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Abstract

A major challenge in automating the production of a large number of fore-
casts, as often required in many business applications, is the need for robust
and reliable predictions. Increased noise, outliers and structural changes in
the series, all too common in practice, can severely affect the quality of fore-
casting. We investigate ways to increase the reliability of exponential smooth-
ing forecasts, the most widely used family of forecasting models in business
forecasting. We consider two alternative sets of approaches, one stemming
from statistics and one from machine learning. To this end, we adapt M-
estimators, boosting and inverse boosting to parameter estimation for expo-
nential smoothing. We propose appropriate modifications that are necessary
for time series forecasting while aiming to obtain scalable algorithms. We
evaluate the various estimation methods using multiple real datasets and find
that several approaches outperform the widely used maximum likelihood es-
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timation. The novelty of this work lies in (1) demonstrating the usefulness
of M-estimators, (2) and of inverse boosting, which outperforms standard
boosting approaches, and (3) a comparative look at statistics versus machine
learning inspired approaches.

Keywords: Forecasting, Exponential smoothing, M-estimators, Boosting,
Bagging

1. Introduction

In today’s data-rich environment, the number of forecasts required to
support operations decision making continues to increase to the point where
automation becomes a prerequisite (Ord et al., 2017). For example, in re-
tailing it is not uncommon that several thousands of forecasts are required
on a daily (or shorter) frequency to support baseline forecasting (Fildes
et al., 2019). Therefore, the reliability of the forecasting process becomes
of paramount importance and can be judged by its ability to generate fore-
casts which provide consistent performance across time (Kourentzes et al.,
2017). This requires approaches that guard against over-fitting and unstable
forecast selection (Barrow and Kourentzes, 2016) to deliver forecasts which
are consistent over time (Kourentzes et al., 2019a). We refer to this property
as forecast consistency, that is, the tendency of forecasts across time to ex-
hibit similar behaviour, and note that it is crucial for practice as it permits
reliable planning and decision making.

In achieving this goal of robust automated forecasting, the exponential
smoothing family of models is often the method of choice, widely used in
practice due to its simplicity, reliability and established track record, both
in research and application (Gardner Jr, 2006). It is also computationally
very efficient, making it ideal for large scale forecasting (Ord et al., 2017).
However, it is not immune to the aforementioned challenges, and even state
of the art implementations (proposed by Hyndman et al., 2002) have their
limitations, as discussed in Section 2.

This research focuses on investigating robust approaches to forecasting
with exponential smoothing for automation. We conduct a large scale em-
pirical evaluation of best in class approaches to robust parameter estimation
for exponential smoothing. From the statistics standpoint, we consider a
series of well researched M-estimators. From machine learning, we consider
the well-known boosting approach and evaluate an adaptation based on the
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application of an inverse weighting scheme, first evaluated by Kuncheva and
Whitaker (2002). To our knowledge, this is the first application of boost-
ing to exponential smoothing. In addition, we consider bagging, which has
been already shown to help produce accurate exponential smoothing forecasts
(Bergmeir et al., 2016). The contributions of this research can be summarised
as follows:

1. Evaluate estimators for the widely used exponential smoothing family
of forecasting models beyond the established maximum likelihood esti-
mation, drawing from the statistically motivated M-estimators and the
machine learning bagging and boosting. In doing so, we:

2. Propose a methodology for tuning M-estimators that is both appro-
priate for time series forecasting, but also scalable to address modern
applications’ needs;

3. Propose an adaptation of boosting and inverse boosting for forecasting
with exponential smoothing;

4. Provide a contrast of statistics and machine learning approaches in
terms of forecast accuracy, bias, and implementation efficiency impli-
cations, where the latter two are often overlooked in the literature even
though they are of prime importance for practice.

We demonstrate the usefulness of M-estimators and the proposed inverse
boosting approach. We find that both statistics and machine learning per-
spectives can result in superior estimators, in terms of forecast accuracy.
However, when considering forecast bias, statistical M-estimators outper-
form their machine learning counterparts. Accuracy in terms of bias is of
particular importance being a key determinant of the quality of the deci-
sions supported by the forecasts (Sanders and Graman, 2009; Kourentzes
et al., 2019b). Additionally, M-estimators are found to be more computa-
tionally efficient. Overall, we find that robust parameter estimation using the
pseudo-Huber cost provides the best performance, with minimal computa-
tional cost implications. Nonetheless, the proposed inverse boosting variant
remains competitive and demonstrates its usefulness for forecasting purposes
over the conventional boosting logic. While statistics and machine learning
inspired estimators continue being considered separately for forecasting ap-
plications, we highlight the need and the benefits of joint research attention
in this area.

The rest of this paper is structured as follows: in Section 2 we introduce
exponential smoothing and highlight the limitations of standard parameter
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estimation approaches. In Section 3 we discuss the relevant literature for
M-estimators, bagging and boosting. Section 4 outlines the various estima-
tion methods considered in this research and the proposed modifications for
working with exponential smoothing. Section 5 outlines the experimental
design of our empirical evaluation and our findings, followed by a discussion
in Section 6 and concluding remarks in Section 7.

2. Parameter estimation for the exponential smoothing models

In this section we briefly introduce the exponential smoothing family of
forecasting models and the current state-of-the-art for estimating its param-
eters.

Exponential smoothing analyses a time series as the total of a local level,
a local trend, and a local seasonality. These terms can interact additively (A)
or multiplicatively (M), with the trend being linear or nonlinear (damped).
Each component is updated by a common error process, which can also
vary between additive or multiplicative resulting in 30 formulations. Table 1
depicts 15 of the 30 combinations excluding the error term which accounts for
the remaining 15 formulations. The simplest of this family of models is the
well-known simple exponential smoothing, suitable for forecasting data with
no clear trend or seasonal pattern. This corresponds to the N, N combination
in Table 1 that is typically modelled with additive errors, giving us the ANN
model, where the first A standing for additive errors:

yt = lt−1 + εt, (1)

lt = lt−1 + αεt, (2)

where yt is the target time series observation at period t = 1, . . . , n and
n being the sample size, lt the local level at period t, 0 < α < 1 is a
smoothing parameter, and εt ∼ N(0, σ) are i.i.d. errors. Therefore, the
model prescribes that the observed time series is generated as a smooth local
level with some additive error and the level itself is updated by αεt. Lower
values of α result in slow updating of the local level and vice versa. To
produce a forecast for period t+ h, where h is the forecast horizon, we take
the conditional expectation of yt to get the well-known simple exponential
smoothing method:

ŷt+h|t = lt = (1− α)lt−1 + αyt,
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since εt = yt−lt−1. More complex models are structured similarly, where each
component is described by an additional state equation. For more details the
reader is referred to Hyndman et al. (2008) or Ord et al. (2017).

Table 1: Combinations of trend and seasonal components under a state space-based ap-
proach

Trend
Seasonal

None (N) Additive (A) Multiplicative (M)

None (N) N, N N, A N, M
Additive (A) A, N A, A A, M
Additive Damped (Ad) Ad, N Ad, A Ad, M
Multiplicative (M) M, N M, A M, M
Multiplicative Damped (Md) Md, N Md, A Md, M

The estimation of the parameters of exponential smoothing has attracted
considerable attention in the literature. Early work by Gardner Jr (1985)
and later by Makridakis et al. (2008) recommend the minimisation of Mean
Squared Error (MSE) to find good values for the smoothing parameters,
and propose a series of heuristics for the estimation of the initial values for
the components. Furthermore, to increase the reliability of the resulting
forecasts, and their robustness to outliers, recommendations to keep the pa-
rameters below 0.3 or 0.5 have emerged (for examples see Makridakis et al.,
1982; Johnston and Boylan, 1994). Following on the work by Hyndman
et al. (2002) that embedded exponential smoothing within the single source
of error state-space modelling framework, we use maximum likelihood esti-
mation to obtain the optimal smoothing parameters, initial values, and σ.
This further permits us to easily obtain prediction intervals and use informa-
tion criteria to select between the alternative forms of exponential smoothing
(Hyndman et al., 2008), substantially simplifying its use in practice. This
has made the state-space formulation of exponential smoothing the current
standard widely used in both research and practice (Gardner Jr, 2006; Ord
et al., 2017). The maximum likelihood estimation is based on minimising the
quadratic errors:

L∗(θ,x0) = n log

(
n∑

t=1

ε2t

)
+ 2

n∑
t=1

log |r(xt−1)|,

where θ is a vector containing the model parameters, x0 is a vector containing
the initial values, and r(xt−1) is equal to 1 for additive errors and µt, the
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conditional mean of yt|t−1 or simply the predicted value for period t, for
multiplicative errors. It is equivalent to minimise the augmented sum of
squared errors criterion (Hyndman et al., 2008):

S(θ,x0) =

∣∣∣∣∣
n∏

t=1

r(xt−1)

∣∣∣∣∣
2/n n∑

t=1

ε2t .

Observe that for the case of additive errors, where r(xt−1) = 1, this becomes
the well-known MSE.

For (1) we need to estimate three parameters, α, σ and the initial level l0,
which appears when we write (2) for l1. As additional components (trend and
seasonality) are introduced to the models then more parameters and initial
values are needed. For example, for the damped-trend seasonal exponential
smoothing, applied to monthly data, we need to estimate four smoothing pa-
rameters, fourteen initial values, twelve of those corresponding to the initial
monthly seasonal profile, and σ. Therefore, optimising exponential smooth-
ing can be fairly trivial or rather complex depending on the model form used.
Poor parameterisation can result in erratic forecasts.

To illustrate this, we forecast a time series corresponding to quarterly
observations of admissions to the accident and emergency department of a
major UK hospital between 2013 and 2018 (see Figure 1). Beginning from Q1
2017 we increase the fitting sample to Q4 2017, creating four forecast origins.
Forecasting from each origin, we adopt a fixed model structure, estimating a
linear trend exponential smoothing model (requiring 2 smoothing parameters
and 2 initial values). We forecast one year ahead from each origin. Observe
that despite adopting the same forecasting model we get substantially dif-
ferent forecasts, by only marginally changing the fitting sample. This is due
to the difficulty in parameter estimation for exponential smoothing and the
sensitivity of the quadratic loss that is the basis of the maximum likelihood
estimation. Therefore, while exponential smoothing is widely used in prac-
tice, particularly for large scale automatic forecasting, it is not uncommon
that forecasts can lack consistency. This can have substantial cost implica-
tions, but also reduce the trust of users in the forecasts (Dietvorst et al.,
2015).
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Figure 1: Rolling forecasts for an example time series using linear trend exponential
smoothing, ETS(M,A,N).

3. Beyond maximum likelihood estimation for exponential smooth-
ing

As the previous example illustrates, it is quite easy to find cases where
the maximum likelihood estimation will either not perform well (Kourentzes
et al., 2014), or will provide parameters that are on the bounds of the ad-
missible range, suggesting that the resulting forecasts may be of poor quality
(Gardner Jr, 1985). This has motivated the literature to investigate alterna-
tive estimation procedures, which we discuss below, drawing from statistics
and machine learning.

3.1. Statistics: LAD-estimators and M-estimators for exponential smoothing

Maximum likelihood estimation is by far the most widely used approach
to specify model parameters. However, in the literature, there are ample
arguments suggesting limitations, especially when the observed values may
be contaminated by outliers (Huber, 1981, 1992). In the context of robust
estimation of time series models, both LAD-estimators (Least Absolute Devi-
ation) and M-estimators (for ‘maximum-likelihood like’ estimators) are com-
mon choices, because they offer some protection against outliers.
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There is very limited work in the use of LAD-estimators in the wider time
series forecasting literature, although more has been done in a regression
context, with Davis and Wu (2006) summarising the arguments in favour of
LAD-estimators when handling heavy-tailed time series. McDonald and Xu
(1994) find that LAD-estimators made ARIMA forecasts more accurate than
least squares based ones for their sample of series. Gardner Jr (2006) makes
the case for using absolute errors for optimising the smoothing parameters of
exponential smoothing, given that it can capture only the local level, trend,
and seasonal components and should not be influenced by large errors due
to outlying observations. However, note that minimising the absolute errors
provides optimal forecasts for the median of the distribution of the target
variable (Gneiting, 2011), while exponential smoothing provides conditional
mean forecasts.

M-estimators are used in the literature more frequently (for examples,
see Maronna and Yohai, 2000; Lee et al., 2009; Baldauf and Silva, 2012;
Maronna et al., 2018), due to their increased flexibility. For instance, one of
the most commonly used functions is the Huber loss function (Huber, 1981).
The Huber loss combines the absolute and squared error loss functions, yield-
ing the sensitivity of the quadratic loss, and the robustness of the absolute
loss. Nonetheless, there are not many examples of the use of M-estimators
in time series models, beyond regression, with examples being the works by
Cipra (1992) and Gelper et al. (2010). Cipra (1992) investigated expressions
for simple forms of the exponential smoothing method using absolute loss
and the Huber loss with fixed parameters (Huber, 1981) and provide lim-
ited, but encouraging empirical evidence. Gelper et al. (2010) look at the
case of the trend exponential smoothing and recommend a pre-cleaning of
the fitting sample, which was based on Huber loss. They provide evidence
of the good performance of their pre-cleaning approach for the trend ex-
ponential smoothing and provide the formulation for extending this to the
trend-seasonal case, but without extensive empirical evaluation for the latter.
Crevits and Croux (2016) explore a direct implementation of the Huber loss
on exponential smoothing models, and while reporting desirable behaviour
in the presence of outliers on simulated data, it substantially under-performs
when used on real data.

Lastly, it is desirable to work with loss functions that lend themselves
to ease of implementation. For example, the commonly considered Huber
loss M-estimator is not continuous and differentiable for all values. This has
lead to the development of approximations such as the Pseudo-Huber loss,
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also called Charbonnier loss (Charbonnier et al., 1994, 1997) or L1-L2 loss
(Zhang, 1997), that overcomes these limitations.

The very limited use of M-estimators for extrapolative forecasting, and
particularly for exponential smoothing, draws our attention to testing their
performance. Their properties are attractive for large scale forecasting ap-
plications, where forecast consistency is important. In contrast to LAD-
estimators, how to adapt M-estimators for exponential smoothing remains
an open question, which we explore further in Section 4.1.

3.2. Machine learning: Bagging and Boosting for exponential smoothing

In dealing with uncertainty and improving the robustness of forecasts, the
most widely employed machine learning methods have been bagging, short for
bootstrap and aggregating (Breiman, 1996), and boosting (Schapire, 1990).

3.2.1. Bagging

The origins of bagging dates back to the seminal works of Breiman (1996,
1999), in which he proposed that a set of predictors could be estimated across
multiple bootstrap samples of the original data, and subsequently averaged
to generate a combined prediction. Since then, bagging has been extensively
applied in machine learning for classification (Skurichina and Duin, 1998;
Bauer and Kohavi, 1999; Hothorn and Lausen, 2005; Lemmens and Croux,
2006), regression (Breiman, 2001; Chen and Ren, 2009; Borra and Di Ciaccio,
2002), and more recently to time series forecasting (Inoue and Kilian, 2008;
Bergmeir et al., 2016; Barrow and Crone, 2016b; Athanasopoulos et al., 2018;
Dantas and Oliveira, 2018).

Bagging for exponential smoothing has received relatively little atten-
tion. Cordeiro and Neves (2009) proposed an approach for bootstrapping
exponential smoothing obtaining promising results for long seasonal time se-
ries. However, they found that the forecasts from their bagged approaches
were often not as good as conventionally generated forecasts, in particular
for short time series.

Bergmeir et al. (2016) proposed a new methodology for bagging ex-
ponential smoothing, outperforming the approach of Cordeiro and Neves
(2009). Petropoulos et al. (2018) show empirically that bagging for exponen-
tial smoothing performs well as it mitigates the data uncertainty related to
the inherent randomness of the in-sample time series data, and the modelling
uncertainty related to parameter estimation and model selection. Although
the authors find relatively moderate improvements from bagging exponential
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smoothing, in stark contrast to those obtained when bagging neural net-
works and decision trees (Barrow and Crone, 2016a), this work provides a
useful cross-over between statistical forecasting and machine learning that
demonstrates the need for further research in the area.

3.2.2. Boosting

Boosting, first introduced by Schapire (1990), is a general method for
sequentially aggregating a set of predictive models, each trained on a re-
weighted (or re-sampled, if applicable) training set. The main principle un-
derlying the sequential re-weighting and/or re-sampling of observations in the
training set is to allow the model to ‘learn’ the more difficult to predict ob-
servations. Poorly predicted observations receive higher weight in successive
boosting rounds. The method has evolved several times since its introduc-
tion and can be broadly classified into three families. The first relates to
the first boosting algorithms proposed by Schapire (1990) and Schapire et al.
(1998), developed solely for classification problems. These were followed
by the development of the AdaBoost algorithm by Freund and Schapire
(1997), who extended boosting to both classification and regression. The
most recent addition to the family of boosting methods is Gradient Boost-
ing developed by Friedman (2001, 2002). This was inspired by the work
of Friedman et al. (2000) who linked boosting to function estimation and
additive function expansion. Boosting in all its forms is now a standard ap-
proach in machine learning, applied to regression (Avnimelech and Intrator,
1999; Drucker, 1997; Shrestha and Solomatine, 2006; Gey and Poggi, 2006)
and classification problems (Bühlmann and Yu, 2003; Sun et al., 2007; Det-
tling and Bühlmann, 2003; Dietterich, 2000; Al-Shemarry et al., 2018; Owusu
et al., 2014).

Kuncheva and Whitaker (2002) investigate a modification of boosting for
classification tasks, the ‘inverse boosting’, which attempts to reduce the focus
of the model on the outlying and difficult to learn observations. The reported
results are not encouraging, which has led to relatively little attention to
this modification. Gao et al. (2013) revisit this and find only occasional
improvements in classification performance above normal boosting.

Boosting has also gained some prominence in time series forecasting.
Since the 2012 survey of boosting algorithms in time series forecasting by
Barrow (2012) who found 38 studies involving boosting, there have been nu-
merous applications, involving artificial neural networks (Barrow and Crone,
2016a; Khwaja et al., 2017), decision trees (Krauss et al., 2017; Persson

10



et al., 2017) and regression (Taieb and Hyndman, 2014; Mittnik et al., 2015)
approaches to name a few. However, while boosting has been applied to ma-
chine learning algorithms, such as neural networks and decision trees (Zheng,
2010; Israeli et al., 2019), to our knowledge, boosting has not been applied
to exponential smoothing, even though this is one of the most widely used
forecasting models in practice. This motivates our investigation into using
boosting for forecasting with exponential smoothing.

Furthermore, we argue that there are parallels between inverse boosting
and M-estimators, both attempting to moderate the effect of extreme values
and instead focus on the underlying structure of a time series. This property
of inverse boosting can be advantageous for exponential smoothing models.
However, inverse boosting has not been investigated in a time series forecast-
ing context and this is the first study that looks into boosting and inverse
boosting for exponential smoothing, detailed further in Section 4.3.

4. Robust methods for estimating exponential smoothing models

Drawing on the existing work on LAD and M-estimators, bagging, and
boosting, in this section we detail how these approaches work and our pro-
posed modifications to make them applicable for exponential smoothing mod-
els.

4.1. LAD- and M-estimators

4.1.1. The absolute error loss

The conventional quadratic loss is sensitive to extreme errors and there-
fore we consider loss functions that are less responsive to large errors. The
first alternative is to use the absolute loss, as summarised by the Mean Ab-
solute Error (MAE):

MAE = n−1
n∑

t=1

|εt|,

where n is the sample size and εt are the one-step-ahead in-sample errors. The
importance of an error increases linearly to its size, instead of proportionally,
as is the case with squared errors. Minimising MAE results in forecasts that
are optimal to the median of the distribution of the target variable.
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4.1.2. The Huber loss

A second alternative is the Huber loss which combines the absolute and
quadratic loss in the following way (Huber, 1992):

l(k)Huber =
n∑

t=1

(ut), ut =

{
ε2t , if |εt| ≤ q

|εt|, otherwise
,

where q is a threshold. Therefore, the effect of very large errors scales linearly,
while errors within the threshold are quadratic. Typically, when considering
the Huber loss, residuals are scaled to unit variance and the threshold q is set
to a reasonable value, such as 1.345, so as to achieve high efficiency (Dutter
and Huber, 1981). Scaling the residuals requires a robust estimation of their
variance, which in a time series context is not trivial (Gelper et al., 2010),
given that the underlying data generation process of the target variable is
unknown, and the fitted forecast function has to contend with several un-
certainties. Instead, we propose setting q as the p% quantile of the error
distribution. The advantage of this approach is that we avoid the need to
scale the residuals, since the scale is part of the resulting quantile, but also
bounded to 50% < p ≤ 100%, as the 50% quantile is the median, giving us
a limited search space. This approach results in a data-driven setting of q
for the target time series, which may help overcome the poor reported per-
formance of Huber loss based exponential smoothing by Crevits and Croux
(2016), where the standard prefixed threshold was considered. Herein also
lies another contribution of this work.

4.1.3. The Psedo-Huber loss

The Huber loss introduces a discontinuity at points −q and q that the
Psedo-Huber loss overcomes, offering a smooth approximation of the former:

l(k)Pseudo-Huber =
n∑

t=1

q2
√1 +

(
εt
q

)2

− 1

.
The threshold q alters the steepness of the loss function, adjusting its sensitiv-
ity to higher errors. Similarly to the Huber loss, we do not scale the residuals
and instead tie q to an appropriate quantile of the error distribution.

4.1.4. Setting the threshold q

Both the Huber and the Pseudo-Huber loss functions require the user to
specify the threshold q. As we argued before, given the various uncertainties
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in the specification of the forecasting equation, the nature of the residuals can
vary substantially across time series. Our objective is to devise a methodol-
ogy that requires minimal user intervention and therefore we propose setting
the threshold in a data driven approach, for each time series. We split the
fitting sample of a time series into training and validation sets. We use the
training set to optimise model parameters for a given q and record the re-
sulting errors in the validation set. The q that minimises the validation set
errors is selected. This follows the ideas of cross-validation, but with the nec-
essary restrictions for time series modelling. Purely regression models can
be fully cross-validated, however models that have recursive forms, such as
exponential smoothing and ARIMA cannot, and therefore one has to retain
the time order and rely on a validation set at the end of the fitting sample
(Ord et al., 2017). Note that given that we have tied q to the p% quantile
of the error distribution, without losing too much search resolution, we can
restrict the search into 49 possible percentiles, from the 51st to the 100th,
substantially speeding the search. We trialled a more exhaustive search, but
found no benefits, especially when coupled with the additional computational
demands.

4.1.5. Summary of loss functions

The aforementioned loss functions are visualized in Figure 2 which pro-
vides examples of the effect on the shape of Huber and Psedo-Huber loss
for two different values of q. A small value shapes both Huber and Pseudo-
Huber closer to the absolute loss, while higher values shape the loss functions
closer to quadratic loss. The Pseudo-Huber requires higher values of q to
approximate the shape of Huber, for a given threshold. For instance, the
Pseudo-Huber loss in panel (ii) of Figure 2 is similar to the Huber loss in
panel (i).

4.2. Bagging for Exponential Smoothing

In this study, we adopt the bagging approach of Bergmeir et al. (2016)
and Petropoulos et al. (2018) as this represents the best known benchmark
for bagging exponential smoothing. The approach first applies a Box-Cox
transformation (Box and Cox, 1964) to stabilize the variance of the time se-
ries and to ensure the time series can be modelled additively. The selection of
the λ parameter for the Box-Cox transform is automated using the procedure
of Guerrero (1993). The data is then decomposed based on the existence or
non-existence of seasonality. Non-seasonal time series are decomposed using
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Figure 2: Loss functions for MSE, MAE, Huber and Pseudo-Huber for two different values
of q, expressed as a quantile of the error distribution.

the Loess-based procedure of Shyu et al. (2017), while seasonal time series
are decomposed using the Seasonal and Trend decomposition procedure of
Cleveland et al. (1990) based on Loess, also referred to as STL decomposi-
tion. The error term or remainder obtained from the decomposition, after any
trend or seasonal terms are removed, is subsequently bootstrapped. However,
the errors while assumed stationary may be autocorrelated. While several
bootstrap methods are possible, the authors suggest using the moving block
bootstrap by Kunsch (1989). The bootstrap error series is then combined
with the original trend and/or seasonal structural components to obtain a
new bootstrapped series. Repeated bootstraps of the error (remainder) se-
ries, produce multiple new bootstrapped series. Each bootstrapped series,
including the original time series, can then be used to fit a different exponen-
tial smoothing model whose forecasts are averaged to produce a combined
forecast giving the final bagged forecast.

4.3. Boosting for Exponential Smoothing

We describe AdaBoost.R2 (Drucker, 1997) and AdaBoost.RT (Shrestha
and Solomatine, 2006), two variants of the original AdaBoost algorithm used
in time series forecasting and adapt these for exponential smoothing. Boost-
ing is done over k iterations, with K the maximum number of iterations.
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Initially, we set a constant vector of weights wt,k=1 = 1, for t = 1, . . . , n.
AdaBoost.R2 and AdaBoost.RT work as follows, for each iteration k:

1. Calculate a weight pt,k = wt,k/
∑n

t=1wt,k, where pt,k ∈ [0, 1] by con-
struction.

2. Estimate model parameters, weighting each εt by pt,k.

3. Given the estimated model, calculate the loss Lt,k using equations (3)
or (5) for AdaBoost.R2 or AdaBoost.RT respectively and evaluate the
relevant stopping criterion using the average loss L̄k =

∑n
t=1 Lt,kpt,k.

4. If k ≤ K and the stopping criterion is not met, update weights wt,k+1 =

wt,kb
(1−Lt,k)

k , where bk is defined below for the two boosting algorithms,
and return to step 1. Otherwise, stop the algorithm at iteration K∗

and proceed to the final step.

5. Construct the final forecast as a combination of the forecasts at each
iteration with weights bk:

ŷt+h =
K∗−1∑

k

(
bkŷt+h,k∑K∗−1
k bk

)
.

Observe that in step 2 we weight the in-sample one-step-ahead errors, so as to
achieve the desired behaviour at each iteration k. Step 5, linearly combines
all forecasts up to iteration K∗− 1 using as weights the normalised values of
bk. In principle, if these values were known a priori, then boosting could be
seen as a weighted estimator, much like the aforementioned M-estimators.

4.3.1. The AdaBoost.R2 Algorithm

In the case of AdaBoost.R2, the function for calculating loss Lt,k is:

Lt,k =

∣∣∣∣ yt − ŷt,k
max(|yt − ŷt,k|)

∣∣∣∣ , (3)

where ŷt,k is the fitted value at period t for the model trained on the kth

iteration and max(|yt − ŷt,k|) is the maximum prediction error over all ob-
servations, so that Lt,k ∈ [0, 1]. For each iteration we calculate the forecast
combination weight bk as:

bk =
L̄k

1− L̄k

. (4)

We use as a a stopping criterion L̄k > 0.5 that ensures that bk > 0.

15



4.3.2. The AdaBoost.RT Algorithm

In this case the loss for each iteration is calculated as:

Lt,k =

{
1, if |yt − µt,k| > φ

0, otherwise
, (5)

where φ is a threshold controlling which observations are classed as ‘difficult
to predict’. As with the M-estimators, we set φ to a percentile of the distri-
bution of the residuals. This overcomes any scaling issues that are part of the
original AdaBoost.RT algorithm that uses percentage errors. Note that the
loss function of AdaBoost.RT can be viewed as an outlier detector. Higher
values of threshold φ focus on larger errors. As before, at each iteration k we
calculate the average loss L̄k and the forecast combination weight bk = L̄k.
The calculation of bk implies a stopping criterion of L̄k = 0, implying that
no observations regarded as extreme remain.

4.4. Inverse boosting

Boosting, with its focus on ‘difficult to predict’ observations, has the po-
tential to strongly bias the resulting forecasts when the time series has high
noise and outliers. Consider the extreme case wherein parameterising an ex-
ponential smoothing model an outlier is appropriately weighted minimally.
That observation would generate a large error and consequently boosting
would weight it heavily, worsening a possibly good estimate. To overcome
this we adapt the inverse boosting (Kuncheva and Whitaker, 2002; Gao et al.,
2013) for forecasting with exponential smoothing. The weight update proce-
dure is modified as follows:

wt,k+1 = wt,kb
(Lt,k−1)
k (6)

The result is that observations with the smallest error will have the largest
weight, while those with the largest errors get the smallest weight.

We argue that inverse boosting is particularly relevant for the case of time
series forecasting where data can be very noisy, contain outliers, or simply
have a limited fitting sample. Exponential smoothing models do not capture
extreme values explicitly and instead rely on the smoothing parameters to
mitigate their effect on the estimation of the local level, trend and season.
When these remain untreated in the time series they can heavily bias the re-
sulting model parameters. Kourentzes and Petropoulos (2016) demonstrate
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this in a promotional forecasting setting, providing evidence of substantial
parameter bias and loss of forecast accuracy when maximum likelihood esti-
mation is used. This is unsurprising, given that for real data all forecasting
models are to some degree misspecified, which is bound to influence model
parameter estimates (Chatfield, 1995). Inverse boosting is expected to weight
such extreme observations less and approximate the structural components
of the underlying data generating process more accurately. This has parallels
with M-estimators, as well as research that has looked at ways to transform
the raw data to aid model estimation (Gelper et al., 2010; Koehler et al.,
2012).

It should be noted that boosting (normal or inverse) has no explicit out-
lier detection mechanism. In implementing boosting, we weight directly the
fitting error of exponential smoothing. This provides a data-driven approach
to weighting observations, and to separating observations into well or poorly
predicted. Note that AdaBoost.RT adopts a threshold loss function, requir-
ing a threshold φ. The setting of this threshold in AdaBoost.RT is equivalent
to establishing a hard boundary to determine which observations are well or
poorly predicted. This can be regarded as an implicit outlier classification.

4.4.1. An Illustrative Example

To demonstrate our argument of the applicability of inverse boosting for
exponential smoothing, we generate a time series with 100 periods following:

yt = 100 + 250It + εt, (7)

where It is an indicator variable that is equal to 1 for period 25 and zero
otherwise, generating an outlier in that period, and εt ∼ N(0, 40). This
data generating process is chosen due to its simplicity, having known a mean
of 100, and a single outlier. The objective is to understand the impact of
an outlier on parameter estimation of exponential smoothing with the two
boosting variants, given a very simple data generating process that is in
principle easy to model. The resulting time series is illustrated in Figure 3
panel (i). For this example, we implement AdaBoost.RT to facilitate the
estimation of the mean of the time series, in the normal and the inverse way,
as presented in panel (ii) of the figure. We set the φ threshold parameter of
AdaBoost.RT to the 75th quantile of the error distribution. Further details
on the implementation of boosting can be found in Section 5.3. The inverse
converges in 10 iterations, while the alternative converges in 22 iterations

17



with minimal change from the 10th iteration in Figure 3 panel (ii). Finally,
panels (iii) and (iv) present the weights pt,k for each period of the time series,
across the first 10 iterations, for normal and inverse boosting respectively.
Light colouring relates to small weights and the period with the outlier is
indicated by a small arrow.
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Figure 3: Illustrative example of normal and inverse boosting for AdaBoost.RT algorithm.
Panel (i) plots a simulated time series with a true mean of 100 units and an outlier at
period 25. Panel (ii) presents the evolution of estimate of the mean with the two alternative
boosting methods, against the true mean. Panels (iii) and (iv) provide the evolution of
weights pt,k across iterations, where colours from lighter to darker signify smaller to larger
weights. Period 25 is indicated by a small arrow.

We observe, in panel (ii), that inverse boosting iteratively lessens the
impact of the outlying and noisy periods to converge almost to the true value
of 100 units. This is not the case for normal boosting, where it converges to a
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much higher value, clearly biased from the noisy and outlying observations.
This is indicated in panel (iii), where the dark coloured periods indicate
large weights, where boosting is focused. Gradually, across iterations these
periods get increasingly bigger weights, while other periods get increasingly
smaller weights, starting from equal weights in the first iteration. For inverse
boosting, in panel (iv), the behaviour is the opposite. These observations
receive smaller weights, but also the difference of the weighting between
periods is smaller, as indicated by the smaller differences in colour.

This example briefly illustrates our motivation for using inverse boosting
for time series forecasting with exponential smoothing. In the next section,
we contrast the aforementioned estimators using empirical data, to demon-
strate the strengths and weaknesses of each.

5. Empirical evaluation

In this section we describe the main components of the experimental
design. Using multiple datasets, forecast measures, and considering various
characteristics of the time series, we investigate the forecast performance of
the various approaches to estimation for exponential smoothing.

5.1. Datasets

For the empirical evaluation we use three datasets. The first is the well
known M3-competition dataset (Makridakis and Hibon, 2000), which con-
tains yearly, quarterly, monthly sampled data, along with a small set of series
of unknown sampling frequency. The second dataset describes the demand
of a fast-moving consumer goods manufacturer (FMCG), and allows explo-
ration of weekly time series Barrow and Kourentzes (2016) and Kourentzes
et al. (2019a). The last dataset records tourism flows in different regions of
Australia. A detailed description is given by Athanasopoulos et al. (2009).
We use a variety of datasets, sampling frequencies and forecast horizons, so
as to evaluate the performance of the competing estimation methods in a
wide set of conditions.

The M3-competition dataset has the advantage that it contains a large di-
versity of time series and has been widely studied in the forecasting literature,
where exponential smoothing has been found to provide very competitive
forecasts (Makridakis and Hibon, 2000; Hyndman et al., 2002, 2008). How-
ever, a large selection of time series originate from macro-economic, financial
or otherwise aggregate indicators, which arguably do not reflect the typical
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business forecasting applications. We address this limitation by including
the FMCG and the Tourism dataset, which are tied to specific applications,
have diverse characteristics from the M3-competition dataset and exponen-
tial smoothing, using maximum likelihood estimation, has been shown to
perform well, providing a competitive benchmark for our evaluation. Fur-
thermore, both these applications require the generation of a large number
of forecasts and therefore requiring reliable large-scale automatic forecast-
ing approaches, which is one of our motivations in investigating alternative
estimators to maximum likelihood.

We consider different forecast horizons, and use longer test sets than the
forecast horizons to facilitate a rolling origin evaluation (Ord et al., 2017)
and collect a distribution of forecast errors. This enables us to increase the
validity of our findings and facilitate statistical testing. Table 2 provides
details about the sampling frequency, number of time series, size of the test
set and forecast horizon for each dataset.

Table 2: Datasets used for the empirical evaluation

Dataset Sampling No. of series Horizon Sample size Test set

M3 Annualy 645 4 20-47 6
M3 Quarterly 756 4 24-72 8
M3 Monthly 1428 12 66-144 18
M3 Other 174 12 71-104 18
FMCG Weekly 229 13 173 52
Tourism Quarterly 89 4 36 12

5.2. Evaluation design

In assessing the forecasting performance we track both the forecast accu-
racy and the forecast bias. We use the Average Relative Mean Absolute Error
(AvgRelMAE), proposed by Davydenko and Fildes (2013). First we calcu-
late the Mean Absolute Error of the forecasts of interest and subsequently
we scale them according to a benchmark error. In this case, as benchmark
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we use the result of the standard maximum likelihood estimation.

MAEm =
1

n

1

h

n∑
j=1

h∑
i=1

|ym,j+i−1 − ŷm,j+i−1|,

AvgRelMAE =

(
m∏
l=1

MAEA,m

MAEB,m

)1/m

,

where ym,j+i−1 is the observed value of the mth time series, over i = 1, . . . , h
step-ahead forecasts, and j = 1, . . . , n forecast origins. The forecast ŷm,j+i−1
follows similar indices. The AvgRelMAE is the geometric mean of the ratio
of the method of interest MAEA,m over the benchmark MAEB,m over all m
series of the dataset. AvgRelMAE avoids computational issues of other scale-
independent metrics, such as the Mean Absolute Percentage Error, which
requires non-zero actuals and is not symmetric on reporting positive and
negative errors. Furthermore, it is simple to interpret, where any value below
1 signifies an improvement over the benchmark of (1− AvgRelMAE)100%.

In similar fashion, we define the bias metrics, where we first calculate the
Mean Error (ME) of each forecast and then calculate the geometric mean of
their absolutes (AvgRelAME):

MEm =
1

n

1

h

n∑
j=1

h∑
i=1

(ym,j+i−1 − ŷm,j+i−1),

AvgRelAME =

(
m∏
l=1

∣∣∣∣MEA,m

MEB,m

∣∣∣∣
)1/m

.

The AvgRelAME loses the sign information, so it does not track whether we
over- or under-forecast, but on the other hand retains the size of the bias. We
are interested in this calculation as the size of the bias is strongly connected
with the economic impact of the decisions supported by the forecasts (Sanders
and Graman, 2009; Kourentzes et al., 2019b).

Finally, given the rolling origin design, we conduct statistical testing of
the error distributions, to evaluate whether any reported differences are sig-
nificant. To this end, we adopt the non-parametric Friedman test and the
post-hoc Nemenyi tests (Hollander et al., 2013). We do this to avoid multi-
ple pairwise testing and any distributional assumptions. First, we apply the
Friedman test to identify whether there is evidence that at least one of the
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competing methods performs significantly different from the rest. We then
apply the weaker Nemenyi test to group the various methods when there is
no evidence of significant differences. The tests are used as implemented in
the tsutils (Kourentzes, 2019) package for R (R Core Team, 2018), using
the function nemenyi().

5.3. Estimating methods

We produce all forecasts using the exponential smoothing family of mod-
els (Hyndman et al., 2002, 2008). The appropriate model form or structure
for exponential smoothing is selected using the Akaike Information Criterion
corrected for small sample sizes (AICc, Burnham and Anderson, 2004). As
AICc requires the likelihood of the alternative models to be maximised, we
do the selection of the model form using parameters optimised by maximum
likelihood estimation. We retain the selected model form for all competing
parameter estimation methods. This restriction can be easily lifted by us-
ing cross-validated errors for model selection (Fildes and Petropoulos, 2015;
Kourentzes et al., 2019a), however, this would add a further degree of vari-
ability in our comparisons, and therefore we opt to keep the selected model
form fixed for each time series.

We use the selected model form together with parameters estimated via
maximum likelihood as the benchmark approach, hereafter referred to as
Base. From the statistical approaches, the first evaluated is absolute errors,
instead of quadratic, referred to as MAE. We also use the Huber and Pseudo-
Huber loss functions, hereafter referred to as Huber and PHuber respectively.
Both require setting a cut-off to switch between the different regimes of the
loss function. This cut-off is specified using cross-validation, with 20% of the
training sample as a validation set, calculating one-step ahead errors over
this period. We directly calculate the cut-off point as a percentile of the
error distribution and therefore have no need to calculate a robust scaling
variance for the errors. We trialed Huber and Pseudo-Huber loss functions
with a fixed threshold, as recommended in the literature (Huber, 1981, 1992;
Kelly, 1992), but these resulted in inferior results that are not reported here.

From the set of machine learning approaches, we use bagging for expo-
nential smoothing, as proposed by Bergmeir et al. (2016) and refined by
Petropoulos et al. (2018). This is referred to as Bagging. We also imple-
ment boosting and the proposed inverse boosting, hereafter called Boost and
BoostInv. Results are presented for the AdaBoost.RT algorithm only, as the
performance of AdaBoost.R2 was substantially worse. For both Boost and
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BoostInv we set the AdaBoost.RT threshold to the 75th quantile of the error
distribution.

Although it is possible to cross-validate this threshold, we found that this
was computationally prohibitive.

All forecasts are generated using the forecast package (Hyndman et al.,
2018) for R (R Core Team, 2018), using the function ets() for generating
the exponential smoothing forecasts and the function baggedETS() for gen-
erating the bagged exponential smoothing forecasts, as implemented by the
authors of the aforementioned papers.

5.4. Results

First, we present the summary statistics for accuracy and bias size. These
are followed by the results of the aforementioned statistical tests to highlight
where the reported differences in performance are significant. Subsequently,
we analyse the performance of the competing approaches by the characteris-
tics of the time series.

5.4.1. Summary statistics

Table 3 summarises the AvgRelMAE and AvgRelAME, reporting accu-
racy and bias size respectively, across methods, and overall across datasets.
In each column, the best performing method is highlighted in boldface. The
Base case is used as the denominator in the calculation of the error metrics,
and therefore has always the value of 1.

First, we focus on AvgRelMAE. Overall, across all datasets, we see that
of the M-estimators’, both MAE and P-Huber appear to be advantageous
over Base, the conventional maximum likelihood estimation. P-Huber always
improves, albeit in some cases only marginally, upon Base, while MAE has
equal or better accuracy compared to Base, apart from the M3 yearly series,
where it is marginally less accurate. Huber behaves more erratically, with
very poor performance for the M3 yearly and Tourism series, while offering
gains for the M3 quarterly and FMCG series. Overall, it performs poorly. Of
the machine learning inspired approaches, Bagging and Boost do not provide
overall more accurate results than Base. More specifically, Boost performs
always worse, while Bagging is the most accurate on the M3 monthly series
out of all competing methods and performs well for the FMCG and Tourism
sets. On the other hand, it is outperformed by Base in all remaining sets.
The proposed BoostInv performs much better, being the overall best machine
learning inspired approach, with its accuracy closely matching that of MAE.
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Table 3: Forecasting performance summary

Method
Dataset

M3
FMCG Tourism Overall

Year Quarter Month Other

AvgRelMAE (accuracy)
Base 1 1 1 1 1 1 1
MAE 1.003 0.987 1 0.996 0.978 0.971 0.989
Huber 1.578 0.997 1.034 1.214 0.984 2.200 1.274
P-Huber 0.999 0.985 0.996 0.980 0.985 0.971 0.986
Bagging 1.035 1.035 0.975 1.049 0.993 0.938 1.003
Boost 1.074 1.052 1.159 1.095 1.133 1.128 1.106
BoostInv 1.005 0.997 1.002 0.991 0.982 0.972 0.991

AvgRelAME (bias)
Base 1 1 1 1 1 1 1
MAE 0.968 0.967 0.990 1.003 0.938 0.943 0.968
Huber 1.559 0.981 1.074 1.247 0.950 2.013 1.255
P-Huber 0.973 0.981 1.036 0.996 0.947 0.922 0.975
Bagging 1.039 1.125 1.019 0.958 1.028 0.979 1.023
Boost 1.065 1.113 1.174 1.003 1.591 1.142 1.168
BoostInv 1.024 0.991 1.024 1.019 0.884 0.937 0.978

The general overall message here is the consistent performance of P-Huber
which always improves over the Base.

The bias size results (AvgRelAME) are qualitatively similar. MAE is
the best performer, closely followed by P-Huber and BoostInv. Huber’s re-
sults remain erratic, while the bias size statistics for both Bagging and Boost
demonstrate poor performance compared to the benchmark Base. This as-
pect of the evaluation has often been overlooked, even though there is clear
evidence of the importance of bias for the economic value of forecasts, as
discussed before. Crucially, it shows consistent benefit from using MAE or
P-Huber, over the benchmark Base.

5.4.2. Friedman and Nemenyi test results

Both AvgRelMAE and AvgRelAME, due to the double aggregation in
calculating first the MAE and ME respectively and subsequently their geo-
metric means, can give the misleading impression of small differences. We
test the results using the Friedman and Nemenyi tests, to evaluate whether
the reported differences are due to real effects, or to randomness. Figures 4a
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and 4b visualise the results for the accuracy and bias size measurements re-
spectively. For both cases, the Friedman test indicates significant differences
(p-value: 0.000). The plots provide the Nemenyi resulting groups. The ver-
tical axis in the plots ranks the methods according to their mean rank, which
is provided as well, across all time series. As the mean rank does not consider
the size of errors, but merely the ranking (both Friedman and Nemenyi tests
are non-parametric), the ordering of methods is different from the overall
performance reported in Table 3. The horizontal axis orders the methods in
the same way as listed in Table 3. The plots can be read either horizontally
or vertically, where all methods with shaded cells, in a row/column, belong
to the same group. Methods belonging to the same group have statistically
insignificant differences at 5% level. For instance, for the AvgRelMAE (Fig-
ure 4a), the first column tests from the Base’s accuracy (highlighted with a
black cell) and indicates that there is no evidence of significant differences
with the accuracy of Bagging, BoostInv, and MAE, while P-Huber and Huber
are significantly better and Boost is significantly worse.
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Figure 4: Nemenyi test results across datasets

The tests on the accuracy statistics are illuminating in showing the strength
of the various estimators evaluated here. Huber and P-Huber are grouped
together as the most accurate. They do not exhibit significant differences
from Bagging, BoostInv or MAE, but do so from the benchmark Base and
the poor performing Boost. On the other hand, for Bagging, BoostInv and
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MAE that belong to the same group there is not enough evidence of signifi-
cant differences from Base, even though they exhibit better mean rank. The
bias size test, groups together MAE, P-Huber, Huber, which do not exhibit
significant differences from BoostInv, but are significantly less biased than
Base, Bagging and Boost. Testing from BoostInv, there are no significant dif-
ferences with Base while strikingly Bagging and Boost are grouped together
as having significantly higher bias than Base or all other alternatives.

5.4.3. Time series structure and noise level

Contrasting the results of statistical testing with Table 3, we observe that
Huber demonstrates two very distinct behaviours. Where its AvgRelMAE
and AvgRelAME statistics are poor, it ranks well in the resulting Nemenyi
groups. This is caused by the presence of a limited number of extreme errors.
This leads us to explore the error distributions across time series type, and
noise level, an analysis of particular relevance given that we evaluate robust
approaches to exponential smoothing. The results are shown in Figure 5,
where we provide snapshots of the distributions per method, split by type of
time series. The snapshots of the distributions are boxplot inspired, provid-
ing the 5%, 25%, 50%, 75% and 95% quantiles of the distribution and the
geometric mean. We use these instead of boxplots to summarise econom-
ically the distributions, without providing all outliers beyond one and half
times the inter-quartile range, to avoid visual clutter. Any distributions that
have extreme errors beyond the range of the vertical axis are indicated with
a triangle on the top of the plot. Large differences between the median and
the geometric mean point to asymmetries in the distributions, also captured
by the reported quantiles, and the effect of the few extreme errors, above
the 95% quantile. The time series types are separated according to the se-
lected ETS model, which was done using AIC corrected for sample size. The
methods are ordered according to their mean ranks, reported in Figure 4a.

Looking at the snapshot of the distribution of RelMAE for Huber, for
the level time series, the reason for the discrepancy between Table 3 and
Figure 4a becomes evident. The geometric mean is substantially distorted
by extreme errors. The results of Boost indicate similar influences, while
the other methods do not have such extreme effects. Looking at the results
for the level series, it is interesting to observe that both Bagging and Boost
have wide distributions, indicating erratic performance over the Base. P-
Huber, Huber, and BoostInv demonstrate relatively tight distributions, while
MAE is slightly wider. The same is true for the trend time series. The

26



0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

R
el

M
A

E

0.
99

5

1.
37

5

1.
01

0.
99

4

0.
99

6

1.
05

8

Level

0.
99

1

1.
00

3

1.
01

1

1.
00

6

0.
99

5

1.
07

8

Trend

0.
99

6

1.
15

9

0.
97

9

1.
00

4

1.
00

2

1.
28

8

Season

0.
98

4

0.
98

8

0.
99

6

0.
98

7

0.
98

5

1.
16

9

Trend−Season

G
eo

m
ea

n

P
−

H
ub

er

H
ub

er

B
ag

gi
ng

B
oo

st
In

v

M
A

E

B
oo

st

P
−

H
ub

er

H
ub

er

B
ag

gi
ng

B
oo

st
In

v

M
A

E

B
oo

st

P
−

H
ub

er

H
ub

er

B
ag

gi
ng

B
oo

st
In

v

M
A

E

B
oo

st

P
−

H
ub

er

H
ub

er

B
ag

gi
ng

B
oo

st
In

v

M
A

E

B
oo

st

95%

5%

25%

75%
Median

Geomean

Extremes

Figure 5: Snapshots of the distributions of RelMAE by time series category. The 5%, 25%,
50%, 75% and 95% quantiles are provided, along with the geometric mean (geomean) for
each method. Cases where the distribution has extreme errors beyond the scale of the
vertical axis (higher than the 95% quantile) are indicated by a triangle.

seasonal time series drive the poor performance of Boost. Observe that
Bagging retains a relatively wide distribution, even though its geometric
mean is the best reported. The rest of the methods have tight distributions.
The results for the Trend-Season time series are consistent with the combined
performance on the Trend or Season time series. The distributional view of
the errors helps explain the weaker ranking of Bagging compared to P-Huber
and Huber. The two latter provide improvements over Base more reliably,
with tighter RelMAE distributions, irrespective of the type of time series.
BoostInv results are interesting in that although they are not significantly
better than Base, its distributions of errors are tight for all types of time
series, attesting to the reliability of the proposed method, particularly when
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contrasted with normal boosting.
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Figure 6: Snapshots of the distributions of RelMAE by time series noise. The 5%, 25%,
50%, 75% and 95% quantiles are provided, along with the geometric mean (geomean) for
each method. Cases where the distribution has extreme errors beyond the scale of the
vertical axis (higher than the 95% quantile) are indicated by a triangle.

Figure 6 provides similar snapshots of the RelMAE distributions, for the
different methods, for different noise levels. To segment the time series we
perform classical decomposition (Ord et al., 2017), and calculate the stan-
dard deviation of the irregular part (noise) of the time series, divided by
the average of the trend component. This results in a robust coefficient of
variation statistic. We rank all time series and classify the lowest third of
all series as low noise, the second third as medium noise, and the remain-
ing as high noise. Ignoring the distribution of Boost that performs poorly,
we can see that distributions become tighter as the level of noise increases.
This is expected as RelMAE is relative to the performance of Base, and the
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maximum likelihood estimator performs very well for the relatively easy time
series, with worsening performance for the harder ones. It is interesting to
highlight that the distribution of Bagging improves substantially for the high
noise time series, but still remains wider than the distributions of P-Huber,
Huber, BoostInv and MAE. When exploring the results against the sample
size of the time series, or the sampling frequency, we did not identify any
clear patterns.

6. Discussion

Exponential smoothing has been one of the most widely used forecasting
models, with evidence of good performance in numerous studies, forecasting
competitions, and applications in the industry (Gardner Jr, 2006). Its ease
of implementation, reliability, and transparency has made it ideal for large
scale automatic forecasting. As such, it has attracted a lot of attention in
research. One of the major innovations over the last years has been its refor-
mulation within the single source of error state-space modelling framework
(Hyndman et al., 2002), which provided the underlying statistical rationale
for the model and therefore allowed the use of maximum likelihood estima-
tion for its parameters, with various benefits such as resolving the selection
of initial values, the generation of prediction intervals and automatic model
selection using information criteria (Hyndman et al., 2008). We motivated
this work by demonstrating that this state-of-the-art approach can lead to
inconsistent forecasts, that can be a critical issue for large-scale automatic
forecasting, but also weakening users’ trust in the models (Dietvorst et al.,
2015). To overcome this we investigated several robust estimators from the
statistics and machine learning literature, many of which had not been pre-
viously tested. In terms of forecasting performance, we relied on accuracy
and bias metrics (as captured by AvgRelMAE and AvgRelAME), however,
given the ultimate objective of automatic large-scale forecasting, we also con-
sidered the stability of the solutions (as captured by the error distributions)
and the implied computational cost. Here, we attempt to bring all these
dimensions together to provide recommendations based on our results.

Overall, the M-estimators outperformed the LAD, bagging and boosting
estimators. More specifically, The P-Huber provided the best combination of
accuracy and bias (ranking first and second respectively) with well-behaved
error distributions and minimal computational needs. Crucially, the im-
provements in both accuracy and bias are significantly different from the
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benchmark maximum likelihood estimation. Although the average improve-
ments are on the scale of a few percentage points over the benchmark, this
can have substantial implications for practice, due to the application do-
main. For example, for a retailer, a few percentage points improvements in
accuracy over the whole assortment of products can have very substantial
inventory, financial and sustainability implications (Fildes et al., 2019; Ord
et al., 2017). Beyond that, there are implications for the forecasting process.
The increased consistency of forecasts can increase the trust of users in the
model predictions and reduce interventions, that in many business forecast-
ing context can reach up to 90% of the generated forecasts, adding the need
for substantial corporate resources (Fildes et al., 2009; Ord et al., 2017).
Considering the Huber estimator, it is generally outperformed by P-Huber
and therefore further consideration is not needed. The results for the MAE
estimator are noteworthy, as this estimator has been explored before in the
literature (Gardner Jr, 2006). In terms of accuracy, it did not consistently
outperform the benchmark, matching the results reported in the literature,
but also explaining the statistically insignificant differences. However, in
terms of bias it offered substantial improvements, ranking best across all
methods considered. We argue that this is due to the effect of using absolute
errors, where the estimator becomes optimal for the median of the target
distribution (Gneiting, 2011). Although there are cases that this might be
desirable, generally it is not expected to be better than the maximum like-
lihood estimator. Our results match this understanding and we argue that
the slightly more complex M-estimators are more beneficial than MAE.

Bagging for exponential smoothing provided a machine learning based
benchmark for our study. Although the results in the literature have demon-
strated accuracy improvements (Bergmeir et al., 2016; Petropoulos et al.,
2018), the effects on bias had not been considered before. We find that it
performs significantly worse than the maximum likelihood estimator bench-
mark, which paired with its substantial computational requirements raises
questions for its usefulness for the application setting we are considering.
The results for boosting were also poor. On the other hand, BoostInv exhib-
ited promising performance. Although it did not significantly outperform the
benchmark and falls behind the leading P-Huber, it provides evidence that
inverse boosting is not only applicable to time series forecasting but poten-
tially more useful than boosting that has been successfully applied to other
forecasting models (Barrow and Crone, 2016a). We also note that BoostInv
is less computationally intensive than Bagging and it provided substantially
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narrower error distributions. We argue that this is a useful finding, given the
limited attention of inverse boosting in the literature and no prior evaluation
for time series models.

Overall, we recommend that P-Huber, as adapted in this work for expo-
nential smoothing, can have substantial benefits for practice, particularly for
automatic large-scale forecasting applications, where reliability and consis-
tency of forecasts are paramount.

Finally, the proposed methodology for tuning the M-estimators makes the
approach scalable as an alternative to automatic forecasting with exponential
smoothing. We use cross-validation to set the hyper-parameter q, so as to
account for the characteristics of the time series at hand. Although this does
add some computational cost, there is no need for an iterative algorithm, as
is the case for Bagging, Boost or BoostInv, and therefore we argue that the
gains they offer can out-weight the associated relatively small computational
costs. This heuristic can potentially be beneficial in other areas that M-
estimators are used, where the scaling of the errors and the setting of the
threshold values remains a challenge. For our application, although we rely
on cross-validation, due to the limited search space, we obtain results fast and
therefore the M-estimators remain competitive to the maximum likelihood
approach in terms of speed.

7. Conclusions

This paper investigated alternatives to the conventional maximum like-
lihood estimation to achieve robust parameter estimation for business fore-
casting. We explored this in the context of the exponential smoothing family
of models, one of the most widely used forecasting approaches in practice.
We looked at estimation methods inspired by research in statistics and ma-
chine learning. We found strong evidence that there are gains to be had in
going beyond conventional estimation approaches.

Both M-estimators and machine learning approaches demonstrated gains.
More specifically, using an absolute loss, which has been explored in the
literature in the past for exponential smoothing, was shown to be a strong
contender, but the somewhat more flexible Pseudo-Huber provided overall
the best gains, in terms of accuracy and bias reduction. These came at a
small increase in computation cost, providing a still usable improvement for
practice, where the scale of the forecasting process, in terms of numbers of
items to be forecasted, is a limitation that is often overlooked in research.
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From the machine learning perspective, inverse boosting demonstrated
better performance than conventional boosting and bagging. Although it
did not match the overall performance of Pseudo-Huber, we argue that our
findings suggest that additional work on inverse boosting for time series fore-
casting is needed, given that it significantly outperformed both boosting and
bagging. This is in contrast to its moderate performance for classification
tasks in the literature. Although all machine learning inspired approaches
implied substantial computational cost, due to the iterative nature of the
underlying algorithms, we do not advocate sidelining them. Instead, we call
for more research on blended statistics and machine learning approaches,
drawing on the benefits of both.

We argue that one of the contributions of this research is to bring together
perspectives from both statistics and machine learning. Although in terms
of the forecasting models our focus was narrow on exponential smoothing, a
non-machine learning model, our viewpoint is that future research should be
encouraged to look at these disciplines in conjunction. This has substantial
implications for benchmarking of newly proposed approaches, some of which
we discussed above, but also is of principal importance for the practicing
analyst, who needs to solve a business challenge and is typically agnostic
of whence the solution algorithm or model originates from. To best inform
the user, we as researchers need to demonstrate the merits of the differ-
ent approaches against the standard techniques in the arsenal of business
forecasters, which nowadays includes both statistical and machine learning
solutions.

Finally, considering the adoption of this research from practice, one has
to consider the forecasting process that many organisations use, involving
the generation of a baseline forecast supplemented by expert judgemental
adjustments (Fildes et al., 2009; Ord et al., 2017). In such cases, robust
predictions are desirable, as by definition any forecasting model will not
capture all the elements of the underlying data generating process, a task
that falls on experts using soft information available to the organisation.
Therefore, as the forecast equation will have omitted terms, robust estimation
and forecasting are critical. This makes the approaches investigated in this
paper desirable. Given existing software infrastructure, switching to absolute
loss is trivial. Similarly, using Pseudo-Huber remains relatively simple, in
particular as the resulting model parameters can be seamlessly integrated into
the existing process. This offers the advantage of being able to use prediction
intervals that come naturally out of the forecasting models, which are useful
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for translating forecasts into decisions. Machine learning inspired approaches
are more involved in their implementation and since the generation of the
final forecasts involves the combination of multiple forecasts, the generation
of prediction intervals also becomes more complicated. Nonetheless, this
comes at a great advantage: the user is forced to face the non-normality of
forecast errors that is typically the reality (Trapero et al., 2019).
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