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Abstract

In this paper, we consider a network capacity expansion problem in the context of
telecommunication networks, where there is uncertainty associated with the expected traf-
fic demand. We employ a distributionally robust stochastic optimization (DRSO) frame-
work where the ambiguity set of the uncertain demand distribution is constructed using
the moments information, the mean and variance. The resulting DRSO problem is formu-
lated as a bilevel optimization problem. We develop an efficient solution algorithm for this
problem by characterizing the resulting worst-case two-point distribution, which allows us
to reformulate the original problem as a convex optimization problem.

In computational experiments the performance of this approach is compared to that of
the robust optimization approach with a discrete uncertainty set. The results show that so-
lutions from the DRSO model outperform the robust optimization approach on highly risk-
averse performance metrics, whereas the robust solution is better on the less risk-averse
metric.

Keywords: network design; robust optimization; optimization in telecommunications; distri-
butionally robust stochastic optimization

1 Introduction

Uncertainty has been recognized as a reality of our day-to-day living where choices are often
made under partial or unknown information. Hence mitigating against uncertainty in decision
making has always been a key business driver. In operations research, frameworks have been
developed that help to address decision making under uncertainty in two broad areas, namely
the stochastic and the robust optimization approaches.

In the stochastic approach, we assign probabilities to the random variables by assuming
that the probability distribution of these variables or uncertain data is known or can be accu-
rately estimated from historic data Chen et al. (2008). A drawback of this approach is that in
real life, the probabilities are often not available or correctly estimated. Robust optimization on
the other hand addresses the problem of data uncertainty by assuming that the data lie within
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a closed set Ben-Tal and Nemirovski (1999). It provides an uncertainty immune solution for
the worst case of the uncertain data set. Whereas in the robust optimization approach, we op-
timize the worst-case objective, in the stochastic optimization approach we optimize relevant
statistical measures, e.g. expectation, median, CVaR etc. Ignoring the probability information
has been a main criticism of the robust approach which may produce an overly conservative
solution Chen et al. (2007). Despite the limitations of these two approaches, network design
problems under demand uncertainty using these approaches have been frequently considered.
Network design has a strategic role within the planning function of most organizations. The
task is to ensure the highest quality of design while efficiently balancing the requirement of just
enough capacity with the capacity investment cost. Magnanti and Wong (1984); Minoux (1989)
provide a survey of the network design models as well as a unifying framework for many of
such models. Network design has found application in many areas, such as transportation,
supply chain, communications, and social networks.

Thapalia et al. (2012) showed that stochastic just like robust optimization models are often
NP-hard, and even the deterministic network design model itself may be difficult to solve for
problems of industrial size. Nemirovski et al. (2009) investigated the heuristic methods based
on Monte Carlo sampling techniques, stochastic approximation (SA) and sample average ap-
proximation (SAA), in their attempt to find a robust stochastic solution. On the other hand,
Bai et al. (2014) compared the result of the deterministic model to the stochastic model using
a standard commercial solver while they proposed the use of heuristics or relaxation meth-
ods to solve large-scale problems. Sun et al. (2017) determined the quality of the deterministic
solutions for a stochastic multi-commodity network design problem and conclude that this so-
lution can be used to find a good heuristic solution to the stochastic multi-commodity network
design model. The deterministic solution is hence contained in the stochastic solution and us-
ing it as a skeleton improves results with as much as 97% of the initial loss recovered. The
framework consists of solving a deterministic network design problem, extracting the discrete
variables, fixing them in the stochastic model and then solving a stochastic linear problem.

Santoso et al. (2005) solved a supply chain network design problem using sample average
approximation and combined this with an accelerated Benders decomposition algorithm to
solve a problem with a large number of scenarios. Bidhandi and Yusuff (2011) also study a
supply chain network, which was solved using SAA combined with a Benders decomposition
algorithm. Kılıç and Tuzkaya (2014) formulate a distribution network as a two-stage design
problem and solve this using a MIP methodology called the TSMIP.

Literature abounds on the application of robust optimization to network planning and de-
sign following the seminal work of Soyster (1973) and Ben-Tal et al. (1998); Laguna (1998);
Kouvelis and Yu (1997); Ghaoui et al. (1998); Ben-Tal and Nemirovski (1999); Bertsimas and
Sim (2003, 2004) among many others. Of particular importance is the work of Ben-Tal et al.
(2004) which introduced the adjustable robust framework that addresses two-stage decision
problem where the network planning and design problem is situated. Atamturk and Zhang
(2007) applied this to network flow design problem under demand uncertainty, a two stage
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problem which allows the control of the conservatism of the solution via a parameterized bud-
get uncertainty set, Ordóñez and Zhao (2007) studied the network capacity problem under
both demand and travel time uncertainty for a multi-commodity flow problem with single
source and sink per commodity while Ouorou and Vial (2007) introduced affine routing con-
cept in their robust capacity planning model under demand uncertainty using path-based for-
mulation and of recent, Garuba et al. (2019a) addressed non-linearity of cost function in robust
network capacity expansion problem. Also, there have been work towards exact solution with
Mattia (2012) being the forerunner while others are Zeng and Zhao (2013); Bertsimas et al.
(2015); Pessoa and Poss (2015); Ayoub and Poss (2016) using different types of decomposition
algorithms.

In this paper, to address the drawback of the two approaches, we leverage on their respec-
tive strengths and investigate a distributionally robust stochastic stochastic (DRSO) approach
to a multi-commodity network design problem, where the probability distribution itself is af-
fected by ambiguity. This combination of robust and stochastic optimization for a network
capacity planning problem is then analyzed with respect to time of execution, resource usage
and applicability in a real world setting

This approach has found increasing application in diverse areas/field since its introduc-
tion by Scarf (1957) in his min-max solution of inventory problem. Popescu (2007) used this
approach in the mean-covariance of the uncertain data distribution to derive a robust solu-
tion approach for a max-min and min-max stochastic problem without recourse. Delage and
Ye (2010) in their work on distributionally robust stochastic programming develop a model
that combines the distribution and moment of the uncertain data. They show that their model
outperforms the naive approximated stochastic model proposed by Popescu (2007). However,
a polynomial-time algorithm for the larger range of utility functions considered in Popescu
(2007) was beyond the scope of their work. Goh and Sim (2010) on the other hand develop a
tractable approximation to a distributionally robust optimization problem. Unlike most min-
max stochastic programs, the expectation of recourse variable was included in their model.

Mak et al. (2013) applied the distributionally robust framework to solve an electric vehicle
battery swapping station location problem. They also validate the accuracy of this solution
against that of the SAA and were able to show that it provides a good approximation to the
SAA. Cheng et al. (2016) proposed a new reformulation and approximation for solving the
distribution robust shortest path problem building on their earlier work (Cheng et al., 2013).
A unifying framework was proposed by Wiesemann et al. (2014) for modeling and solving
distributionally robust optimization problems based on standardized ambiguity sets which
encompasses many sets from the literature. They identify conditions under which this frame-
work is tractable and develop a tractable conservative approximation for problems that violate
these conditions. Bertsimas et al. (2018) developed a framework for solving adaptive distribu-
tionally robust linear optimization problem.

This paper presents the following contributions: We consider an uncertain network capac-
ity expansion problem and develop an efficient algorithm to its distributionally robust counter-
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part by characterizing the resulting two point distribution using Richter-Rogonski’s theorem
Richter (1957); Rogosinski (1958). We compare the quality of solutions from this algorithm to
the solutions obtained from a discrete robust approach. It is observed from our numerical ex-
periments that solutions found by the DRSO algorithm outperform solutions from the robust
optimization approach on highly risk-averse performance metrics.

The model from the literature that is the most similar to ours, but with a flow cost, can be
found in Nakao et al. (2017). While their approach resulted in a computationally challenging
solution approach (including the discretization of continuous values), the model presented
here is considerably easier to solve.

The rest of this paper is organized as follows. In Section 2, we describe the general distribu-
tionally robust stochastic optimization concept. Section 3 explains the robust network design
problem we consider. In Section 4, our efficient formulation of the distributionally robust
problem is developed. We first focus on the single-commodity case and then extend results to
the multi-commodity case. In Section 5, the experimental setup and computational result are
discussed. Finally, Section 6 concludes our work and points out future research directions.

2 Distributionally Robust Stochastic Optimization

Distributionally robust stochastic optimization is a data-driven modeling methodology for
optimization under uncertainty. It encompasses aspects from both robust and stochastic op-
timization, frameworks that are complementary to each other though differing in their ap-
proaches to addressing the uncertainty Ben-Tal et al. (2009).

Robust optimization provides a framework to immunize against uncertainty that is be-
lieved to lie within a closed and bounded set known as the uncertainty set, while the stochastic
optimization framework assumes that the probability distribution of these parameter uncer-
tainty is known. However, in real world application, ”true” distribution knowledge is never
completely known but at most can only be estimated from available data Shapiro and Kley-
wegt (2002). On the other hand, one of the major attractiveness which has resulted in the
explosion of research into the robust framework is its tractability to a wide range of challeng-
ing problems. Nevertheless, this methodology also faced criticism for its inability to factor in
the distribution knowledge of the underlying uncertain data, leading to overly conservative
solutions Wiesemann et al. (2014); Chen et al. (2007).

Uncertainty can be viewed as risk when the probability distribution is known or as an ambi-
guity otherwise Bertsimas et al. (2018). Neither of these two approaches is suitable to deal with
ambiguity from the perspective of decision theory. However, combining the uncertainty set of
the robust approach with the probability distribution from the stochastic approach produces
a more potent methodology that is able to handle both risk and ambiguity. Hence, under the
distributionally robust stochastic framework, the probability distribution is also subjected to
uncertainty. The aim is to find a decision such that for any possible probability distribution
from the ambiguity set, the stochastic constraints of the model are satisfied.
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In the era of growing data-driven applications, moments that constitute the ambiguity are
estimated in the face of limited historical data. Scarf (1957) was the first to apply this methodol-
ogy in his min-max proposal to the newsvendor problem where the ”true” distribution, though
not known completely, is only characterized by its mean and standard deviation and belongs
to a class of probability distributions with the same mean and standard deviation. The distri-
butionally robust stochastic approach hence seeks to maximize the expectation by considering
the worst case distribution in this probability distributions class also known as the ambiguity
set.

3 Problem Description

Planning for capacities to be added in networks is a major strategic problem in most telecom-
munication organizations. Usually, this decision is made under uncertainty of the future traffic
demand. As with most strategic roles, this often involves large capital expenditure investment.
Hence, in this paper, we consider a multi-commodity network demand flow problem, where
additional capacities are added to accommodate uncertain traffic demands while minimizing
the total cost involved subject to design constraints.

3.1 Basic Network Expansion Problem

The problem can be represented by a directed graph G = (V,A) which denotes the network
of interest. Each of the arcs a ∈ A has an original capacity ua which can be upgraded at a cost
ca per incremental unit of capacity. A set of commodities K = {1, . . . ,K} need to be routed
across the network with each commodity k ∈ K consisting of a demand dk ≥ 0, a source node
sk ∈ V , and a sink node tk ∈ V . Additionally, let φ be the cost of not satisfying one unit of
demand over the planning horizon (i.e., by outsourcing it). Under complete demand certainty,
the nominal network capacity expansion problem can then be formulated as:

min
∑
a∈A

caxa + φ
∑
k∈K

dk − ∑
a∈δ−(tk)

fka +
∑

a∈δ+(tk)

fka


+

(1)

s.t.
∑

a∈δ−(v)

fka −
∑

a∈δ+(v)

fka ≥ 0 ∀k ∈ K, d ∈ U , v ∈ V \ {sk, tk} (2)

∑
k∈K

fka ≤ ua + xa ∀a ∈ A (3)

fka ≥ 0 ∀k ∈ K, d ∈ U , a ∈ A (4)

xa ≥ 0 ∀a ∈ A (5)

Here, [y]+ denotes the positive part max{0, y}, while δ+(v) and δ−(v) are the sets of the outgo-
ing and incoming arc at node v ∈ V , respectively. Variables fka denote the flow of commodity
k ∈ K along edge a ∈ A, while xa models the amount of capacity being added to arc a. The
objective function (1) is to minimize the sum of capacity expansion cost and outsourcing costs.
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Constraints (2) are a variant of flow constraints, where we allow an arbitrary amount of flow to
leave the source node sk. Through the objective, only the flow arriving in tk is counted. Finally,
Constraints (3) which model the capacity on each edge ensure that amount of flow does not
exceed the sum of initial and added capacity.

3.2 Robust Problem Formulation

Since the actual demand values ddd = (d1, . . . , dK) ∈ RK+ are uncertain, we assume here that
they can take any value in a predetermined uncertainty set U , which can be represented as
U = {ddd1, . . . , dddN}. The network capacity expansion problem using the robust optimization
framework is to minimize the cost of capacity investment and the worst-case costs of out-
sourced (unsatisfied) demand while satisfying the network constraints. The robust network
design for uncertainty set U is hence:

min
∑
a∈A

caxa + max
ddd∈U

φ
∑
k∈K

dk − ∑
a∈δ−(tk)

fka (ddd) +
∑

a∈δ+(tk)

fka (ddd)


+

(6)

s.t.
∑

a∈δ−(v)

fka (ddd)−
∑

a∈δ+(v)

fka (ddd) ≥ 0 ∀k ∈ K, ddd ∈ U , v ∈ V \ {sk, tk} (7)

∑
k∈K

fka (ddd) ≤ ua + xa ∀ddd ∈ U , a ∈ A (8)

fka (ddd) ≥ 0 ∀k ∈ K, ddd ∈ U , a ∈ A (9)

xa ≥ 0 ∀a ∈ A (10)

with a scenario ddd being the demand vector over all commodities. As before, φ is a penalty pa-
rameter for uncovered demand (e.g., outsourcing costs). We can send as much flow as we like,
but flow cannot appear outside the source, and sending insufficient flow creates a penalty. The
constraints (1)-(5) have been updated to take uncertainty into account, hence the worst case
is considered in constraints (6). The positive part [·]+ in the objective can be easily linearized
using additional variables τk ≥ 0 and constraints τk ≥ dk −

∑
a∈δ−(tk) f

k
a (ddd) +

∑
a∈δ+(tk) f

k
a (ddd)

for all k ∈ K. The inner maximum can be linearized in an analogous way.

4 Distributionally Robust Stochastic Problem Formulation

4.1 Single-Commodity Case

The single commodity network design problem with outsourcing can be modeled as below.
Notice that we drop the subscript k from dk, sk and tk, because we assume a single commodity
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problem, i.e., K = 1;

min
∑
a∈A

caxa + φmax
P∈P

EP
[
d− d̃

]
+

(11)

s.t.
∑

a∈δ−(v)

fa −
∑

a∈δ+(v)

fa = 0 ∀v ∈ V\{s, t} (12)

∑
a∈δ−(t)

fa −
∑

a∈δ+(t)

fa = d̃ (13)

∑
a∈δ−(s)

fa −
∑

a∈δ+(s)

fa = −d̃ (14)

fa ≤ ua + xa ∀a ∈ A (15)

fa ≥ 0 ∀a ∈ A (16)

d̃ ≥ 0 (17)

xa ≥ 0 ∀a ∈ A (18)

In this formulation, d̃ is the amount of demand that we intend to satisfy. We consider the prob-
lem as a bilevel optimization problem, where first the network owner makes his decision of the
amount of demand he wishes to satisfy, and then nature chooses a probability distribution for
the demand which maximizes the expected unsatisfied demand. So the second level problem
(nature’s problem) is

max
P

EP
[
d− d̃

]
+

(19)

s.t. EP
[
d
]

= µ (20)

EP
[
d− µ

]
2 = σ2 (21)

This means we consider all probability distributions P over d that have the same mean µ and
variance σ2. We denote this set as P . We can thus rewrite the DRSO problem as

min
(xxx,fff,d̃)∈X

∑
a∈A

caxa + φN(d̃)

whereN(d̃) denotes the value of the inner nature’s problem, andX the set of feasible solutions
with respect to xxx, fff and d̃.

4.2 Model Reformulation

Lemma 1 Let some first-stage solution (xxx,fff, d̃) be fixed. The optimal objective value of nature’s prob-
lem can then be written as

N(d̃) =

1/2

(
µ− d̃+

√
(d̃− µ)2 + σ2

)
if d̃ > µ2+σ2

2µ

µ− d̃ µ2

µ2+σ2 if d̃ ≤ µ2+σ2

2µ

(22)
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Proof: A proof of the result can be found in Lo (1987) . Recall that N(d̃) = maxP∈P EP[max(d−
d̃, 0)]. It can be shown that there is a worst-case distribution that is a two-point distribution,
which follows from the Richter-Rogonski theorem Richter (1957); Rogosinski (1958). For the
sake of completeness, we present a proof in Appendix A. �

An example for the shape of function N(d̃) is presented in Figure 1.
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Figure 1: Example shape of N(d̃) with µ = 10 and σ2 = 100. In this case, (µ2 + σ2)/2µ = 10.

Lemma 2 The function N(d̃) is convex.

Proof: The first derivative of N with respect to d̃ is

∂N

∂d̃
=


1
2

[
d̃−µ√

(d̃−µ)2+σ2
− 1

]
if d̃ > µ2+σ2

2µ

− µ2

µ2+σ2 if d̃ ≤ µ2+σ2

2µ

and the second derivative is

∂2N

∂d̃2
=


σ2

2((d̃−µ)2+σ2)
3
2

if d̃ > µ2+σ2

2µ

0 if d̃ ≤ µ2+σ2

2µ

Note that the first derivative is continuous, as

1

2

 µ2+σ2

2µ − µ√
(µ

2+σ2

2µ − µ)2 + σ2
− 1

 =
1

2

 σ2−µ2
2µ√

(µ
2+σ2

2µ )2 − (µ2 + σ2) + µ2 + σ2
− 1


=

1

2

 σ2−µ2
2µ√

(µ
2+σ2

2µ )2
− 1

 =
1

2

 σ2−µ2
2µ

µ2+σ2

2µ

− 1

 =
1

2

[
σ2 − µ2

µ2 + σ2
− 1

]
=

1

2

[
− 2µ2

µ2 + σ2

]
= − µ2

µ2 + σ2
,

and it is non-decreasing. Hence, the function is convex. �

We now introduce some additional notation. Let F (d̃) be the objective value of the DRSO
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problem for fixed value of d̃. Then,

F (d̃) = min
(xxx,fff)∈X(d̃)

∑
a∈A

caxa + φN(d̃)

where as before, N(d̃) is the objective of the adversary problem, and X(d̃) is the set of vectors
xxx and fff that give a flow value d̃. We rewrite this to

F (d̃) = φN(d̃) +G(d̃)

where G(d̃) = min(xxx,fff)∈X(d̃)

∑
a∈A caxa.

Theorem 1 The function F (d̃) is convex.

Proof: We show that G(d̃) is a convex function in d̃. This, together with the fact that N(d̃) is
convex due to Lemma 2, implies that their sum, F (d̃) is also convex.

Consider the function G′(d̃), where

G′(d̃) = min
∑
a∈A

caxa + ψ ·

∣∣∣∣∣∣d̃−
∑

a∈δ−(t)

fa +
∑

a∈δ+(t)

fa

∣∣∣∣∣∣ (23)

s.t.
∑

a∈δ−(v)

fa −
∑

a∈δ+(v)

fa = 0 ∀v ∈ V\{s, t} (24)

fa ≤ ua + xa ∀a ∈ A (25)

fa ≥ 0 ∀a ∈ A (26)

xa ≥ 0 ∀a ∈ A (27)

for a large value ψ ≥
∑

a∈A ca. Let (xxx′, fff ′) be an optimal solution to G′(d̃) and assume that
∆ := |d̃ −

∑
a∈δ−(t) f

′
a +

∑
a∈δ+(t) f

′
a| > 0. Then we can increase each x′a by ∆ to find a new

solution where there is sufficient capacity to outsource no demand at all. As increasing the
capacity this way increases the costs by ∆

∑
a∈A ca and ψ >

∑
a∈A ca, we have constructed a

new solution that is feasible and has no higher objective value that (xxx′, fff ′). Hence there is an
optimal solution to G′(d̃) that meet exactly a demand of d̃. Therefore, G′(d̃) = G(d̃).

Recall that if a function f1(x, y) is convex in (x, y) and C is a convex set, then

f2(x) = inf
y∈C

f1(x, y)

is convex as well Boyd and Vandenberghe (2004). Therefore,G(d̃) = G′(d̃) = min(xxx,fff,d̃)∈X
∑

a∈A caxa+

ψ · |d̃−
∑

a∈δ−(t) fa +
∑

a∈δ+(t) fa|with X represented by constraints (24-27) is convex.
�

We can use Theorem 1 to solve the single-commodity DRSO problem efficiently. For a fixed
value d̃, we evaluate F (d̃) by solving G(d̃) as a linear program and N(d̃) using the formula
provided in Equation 22. We can now apply standard convex optimization methods (in our
experiments we use the Nelder-Mead method) to solve mind̃ F (d̃) to optimality.
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4.3 Extension to the Multi-Commodity Case

In this setting, we assume that the demand at each of the origin-destination pairs (sk, tk) is
affected by a different distribution. In particular, we have mean µk and variance σ2k for each
k ∈ K. The nature problem in this case becomes:

max EP

[∑
k∈K

[dk − d̃k]+

]
(28)

s.t. EP
[
dk
]

= µk ∀k ∈ K (29)

EP
[
dk − µk

]2
= σ2k ∀k ∈ K (30)

The DRSO problem can now be written as

min
∑
a∈A

caxa + φ ·N(d̃dd) (31)

s.t.
∑

a∈δ−(v)

fka −
∑

a∈δ+(v)

fka = 0 ∀k ∈ K, v ∈ V\{sk, tk} (32)

∑
a∈δ−(tk)

fka −
∑

a∈δ+(tk)

fka = d̃k ∀k ∈ K (33)

∑
a∈δ−(sk)

fka −
∑

a∈δ+(sk)

fka = −d̃k ∀k ∈ K (34)

fka ≤ ua + xa ∀k ∈ K, a ∈ A (35)

fka ≥ 0 ∀k ∈ K, a ∈ A (36)

xa ≥ 0 ∀a ∈ A (37)

where N(d̃dd) denotes the multi-dimensional version of nature’s problem as defined by equa-
tions (28)-(30).

Corollary 2 The optimal solution for nature’s problem defined by equations (28)-(30) can be expressed
as

N(d̃dd) =
∑
k∈K

N(d̃k) (38)

Proof: This extends Lemma 1 using the linearity of the expectation on the one hand, and the
decomposability of nature’s problem on the other hand. We have

N(d̃dd) = max
P∈P

EP

[∑
k∈K

[dk − d̃k]+

]
= max

P∈P

∑
k∈K

EP

[
[dk − d̃k]+

]
=
∑
k∈K

max
P∈P

EP

[
[dk − d̃k]+

]
=
∑
k∈K

N(d̃k)

which proves the result. �
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Moreover, it can be easily verified that N(d̃̃d̃d) is convex, as it is a sum of convex functions.

5 Experiments

5.1 Setup

Our models were implemented using a real-world network from the SNDLib library (see Or-
lowski et al. (2010)), the Nobel-US network with 14 nodes and 42 arcs. A sample of 10, 000

demand scenarios was generated to form our reference set, sampling i.i.d from a gamma dis-
tribution with shape 4 and scale 5 while discarding negative demands and any demand above
50. Three instances of 20 source-sink node pairs were randomly generated for the test network;
commodity set A, commodity set B and commodity set C. We then sample training sets for the
optimization models. Commodities A and B use the same set of 60 scenarios. For commodity
C, we sample a separate set of 60 scenarios. These are used as discrete uncertainty sets for the
robust model, and to compute the empirical mean and the variance for the DRSO model.

The solutions found by the two optimization models are then evaluated with demands
from the reference set using 5,000 scenarios. The whole experimental setup is repeated 21
times for commodities A and B, and 20 times for commodity C. We provide an overview on
the experimental setup in Table 1.

The cost of capacity allocation to the arc is randomly generated using a normal distribution
with mean 40 and variance 36, while the penalty of unsatisfied or outsourced demand was set
to 130 using 10(N − 1), where N is the number of arcs.

Table 1: Experimental setup.

Experiment Commodity # Repetitions # Evaluation per Solution Total # Evaluation

DRSO Model A, B 21 5,000 210,000
Robust Model A, B 21 5,000 210,000
DRSO Model C 20 5,000 100,000
Robust Model C 20 5,000 100,000

The results of the two models are recorded as the in-sample results where the first-stage
investment cost of the objective value (Cap. Inv) is the cost of deploying capacity and O/S
demand is the outsourced (unsatisfied) demand, which when multiplied by the unit penalty
cost (φ) gives the second-stage outsourcing costs of the objective value. The performance of
the evaluation model is reported in terms of mean outsourced demand (E[O/S]), expected
maximum outsourced demand(E[max O/S]), average outsourced demand over the worst 5%
values (CVaR95), average outsourced demand over the worst 25% values (CVaR75) and the
mean satisfied demand E[d̃]. The first of these metrics, the E[O/S], is a low risk measure while
the rest three are high risk measures. The two models were implemented using Julia and
Gurobi version 7.5 on a Lenovo desktop machine with 8GB RAM and Intel Core i5-65 CPU
with 2.50GHz using Windows 10 (64-bit) OS.

The results of the two models, DRSO and Robust, are evaluated in-sample and out-sample
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using the below model. This seeks to calculate an optimal flow for a fixed scenario ddd while
minimizing the expected outsourced demand τk in each commodity k ∈ K, due to lack of
adequate capacity. As the first-stage investment is already fixed, we fix the xxx solution in this
model.

min
∑
k∈K

τk

s.t.
∑

a∈δ−(v)

fka −
∑

a∈δ+(v)

fka = 0 ∀k ∈ K, v ∈ V\{sk, tk}

∑
a∈δ−(tk)

fka −
∑

a∈δ+(tk)

fka = d̃k ∀k ∈ K

∑
a∈δ−(sk)

fka −
∑

a∈δ+(sk)

fka = −d̃k ∀k ∈ K

τk ≥ dk − d̃k ∀k ∈ K

fka ≤ ua + xa ∀k ∈ K, a ∈ A

fka ≥ 0 ∀k ∈ K, a ∈ A

d̃k ≥ 0 ∀k ∈ K

τk ≥ 0 ∀k ∈ K

For each xxx solution, 5, 000 evaluations are done and the outsourced demand together with
satisfied demand are recorded for each evaluation.

5.2 Computational Results

Table 2 presents a high level summary of the experimental results. Recall that three instances
of 20 S-T pairs were used, which are denoted as commodities A, B and C in the table. Each row
of results under commodities A and B in the table is the average of 21 instances while the ones
under commodity C is the average of 20 instances of different 60 demand samples. The first
three columns results are the in-sample optimization result while the next two are the out-of-
sample evaluation result. The average (E[O/S]), the maximum (E[Max O/S]), average of the
largest 5% (CVaR95) and average of largest 25% (CVaR75) are calculated from the 5, 000 eval-
uation results for the outsourced demand as the out-of-sample results. While for the satisfied
demand, only the average (E[d̃]) is calculated.

In the following, we focus on the evaluation for commodity type A. Results for commodity
types B and C can be found in Appendix B and Appendix C, respectively.

From Table 2, it is observed that DRSO solutions build less capacity compared to the robust
solutions for all demand instances and hence a lower capital investment, both in terms of total
investment and capacity investment. The capacity investment is the cost of adding capacity,
the first term of the objective function, while the total investment is the objective value of the
optimization problem. The observation seems valid irrespective of the commodity and data set
used. For commodity A, the robust solution builds approximately 74% more capacity than the
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Table 2: Comparing the two models under two commodities.

Commodity A Tot. Inv Cap. Inv O/S Dem E[O/S] E[d̃] Cap Add Unit Cost

Robust 44,679.05 32,641.54 92.60 70.91 372.02 842.09 38.76
DRSO 41,830.77 18.671.69 178.15 159.75 267.28 484.99 38.50

Commodity B

Robust 43,548.63 28,685.06 114.33 86.22 355.32 730.25 39.29
DRSO 41,081.28 19,255.14 167.89 150.49 280.37 489.35 39.35

Commodity C

Robust 50,878.38 29,226.48 166.55 132.37 281.68 705.39 41.43
DRSO 47,290.23 11,734.21 273.51 261.79 141.53 283.55 41.38

DRSO solution (50% and 150% more in case of commodity B and C, respectively). Though this
result is the average over all demand instances, it is also true for each single demand instance,
see Figure 5c.

Table 3: Robust model results for commodity type A.

In Sample Out of Sample

Inst. Cap. Inv. O/S Demand E[O/S] E[Max O/S] CVaR95 CVaR75 E[d̃] CapAdd

1 32,589.64 97.48 72.91 562.76 407.99 231.40 378.76 832.84
2 34,600.41 77.58 59.55 525.62 369.93 199.51 385.59 894.49
3 33,855.56 78.89 65.59 558.41 402.72 219.72 375.00 873.30
4 34,166.13 75.71 60.50 525.91 378.00 204.94 376.94 885.85
5 34,445.25 88.87 64.67 545.86 391.37 215.37 370.99 888.71
6 33,818.93 90.58 65.47 542.46 387.26 215.31 387.39 870.78
7 32,527.15 95.14 75.24 561.43 411.77 239.97 364.20 838.04
8 31,603.34 106.24 74.96 561.52 407.47 232.43 372.81 809.27
9 32,173.50 103.65 77.82 561.57 405.88 231.07 370.11 834.15

10 29,153.00 99.19 91.97 585.70 437.79 264.62 355.20 751.48
11 29,642.85 118.30 82.57 578.90 423.41 250.96 350.37 768.80
12 29,848.79 124.09 86.77 579.68 423.98 245.93 354.20 773.85
13 31,146.65 106.54 75.19 561.82 410.03 239.60 363.83 805.23
14 32,925.94 80.73 67.86 551.43 396.82 222.27 363.21 853.06
15 33,431.34 90.17 67.58 555.29 403.51 228.90 374.53 858.36
16 33,160.00 90.34 68.89 544.42 390.52 216.68 369.76 854.61
17 30,910.42 93.55 75.41 579.02 424.54 246.26 352.29 799.72
18 35,969.65 74.46 52.75 524.08 368.39 190.02 395.79 925.42
19 33,415.01 84.78 67.08 540.52 387.26 212.55 384.07 860.78
20 30,853.02 93.20 78.69 574.63 425.13 248.80 358.67 795.68
21 35,235.78 75.03 57.68 515.23 363.10 200.72 408.72 909.52

Table 3 and Table 4 present the results for each demand instance for the robust and DRSO
solutions respectively. For the same demand instance, the DRSO solution invests less in capac-
ity, which can be expected since it takes the distribution information of the random variable
into consideration unlike the robust model. The DRSO solution is less conservative in this re-
gards, whereas the robust solution plans for the worst observed realization of the random vari-
able. The DRSO solution is therefore cost efficient, building only the needed capacity based
on the distribution information which lowers the investment cost, while the robust solution
seems to take the more pessimistic route. Comparing each demand instance, the penalty cost
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Table 4: DRSO model results for commodity type A.

In Sample Out of Sample

Inst. Cap. Inv. Nature d̃ E[O/S] E[ Max O/S] CVaR95 CVaR75 E[d̃] CapAdd

1 19,066.17 176.23 300.70 154.02 698.87 543.18 356.25 278.11 495.16
2 19,577.97 171.08 297.69 150.88 688.22 532.53 350.41 279.93 506.00
3 16,785.07 185.68 267.71 173.22 726.25 570.56 383.89 254.52 437.08
4 20,276.51 162.84 307.05 142.09 677.09 521.40 339.98 286.83 529.02
5 17,372.72 192.30 271.26 176.06 728.31 572.62 385.63 246.74 452.77
6 17,882.24 183.66 283.42 168.07 716.15 560.46 373.48 261.94 463.40
7 19,125.03 170.55 292.95 154.98 704.27 548.58 361.60 271.78 495.25
8 17,633.05 197.36 275.90 169.89 717.59 561.90 376.29 258.67 459.89
9 17,282.82 195.63 261.69 180.33 737.88 582.19 395.31 237.93 442.80

10 19,688.38 161.49 292.87 151.62 700.52 544.83 359.57 274.50 507.90
11 19,001.74 172.63 298.09 152.80 697.06 541.37 354.93 274.36 495.37
12 21,012.66 162.36 317.59 136.45 670.18 514.49 332.53 292.79 547.64
13 16,316.88 202.74 264.19 184.32 735.38 579.69 392.82 246.14 424.59
14 18,998.62 172.22 291.80 152.49 704.37 548.68 361.77 268.54 497.03
15 20,174.18 166.03 304.22 144.64 695.35 539.66 352.67 282.83 523.39
16 22,007.06 144.70 318.79 132.10 680.78 525.08 338.10 298.47 569.06
17 19,207.57 172.70 296.34 151.61 700.80 545.11 358.26 269.02 503.15
18 19,184.25 176.21 292.80 156.95 706.77 551.08 364.10 261.23 500.53
19 19,023.42 173.25 296.49 153.29 688.88 533.19 352.03 276.72 493.69
20 15,879.57 198.35 257.87 185.17 741.70 586.01 399.03 243.59 412.61
21 16,609.68 203.07 260.61 183.82 738.96 583.26 396.28 248.14 428.43

of outsourced demand is lower for the robust solution, which is attributed to the fact that it
builds for the worst case.

Evaluating the performance of the optimization solution, which is reported by the out-
sample performance in Table 3 and Table 4, the expected unsatisfied demand and expected
satisfied demand are lower compared to the DRSO solution. All other high-risk metrics are
higher for the DRSO solution. The first four metrics are derived from the expected unsatisfied
demand which explains this observation while the satisfied demand on the other hand is a
function of the capacity already installed for which the DRSO solution is less conservative.
However, this simple comparison may not fully explain the performance of the models, hence
we will rely on the charts presented in Figure 2 to Figure 5. The capacity investment, on the
horizontal axis, is compared with the four expected unsatisfied demand metrics in Figure 2a
to Figure 2d.

Each of these four charts gives the same observation: Solutions based on the robust model,at
higher investment cost, are revealed to be generally more robust than solutions based on DRSO
model, which are at lower investment region. For an unexpected surge in traffic, the solution
based on robust model will be more able to accommodate this surge compared to the DRSO
solution, as its expected outsourced demand is lower. However, in order to allow for a fair
comparison of these two models and to be sure this observation is consistent for both models
in all the investment regions, we scale a robust solution up towards the DRSO solutions area
while scaling down a DRSO solution towards the robust solutions area using expected unsat-
isfied demand that is presented in Figure 2a. This scaling, which was also used in Garuba et al.
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(b) Expected maximum unsatisfied demand.

200

250

300

350

400

450

500

550

600

650

10000 20000 30000 40000

O
u

t_
E

[C
V

a
R

9
5

 D
e

m
a

n
d

]

Capacity Investment

DRSO Robust

(c) CVaR95 unsatisfied demand.
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(d) CVaR75 unsatisfied demand.

Figure 2: Expected unsatisfied demand mean and risk measures (commodity A).

(2019b), is carried out using a representative data point for each model. We scale the xxx solution
in the direction of interest and re-evaluate with the out-of-sample set. In personal experience,
this is also common in the industry, where an optimal solution is scaled up or down during
planning iteration, thus allowing for a comprehensive comparison of the two models in all the
investment regions. The DRSO xxx solution is multiplied by a factor of λ = 1.0 to λ = 1.8, where
λ is the scaling factor, with a scale interval of 0.08, to scale up the solution towards the high
investment area while the robust solution is multiplied by a factor of λ = 1.0 to λ = 0.5, with
a scale interval of 0.05, to scale down the solution towards the low investment area. The result
of this scaling is as shown in Figure 3 which to the contrary shows that for highly risk-averse
metrics (maximum and CVaRs of expected unsatisfied demand), solutions based on the DRSO
model are in fact better, having a higher degree of robustness with increasing capacity invest-
ment even for high investment. However, for the less risk-averse metric (expected unsatisfied
demand), the robust model gives a better solution at higher investment region but with com-
parable performance for lower investment cost. This observation is consistent for the other
two commodities B and C, see Figure 7 and Figure 10 in the appendix.
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(d) CVaR75 unsatisfied demand.

Figure 3: Performance metric scaling (commodity A).

Next we compare the unsatisfied demand (in-sample) to the expected outsourced demand
(out-of-sample) for these two models to see which of these gives a better estimate. The charts
in Figure 4a to Figure 4e present these results and they show that the DRSO results produce a
far better estimate and hence a better predictor of the input variables under data uncertainty.
On the average the input/output ratio of the unsatisfied demand (in-sample) to the expected
unsatisfied demand (out-of-sample) is around 10.3% (commodities B and C respectively are
10.3% and 4.29%) for the DRSO model, while for the robust model, this is as high as 23.43%

(commodities B and C respectively are 24.59% and 20.52%). Also, regression analysis in Fig-
ure 4a shows that 93% variation in the estimate is explained by the in-sample result for the
DRSO model while for the robust model this is approximately 71%, see Figure 4b. The result
follows the same pattern for the maximum expected unsatisfied demand with respect to the
unsatisfied demand in Figure 4c for DRSO with R2 = 0.8121 and Figure 4d for the robust
model with R2 = 0.6048.

A similar trend is also observed for the satisfied demand (d̃) metric with an I/O gap of
7.35% (commodities B and C respectively are 7.23% and 4.20%) while the regression result in
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Figure 4: Results of out-of-sample prediction (commodity A).

Figure 4e shows that 94.10% (commodities B and C respectively are 94.78% and 98.83%) varia-
tion in the expected satisfied demand (E[d̃]) is explained by the in-sample result, which means
that 5.90% variation in the expected satisfied demand is not due to the in-sample satisfied
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demand.
Although the robust solutions follow a pessimistic route and build more capacity for the

same demand instances, there is no observed significant difference in the average unit cost of
capacity for these two models irrespective of commodity type and data set, see Table 2. For
commodity A, for instance, with average unit capacity cost of 38.50 for the DRSO solutions
and 38.76 for the robust solutions.

Additional insight on this is provided by Figure 5a, which compares the unit cost per in-
stance and by Figure 5b, which shows similar linear relationship between capacity and invest-
ment for the two models. However, if the capacity installed is compared to the total investment
cost, the unit cost of robust solutions becomes cheaper.
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Figure 5: Investment efficiency (commodity A).

6 Conclusions

In this paper an efficient approach to distributionally robust network capacity planning un-
der demand ambiguity was proposed. In this approach, we formulate the problem as bilevel
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optimization, where the worst-case distribution can be characterized by a two-point distribu-
tion. This allows us to reformulate the problem as a convex optimization problem, where we
need to search over the demand d̃dd we intent to satisfy. We then solve this new model using
Nelder-Mead algorithm, a convex optimization method.

In order to evaluate the quality of our new approach, the resulting model was compared
with the robust approach model on the Nobel-US network taken from the SNDlib, Orlowski
et al. (2010), database on a number of performance metrics. Our computational result show
that solutions from the DRSO model outperform those from the robust model on all high risk-
averse performance metrics. Even in the area of solution robustness and quality where the
later is generally of a higher robustness, the result scaling shows that solutions from DRSO
outperform the robust model in this area on the high risk measures. The robust, however,
performs better on the low risk-averse metric.

One interesting result which was also reported earlier by Nakao et al. (2017) using a dif-
ferent metric is the prediction accuracy of the DRSO model with over 90% expected result
variability explained by model result whereas the Robust model cannot be relied upon hav-
ing a prediction accuracy of approximately 57% and higher. It was also noted that despite the
performance difference, the actual unit cost of capacity for this two model is not significantly
different.

Moreover, the solutions based on the DRSO were found to be less conservative when com-
pared to Robust model, irrespective of the observed demand instance, data set used and the
commodity type, with lower total and capacity investment.
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Appendix A Proof of Lemma 1

Proof: First suppose that d̃ ≤ µ2+σ2

2µ .
Here, Nature is characterized by a two point distribution defined by a one-sided Chebyshev
inequality below;

T =

0 w.p. σ2

σ2+µ2

σ2+µ2

µ w.p. µ2

σ2+µ2

(39)

with mass σ2

σ2+µ2
at 0 and vice-versa. Hence, Nature becomes,

N(d̃, χ1) = (χ1 − d̃)

(
µ2

σ2 + µ2

)
where χ1 is the upper support, hence;

N(d̃) =

(
σ2 + µ2

µ
− d̃
)(

µ2

σ2 + µ2

)
N(d̃) = µ− d̃

(
µ2

σ2 + µ2

)
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Suppose now that d̃ > µ2+σ2

2µ . Let χ2 be the upper support point of nature’s distribution.
Nature objective function can be written as:

N(d̃, χ2) = (χ2 − d̃)(1− q), (40)

where q is probability mass on lower support point. We can express q in terms of χ2 using the

fact that
χ2 = µ+ σ

√
q

1− q
,

which gives

q =
(χ2 − µ)2

σ2 + (χ2 − µ)2
.

which can be derived from the following two equations, where α is the lower support point ;

pα+ (1− p)χ2 = µ

pα2 + (1− p)χ2
2 = µ2 + σ2

Then, Equation 40 becomes;

N(d̃, χ2) = (χ2 − d̃)

(
1− (χ2 − µ)2

(χ2 − µ)2 + σ2

)
(41)

The value of χ at the root maximizes the above function. To this end, the first derivative of
N w.r.t χ is

∂N

∂χ2
= −σ

2(χ2
2 − 2d̃χ2 + 2µd̃− µ2 − σ2)

(χ2
2 − 2µχ2 + σ2 + µ2)2

,

Setting ∂N
∂χ2

= 0, produces a root at χ2 = d̃+
√

(d̃− µ)2 + σ2 which when substituted in Equa-

tion 41 gives

N(d̃) =

(
d̃+

√
(d̃− µ)2 + σ2 − d̃

)1−

(
d̃+

√
(d̃− µ)2 + σ2 − µ

)2

(
d̃+

√
(d̃− µ)2 + σ2 − µ

)2

+ σ2


Simplifying the above equation and re-arranging terms result in the below;

N(d̃) = 1/2

(
µ− d̃+

√
(d̃− µ)2 + σ2

)
and this completes the proof of Equation 22.
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N(d̃) =


1/2

(
µ− d̃+

√
(d̃− µ)2 + σ2

)
when d̃ > µ2+σ2

2µ

µ− d̃
(

µ2

µ2+σ2

)
when d̃ ≤ µ2+σ2

2µ

�

Appendix B Results for commodity type B.

We present additional results for commodity type B in a similar way to the presentation of
results for commodity type A in the main text. Table 5 and Table 6 show key metrics for the 21
repetitions using the robust and the DRSO model, respectively.

Table 5: Robust model results for commodity type B.

In Sample Out of Sample

Inst. Cap. Inv. O/S Demand E[O/S] E[Max O/S] CVaR95 CVaR75 E[d̃] CapAdd

1 26,955.23 138.21 94.47 614.68 458.99 272.58 342.28 682.99
2 27,340.83 122.58 95.06 592.60 436.90 259.98 358.40 690.01
3 27,966.59 109.42 88.49 601.61 445.92 262.78 349.14 698.86
4 30,966.21 96.20 73.17 569.72 414.03 232.73 356.59 787.31
5 27,081.86 135.60 93.40 600.58 444.89 262.61 342.51 698.33
6 32,108.77 98.27 71.99 540.65 384.96 212.76 384.38 824.14
7 25,174.15 144.43 109.13 615.47 459.78 280.33 340.72 627.89
8 28,144.28 125.35 85.90 588.84 433.15 250.75 363.18 717.50
9 33,905.19 84.59 62.63 531.42 375.74 206.53 394.00 871.49

10 25,598.99 127.12 101.55 622.91 467.21 284.64 329.08 656.61
11 30,395.00 100.40 73.78 554.45 399.09 223.45 379.72 774.90
12 29,084.16 112.90 84.14 583.00 427.31 244.61 358.90 743.51
13 30,291.89 109.15 80.03 567.86 412.16 235.45 352.00 764.24
14 27,374.82 111.42 87.46 593.87 438.18 254.00 356.60 701.42
15 28,590.93 112.90 82.91 593.14 437.45 251.73 351.84 731.89
16 30,027.87 95.84 75.90 560.51 404.82 226.01 367.25 764.01
17 27,506.54 111.69 92.84 603.45 447.76 266.75 337.79 703.11
18 27,813.21 121.74 89.64 593.74 438.04 253.97 354.84 709.47
19 31,422.87 100.67 78.99 550.96 395.27 218.36 357.05 800.68
20 26,886.16 118.71 95.24 619.57 463.88 278.46 341.75 685.73
21 27,750.82 123.86 93.98 594.73 439.04 260.02 343.73 701.20

Figure 6, Figure 7 and Figure 8 correspond to Figure 2, Figure 3 and Figure 4 using com-
modity type B instead of A.

Results indicate an overall similarity to the results reported in Section 5.

Appendix C Results for commodity type C.

We present additional results for commodity type C in a similar way to the presentation of
results for commodity type A in the main text. Table 7 and Table 8 show key metrics for the 20
repetitions using the robust and the DRSO model, respectively.
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Table 6: DRSO model results for commodity type B.

In Sample Out of Sample

Inst. Cap. Inv. Nature d̃ E[O/S] E[ Max O/S] CVaR95 CVaR75 E[d̃] CapAdd

1 17,917.30 197.00 272.84 169.65 726.73 571.04 384.06 252.57 450.22
2 20,356.05 156.43 316.57 140.34 683.00 527.31 340.33 293.09 513.17
3 19,387.54 164.77 292.85 153.23 706.72 551.03 364.05 273.34 491.20
4 18,059.27 191.98 271.09 173.10 728.48 572.79 386.11 241.03 460.61
5 19,949.98 166.55 306.07 144.27 693.50 537.81 350.83 279.57 515.17
6 21,042.16 153.28 319.69 132.98 679.88 524.19 337.21 289.33 538.45
7 20,756.93 149.48 323.17 133.46 676.40 520.71 333.73 299.24 527.19
8 19,641.00 171.67 310.38 146.93 689.19 533.50 346.52 292.60 494.15
9 19,625.72 161.37 310.06 143.92 689.51 533.82 346.83 291.45 494.48

10 19,318.96 153.30 305.69 145.59 693.88 538.19 351.21 283.81 493.99
11 18,554.09 179.70 291.15 158.88 708.42 552.73 366.19 263.01 471.08
12 15,903.68 203.29 267.32 186.02 732.25 576.56 389.58 253.73 401.86
13 16,550.21 197.09 275.00 175.14 724.57 568.88 382.16 258.62 420.55
14 17,326.99 183.18 280.58 166.19 718.99 563.29 376.65 254.37 448.43
15 18,206.14 177.24 290.24 161.64 709.33 553.64 366.66 268.19 469.62
16 20,826.06 139.73 329.30 131.07 670.27 514.58 327.60 303.62 529.05
17 20,943.80 152.76 323.21 133.57 676.36 520.66 333.68 301.89 526.64
18 21,479.18 146.50 332.86 127.91 666.71 511.02 324.06 309.97 542.32
19 19,553.38 159.83 314.98 142.59 684.59 528.89 342.11 296.98 498.68
20 20,173.40 156.14 312.15 142.32 687.42 531.73 344.75 287.68 510.07
21 18,786.10 164.48 309.88 151.53 689.69 534.00 347.02 293.73 479.52

Table 7: Robust model results for commodity type C.

In Sample Out of Sample

Inst. Cap. Inv. O/S Demand E[O/S] E[Max O/S] CVaR95 CVaR75 E[d̃] CapAdd

1 26,956.58 179.10 136.73 684.56 529.60 339.64 276.26 647.25
2 32,347.16 161.78 130.64 634.36 479.54 296.79 279.20 794.22
3 30,172.88 149.01 119.10 659.10 504.14 313.73 282.00 725.67
4 28,334.37 172.10 137.63 667.46 512.50 325.54 273.43 686.66
5 35,453.89 120.88 98.17 594.81 439.86 257.32 320.85 851.52
6 30,982.87 152.36 119.19 664.96 510.01 320.93 293.67 749.94
7 25,591.28 195.04 159.70 690.12 535.33 353.75 264.98 616.11
8 25,347.46 209.66 156.05 706.55 551.59 363.42 246.95 609.26
9 30,205.32 184.27 132.04 651.36 496.41 317.62 275.19 727.79

10 27,130.79 166.38 143.88 698.51 543.55 353.33 266.32 656.16
11 29,966.64 150.23 126.10 649.42 494.47 309.78 285.65 722.97
12 30,664.61 146.39 123.74 648.96 494.00 305.39 291.40 742.28
13 30,595.65 154.07 129.73 641.56 486.60 302.37 296.50 739.28
14 32,529.85 149.01 109.24 628.82 475.08 292.77 310.60 781.49
15 28,710.56 150.83 129.56 674.99 520.03 329.21 279.38 692.88
16 28,970.35 167.93 133.26 655.04 500.08 316.23 308.97 703.85
17 29,124.96 169.75 134.52 658.81 504.96 323.99 283.71 698.58
18 24,216.81 191.10 163.21 717.45 562.50 371.64 249.18 590.91
19 31,721.36 171.99 119.38 627.87 472.94 292.73 281.83 759.90
20 25,506.27 189.19 145.45 706.33 551.37 360.61 267.52 610.99
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Figure 6: Expected unsatisfied demand mean and risk measures (commodity B).
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Figure 7: Performance metric scaling (commodity B).
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Figure 8: Results of out-of-sample prediction (commodity B).
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Table 8: DRSO model results for commodity type C.

In Sample Out of Sample

Inst. Cap. Inv. Nature d̃ E[O/S] E[ Max O/S] CVaR95 CVaR75 E[d̃] CapAdd

1 12,363.99 268.29 152.98 258.35 842.53 687.58 496.72 146.54 294.04
2 5,571.67 345.44 59.95 332.11 929.18 774.23 583.37 65.39 136.01
3 13,259.41 259.92 165.58 247.00 829.93 674.97 484.12 157.41 321.55
4 7,897.34 309.18 105.22 301.23 888.37 733.42 542.56 101.94 186.84
5 12,396.05 285.00 146.38 258.36 839.87 684.91 494.06 142.81 299.13
6 11,576.99 263.34 151.77 261.03 843.09 688.14 497.28 147.41 283.31
7 11,152.00 270.66 148.23 267.12 847.28 692.33 501.47 136.14 266.95
8 14,153.71 249.28 174.53 237.78 820.98 666.03 475.17 162.31 344.49
9 9,627.59 282.76 134.52 276.63 858.54 703.58 512.73 129.57 234.24

10 10,393.15 287.02 126.55 272.23 861.08 706.13 515.27 126.03 249.93
11 10,305.45 284.76 131.37 275.49 861.32 706.36 515.51 130.22 252.57
12 8,650.82 311.90 105.36 295.17 882.67 727.72 536.86 106.36 214.13
13 14,760.43 242.42 189.52 229.55 805.94 650.98 460.13 178.94 355.27
14 10,207.56 295.88 132.09 276.41 860.33 705.37 514.52 125.09 248.92
15 15,725.45 240.47 176.62 231.30 813.68 658.73 467.87 173.52 381.58
16 12,809.80 261.85 160.46 253.39 835.05 680.10 489.24 154.27 312.61
17 14,626.78 243.12 186.55 230.40 808.96 654.00 463.15 171.96 353.18
18 13,876.73 245.18 173.35 241.13 822.12 667.17 476.31 159.20 336.01
19 13,628.69 262.00 175.23 236.30 815.98 661.03 470.17 165.27 327.33
20 11,700.59 261.69 158.25 254.83 836.88 681.93 491.07 150.23 272.91

Figure 9, Figure 10 and Figure 11 correspond to Figure 2, Figure 3 and Figure 4 using
commodity type B instead of A.
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Figure 9: Expected unsatisfied demand mean and risk measures (commodity C).
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Figure 10: Performance metric scaling (commodity C).
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Figure 11: Results of out-of-sample prediction (commodity C).
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