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Abstract—Cyber threat intelligence officers and forensics in-
vestigators often require the behavioural profiling of groups
based on their online video viewing activity. It has been
demonstrated that encrypted video traffic can be classified
under the assumption of using a known subset of video
titles based on temporal video viewing trends of particular
groups. Nonetheless, composing such a subset is extremely
challenging in real situations. Therefore, this work exhibits a
novel profiling scheme for encrypted video traffic with no a
priori assumption of a known subset of titles. It introduces
a seminal synergy of Natural Language Processing (NLP)
and Deep Encoder-based feature embedding algorithms with
refined clustering schemes from off-the-shelf solutions, in
order to group viewing profiles with unknown video streams.
This study is the first to highlight the most computationally
effective, accurate combinations of feature embedding and
clustering using real datasets, thereby, paving the way to
future forensics tools for automated behavioral profiling of
malicious actors.

Index Terms—Encrypted Traffic, Video Title, Clustering,
YouTube, NLP

1. Introduction

Governmental law enforcement bodies in developed
countries, the UN Counter Terrorism Committee, and the
Security Council have stress the importance of tracking
terrorists through profiling the Internet-wide behaviour
of extremist propaganda groups [1]. Unfortunately, re-
cent events such as the March 2019 mosque shootings
in Christchurch, New Zealand, have prompted militant
groups to broadcast their hate speech through online
videos in various social networking sites and YouTube [2].
In parallel, the various shootings in the US since 2013 up
to the latest one in Virginia Beach in May 2019 highlight
the correlation of the shooters’ behaviour with viewing
content through popular video streaming sites such as
YouTube and Netflix [3].

With the introduction of General Data Protection Reg-
ulation (GDPR), there is a justified act towards the support
of human rights. Nonetheless we are also now witnessing
the weakness of law enforcement agencies in preemptively
tracking extremists and hate groups through the Internet.
Thus profiling the online video viewing behavior of such
groups has become quite a challenging task due to the en-
crypted nature of the Internet video streams through pro-

tocols such as HTTPS 1. Therefore intelligence agencies,
as well as forensics investigators, are no longer capable
of utilizing conventional traffic analysis techniques such
as Deep Packet Inspection (DPI).

Given the various unavoidable limitations on traffic
classification tasks, a number of studies have looked into
the analysis of encrypted Internet traffic. Nevertheless,
little has been done in the context of explicitly deal-
ing with encrypted video traffic. Most importantly, the
majority of encrypted video classification and clustering
studies rely on assumptions that are not necessarily true
in some scenarios. For instance, the work by Dubin et
al. in [4] considers a pool of video titles for conducting
supervised classification of encrypted transport layer flows
(e.g., TCP, UDP) obtained by YouTube video streams.
The applicability of the proposed scheme was demon-
strated in the scenario where an external attacker could
identify a video title from the video streams as long as
the title of the video stream was from a given video title
set. Similarly, the studies in [5] and [6] also utilised a
number of supervised Machine Learning (ML) algorithms
by considering already known video titles associated with
statistical properties of encrypted network flow. Hence,
none of these studies consider the pragmatic scenario
in which encrypted video streams may be clustered or
classified with no knowledge of any video titles. In fact,
the majority of encrypted video streams from most content
providers include the video titles in the encrypted payload
information of network flow, hence the aforementioned
techniques would be greatly affected in terms of classifi-
cation accuracy.

In order to confront the challenging task of clus-
tering encrypted video with no a priori knowledge of
video titles, the preliminary work in [7] exploited the
usefulness of Natural Language Processing (NLP). The
proposed solution was composed of a single clustering
method relying on a language derived by meta-statistics
of network traffic features per encrypted video stream.
However, the selection of statistical features within the
clustering process were manually selected by empirically
observing the distributional behaviour. Thus, there was
minimal automation with reasonably high computational
costs in some instances.

Therefore, this work goes beyond previously intro-
duced pieces of work and extends the preliminary findings

1. COBWEBS Technologies on EU GDPR policies:
https://www.cobwebs.com/crime-investigations-eu/
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in [7], by introducing a seminal synergy of NLP and
Deep Auto Encoder-based feature embedding algorithms
with refined clustering schemes such as grouping view-
ing profiles with unknown video streams. The empirical
observation of the distribution of statistical features is
neglected and an automated feature selection method with
three well-known NLP techniques: Bag of Words, Auto-
Encoder and a sample embedding using different affinity
function is employed. Moreover, off-the-shelf clustering
algorithms, Gaussian Mixture Model, Hierarchical Clus-
tering and Spectral clustering are refined to cluster the
encrypted network traffic video streams. The complete
clustering methodology is evaluated under several metrics
such as cluster purity and silhouette value.

The main contributions of this paper are summarised
as follows:

1) The first study to assess encrypted traffic cluster-
ing when video title information is not available.

2) Novel integration of NLP with refined off-the-
shelf clustering that enable high clustering accu-
racy.

3) An automated procedure for grouping encrypted
video traffic in order to aid the design and im-
plementation of future network forensics tools.

The remainder of this paper is structured as follow:
Section 2 provides a summary of related work and high-
lights the novelty behind the scheme, whereas Section 3
describes the dataset used in this work. Section 4 is
dedicated to presenting the methodology employed in this
work. Section 5 discusses the evaluation undertaken in this
paper and, finally, Section 6 concludes and summarizes the
paper.

2. Related Work

Numerous studies have shown that traffic encryption
is not sufficient for a large number of cases in both
desktop and mobile devices since sensitive meta-data can
be derived with the use of various tools and methods.
The majority of reported studies focused on classification
schemes to profile features such as the operating system
version, user’s browser, applications and user activity [8]–
[11].

A smaller number of studies aimed at clustering
groups of encrypted traffic using only network statistics
[12]–[14]. For instance, Erman et al [12] identify Inter-
net application protocols (e.g., HTTP, FTP) by clustering
meta-features obtained by transport layer protocol (i.e.,
TCP, UDP) flow statistics and highlight the usefulness of
unsupervised clustering schemes in such tasks.

Bacquet et al. [13] introduce the applicability of the
Multi-Objective Genetic Algorithm (MOGA) for group-
ing application protocols from encrypted traffic whereas
Hochst et al. [14] use a neural auto-encoder in order to
classify traffic flows originated by mobile applications.

For more than a decade various studies were con-
ducted explicitly on YouTube traffic patterns. Hence, there
were works ranging from the identification of YouTube
server locations up to the comparison with alternative
Internet video streaming applications and profiling of
desktop against mobile user YouTube access patterns [15].
Moreover, YouTube-specific analysis was performed in the

context of Quality of Experience (QoE) as well as general
transport layer traffic characterisation [16].

A fairly small proportion of studies addressed the
profiling of encrypted video traffic streams. As far as
can be known, all pieces of work performed supervised
classification or clustering schemes [4], [5].

Stikkelorum [5] used match video segments and re-
ward segments in order to identify the video title while
Reed and Kranch [6] used direct network observations
to identify Netflix video streaming. Schuster et al. [17]
implemented a Convolutional Neural Network (CNN) in
order to accurately identify video streams based on their
uniquely characterized burst patterns.

Nonetheless, all the aforementioned studies were re-
stricted to classifying video streams with access to a
known set of labeled video titles. Hence, as far as can
be known, there is no method that explicitly attempted
to profile user behaviour by clustering encrypted video
streams with no prior knowledge of video titles. Most
importantly, none of these studies highlighted the useful-
ness of such schemes in the context of automated digital
forensic applications.

3. Dataset Description

As depicted in Table 1 the dataset consists of 10,000
YouTube video streams (100 video titles, each title ac-
cessed 100 times). Over a period of 6 months Chrome was
used as a browser with a real-world Internet connection
under different real-world network conditions. The previ-
ous work in [4] demonstrates that the downloading rate
behaviour of YouTube videos is browser-independent, thus
the data pulling method considered the Chrome browser.
In parallel, Chrome was considered since it has been
shown to contain a large pool of open-source plugins
that facilitate web automation tools. Hence, the synergistic
use of Selenium2 and the ChromeDriver3 enabled the re-
searchers to emulate normal user downloading behaviour
and build up a realistic dataset. The auto mode was utilised
in each download stream, where the player decides which
quality representation to download based on estimations of
the client’s network conditions and application parameters.

TABLE 1: Dataset Parameters

Total number of video streams 10,000
Video types News, Sports, Nature,

Trailer, GoPro
Browser Chrome
Automation Selenium
YouTube player Auto Mode

In general, the analysis does not consider any prior
knowledge regarding the transport flow variability over
each video stream. Hence, the dataset consists of a mixture
of TCP or UDP flows using one or more connections as
well as varying video quality types. Moreover, the dataset
includes popular YouTube videos from five different cat-
egories in order to enrich the realistic assessment in the
study as a whole. Essentially, the consideration of diverse
categories firstly enables a better approach to assess the

2. Selenium: https://www.seleniumhq.org/
3. ChromeDriver: http://chromedriver.chromium.org/
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clustering outputs presented in the following sections,
as well as highlighting the usefulness of the scheme in
real-life automated forensics activities when user-centered
profiling is required.

4. Methodology

Fig. 1 exhibits a high-level view of the methodology as
conducted in this study. As depicted, firstly a sanitisation
module is triggered where re-transmissions and audio
packets are eliminated from the video stream in a similar
fashion as in the previous work in [7]. Moreover, Bits
per Peak (BPPs) are computed for each encrypted video
stream via re-assembling network flows by using the 5-
tuple packet-level information 4 between two Off periods
within the observed peaks [7].

The following step focuses on feature engineering
such as firstly identifying the most statistically significant
features related to the raw measurements in the dataset.
Therefore, data mining and embedding techniques are
utilised initially in order to filter out insignificant raw mea-
surements and reduce data dimensionality. Subsequently,
an NLP-based approach is adopted in order to compose
meaningful meta-features envisaged for use within clus-
tering components, as discussed in Section 4.1.

The fourth step, as evidenced in Fig. 1, is concerned
with triggering the selected unsupervised clustering algo-
rithms discussed in Section 4.2. Essentially, the purpose of
this module is to group the video viewing behaviour of the
encrypted video streams and indicate the corresponding
clusters of common viewing patterns.

In order to assess the significance of the clusters
and validate the accuracy of viewing groups each clus-
tering procedure is evaluated by calculating well known
measures such as the number of pure clusters (NPC),
cluster purity (CP), average silhouette value (ASV), num-
ber of streams in clean bins (NSCB), and cleanly clus-
tered streams (CCS). Note that, the methods described
are different alternatives, i.e., both an embedding and a
clustering algorithm must be chosen. Combining different
embedding techniques, or different clustering techniques
is not considered.

4.1. Embedding and Feature Engineering

The direct use of raw data in a machine learning
method is problematic since raw data tend to be unstruc-
tured and they normally contain redundant information.
A natural, clear solution is to initially perform feature
extraction and then feature selection in order to create a
structured representation that in parallel is tailored to the
specific problem domain.

There follows a novel synergy of embedding tech-
niques for feature extraction. The use of the base NLP and
embedding algorithms is then justified further indicating
the contributions towards refining them such as to address
the explicit problem of encrypted video traffic clustering.
Table 2 summarizes the abbreviations and notations used
in this paper.

4. The 5-tuple packet-level information is defined by the
source/destination IP port, source/destination IP address and the
protocol (i.e., TCP/UDP).

DPI Deep Packet Inspection
ML Machine Learning
NLP Natural Language Processing
BPP Bit Per Peak
NPC Number of Pure Clusters
NSCB Number of Streams in Clean Bins
CP Clustering Purity
ASV Average Silhouette Value
CCS Cleanly Clustered Streams
AHC Agglomerative Hierarchical Clustering
CNN Convolutional Neural Network
GMM Gaussian Mixture Models
AFF Affinity
wi i’th word
win Word2vec window size
Ci(win) Words in the i’th window
K Number of Clusters
X Matrix of samples
X′ Matrix of predicted samples by the Auto Encoder
Xi i’th sample
S, S′ Streams as sets of BPPs
L2 Norm
mk Centroid of k’th cluster
Ck The set of Samples in the k’th cluster
µi The mean of the i’th component
σi The variance of the i’th component

TABLE 2: List of abbreviations

4.1.1. Word2Vec. The core principle of NLP is to under-
stand the meaning of a given word. Although human-like
ability to understand languages remains elusive, certain
methods have been successful in capturing similarities
between words. Recently, such approaches based on neu-
ral networks in which words are embedded into a low
dimensional space have been proposed by various stud-
ies [18]. The proposed models represent each word as a
d-dimensional vector of real numbers, where vectors that
are close to each other are shown to be semantic.

Mikolov et al. [19], [20], enabled an efficient em-
bedding of words that achieves striking results on var-
ious linguistic tasks by a skip-gram with a negative-
sampling training method. Unlike most previously used
neural network architectures for learning word vec-
tors, in [19], [20] the training process of the skip-
gram model does not involve dense matrix multipli-
cations. Rather, the models operate in large amounts
of unstructured text data to learn high quality vector
representations of words. Thus, for a sentence of n
words w1, . . . , wn, contexts of a word wi come from
a window of size win around the word: Ci(win) =
{w(i−win), . . . , w(i−1), wi, w(i+1), . . . , w(i+win)}, where
win is a parameter for the window size and Ci is the
context. The window size win can be either static or
dynamic; if dynamic, win denotes the maximal window
size and for each word in the corpus, win is sampled
uniformly from [1, n].

Goldberg et al. in [21] show that smaller windows in-
duce more synonymic and functional models while larger
windows induce embeddings that are more associative or
topical. However, the window size effect on the encrypted
network traffic clustering is unknown and is further dis-
cussed here. In the problem domain, clustering unknown
video titles, a BPP (number of bits between On/Off period)
is defined as a word wi by converting the integer value of
the BPP to a word. Similarly, a vector of BPPs becomes
a sentence of n words by converting a set of BPPs from
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Figure 1: Methodology steps for clustering encrypted YouTube video streams

integers into a set of words.
In order to optimise the feature engineering process

was necessary to refine the Word2Vec modeling approach
while fine-tuning a number of parameters including the
window and embedding size, at the same time. Moreover,
a recursive solution that evaluates the impact of the af-
fected parameters had to be defined such as to assess the
overall performance of the refined Word2Vec model. The
naı̈ve solution would be to define a validation set on which
to evaluate the effect of those parameters. However, this
solution is not valid in the world of unsupervised learning
due to a lack of pre-defined labels for validation.

Therefore, it was decided that the best course of action
would be to evaluate the effect of the parameters on the
clustering using the average Silhouette value (ASV) [22].
The ASV metric lies in the range [−1, 1] and indicates the
tightness of the clustering separation. For each data point,
the Silhouette value indicates how close the given data
point is it to it’s neighboring clusters. When ASV = −1 it
is indicated that the point is close to a neighboring cluster.
In general the value of 1 is preferred in order to exclude
any relationship to neighboring clusters.

As depicted through Algorithm 1, for each video
stream (sentence) the BPPs (words) were extracted and
transformed into a vector of strings instead of a vector of
integers (Algorithm 1 lines 2-8).

A grid search was performed using all possible tu-
ples of the model parameters and measuring the average
Silhouette value that the clustering algorithm achieved
(Algorithm 1 lines 11-21). When all the results were
gathered in, the model associated with the parameters that
performed the best, was chosen and evaluated in order to
estimate the clustering accuracy performance.

4.1.2. Bag Of Words. Another common NLP technique,
the ”Bag of Words”, was applied in order to create a
well-structured feature vector with a defined size for the
encrypted video streams. In the ”Bag of Words” technique,
each sample is defined by a vector equal to the vocabulary
size, meaning the number of unique words (Algorithm 2
lines 1-4). The vectors thus produced are initialized with
zeros (Algorithm 2 line 4), and for every word in the
sample, 1 is added (the number of appearance is counted)
in the appropriate cell (Algorithm 2 lines 5-6).

Note that in some implementations (e.g. in [23]), as
well as in this paper, the cells act as indicator variables
stating whether a word appears or not, without regard to
the number of appearances. Therefore, this methodology
holds whether specific words appear in the sentence, not
their position or relationship to the position.

Algorithm 1 Word2Vec Embedding
Input: Streams - a list of all the video streams, each

stream is a list of BPP ’s
Output: The embedded streams

1: str ← {}
2: for each stream ∈ Streams do
3: Curr Stream← {}
4: for each BPP ∈ Stream do
5: Curr Stream.append(string(BPP ))
6: end for
7: str.append(Curr Stream)
8: end for
9: BestEmbd = {}

10: BestSLV = −1
11: for each possible window size do
12: for each possible embd size do
13: embd←W2V (win size, embd size, str)
14: Clusters← Clustering(embd)
15: Curr slv ← Silhouette value(Clusters)
16: if Curr slv ≤ BestSLV then
17: BestSLV ← Curr silhouette
18: BestEmbd← Curr Embedding
19: end if
20: end for
21: end for
22: Return BestEmbd

Algorithm 2 Bag of Words
Input: Streams - a list of all the video streams, each

stream is a list of BPP ’s
Output: The embedded streams

1: Max←MaximalPeak(Streams)
2: BagOfWords← {}
3: for Stream ∈ Streams do
4: Curr ← {0, 0, ..., 0} . An array of length Max
5: for BPP ∈ Stream do
6: Curr[BPP ]← Curr[BPP ] + 1
7: end for
8: BagOfWords.append(Curr)
9: end for

10: Return BagOfWords

4



4.1.3. Deep Auto Encoder embedding. As revealed
through the feature engineering process, the number of
a possible BPP value is much higher in comparison to the
number of BPPs in each encrypted stream. Consequently,
every produced ”Bag-of-Words” vector had high sparsity
properties. In order to address matrix sparsity and further
cope with the high dimensionality and lack of relevant
information, Deep Auto Encoder outputs are used [24].

The goal of Deep Auto Encoders is to assemble a
neural network with the aim of producing a compact data
embedding output. This aim is achieved by setting each
layer to be a smaller size until reaching a bottleneck. The
bottleneck is then connected to layers of increasing size,
and the network output is set to be equal to the size of
the original input.

Let X be the sample matrix and X ′ the matrix of
the re-encoded samples. The loss of the neural network is
obtained by:

||X −X ′||22 (1)

Hence, the network will try to embed the data into a lower
yet information-preserving dimension and then reassem-
ble it. After training the network, all the layers going
out of the bottleneck are removed, and each sample is
run through the modified network, in order to obtain a
compact data embedding output.

In contrast to other pieces of work (e.g. [24]), where
clustering and embedding is done separately, the Bag of
Words is used in synergy with a deep auto encoder to
enable uniform embedding and clustering technique as
well as automated optimization for the clustering process.
Moreover, a direct assessment of the clustering accuracy
performance is achieved under the aforementioned syn-
ergy.

4.1.4. BPPs set Intersection. The earlier work in [4]
suggested supervised learning techniques for classifying
encrypted streams with a priori knowledge of known
video titles. In parallel, an unsupervised clustering scheme
derived by the k-nearest neighbors (KNN) algorithm was
also utilised. In this work, this KNN formulation is ex-
ploited with a new affinity function. In practice, an affinity
function is a measure of similarity between two samples.
Ultimately, two distinct samples should have lower values
while similar samples should have higher values.

The affinity score between two BPP sets, S and S′,
is defined as the cardinality of the intersection set, where
M , and M ′ are BPP sets:

AFF (S, S′) = |S ∩ S′| (2)

The defined affinity function is employed within the
evaluation phase for the Spectral and Hierarchical cluster-
ing algorithms as described in Sections 4.2.3 and 4.2.4.

4.2. Clustering Techniques

Unsupervised clustering methods learn a function from
a set of unlabeled examples by using heuristics. Based on
the problem domain reported here, unknown encrypted
video streams are clustered to determine whether there are
streams of the same video title, without an a-priori knowl-
edge of the video title. The following is a description
of the algorithmic properties of the unsupervised learning
methods employed in this work.

4.2.1. K-means. The k-means algorithm approximates a
division of the dataset into K distinct clusters of equal
variance where each cluster is described by its mean.
Hence, K-means attempts to find the mean values that
minimize the intra-cluster sum of squares; i.e., the squared
Euclidean distance between all samples within a cluster
and its respective mean.

K-means split the data into K clusters by iteratively
optimizing the following problem: given set of points X =
{x1, . . . , xn}, where mk =

∑
i∈Ck

xi/nk is the centroid
of cluster Ck the algorithm tries to minimize the following
cost function:

Jk =

K∑
k=1

∑
i∈Ck

(xi −mk)
2 (3)

4.2.2. Gaussian Mixture Models. Gaussian Mixture
Models (GMM) are probabilistic models that have demon-
strated their applicability in the context of unsupervised
clustering. Within a GMM-based learning formulation,
data inputs are mapped as a weighted sum of Gaussian
components. The assumption for a GMM-based clustering
approach is that each point is clustered to all of the
Gaussian components. For a GMM with K components,
each component 1 ≤ i ≤ K is associated with a mean µi,
and a variance σi. All in all, the model is defined as:

p(x) =

K∑
i=1

φiN(x|µ, σi) (4)

N(x|µ, σi) =
1

σi
√
2π
exp(− (x− µi)

2

2
) (5)

K∑
i=1

φi = 1 (6)

For this experimentation, each data point is assigned to
the Gaussian distribution demonstrating the highest proba-
bility. Note that a point can be assigned to any cluster with
some probability; however, when a clear separation of
clusters exists, most of the probabilities will be negligible.

4.2.3. Spectral clustering. A spectral clustering algo-
rithm similar to the work presented in [25] is employed.
Within this formulation, cluster points are defined by
eigenvalues matrices derived from the original data input.
Note that this clustering algorithm may take any affinity
function, therefore different assumptions can be used over
what makes points statistically similar. As discussed be-
fore, in this work the customised special affinity function
(i.e., Equation 2) is used, due to its ability to adapt on a
different affinity, thus handle unstructured inputs.

4.2.4. Agglomerative Hierarchical clustering. For the
purpose of this work and due to the unstructured nature
of the initial datasets, Agglomerative Hierarchical Clus-
tering (AHC) is used. AHC initially computes a prox-
imity matrix and further considers each individual input
data point to compose its own cluster. Under a repetitive
procedure, each cluster point joins another cluster while
the proximity matrix is simultaneously updated with new
cluster distances. The AHC outputs were visualised using
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Metric Number of Pure
Clusters

Clustering Purity Average Silhouette
Value

Average Number of
Streams in Clean
Bins

Cleanly Clustered
Streams

Abbreviation NPC CP ASV NSCB CCS
Definition Number of clusters

that include only
streams from one
cluster

Average value of the
ratios between the
largest class in each
cluster to the size of
the cluster

Indicates how tight the
separation is between
the clusters. Each
point has a value in
range [-1,1] which
indicates how close
it is to other cluster.
This metric is the
average value for all
the data points

Average number of
streams that were
clustered into clean
clusters (clusters with
only one class)

Overall number of
streams that were
clustered in the clean
clusters (clusters with
only one class)

Range [0, 1] (0, 1] [−1, 1] [0, 1] [0, 10000]
Preferred Value 1 1 1 1 10000

TABLE 3: Clustering performance evaluation metrics

a dendrogram where cluster outputs are viewed as graph
nodes.

In order to identify the closest cluster points two
similarity functions are used, namely the L2 norm L2 =√∑|x|

i=1 |xi|2 and the cosine approach. L2 norm quantifies
similarity based on the Euclidean distance, while the
cosine approach quantifies similarity as the difference
between the direction and the BPPs set intersection, as
defined in Section 4.1.4.

cosine(x, y) =
x · y
||x||||y||

(7)

5. Performance Evaluation

In order to assess the effectiveness of the proposed
synergistic embedding and clustering scheme for en-
crypted Youtube video streams, an extensive set of metrics
is utilised, as depicted in Table 3. The evaluation results
of each embedding technique using the above clustering
algorithms are presented below.

5.1. Clustering Performance
5.1.1. Word2Vec Embedding. The average Silhouette
value (ASV) for each tuple (w, e), where w is the window
size and e is the embedding size, was extracted using each
of the clustering schemes (i.e., K-means, GMM, AHC L2,
and AHC cosine).

Using a variety of windowing and embedding sizes
over the assessed clustering schemes this evaluation pro-
duced heat-maps as illustrated in Figures 2a - 2d.

By employing a grid search through the hyper-
parameters (optimal window size equal to 82 and em-
bedding size equal to 50) of the Word2Vec results and as
demonstrated in the aforementioned figures, it can be seen
that the Word2Vec approach tends to map similar samples
around the same angle. Hence, the AHC-cosine, K-means
and GMM clustering algorithms perform well and quite
similarly in terms of the various metrics. Note that both
K-means and GMM identify the sample angle due to
their statistical nature. However they are also capable
of separating samples that are on the same cosine but
with different magnitudes. Table 4 summarizes the results
obtained and demonstrates that the combination of K-
means with embedding outperforms the rest in term of
NPC and ASV. Hence, grouping similar patterns in terms

of video viewing under k-means is more effective than the
rest of the schemes assessed.

5.1.2. Bag of Words Embedding. Due to computational
and memory constraints, each bucket in the Bag of Words
is assembled to contain 100 consecutive BPP values. By
accounting that the average number of peaks per stream
is 16 and the vector size is on average 45, 643, the overall
process yields a sparse dataset. Therefore, it was crucial to
utilise the Principal Component Analysis (PCA) method
in order to reduce the obtained high dimensionality while
retaining 99.9% of the dataset’s variance throughout its
statistical meta-features. At this point, data is received
with constant size samples of 4, 675. Therefore, it is fea-
sible to optimally apply all the aforementioned clustering
techniques as well as the Deep Encoder-based clustering
approach.

As evidenced by Table 4, the K-means and the
GMM formulations performed well and relatively similar
throughout all the clustering performance metrics. The
K-means formulation outperformed GMM on the NPC
metric reaching 0.93, thus closer to a desired 1 whereas
GMM achieved a higher CP metric indicating that each
GMM-based cluster has greater purity than any clusters
composed by K-means. In terms of the CP metric it can be
seen that the AHC achieved the highest performance with
0.99 and 0.98 under the cosine and L2 formulation respec-
tively. However, in contrast to K-means and GMM, both
AHC-based formulations have low CCS output of 103
and 100 for cosine and L2 respectively demonstrating that
there exists a large number of clusters with a small number
of streams. Consequently it can be seen that each AHC-
based cluster under this embedding approach would have
a minimal set of real traffic streams that can be assigned
to corresponding viewing behaviours, thereby, increasing
the aspect of complexity on determining distinct viewing
characteristics.

5.1.3. Deep Auto Encoder. In contrast to the outputs
of Bag of Words and Word2Vec, Table 4 shows that
the Deep Encoder-based embedding scheme, that operates
strictly with K-means clustering, enforces a very distinct
separation of clusters, i.e. the maximal value of streams in
clean bins throughout the conducted evaluation. Evidently,
the Average Silhouette Value (ASV) value reaches almost
a perfect score with 0.99 since it is very close to the
ideal values of 1. Nonetheless, it is in parallel shown that
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(a) K-means clustering output (b) GMM clustering output

(c) AHC with L2-based similarity function (d) AHC with cosine-based similarity function

Figure 2: The effect of the Word2Vec window size and the embedding size over the clustering algorithms in terms of
the average Silhouette Value

Embedding and Feature
Engineering Technique

Clustering Algorithm Number of
Pure Clusters
(NPC)

Clustering
Purity (CP)

Average
Silhouette
Value (ASV)

Average Number of
Streams in Clean
Bins (NSCB)

Cleanly
Clustered
Streams (CCS)

Word2Vec

K-Means 0.71 0.57 0.50 0.52 3631
GMM 0.57 0.72 0.18 0.66 3744
AHC (cosine) 0.81 0.50 -0.08 0.43 3518
AHC (L2) 0.88 0.22 -0.18 0.19 1648

Bag of Words

K-Means 0.93 0.44 -0.12 0.4 3706
GMM 0.88 0.48 -0.08 0.42 3720
AHC (cosine) 0.99 0.02 0.06 0.01 103
AHC (L2) 0.98 0.02 0.53 0.01 100

Deep Auto Encoder K-Means 0.28 0.63 0.99 0.73 2046

BPP’s Set Intersection Spectral 0.84 0.74 Irrelevant 0.68 5724
AHC 0.99 0.03 Irrelevant 0.02 222

TABLE 4: Clustering performance evaluation for profiling viewing behaviour of encrypted YouTube video streams

the statistical separation threshold imposed has a negative
impact on other metrics. For instance, the number of
pure clusters (NPC) reached a low 0.28 and is far below
an optimal value that should be closer to 1. Therefore,
under this scheme it is feasible to separate groups with
high dimensions within their statistical meta-features but
it is not guaranteed that each individual data point within
each identified cluster represents the overall group. Hence,
users with mixed video categories appearing within the
same group of a given cluster will potentially be labelled
based on the number of the highest data points that are
likely to represent users watching a particular category.
The reason for these outcomes lies with the tuning of

the embedding and the auto encoder, thus an optimisation
method that identifies outliers could be of use prior to the
employment of the clustering process.

5.1.4. BPPs Set Intersection. The BPP’s set intersection
is treated here as an affinity function within formulations
that parametrically accept such functions. Hence, for this
technique there is only provision of results for the spectral
and the AHC-based clustering algorithms that do consider
affinity functions within their corresponding formulations.
By relating the results depicted in Table 4 to the desired
metrics discussed in Table 3, it is clear that BPPs produce
the optimal outputs through all metrics apart from the
NPC. It can therefore be seen that BPP based clustering
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methods are capable of producing pure clusters to which
viewers are correctly allocated based on their respective
video category (i.e., Clustering Purity - CP). It is evident
that the composed spectral-based clusters have a high
precision range due to the high scores obtained in terms
of the number of cleanly clustered streams (i.e. CCS).

Furthermore, AHC-based clustering schemes utilising
the BPPs set intersection affinity function do not perform
equally well despite the fact that the number of pure
clusters through the NPC metric reaches 0.99. Through
both schemes it is evident that the average number of
streams in each cluster is 0.02. Consequently, the latter
result suggests that most of those clean clusters have 2
single users watching the same video and the last unclean
cluster has all the remaining users.

5.2. Computational Performance

In order to assess the efficacy of the various algorithms
and whether they can be used in practical, real-time
scenarios, the study focuses on the computational time
required for each to produce a clustering output. Table 5
depicts the resulting computational performance results
based on experiments conducted on an Intel I7 machine,
3.5GHz with 11 CPU’s and 57G RAM. As illustrated, the
majority of embedding and clustering combinations may
adequately operate on a close to real-time scenario and
provide meaningful profiling of user viewing behaviour.
From a pure embedding perspective there is evidence to
show that the less intensive clustering outputs are pro-
duced when employing the Word2Vec feature engineering
and embedding. By contrast, the most computationally
intensive scheme is resulted by utilising features from the
Deep Auto Encoder approach.

As already discussed earlier, the spectral clustering
with the BPPs set intersection outperformed all other
models in terms of the CCS metric while maintaining
high scores on the NPC metric (i.e. in both close to 1).
Nonetheless, despite the high clustering performance for
some of the assessed clustering performance metrics, there
is a significant computational trade-off in terms of run-
time. In fact, spectral-based clustering based on BPPs set
intersections requires 24.2 minutes in order to generate
any clustering outputs. Hence, such an approach would
not be ideal in scenarios where real-time clustering is
required. In general, the conducted evaluation suggests
that the most optimal solution for addressing real-time
grouping of encrypted video streams would be any clus-
tering based on Word2Vec embedding since it takes less
than 26 seconds for any algorithm to produce an output.
Nonetheless, as discussed in Section 5.1, Word2Vec-based
clustering also poses some trade-offs related to the cluster
purity (i.e. CP metric) and also the amount of clean
traffic streams that are considered to be pure within a
given cluster (i.e. NSCB). Therefore, it is recommended
to consider such an approach purely on a real-time basis
and further compare its outputs with an offline clustering
process. Based on the results discussed in Section 5.1, the
evaluation identifies clustering based on BPPs set intersec-
tion embedding to have the best clustering performance
metrics on average, but with a high computational cost in
terms of run time.

Embedding Clustering Runtime [sec]

Word2Vec

K-Means 25.20
GMM 25.25
AHC (cosine) 25.24
AHC (L2) 25.1

Bag of Words

K-Means 1,461.6
GMM 3,565.3
AHC (cosine) 2,864.7
AHC (L2) 1,913.4

Deep Auto Encoder K-Means 96,628 ≈ 1.1days

BPP’s Set Intersection Spectral 1,451
AHC 452.5

TABLE 5: Computational Run Time Performance

6. Conclusion
This work presents an extensive study highlighting a

novel, synergistic use of off-the-shelf clustering schemes
with NLP and learning-based embedding schemes for
profiling encrypted YouTube video traffic streams. In con-
trast with previous studies, the authors propose clustering
with no a-priori assumption on a known subset of titles,
and argue in terms of the potential usefulness of such
an approach for automated behavioral profiling of mali-
cious actors. The results indicate that it is feasible to ob-
tain extremely high clustering performance under optimal
computational costs and may contribute towards forensic
investigations required by law enforcement bodies. It can
be seen that the combination of an NLP-based embedding
scheme with either K-means or GMM-based clustering is
an candidate for real-time and scalable grouping of behav-
ioral viewing for end-users over encrypted video streams,
and that a combination of learning-based embedding, as
well as spectral or hierarchical clustering under BPPs set
intersection, can adequately serve the purposes of highly
accurate profiling for cases with small datasets.
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