7.5 GHz, Rc = 0.9
mm and λC = 6.90 GHz (crimson); and (b), the field profile of the longitudinal
mode ( f = 7.02 GHz) for the attempt to achieve a profile with multiple turning
points by the implementation of a radius function based on the choice of fd = 7
GHz, Rc = 0.9 mm and λC = 6.90 GHz (dark blue).
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As with previous simulations of this kind, when we attempt to achieve a
mode profile with a pronounced peak, there exist some complications. In the
frequency range where we would expect to find our longitudinal mode, the simu-
lation shows two longitudinal modes. These two longitudinal modes were found
at simulation frequencies, f , of 6.204 GHz and 6.212 GHz, a separation of 0.008
GHz or a percentage difference of 0.13 % from the first mode to the second. These
modes are shown in Fig. 8.29.

(a)

(b)

Figure 8.29: Images showing the resulting longitudinal modes after the imple-
mentation of the calculated radius function for a profile with a pronounced peak
(q = −10.0) in an infinite copper wire medium (ax = 13.06 mm and ay = 15.00
mm) with the parameter choice of fd = 6.2 GHz, Rc = 0.9 mm and λC = 6.90
GHz. The fields are represented using arrow plots on a y-z slice of the struc-
ture where the arrow direction represents field direction and colour represents
the magnitude of the field strength. (a) shows one of the resulting longitudinal
modes ( f = 6.204 GHz); and (b), the other ( f = 6.212 GHz).

We believe that due to confusion caused by the similarity of different Mathieu
solutions at high negative q values CST has misinterpreted our desired mode as
two separate modes. If we manually superimpose the profile of these modes
appropriately, then we can compare with the desired profile, as shown in Fig.
8.30. Fig. 8.30 shows that this combined profile does agree well with our desired
profile as confirmed by calculating its R2 value of 0.9762.
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Figure 8.30: A plot of the combined field profile (longitudinal, z, spatial variation
of the electric field strength, Ez) of the two longitudinal modes ( f = 6.204 GHz and
f = 6.212 GHz) in an infinite copper wire medium (ax = 13.06 mm and ay = 15.00
mm) for our attempts to produce a profile with a pronounced peak (q = −10.0)
with the parameter choice of fd = 6.2 GHz, Rc = 0.9 mm and λC = 6.90 GHz
(dark green).

The results of our attempts to replicate a variety of profiles are summarised
in Table 8.4. These results, obtained by varying the radius of the copper wires
in an infinite wire medium, are promising. They confirm our ability to replicate
a desired profile using infinite copper wire media. This is an essential step in
our aim to investigate whether copper wire media could realistically be used to
control field profiles. Our next step will be to examine whether these results will
hold for finite structures.

q fd (GHz) λC (GHz) L (mm) f (GHz) R2

0.8 7.2 6.9 183 7.22 0.9988
-0.329 7.5 6.9 79.5 7.39 0.9986

4 7 6.9 371 7.02 0.9556
-10 6.2 6.9 355 6.21 0.9762

Table 8.4: A table summarising some of the key parameters related to the results
of our implemented radius functions for a variety of profiles in infinite copper
wire media (ax = 13.06 mm and ay = 15.00 mm). The parameters listed are: the
Mathieu parameter characterising the profile (q), design frequency ( fd), the central
plasma frequency (λc), the length of our unit cell (L), longitudinal mode frequency
( f ) and a figure of merit for the agreement between our field profile and the
desired profile (R2). The profiles considered are a triangular profile (q = −0.329),
a profile with multiple turning points (q = 4.0) and a profile with a pronounced
peak (q = −10.0).

247



III. Demonstrating mode profile shaping with partially and

fully finite copper wire media

We have now successfully applied our mode profiling to a structure containing
an infinite lattice of infinitely long copper wires. The next step is to explore
whether these results will hold for finite structures. As we have done previously
with dielectric wire media, we first study a structure that is finite in the transverse
dimensions but infinitely long. In this case, we have used a two by two lattice with
boundaries placed as usual, but in the case of the transverse boundaries, they now
have metallic boundary conditions. The structure is essentially a two by two lattice
of infinitely long copper wires surrounded by an infinitely long waveguide. The
unit cell used is shown in Fig. 8.31 along with a view of the different boundary
conditions applied, where green represents a metallic boundary and orange a
periodic boundary.

(a) (b)

Figure 8.31: A representation of a partially finite wire medium in CST, consisting
of a two by two lattice of copper wires in a unit cell with transverse metallic
boundary conditions and longitudinal periodic boundary conditions (ax = 13.06
mm and ay = 15.00 mm). This is effectively a finite lattice of infinitely long
wires in an infinite metallic waveguide. The copper wires have a radius (r) of
0.7 mm. (a) shows the unit cell used in CST, and (b) shows the boundaries of
the structure with green representing metallic boundaries and orange, periodic
boundary conditions.
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Figure 8.32: Numerical results showing a transverse electric mode, with a fre-
quency of 6.22 GHz, in a representation of a partially finite two by two array of
copper wires of radius 0.7mm, and wire spacings ax = 13.06 mm and ay = 15.00
mm. The electric field is represented using a vector plot of an x-y slice of the struc-
ture where the arrow direction represents field direction and colour represents the
magnitude of the field strength.

Having defined our structure, we studied the modes present. As usual, we
find many transverse modes, as shown in Fig. 8.32 for a wire medium with a
radius of 0.7 mm. In the same structure, we can find our expected longitudinal
modes, shown in Fig. 8.33.

After finding our longitudinal mode, we must confirm that it has the plasma-
like dispersion relation that we expect. We have confirmed this, with the squared
dispersion relation for a mode in the 0.7 mm structure shown in Fig. 8.34.
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(a)

(b)

(c)

Figure 8.33: Images from numerical simulations in CST showing the longitudinal
mode ( f = 10.35 GHz) found in a partially finite copper wire medium (2 × 2,
r = 0.7 mm, ax = 13.06 mm and ay = 15.00 mm). The fields are either represented
using arrow plots where the arrow direction represents field direction and colour
represents the magnitude of the field strength, or colour plots where the direction
and magnitude of the longitudinal field is represented by colour. (a) shows a y-z
slice through the centre of the structure, (b) an x-y slice and (c) a y-z slice through
two of the wires.
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Figure 8.34: A plot of the squared dispersion relation, frequency squared ( f 2)
against our wavenumber squared (κ2), of the longitudinal mode in a partially
finite copper wire medium (2× 2, r = 0.7 mm, ax = 13.06 mm and ay = 15.00
mm) that demonstrates the mode’s plasma-like dispersion relation.

Our method relies on manipulating the dispersion relation of our structure by
varying a structural parameter such as the wire radius. To do this, we need to
know how a change in radius affects our longitudinal mode. Therefore we have
run simulations for a variety of wire radii. In Figs. 8.35 and 8.36 the longitudinal
modes in structures with wire radii of 0.6 and 0.8 mm are shown.
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(a)

(b)

(c)

Figure 8.35: Images from numerical simulations in CST showing the longitudinal
mode ( f = 10.23 GHz) found in a partially finite copper wire medium (2 × 2,
r = 0.6 mm, ax = 13.06 mm and ay = 15.00 mm). The fields are either represented
using arrow plots where the arrow direction represents field direction and colour
represents the magnitude of the field strength, or colour plots where the direction
and magnitude of the longitudinal field is represented by colour. (a) shows a y-z
slice through the centre of the structure, (b) an x-y slice and (c) a y-z slice through
two of the wires.
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(a)

(b)

(c)

Figure 8.36: Images from numerical simulations in CST showing the longitudinal
mode ( f = 10.47 GHz) found in a partially finite copper wire medium (2 × 2,
r = 0.8 mm, ax = 13.06 mm and ay = 15.00 mm). The fields are either represented
using arrow plots where the arrow direction represents field direction and colour
represents the magnitude of the field strength, or colour plots where the direction
and magnitude of the longitudinal field is represented by colour. (a) shows a y-z
slice through the centre of the structure, (b) an x-y slice and (c) a y-z slice through
two of the wires.

By examining the dispersion relation of these modes we can find their plasma
frequency. The dispersion relations for the three modes previously shown are
plotted together in Fig. 8.37. As the plasma frequency of the modes is related
to the cut-off frequency of their dispersion, we can see that the radius affects the
plasma frequency.
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Figure 8.37: The dispersion plots, frequency ( f ) against wavenumber (κ), of the
longitudinal modes in partially finite copper wire media (2× 2, ax = 13.06 mm
and ay = 15.00 mm) with a variety of radii. The radii are 0.7 mm (red), 0.8 mm
(black) and 0.9 mm (blue).

By calculating the plasma frequency of these modes and for the modes found
at different radii, we can build up the data plotted in Fig. 8.38. This is a plot of
the plasma frequency squared against the wire radius of the structure. As with
the infinite case, this relationship is well described by a straight line fit, with an
R2 value of 0.9995. This fit has the form shown in equation 8.1 with the following
fitting parameters, ∆ = 18.5 (GHz2) and Θ = 32.4 (GHz2/mm).

Figure 8.38: A plot of the plasma frequency squared, λ2
s , of partially finite copper

wire media (2× 2, ax = 13.06 mm and ay = 15.00 mm) against wire radius, r, with
a straight line fitting curve.

Now that we have an accurate function to describe the relationship between
plasma frequency and radius, we can implement the mode profiling method we
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have developed. As the form of this relationship is the same as the one found
for infinite copper wire media, there is no need to alter the method used. We can
now choose a mode profile, as defined by its Mathieu parameters and produce a
required radius function.

Our first attempt at mode profiling with our partially finite copper structure
was an attempt to replicate a flat mode profile (q=0.8). After fixing parameters,
fd = 10 GHz and Rc = 0.8 mm, we can produce a required radius function that
if implemented in our structure, will support a longitudinal mode that replicates
our desired profile. This radius function is plotted in Fig. 8.39 and the parameters
of the function are shown in Table 8.5.

Figure 8.39: Radius function calculated for a flattened profile (q = 0.8) in a par-
tially finite copper wire medium (2× 2, ax = 13.06 mm and ay = 15.00 mm) for
the parameter choice of fd = 10 GHz, Rc = 0.8 mm and λC = 9.79 GHz.

We can implement this radius function in our structure by using a series of
differing conical frustums. After doing this, we can examine the longitudinal
modes supported, shown in Fig. 8.40.
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(a)

(b)

(c)

Figure 8.40: Images showing the resulting longitudinal mode ( f = 10.02 GHz)
after the implementation of the calculated radius function for a flattened profile
(q = 0.8) in a partially finite copper wire medium (2 × 2, ax = 13.06 mm and
ay = 15.00 mm) for the parameter choice of fd = 10 GHz, Rc = 0.8 mm and
λC = 9.79 GHz. The fields are either represented using arrow plots where the
arrow direction represents field direction and colour represents the magnitude
of the field strength, or colour plots where the direction and magnitude of the
longitudinal field is represented by colour. (a) shows a y-z slice through the centre
of the structure, (b) an x-y slice and (c) a y-z slice through two of the wires.

We can better evaluate the profile of these modes by plotting the field strength
along a line through the centre of the structure. This is shown in Fig. 8.41 along
with the desired profile. This comparison clearly shows that our mode profiling
has been very successful, as reinforced by the R2 value of 0.9980.
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Figure 8.41: Plot of the field profile (longitudinal, z, spatial variation of the electric
field strength, Ez) of the longitudinal mode (10.02 GHz) in a partially finite copper
wire medium (2 × 2, ax = 13.06 mm and ay = 15.00 mm) for our attempts to
produce a flattened profile (q = 0.8) by the implementation of a radius function
based on the choice of fd = 10 GHz, Rc = 0.8 mm and λC = 9.79 GHz (black).
The plot includes the field profile observed in our numerical simulation (solid)
and the desired profile (dotted). In order to compare these the field profile and z
coordinate have been normalised.

Having demonstrated mode profile shaping with one profile, we now want
to show that the method works for other profiles. With this aim in mind, we
attempted to achieve mode profiling with several profiles: a triangular profile
(Mathieu parameter q = −0.329), a profile with an increased number of turning
points (Mathieu parameter q = 4.0) and a profile with a pronounced peak (Math-
ieu parameter q = −10.0). The free parameters we have chosen to fix are listed in
Table 8.5 along with the resulting parameters for the required radius function and
the structure. The radius functions resulting from these choices of parameters are
shown in Fig. 8.42.
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q fd (GHz) RC (mm) λC (GHz) η1 (mm) η2 (mm) η3 (mm−1) L (mm)
0.8 10 0.8 9.79 0.800 0.152 0.0683 184

-0.329 9.8 0.6 9.52 0.600 -0.209 0.125 101
4 9.6 0.6 9.52 0.600 0.202 0.0351 358

-10 9.3 0.6 9.52 0.600 -0.232 0.0239 527

Table 8.5: A table summarising some of the key parameters related to the imple-
mented radius functions for a variety of profiles in partially finite copper wire
media (ax = 13.06 mm and ay = 15.00 mm). The first set of parameters listed
are design parameters we chose: the Mathieu parameter characterising the pro-
file (q), design frequency ( fd), central radius (RC) and the corresponding central
plasma frequency (λc). The rest are the resulting structural parameters: the pa-
rameters specifying the corresponding radius function (η1−3) and the length of
our unit cell (L). The profiles considered are a triangular profile (q = −0.329), a
profile with multiple turning points (q = 4.0) and a profile with a pronounced
peak (q = −10.0).
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(a)
(b)

(c)

Figure 8.42: A series of plots of radius functions calculated for a variety of desired
profiles in partially finite copper wire media (ax = 13.06 mm and ay = 15.00 mm).
(a) shows the radius function for a triangular profile with a parameter choice of
fd = 9.8 GHz, Rc = 0.6 mm and λC = 9.52 GHz (crimson); (b), for a profile with
multiple turning points with a parameter choice of fd = 9.6 GHz, Rc = 0.6 mm
and λC = 9.52 GHz (dark blue); and (c), for a profile with a pronounced peak
with a parameter choice of fd = 9.3 GHz, Rc = 0.6 mm and λC = 9.52 GHz (dark
green).

The modes resulting from the implementation of the required radius functions
for the triangle profile and the profile with more turning points are shown in Figs.
8.43 and 8.44.
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(a) (b)

(c)

Figure 8.43: Images showing the resulting longitudinal mode ( f = 9.83 GHz)
after the implementation of the calculated radius function for a triangular profile
(q = −0.329) in a partially finite copper wire medium (2× 2, ax = 13.06 mm and
ay = 15.00 mm) for the parameter choice of fd = 9.8 GHz, Rc = 0.6 mm and
λC = 9.52 GHz. The fields are either represented using arrow plots where the
arrow direction represents field direction and colour represents the magnitude
of the field strength, or colour plots where the direction and magnitude of the
longitudinal field is represented by colour. (a) shows a y-z slice through the centre
of the structure, (b) an x-y slice and (c) a y-z slice through two of the wires.
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(a)

(b)

(c)

Figure 8.44: Images showing the resulting longitudinal mode ( f = 9.61 GHz) after
the implementation of the calculated radius function for a profile with multiple
turning points (q = 4.0) in a partially finite copper wire medium (2× 2, ax = 13.06
mm and ay = 15.00 mm) for the parameter choice of fd = 9.6 GHz, Rc = 0.6 mm
and λC = 9.52 GHz. The fields are either represented using arrow plots where the
arrow direction represents field direction and colour represents the magnitude
of the field strength, or colour plots where the direction and magnitude of the
longitudinal field is represented by colour. (a) shows an y-z slice through the
centre of the structure, (b) an x-y slice and (c) a y-z slice through two of the wires.

The profiles for these two modes are shown in Figs. 8.45 and 8.46. These mode
profiling attempts have been successful as can be seen from these plots and their
R2 values of 0.9771 for the triangular profile and 0.9403 for the profile with extra
turning points.
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Figure 8.45: Plot of the field profile (longitudinal, z, spatial variation of the electric
field strength, Ez) of the longitudinal mode ( f = 9.83 GHz) in a partially finite
copper wire medium (2× 2, ax = 13.06 mm and ay = 15.00 mm) for our attempts
to produce a triangular profile (q = −0.329) with a radius function based on the
choice of fd = 11.3 GHz, Rc = 0.5 mm and λC = 10.7 GHz (crimson). The
plot includes the field profile observed in our numerical simulation (solid) and
the desired profile (dotted). In order to compare these the field profile and z
coordinate have been normalised.

Figure 8.46: Plot of the field profile (longitudinal, z, spatial variation of the electric
field strength, Ez) of the longitudinal mode ( f = 9.61 GHz) in a partially finite
copper wire medium (2× 2, ax = 13.06 mm and ay = 15.00 mm) for our attempts
to produce a profile with multiple turning points (q = 4.0) with a radius function
based on the choice of fd = 9.6 GHz, Rc = 0.6 mm and λC = 9.52 GHz (dark
blue). The plot includes the field profile observed in our numerical simulation
(solid) and the desired profile (dotted). In order to compare these the field profile
and z coordinate have been normalised.

As with previous simulations of this kind, when we are attempting to achieve
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a mode profile with a pronounced peak, there exist some complications. In the
frequency range where we would expect to find our longitudinal mode the sim-
ulation finds two longitudinal modes, which are shown in Fig. 8.47. These two
longitudinal modes were found at simulation frequencies, f , of 9.309 GHz and
9.311 GHz, a separation of 0.002 GHz or a percentage difference of 0.02 % from
the first mode to the second.

(a)

(b)

Figure 8.47: Images showing the resulting longitudinal modes after the imple-
mentation of the calculated radius function for a profile with a pronounced peak
(q = −10.0) in a partially finite copper wire medium (2 × 2, ax = 13.06 mm
and ay = 15.00 mm) for the parameter choice of fd = 9.3 GHz, Rc = 0.6 mm
and λC = 9.52 GHz. The fields are represented using arrow plots on a y-z slice
of the structure where the arrow direction represents field direction and colour
represents the magnitude of the field strength. (a) shows one of the resulting
longitudinal modes ( f = 9.309 GHz); and (b), the other ( f = 9.311 GHz).

As we have done previously, we consider the superposition of these two modes.
By doing this, we can find the mode profile shown in Fig. 8.48. This profile is
somewhat similar to our desired profile with an R2 value of 0.7972. Although
we can see from the graph that there is some clear similarity between the desired
and achieved profile, the significant differences in the peak values make the actual
agreement between the profiles quite poor. This is potentially due to the use of a
partially finite lattice and the effect of the metallic boundaries, but we cannot say
for sure.
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Figure 8.48: Plot of the combined field profile (longitudinal, z, spatial variation
of the electric field strength, Ez) of the longitudinal modes (9.309 GHz and 9.311
GHz) in a partially finite copper wire medium (2× 2, ax = 13.06 mm and ay =
15.00 mm) for our attempts to produce a profile with a pronounced peak (q =
−10.0) with a radius function based on the choice of fd = 9.3 GHz, Rc = 0.6 mm
and λC = 9.52 GHz (dark green). The plot includes the field profile observed
in our numerical simulation (solid) and the desired profile (dotted). In order to
compare these the field profile and z coordinate have been normalised.

The results of our mode profiling attempts with a partially finite copper wire
medium are summarised in Table 8.6. These results clearly show that our mode
profiling continues to be successful in this new domain.

The obvious next step is to attempt to realise mode profiling results in a com-
pletely finite structure. As we have done previously, the easiest way to extend

q fd (GHz) λC (GHz) L (mm) f (GHz) R2

0.8 10 9.79 184 10.02 0.9980
-0.329 9.8 9.52 101 9.83 0.9771

4 9.6 9.52 358 9.61 0.9403
-10 9.3 9.52 527 9.31 0.7972

Table 8.6: A table summarising some of the key parameters related to the results
of our implemented radius functions for a variety of profiles in partially finite
copper wire media (ax = 13.06 mm and ay = 15.00 mm). The parameters listed
are: the Mathieu parameter characterising the profile (q), design frequency ( fd),
the central plasma frequency (λc), the length of our unit cell (L), longitudinal
mode frequency ( f ) and a figure of merit for the agreement between our field
profile and the desired profile (R2). The profiles considered are a triangular profile
(q = −0.329), a profile with multiple turning points (q = 4.0) and a profile with a
pronounced peak (q = −10.0).
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our results from a partially finite structure to a finite structure is to apply metallic
boundaries to the longitudinal boundaries of our successful partially finite struc-
tures. This is shown in Fig. 8.49 where the new boundaries are shown for the
structure that we used to replicate a flat mode profile.

Figure 8.49: A representation of a finite wire medium in CST, consisting of a two
by two lattice of copper wires in a unit cell with metallic boundary conditions
(ax = 13.06 mm and ay = 15.00 mm). The copper wire has a variation based on
a function generated using data from partially finite structures for the attempt to
demonstrate a flattened profile based on the choice of fd = 10 GHz, Rc = 0.8 mm
and λC = 9.79 GHz. The image shows the boundaries of the structure with green
representing metallic boundary conditions.

As our extension only involves the application of new boundary conditions to
our structure, we can reuse the choice of parameters and the resulting radius func-
tions from the partially finite case. The first profile we have attempted to replicate
is the flattened profile (q = 0.8). The resulting radius function has previously been
shown in Fig. 8.39.
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(a)

(b)

(c)

Figure 8.50: Images showing the resulting longitudinal mode ( f = 10.02 GHz)
after the implementation of the calculated radius function for a flattened profile
(q = 0.8) in a finite copper wire medium (2× 2, ax = 13.06 mm and ay = 15.00
mm) for the parameter choice of fd = 10 GHz, Rc = 0.8 mm and λC = 9.79 GHz.
The fields are either represented using arrow plots where the arrow direction rep-
resents field direction and colour represents the magnitude of the field strength,
or colour plots where the direction and magnitude of the longitudinal field is rep-
resented by colour. (a) shows a y-z slice through the centre of the structure, (b) an
x-y slice and (c) a y-z slice through two of the wires.

The longitudinal mode, found at 10.02 GHz, in the finite structure is shown in
Fig. 8.50. The profile of this mode is shown in Fig. 8.51. This comparison clearly
shows that our mode profiling method has continued to be successful, with an R2

value of 0.9987.
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Figure 8.51: Plot of the field profile (longitudinal, z, spatial variation of the electric
field strength, Ez) of the longitudinal mode (10.02 GHz) in a finite copper wire
medium (2× 2, ax = 13.06 mm and ay = 15.00 mm) for our attempts to produce
a flattened profile (q = 0.8) by the implementation of a radius function based
on the choice of fd = 10 GHz, Rc = 0.8 mm and λC = 9.79 GHz (black). The
plot includes the field profile observed in our numerical simulation (solid) and
the desired profile (dotted). In order to compare these the field profile and z
coordinate have been normalised.

As with the partially finite case, we also want to test our ability to replicate a
variety of profiles. We are attempting to replicate the usual selection of profiles.
Using the previously calculated radius functions, we have attempted to replicate
the triangular profile and the profile with more turning points. The modes we
have found in these simulations are shown in Figs. 8.52 and 8.53. The profiles of
these modes have been plotted in Figs. 8.54 and 8.55. These attempts have been
successful, as emphasised by the R2 values of 0.9992 for the triangular profile and
0.9601 for the profile with more turning points.
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(a)
(b)

(c)

Figure 8.52: Images showing the resulting longitudinal mode ( f = 9.83 GHz)
after the implementation of the calculated radius function for a triangular profile
(q = −0.329) in a finite copper wire medium (2× 2, ax = 13.06 mm and ay = 15.00
mm) for the parameter choice of fd = 9.8 GHz, Rc = 0.6 mm and λC = 9.52 GHz.
The fields are either represented using arrow plots where the arrow direction rep-
resents field direction and colour represents the magnitude of the field strength,
or colour plots where the direction and magnitude of the longitudinal field is rep-
resented by colour. (a) shows a y-z slice through the centre of the structure, (b) an
x-y slice and (c) a y-z slice through two of the wires.
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(a)

(b)

(c)

Figure 8.53: Images showing the resulting longitudinal mode ( f = 9.61 GHz) after
the implementation of the calculated radius function for a profile with multiple
turning points (q = 4.0) in a finite copper wire medium (2× 2, ax = 13.06 mm
and ay = 15.00 mm) for the parameter choice of fd = 9.6 GHz, Rc = 0.6 mm and
λC = 9.52 GHz. The fields are either represented using arrow plots where the
arrow direction represents field direction and colour represents the magnitude
of the field strength, or colour plots where the direction and magnitude of the
longitudinal field is represented by colour. (a) shows a y-z slice through the centre
of the structure, (b) an x-y slice and (c) a y-z slice through two of the wires.

Figure 8.54: Plots of the field profile (longitudinal, z, spatial variation of the elec-
tric field strength, Ez) of the longitudinal mode ( f = 9.83 GHz) in a finite copper
wire medium (2× 2, ax = 13.06 mm and ay = 15.00 mm) for our attempts to pro-
duce a triangular profile (q = −0.329) with a radius function based on the choice
of fd = 11.3 GHz, Rc = 0.5 mm and λC = 10.7 GHz (crimson). The plot includes
the field profile observed in our numerical simulation (solid) and the desired pro-
file (dotted). In order to compare these the field profile and z coordinate have
been normalised.
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Figure 8.55: Plot of the field profile (longitudinal, z, spatial variation of the electric
field strength, Ez) of the longitudinal mode ( f = 9.61 GHz) in a finite copper wire
medium (2× 2, ax = 13.06 mm and ay = 15.00 mm) for our attempts to produce
a profile with multiple turning points (q = 4.0) with a radius function based on
the choice of fd = 9.6 GHz, Rc = 0.6 mm and λC = 9.52 GHz (dark blue). The
plot includes the field profile observed in our numerical simulation (solid) and
the desired profile (dotted). In order to compare these the field profile and z
coordinate have been normalised.

(a)

(b)

(c)

Figure 8.56: Images showing the resulting longitudinal modes after the imple-
mentation of the calculated radius function for a profile with a pronounced peak
(q = −10.0) in a finite copper wire medium (2× 2, ax = 13.06 mm and ay = 15.00
mm) for the parameter choice of fd = 9.3 GHz, Rc = 0.6 mm and λC = 9.52
GHz. The fields are represented using arrow plots on a y-z slice of the struc-
ture where the arrow direction represents field direction and colour represents
the magnitude of the field strength. (a) shows one of the resulting longitudinal
modes ( f = 9.30547 GHz); (b), another ( f = 9.30550 GHz); and (c), the mode with
highest frequency ( f = 9.30613 GHz).

Similar to other attempts at replicating the profile with a pronounced peak, we
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experienced some complications. In this case, our eigenmode simulation found
three longitudinal modes, which are shown in Fig. 8.56, in the frequency range
around our design frequency, 9.3 GHz. These modes were found at 9.30547,
9.30550 and 9.30613 GHz. There is a frequency range of 6.6·10−3 GHz, which
represents 0.007% of the initial mode frequency. These modes all have longitudi-
nal fields that are localised to different areas of the structure.

As usual, we treat the separation of these modes as an artefact of the simula-
tion. When the superposition of these fields is considered, we can compare profile
of the combined field with the desired profile. This is shown in Fig. 8.57 where it
can be seen that there is an excellent agreement, with an R2 value of 0.9442.

Figure 8.57: Plot of the combined field profile (longitudinal, z, spatial variation
of the electric field strength, Ez) of the longitudinal modes ( f = 9.30547 GHz,
f = 9.30550 GHz and f = 9.30613 GHz) in a finite copper wire medium (2× 2,
ax = 13.06 mm and ay = 15.00 mm) for our attempts to produce a profile with
a pronounced peak (q = −10.0) with a radius function based on the choice of
fd = 9.3 GHz, Rc = 0.6 mm and λC = 9.52 GHz (dark green). The plot includes
the field profile observed in our numerical simulation (solid) and the desired
profile (dotted). In order to compare these the field profile and z coordinate have
been normalised.

The results of our attempts to achieve mode profiling in our finite copper
structures are shown in Table 8.7. These results show that our method continues
to be successful for finite copper structures. This is very promising as it gives us
another route to take when attempting to realise our method experimentally. If
dielectric materials prove to be troublesome, we have shown that metallic and, in
particular, copper wires could potentially be used.
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q fd (GHz) λC (GHz) L (mm) R2

0.8 10 9.79 184 0.9987
-0.329 9.8 9.52 101 0.9992

4 9.6 9.52 358 0.9601
-10 9.3 9.52 527 0.9442

Table 8.7: A table summarising some of the key parameters related to the results
of our implemented radius functions for a variety of profiles in finite copper wire
media (ax = 13.06 mm and ay = 15.00 mm). The parameters listed are: the
Mathieu parameter characterising the profile (q), design frequency ( fd), the central
plasma frequency (λc), the length of our unit cell (L), longitudinal mode frequency
( f ) and a figure of merit for the agreement between our field profile and the
desired profile (R2). The profiles considered are a triangular profile (q = −0.329),
a profile with multiple turning points (q = 4.0) and a profile with a pronounced
peak (q = −10.0).

IV. Time domain simulations of finite copper wire media

Now that we have demonstrated field profile shaping in finite copper structures,
we can move onto attempting to observe field profile shaping in time domain
simulations of our structures. This will gives us some indication of how easy it is
to excite our structure.

We first chose a finite copper wire medium that had already demonstrated
field shaping in eigenmode simulations. In this case, it was a two by two lattice
of copper wires with a radius variation based on a parameter choice of Rc = 0.8
mm and fd = 10 GHz, shown in Fig. 8.58. It should be noted that, as shown in
Fig. 8.58, we are using two periods of the radius variation, so we should expect
a full period of our field profile. We then formed our structure by stacking five
unit cells of this lattice on top of each other, creating a ten by two lattice, and
including an extra section where the waveguide port is placed, effectively creating
an inlet waveguide. This structure is shown in Fig 8.59. The waveguide section
was designed to support modes around our design frequency, with dimensions of
10 mm by 23 mm.
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Figure 8.58: Two periods of the radius function calculated for a flattened profile
(q = 0.8) in a finite copper wire medium (2× 2, ax = 13.06 mm and ay = 15.00
mm) for the parameter choice of fd = 10 GHz, Rc = 0.8 mm and λC = 9.79 GHz.
This is the wire radius variation used in the following time domain simulations,
although the lattice configurations used differ from the basis of the calculated
function.

Figure 8.59: A representation of a finite wire medium in CST, consisting of five
vertically stacked units of two by two lattices of copper wires. The unit cell has
one set of metallic transverse boundary conditions, one set of open transverse
boundary conditions and metallic longitudinal boundary conditions. The copper
wires have a radius function calculated for a flattened profile (q = 0.8) in a finite
copper wire medium (2× 2, ax = 13.06 mm and ay = 15.00 mm) for the parameter
choice of fd = 10 GHz, Rc = 0.8 mm and λC = 9.79 GHz. A small section has been
attached to the bottom of the structure with dimensions xdim = 23 mm, ydim = 15
mm and zdim = 10 mm, where a waveguide port has been placed. This structure
has copper wires with two periods of the radius variation.
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We have chosen a frequency range of 9-11 GHz, which results in the excitation
shown in Fig. 8.60.

Figure 8.60: The default excitation signal generated by CST for a choice of fre-
quency range of 9-11 GHz. This is the signal we will use to excite a finite copper
wire medium structure (5 units of 2 × 2; ax = 13.06 mm and ay = 15.00 mm;
q = 0.8, fd = 10 GHz, Rc = 0.8 mm and λC = 9.79 GHz; open y boundaries, and
metallic x and z boundaries; and a waveguide port, which is distanced 15 mm
from the lattice, with dimension 23× 10 mm).

As with the majority of our dielectric time domain simulations, we have used
the fundamental port mode to excite our structure. The simulation time we have
chosen is t = 180 ns. The field produced at the frequency monitor included is
shown in Fig. 8.61. This field has significant longitudinal components and shows
a full period variation in the field, which is promising.
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(a)

(b)

Figure 8.61: Images from numerical simulations in CST showing the field ( f =
9.08 GHz) found using a frequency monitor in a time domain simulation of a
finite copper wire medium (5 units of 2× 2; ax = 13.06 mm and ay = 15.00 mm;
q = 0.8, fd = 10 GHz, Rc = 0.8 mm and λC = 9.79 GHz; open y boundaries,
and metallic x and z boundaries; and a waveguide port, which is distanced 15
mm from the lattice, with dimension 23× 10 mm) with t = 180 ns. The fields are
represented using logarithmic colour plots where the longitudinal field strength
and magnitude is represented by colour. (a) shows a y-z slice; and (b), an x-y slice.

A plot of the R2 value of our field profiles comparison with our desired pro-
file at various positions throughout the structure is shown in Fig. 8.62. This
plot shows two extended regions of successful field profile shaping, although also
some extended regions of poor profile shaping. This seems like a good achieve-
ment considering the difficulty we found observing prolonged regions of success-
ful field profiling in two period structure with dielectric wire media. As with our
time domain simulations of dielectric wire media, our success observing some
regions of field profile shaping is qualified by the fact that we have not demon-
strated that this field can achieve a significant transmission through the structure.
It should also be noted that the field profiling is found at a frequency quite far
from our design frequency, a difference of about 1 GHz.
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Figure 8.62: A plot of a figure of merit (R2) for the comparison between the desired
profile and the field profile (longitudinal, z, spatial variation of the electric field
strength, Ez) of the field (9.08 GHz) in a finite copper wire medium (t = 180 ns; 5
units of 2× 2; ax = 13.06 mm and ay = 15.00 mm; q = 0.8, fd = 10 GHz, Rc = 0.8
mm and λC = 9.79 GHz; open y boundaries and, metallic x and z boundaries;
and a waveguide port, which is distanced 15 mm from the lattice, with dimension
23× 10 mm) at the evaluation position against the y position of the evaluation
line given in terms of quarter lattice parameters from the bottom of the structure
(ay/4). (a) is a full plot and (b) only shows R2 values above 0.95.

V. Conclusions

In this chapter, we showed that our success with mode profile shaping could be
extended to wire media formed from metallic wires. Similar to our work with
dielectric wire media, we first showed that our longitudinal modes existed in infi-
nite PEC wire media and that their plasma frequency is related to the wire radius.
In this case, the relationship is well described by a straight line fit. We then de-
veloped our field profiling method with infinite PEC wire media and successfully
replicated a variety of desired profiles. We then repeated this process with infi-
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nite copper wire media with similar results. After this, we then showed that our
method could be used with partially finite and finite copper wire media. Finally,
we again explored the excitation of our structures by running time domain simu-
lations; successful field profile shaping could be observed, but we did not confirm
the transmission of these fields.
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Chapter 9

Future Work

In this thesis, we have detailed the development of a method for field profile shap-
ing that exploits the spatial dispersion in wire media. We have been successful in
validating this method in eigenmode simulations for a wide variety of wire media
realisations. In this section, we will consider some ways in which the work of this
thesis could be extended further.

There are several areas already explored where it would be useful to extend
our work before attempting experimental verification. It would be beneficial to
confirm the quality of the transmission of the fields for which field profiling was
observed in our time domain simulations. Further time domain simulations could
have also focused on a complete structure including input and output funnels,
supports and other practical features. More emphasis could also be used on the
excitation used; different excitations such as very long pulses could be studied,
which are closer to the continuous waves used in experiments.

Given more time, we would have attempted more ensembles of disorder in our
simulations of partially finite structures. Trying just one ensemble of introduced
imperfections risks accidentally using a configuration that has a collective effect
that is not common to other ensembles. It is difficult to generate these ensembles
in CST in an automated way, so this could necessitate a move to a different pro-
gram. These simulations would reassure us that our method produces an effect
that should be observable and that the effect is resistant to the sort of imperfec-
tions inherent in fabricated structures.

Another potential area of future work is further extending the lattice and ma-
terial parameters used for our wire media. It would be interesting to simulate a
dielectric wire made out of real dielectric material, as was done with copper for
the metal wires. Demonstrating field profile shaping with a different set of lattice
parameters that lead to fields in a different frequency regime would also have
been interesting. The effect of using a lossy material could also be considered.

Other interesting approaches could involve modifying the field in a way fo-
cused on maximising figures of merit such as Q factor or shunt impedance. As
briefly touched upon, it would be very useful to explore methods in which the
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plasma frequency has a time dependence for acceleration applications. This could
possibly be achieved using a material whose permittivity depends on an applied
voltage. Another useful development would be to move from an ad hoc design
process to an automated process which takes a set of initial parameters and out-
puts the necessary radius function, especially if this could be integrated into the
simulation software.

One major area of development would be attempting to fabricate these struc-
tures and experimentally verify the work in this thesis. Many of our simulations
were focused on extending our results to structures that could be more easily fab-
ricated. Experimental verification of the field profile shaping would then lead to
more consideration of how our method could be applied.

After experimental verification, attention could turn to wakefield simulations
of the structure and simulations in which particles enter the structure and interact
with the fields. We could also export the field profiles to tracking programs to see
the effect of the field on a bunch of particles. These would potentially pave the way
to possible applications of our structure in accelerator applications. This would
require a large amount of work and development of the method as it currently
exists.
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Chapter 10

Conclusion

We have detailed the development of our method for the field profile shaping of
longitudinal electric fields by exploiting the spatial dispersion of wire media. The
ability to achieve the desired field profile, without the need for an iterative design,
could open up a number of different applications. There could potentially be uses
in the field of particle acceleration, although it would be preferable if we were
controlling the temporal profile of the field. Other potential applications include
improving the ionisation in high harmonic generation; producing fields with high
gradients but reduced peak fields to reduce non-linear effects; and creating fields
with a pronounced peak for use in signal processing. In this section, we will detail
the conclusions of our work in the various results chapters of this thesis.

In Chapter 4, the first step in the development of our field profiling method for
infinite dielectric wire media is laid out, which focuses on the theoretical analysis
of the problem. We should note that the analysis in Chapter 4 can be applied
to any spatially dispersive realisation of uniaxial wire media and is based on the
existence of plasma-like longitudinal electric fields in wire media that have been
predicted by others. We were able to find a condition for the required variation
in the plasma frequency of our wire medium along the longitudinal direction
to produce our desired field profile. These desired field profiles are taken from
the solutions of Mathieu’s equation. We also proposed how this condition could
be met in the case of a plasma frequency with a radius dependence, where the
requirements for the satisfaction of our field profiling condition could be found
by solving for a required radius function.

Our first attempt to characterise the longitudinal fields in wire media is de-
tailed in Chapter 5. For this exploration, we used numerical simulations of an ef-
fectively infinite uniaxial dielectric wire media. The dielectric permittivity of our
wires, or rods, was εr = 1600, which could be achieved using barium-strontium-
titanate (BST), and their radius was r = 0.3 mm. The lattice parameters were
ax = 13.06 mm and ay = 15 mm. Given this realisation of wire media, we were
able to confirm the existence of longitudinal modes in an eigenmode simulation
at a frequency of 6.03 GHz. As well as confirming their existence, by plotting the
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mode’s dispersion relation, we were able to confirm that they were plasma-like.
This was a crucial step in the development of our field profile shaping as our
theoretical analysis of the problem was built on the existence of these plasma-like
longitudinal fields. In Chapter 5, we also plotted the dispersion relation of a few
transverse modes, emphasising their difference, and carried out a mesh study that
reassured us that our results were stable with respect to an increase in the density
of the mesh.

The initial development of our field profile shaping method and its successful
testing is covered in Chapter 6. In an attempt to control the properties of our
longitudinal field, we studied the effect of changing the wire radius of our wire
media. We were able to find our desired longitudinal field for a variety of wire
radii in the range 0.1 to 0.475 mm in otherwise identical infinite dielectric wire
media. Having found these fields at different radii, we could see the effect on
their plasma frequency by comparing their dispersion relations. By taking the
plasma frequencies associated with each radius from their dispersion relation, we
were able to plot a graph of plasma frequency against radius as shown in Section
I. We used the data in this graph to find an approximate analytic relationship be-
tween these two quantities. After first trying a second order polynomial function,
we found that an exponential decay function described our data exceptionally ac-
curately in section II. We could now achieve the variation in the plasma frequency
prescribed by our theoretical analysis. This involved substituting in the analytic
function for the relationship between the plasma frequency and wire radius into
our previously derived condition for the support of our desired field profile. We
can then solve this condition for a required longitudinally varying radius function
as showed in Section III.

This function contains several free parameters that need to be fixed. A discus-
sion of how to sensibly fix these parameters to give valid solutions is included in
Section IV. At this point, our field profiling method, which involved choosing the
desired profile and producing a required radius function, was established, and we
moved onto testing it in numerical simulations. Dielectric wires formed from a
number of segments with differing radii were used to approximate our required
radius function in the simulations. As covered extensively in Section V, we were
able to achieve the replication of a flattened profile in our wire media in a vari-
ety of different realisations of wire media based on different choices for the fixed
parameters. We then confirmed the stability of these results to variations in both
the number of segments used for the varying wire and the density of mesh in
Sections VI and VII. Finally, in Section VIII we confirmed that we could replicate
not only a flattened profile but also several other profiles. In total, we replicated
four different profiles, but the method should support profiles corresponding to
any solution of Mathieu’s equation.

After achieving our initial success with infinite dielectric wire media, which
were formed from high permittivity rods, we wanted to extend our results to
structures more suitable for fabrication as explored in Chapter 7. We first inves-

281



tigated the effect of using dielectric wires with lower permittivities in I. We con-
firmed that our longitudinal fields were still supported and had all the required
properties. Importantly, we also found that although the relationship between the
plasma frequency and radius was altered, it could still be described by an expo-
nential decay function. This allowed us to implement our previous field profiling
method without significant modifications. By doing this, we were able to show
that our method was still hugely successful replicating a variety of profile even
with dielectric wires with a permittivity as low as εr = 3. The effect of the lat-
tice parameters of our dielectric wire media was studied in Section II. We found
that longitudinal fields were supported even for shifts in either one or both of
the lattice parameters, although their frequencies were shifted. This effect could
be utilised in extending our results to different frequency ranges by changing
the lattice parameters. In Section III, the addition of various types of disorder
was studied to determine the stability of our results to the sort of errors that are
unavoidable in fabrication. Random variations in the radius of our wire were
considered with the results being quite stable up to variations on the order of 0.1
mm as compared to the central wire radius of 0.6 mm. Systematic shifts in the
radius of the wire radii were also considered with the results being incredibly sta-
ble, although a shift in the frequency of the profiled field was observed. We also
examined the effect of including a dielectric cladding over our wires, which could
aid fabrication, in Section IV. We found that given a suitable cladding it could be
introduced with minimal deterioration to our field profile shaping results.

The extension of our method to partially finite structures is described in Sec-
tion V. By partially finite we mean a finite lattice (two by two) of infinitely long
wires surrounded by transverse metallic boundary conditions. This effort started
with the confirmation of the existence of longitudinal fields in these structures and
that their dispersion relation is plasma-like. Again, we found the relationship be-
tween the plasma frequencies of these fields and the wire radius to be extremely
well described by an exponential decay function. Given this, we repeated the
method laid out previously and were able to replicate a variety of profiles using
partially finite dielectric wire media. In Section VI, this work was then extended
further to completely finite structures. In this case, the wire media is a finite lat-
tice (two by two) of wires of finite length. We found that extending our results
to this regime only required the application of metallic boundary conditions to
the longitudinal dimension of structures already used in our simulations of par-
tially finite structures. By doing this, we were able to replicate a variety of desired
field profile in finite dielectric wire media. This process was repeated in Section
VII for a finite four by four lattice with the same success. Having extended our
field profile shaping to finite structures, we then studied the effect of introducing
disorder into these structures in Section VIII. As with our previous study of dis-
order, we considered random variations in the wire radii, but in this case, each
wire had their own unique set of random radius variations. We found that with
a wire with a central radius value of 0.6 mm, errors on the order of 0.1 mm lead

282



to minimal deterioration in our results, but a significant deterioration was seen
for errors on the order of 0.2 mm. A consideration of the effect of random varia-
tions in the wire positions found our results to be stable up to and including the
introduction of errors on the order of 5% of the lattice parameters. The study of
a coordinated shift of the wire positions to make a denser or more sparse lattice
found that the existence of the longitudinal fields was stable for a 10 % shift, but
that the quality of the field profile shaping was only maintained when making the
lattice denser. We also attempted to explore the excitation of our structure using
time domain simulations in Section IX. We had some success in this area. We were
able to observe field profile shaping at some frequencies in the structure, but we
did not establish that an adequate transmission was reached at those frequencies.
This limitation was due to a lack of time and experience with these simulations
and not necessarily a reflection on the ability of these structures to produce the
required transmissions.

After developing a robust and successful method for field profile shaping with
dielectric wire media, we extended this method to metallic wire media in Chapter
8. We first made progress by applying the process undertaken with dielectric wire
to wires made of a perfect electrical conductor (PEC), as discussed in Section I.
We confirmed the existence of plasma-like longitudinal electric fields in infinite
PEC wire media. With this established, we could investigate the effect of varying
the radius on the plasma frequency of these fields. In the case of PEC, there
was a positive linear relationship between the quantities. This lead to the data
being well described by a straight line function rather than an exponential decay
function. This caused some minor differences in the calculation and solutions
of the required radius function but otherwise affected our method minimally.
With our method for mode profile shaping with infinite PEC wire media now
developed, we confirmed that we were able to replicate several different profiles.
After our success with PEC wire media, we switched our attention to copper wires
in Section II. As before, we found our longitudinal plasma-like electric fields in
infinite copper wire media and found that a straight line function well described
the relationship between the plasma frequency and wire radius. Given this, we
were able to develop and test our method; confirming that we could replicate
several different profiles very accurately. In Section III we extended our work
with copper wire media to include simulation of partially finite and finite lattices.
We were able to show that for both of these regimes, our method was still able
to achieve successful replication of desired field profiles. Finally, in Section IV we
explore our attempts to simulate the excitation of finite copper structures. Similar
to our experience with dielectric wire media, we found that we could observe field
profile shaping, but we did not confirm whether the transmission of these fields
was adequate.

The culmination of this work represents the establishment of a field profiling
method for longitudinal electric field, which has proved to be very successful in
numerical simulations and extremely flexible in its application, spanning various
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realisations and materials. One clear area of improvement would be confirming
the transmission of the fields found in our time domain simulations. Beyond this,
a logical next step would be the possible fabrication of a structure and an attempt
at experimental verification.
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