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Abstract

We investigate stress-energy tensors constructed from the delta function on a worldline.

We concentrate on the quadrupole which has up to two partial or derivatives of the delta

function. Unlike the dipole, we show that the quadrupole has 20 free components which are

not determined by the properties of the stress-energy tensor. These need to be derived from an

underlying model and we give an example modelling a divergent-free dust. We show that the

components corresponding to the partial derivatives representation of the quadrupole, have a

gauge like freedom. We give the change of coordinate formula which involves a second derivative

and two integrals. We also show how to define the quadrupole without reference to a coordinate

systems or a metric. For the representation using covariant derivatives, we show how to split a

quadrupole into a pure monopole, pure dipole and pure quadrupole in a coordinate free way.
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1 Introduction

With the recent confirmed observation of gravitational waves, it is natural to look at possible sources
of gravity, in particular stress-energy tensors in which we can model compact systems, which are
small with respect the distance to an observer. gravitational wave astronomy shall give rise to
major developments in gravitational physics and astrophysics. The LIGO and VIRGO detectors
have observed relativistic gravitational two-body systems. The existing network of gravitational
wave interferometers is expanding both on Earth (for instance, via KAGRA and LIGO-India) and in
space. Compact binary systems are important sources of gravitational waves. Two-body systems such
as pairs of black holes or neutron stars can emit vast amounts of energy in the form of gravitational
waves as their orbits decay and the bodies coalesce.

In this article we model the compact source, using a distribution, in which all the mass is con-
centrated in one point in space and hence a worldline in spacetime, but has an extended structure
encoded as a multipole expansion. The zeroth order is the monopole, followed by the dipole and
then the quadrupole. Here we consider in detail this quadrupole order. It is well known [1] that
gravitational radiation will be dominated by the quadrupole moment.

When considering sources of gravitational waves, there are multiple approaches. For simple
orbiting masses, where relativistic effects can be ignored one can find analytic solutions. By contrast
the final stages of coalescing black holes require detailed numerical simulations. Once the stress-
energy tensor is constructed one can evaluate the corresponding perturbation of the metric and
hence the predicted gravitational wave. Our approach is different. In this article we examine the
dynamics of quadrupole sources. This has a major advantage that the dynamics are encoded as
ODEs for the components, as opposed to the coupled nonlinear PDEs which one is required to
solve to model a general relativistic source. The only constraints we put on the source is that it
obeys the rules of a stress-energy tensor, namely symmetry of its indices and the divergenceless
condition. For the monopole and the dipole it is well known that these conditions constrain the
dynamics so much that they prescribe the ODEs: the geodesic equation for the monopole and the
Matterson-Papapetrou-Tulczyjew-Dixon equations for the dipole. One may therefore ask if these
two conditions also constrain the quadrupole sufficiently to prescribe the ODEs for the components.
In this article we show that, whereas 40 of the components are prescribed by ODEs, a further 20
are arbitrary. For example a quadrupole can expand and contract as depicted in figure 1. Thus
by itself this approach cannot completely prescribed the dynamics of a quadrupole and one must
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Figure 1: Schematic showing a blob of matter separating and then recombining. Such internal
dynamics can take place solely within the free components, without affecting the divergencelessness
of the stress-energy tensor (7).

add additional ODEs, or algebraic equations, which one can consider to be constitutive relations

for quadrupole. These should arise from an underlying model of the source. I.e. coalescing black
holes will have different constitutive relations to a rotating “rigid” body held by non gravitation, e.g.
electromagnetic and quantum forces. Once the constitutive relations are decided on, the ODEs can
be solved and compared to experiment.

Approximating a distribution of matter with an object at single point is a well established method
in many branches of physics. Such approximations are valid if the size of the system is small compared
to other distances involved. For example when considering coalescing Black Holes as a source of
gravitational waves, the distance between the Black Holes is orders of magnitude smaller than there
distance to earth. However there may be other objects in nature for which a multipole expansion
may be a good model. For example, it is known that atomic nuclei and molecules have higher order
moments. Although these objects are fundamentally quantum in nature, they may be modelled by
a classical point particles with multipole structure. Knowing the dynamics of multipoles may also
shed light on the problem of radiation reaction, in the case when it is the radiation reaction to the
dipole or quadrupole dynamics.

There are many important articles which consider multipole expansions. These date back to
at least the 1950s there Tulczyjew [2] considered a multipole expansions to derive the Matterson-
Papapetrou-Tulczyjew-Dixon equations for the dipole. Then in the 1960s and 1970s Dixon [3, 4, 5]
and Ellis [6] considered both charge and mass distributions using two different general formalism,
which we compare here denoting them the Dixon and Ellis representations.

Recently Steinhoff and Puetzfeld [7, 8, 9] calculate the dynamic equation for the components
of the quadrupole. In addition they consider the monopole-dipole and monopole-dipole-quadrupole
system. In all cases the worldline of the multipole effects the dynamics of the components. However
in the above the authors consider whether if and how the dynamics of the worldline is effected by
the higher order moments. The conclude that one would need supplementary conditions in order to
determine the worldline dynamics. We note that these supplementary conditions are distinct from
the constitutive relations described here for the quadrupole. In this article, excluding the section
on the monopole, the worldline is arbitrary but prescribed. Thus at the dipole order there are no
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supplementary conditions required. However as stated there are 20 constitutive relations required at
the quadrupole order.

Let M be spacetime with metric gµν and the Levi-Civita1 connection ∇µ with Christoffel symbol
Γµ
νρ. Here Greek indices run µ, ν = 0, 1, 2, 3 and Latin indices a, b = 1, 2, 3. Let C : I → M where

I ⊂ R be the worldline of the source2 with components Cµ(σ). At this point we do not assume that
σ is proper time. Here we consider stress-energy tensors T µν which are non zero only on the worldline
Cµ(σ), where it has a Dirac–δ like properties. Such stress-energy tensors are called distributional.

Being a non linear theory, one cannot simply apply the theory of distributions to general relativity.
It is not meaningful to write Einstein’s equations

Rµν −
1
2
gµνR = 8π Tµν (1)

where the right hand side is a distribution. This contrasts with electromagnetism, which since it is
a linear theory, one often uses distributional sources. For example an arbitrary moving point charge
which gives rise to the Liénard-Wiechard fields.

There are various interpretations to (1) which one can try when right hand side is distributional.
One approach is to extend the theory of distributions to include products. The most successful being
Colombeau algebra [10].

Another approach is to consider Tµν as a source of linearised gravity. Perturbatively expanding

the gravitational metric, gµν , about a background ḡµν , gµν = ḡµν + ǫ h
(1)
µν + · · · where ǫ ≪ 1 is the

perturbation parameter, and plugging the expansion into the Einstein equation (1) one has

Gµν = Ḡµν + ǫG(1)
µν + . . . and Tµν = T̄µν + ǫT (1)

µν + . . . (2)

Hence the background metric ḡµν satisfies Ḡµν = 8π T̄µν . The linearised equations are then given by

G(1)
µν = 8π T (1)

µν (3)

Setting H1
µν = h1µν −

1
2
ḡµνh

1 and using the Lorenz gauge (∇̄µH1
µν = 0), (3) becomes

�̄H(1)
µν = −16πT (1)

µν . (4)

where �̄ = ḡµν∇̄µ∇̄ν is the covariant d’Alembertian operator and is constructed purely out of the
background spacetime metric ḡµν . In the case where the background ḡµν is the Minkowski metric,

then �̄ = ∂µ∂
µ and we can give H

(1)
µν in terms of an integral over the retarded Greens functions.

H(1)
µν (t, ~x) = 4G

∫

T
(1)
µν (t− |~x− ~x

′

|, ~x
′

)

|~x− ~x′ |
d3~x

′

(5)

One should be careful as there is clearly a contradiction between the statement that the perturbation
to the background stress-energy tensor is small, and the statement that it is distributional, and
therefore infinite.

In this article we are concerned only with the structure of the distributional stress-energy, which
we write as T µν , and avoid questions of how it should be applied. Since T µν is a stress-energy tensor
it has the symmetry

T µν = T νµ (6)

1It turns out that in most calculation the metric plays no roll and a arbitrary linear connection can be used. See

section 6.
2Even using proper time in Minkowski space, one cannot assume that I = R since it is possible to accelerate to

lightlike infinity in finite proper time.
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and is divergenceless, also known as covariantly conserved

∇µT
µν = 0 (7)

Observe that because T µν is a tensor density (7) becomes

0 = ∇µT
µν = ∂µT

µν + Γν
µρT

µρ (8)

where Γν
µρ are the Christoffel symbols.

There are several ways of representing a multipole. However we consider multipoles to be distri-
butions which are integrated with a symmetric test tensor φµν = φνµ, so that

∫

M

T µν φµν d
4x is a real number (9)

These all can be written as an integral over the worldline with a number of derivative of the Dirac
δ-function. I.e. a multipole of order k is

T µν =
k

∑

r=0

∫

I

ζµν...(σ) D(r)
... δ(4)

(

x− C(σ)
)

dσ (10)

where there are r additional indices on ζµν... and D(r)
... . The subscript dots on D(r)

... contract with the
superscript dots on ζµν.... Here D(r)

... represents r derivatives of the δ-function. The familiar cases
are the monopole when k = 0, the dipole when k = 1 and the quadrupole when k = 2. As
can be seen from (10) the general dipole contains the monopole term and the general quadrupole
contains both the monopole and dipole terms. In general, it is not possible to extract the monopole
and dipole terms from the quadrupole, without additional structure such as a preferred vector field
or a coordinate system. For the monopole (6) and (7) lead to the geodesic equation. By contrasts,
for the dipole and quadrupole there is no need to assume the worldline C is a geodesic. Therefore,
unless otherwise stated, we present all the result for an arbitrary but prescribed worldline.

There are two main representations of multipoles. One uses the partial derivatives, which we
call the Ellis representation. The other uses the covariant derivative and will be called the Dixon

representation. Both have their advantages and disadvantages and these are outline in section 2
below. The Ellis formulation is greatly simplified when using a coordinate system (σ, z1, z2, z3)
which is adapted to the worldline, i.e. where

C0(σ) = σ and Ca(σ) = 0 (11)

for a = 1, 2, 3. In this coordinate system the integral in (10) can be removed. Observe that (11)
implies Ċ0 = 1 and Ċa = 0.

The monopole and dipole have been extensively studied in the literature, [11, 12, 13]. In this
article we concentrate mainly on the quadrupole. This is particularly interesting. Not only is it the
natural source of gravitational waves, but it has several unusual properties not seen in the case of
the monopole or quadrupole. These include

• The quadrupole contains free components.

• In the Ellis representation, the components ζµνρκ to not transform as tensors but instead involve
second derivatives and double integrals.

• There is no concept of mass. Instead one can only talk about the energy of a quadrupole and
only really in the case where there is a timelike Killing symmetry.

The ζµν... = ζµν...(σ) are called the components of T µν and are functions only of the position on
the worldline C. Clearly from (6) they have the symmetry

ζµν... = ζνµ... (12)

depending on the representation, we may also choose to impose additional symmetries for uniqueness.
We then apply the divergenceless condition (7) to establish further condition on the ζµν.... We can
place the components ζµν... into three categories.
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Electromagnetic Gravitational
ODE free ODE free

Monopole 1 0 1 0
Semi-dipole 1 3 7 0
full dipole 1 6 10 0

semi-quadrupole 1 12 22 6
full quadrupole 1 20 40 20

Table 1: List of the number of components which are determined by an ODE and the number which
are free, for monopoles, dipoles and quadrupoles. The electromagnetic sources refer to a current
J µ which is conserved and a source for Maxwell’s equations. The gravitational source refers to a
stress-energy tensor T µν which are sources for (linearised) Einstein’s equations. Each order includes
all the lower orders. That is the 10 components in the full stress-energy dipole includes 1 monopole
component, while the (40+20) components in the full quadrupole includes both dipole and monopole
components. The definition of the semi-dipole and semi-quadrupole is given in section 6.6.

(a) (b)

e+e−

Figure 2: (a) An electric dipole appears for a finite period of time and then disappears. This does
not break charge conservation. This corresponds to an electron-positron pair (b) appearing and then
disappearing.

• Some components are algebraically related to other components and can therefore be removed.

• Some components can be are determined by a first order ODE. These are result of the differential
equation (7). In order to specify these components it is only necessary to specify their initial
value at some point along the worldline.

• This leaves the components we call free. These are not constrained by (6) and (7) and are allowed
to take on any value. These free components can however influence the ODE components.

In order to completely specify the dynamics of a quadrupole, these free components need to be
replaced by constitutive equations. The choice of constitutive equations depends on a choice of
a model for the material. For example the the quadrupole modelling an elastic material or a
fluid with or without pressure, or something else. In section 5 we consider the dust stress-energy
tensor and use it to suggest corresponding constitutive equations.

In table 1 the number of ODE and free components is given. This is compared to the electro-
magnetic dipoles and quadrupoles.

In addition, some components may have a gauge freedom. That is several ζµν... correspond to
the same stress-energy tensor. Equivalently a given stress-energy tensor does not completely specify
the components ζµν.... Examples of this gauge freedom for the dipole and quadrupole are given in
equations (45) and (64) below. This has similarities to other gauges freedoms in that it arises from
integrating a physically observable tensor, although the components ζµν... are not themselves tensors.

For the electromagnetic dipole there is one ODE component, which is simply the total charge
and satisfies dq/dσ = 0, and there are six free components corresponding to the three electric and
three magnetic components. These can be anything without braking charge conservation, as seen
in figure 2. For the stress-energy tensor, the free components can correspond to the internal matter
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separating and coalescing, as in figure 1. In the electromagnetic current case, having free components
was not so concerning as one would expect these components to be fixed by the internal dynamics
of the charges. However the stress-energy tensor is supposed to contain all the dynamics, and one
would like there not to be any free components. One therefore needs additional constitutive relations
which encode the matter one is modelling. In this article we give an example of constitutive relations
which corresponding to non divergent dust.

Given a regular stress-energy tensor T µν and a Killing vector field Kµ we can find a conserved
quantity T µνKν such that ∇µ(T

µνKν) = 0. The same is true for the distributional stress-energy
tensor. Here Kµ gives rise to a conserved vector field Qµ(σ) along the worldline C. If Kµ is a
timelike Killing vector field it is natural to associate Qµ(σ) as the conserved energy of the multipole.
The relationship between the energy and mass is however subtle. In the monopole and dipole case
there is a natural definition of the mass, the same is not true in the quadrupole case. Even when a
mass can be defined, it is not conserved in general.

Outline of article

As stated above there are two established methods of representing the stress-energy distribution: one
using partial derivatives in (10), which we call the Ellis representation, and the other using covariant
derivatives, which we call the Dixon representation. The pro and cons of these two approaches is
discussed in section 2 and summarised in table 2. In section 3 we summarise the key results of the
monopole and dipole stress-energy tensors. We highlight the Ellis and Dixon representations of the
dipole.

In section 4 we examine the quadrupole in detail. In this section we use the Ellis approach.
We give the gauge freedom of the components and complicated change of coordinates which involve
second derivatives and integrals over the worldline. We use the adapted coordinates (11) and give
the differential equations arising from the symmetry (6) and divergencelessness (7) of T µν . We can
now identify which components are algebraic, which satisfy ODEs and which are free. In subsection
4.1 we give an example of the free components in Minkowski spacetime as depicted in figure 1. As
stated above, if there is a Killing vector field, there exists a corresponding conserved quantity. These
are given in section 4.2. This included a new interpretation of the conserved quantities corresponding
the three Lorentz boosts.

In section 5 we use the limit of the dust stress-energy tensor as it is squeezed onto the worldline
to construct a choice of constitutive relations to replace the free components with ODEs.

Although we have defined everything in terms of a coordinate system, it is useful to define the
multipoles in a coordinate free manner. The advantage of such an approach is that complicated
coordinate transformations are avoided. It is interesting to observe that, using deRham currents,
multipoles can be defined without any additional structure on a manifold. I.e. it is not necessary to
prescribe either a metric or a connection to define a general multipole. This is particularly useful if we
wish to extend the notion of a general multipole tensor distributions to manifolds such as the tangent
bundle which does not posses either metric or connection. However a connection is of course needed
to define the covariantly conserved property (7). In section 6 we detail this approach. Having defined
a multipole in a coordinate free manner, one can extract the components in the Ellis approach with
respect a coordinate system. This is explicitly given in the case of an adapted coordinate system in
section 6.4. By contrast to the Ellis approach, the Dixon approach contains more information about
a multipole, namely how it splits into a monopole term, a dipole term, a quadrupole term and so on.
This split, called here the Dixon split, is actually coordinate independent and the details are given
in section 6.7.

As noted in [14], without a metric, connection or coordinate system, it is still possible to define
and a pure electric dipole. In this article we call such a dipole a semi-dipole. We observe that the
semi-dipole stress-energy consists of the displacement vector by not the spin. In section 6.6 we define
the semi-dipole and semi-quadrupole stress-energy tensor.

We conclude, in section 7. Finally in the appendix we prove all the results in the body of the
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article.

Notation regarding derivatives

Given a coordinate system (x0, . . . , x3) then Greek indices µ, ν = 0, . . . , 3. We write the partial
derivatives

∂µ =
∂

∂xµ
(13)

In the case of the adapted coordinates (σ, z1, z2, z3) obeying (11) we use both Greek indices µ, ν =
0, . . . , 3 and Latin indices a, b = 1, 2, 3. In this case we have

∂0 =
∂

∂σ
and ∂a =

∂

∂za
(14)

Thus, even if not stated explicitly, writing ∂a implies we are referring to an adapted coordinates
system.

Note that in both the adapted and non adapted case we use overdot to represent differentiation
with respect to σ. In the non adapted coordinates this is only used for quantities, such as Cµ(σ) and
Ċµ(σ) which are only defined on the worldline. In the adapted coordinate cases is it synonymous
with ∂0.

When we have two non adapted coordinate systems (x0, . . . , x3) and (x̂0̂, . . . , x̂3̂) we use the hat
on the index to indicate the hatted coordinate system. Thus

∂µ̂ =
∂

∂x̂µ̂
(15)

Likewise for the adapted coordinate system (σ̂, ẑ1̂, ẑ2̂, ẑ3̂) we have

∂0̂ =
∂

∂σ̂
and ∂â =

∂

∂ẑâ
(16)

2 Dixon’s versus Ellis’s approaches to multipoles

2.1 The Ellis approach

As stated in the introduction there are two standard approaches to writing down distributional
multipoles.

One method [6] uses partial derivatives of the Dirac-δ function. Although Ellis principally defines
it for the electric current J µ it is easy to extend this for the stress-energy tensor. So a multipole of
order k is given by

T µν =
1

k!

∫

I

ζµνρ1...ρk(σ) ∂ρ1 · · ·∂ρkδ
(4)
(

x− C(σ)
)

dσ (17)

where ζµνρ1...ρk(σ) are smooth functions of σ and ∂ρj is given by (13). Thus when acting on the test
tensor φµν

∫

M

T µν φµν d
4x = (−1)k

1

k!

∫

I

ζµνρ1...ρk(σ)
(

∂ρ1 · · ·∂ρkφµν

)
∣

∣

C(σ)
(18)

In this article we will refer to this representation of a multipole as the Ellis representation
The symmetry of T µν leads to

ζµνρ1...ρk = ζνµρ1...ρk (19)
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Ellis Dixon

Can be defined using coordinates. Can be defined using coordinates.
Components are unique for adapted coordi-
nates. In a general coordinates they have a
gauge freedom.

Components are unique.

For general coordinate transformation the
components require higher derivatives and in-
tegrals.

Components transform as a tensor.

Do not require any additional structure.
These can be defined without referring to a
metric or additional vector field.

Requires the connection and the Dixon vector
Nµ(σ) for the definition.

Contains all multipoles up to specific order. Contains all multipoles up to specific order.
It is not possible to extract a multipole of
a specific order without additional structure.
For example an adapted coordinate system.

Easy to extract a multipoles of any order.

Can be easily defined in a coordinate free way
using DeRham push forward.

The Dixon split can be defined in a coordi-
nate free way, but this definition is compli-
cated and requires the DeRham push forward
plus a non intuitive additional axiom. This
axiom is given in section 6.7 and encodes the
orthogonality condition.

The dipole can be written in the El-
lis representation, which is consistent with
the Matterson-Papapetrou-Tulczyjew-Dixon
equations.

The dipole can be written in the Dixon
representation, which is consistent with
the Matterson-Papapetrou-Tulczyjew-Dixon
equations.

There is no concept of the mass of the multi-
pole

The mass is given by the monopole term.

There is no orthogonality condition. There is a complicated formula for the com-
ponents with respect to different Nµ(σ). This
will mix in multipoles of different orders.

The relationship between these moments and
Fourier transforms is less clear than the Dixon
representation.

There is a clear relationship between these
moments and Fourier transform.

One can construct a regular tensor field whose
moments, up to k, are the components of
the distribution. The best method is using
squeezed tensors that employ an adapted co-
ordinate system.

In principle is should be possible to do
reconstruct an original distribution using the
Fourier transform but this has not been in-
vestigated. This requires certain assumptions
about analyticity of Fourier transform.

One can construct a tensor field whose mo-
ments, up to k, are the components of the dis-
tribution. This is by considering the fields on
the transverse hyperspace constructed from
the geodesic map of vectors orthogonal to
Nµ(σ).

If all the moments are know one can re-
construct an original distribution. This also
requires certain assumptions about analytic-
ity of Fourier transform.

There is a formula for extracting the compo-
nents using test tensors, in adapted coordi-
nate.

In principle the components can be extracted
using test tensors.

Table 2: Comparison between the Ellis and Dixon representations.
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In additional the partial derivatives commute it is natural to demand that the components of ζ are
symmetric. Thus we set

ζµνρ1...ρk = ζµν(ρ1...ρk) (20)

where the round brackets mean the scaled sum over all permutations of the indices,

ζµν(ρ1...ρk) =
1

k!

∑

All permutations

i1 . . . ik

ζµνρi1 ...ρik (21)

One problem with the Ellis representation is that the ζµνρ1...ρk are not unique. Examples of the
gauge freedom that these ζµνρ1...ρk have is given in (45) and (64). This contrasts with the case when
one chooses and adapted coordinate system below.

2.2 Adapted coordinates

In general expressions for multipoles in the Ellis representation are complicated. They greatly simply
if one chooses an adapted coordinate system as given by (11). In this coordinate system the integral
over I is no longer necessary and we replace (17) with

T µν =

k
∑

r=0

1

r!
γµνa1...ar0...0(σ) ∂a1 · · ·∂ar δ

(3)(z) (22)

where z = (z1, z2, z3). The component γµνa1...ar0...0 has (k − r) zero indices, so that γµνa1...ar0...0 has
2 + k indices. Observe we only differentiate δ(3)(z) in the za direction. Thus when acting on a test
tensor

∫

M

T µν φµν d
4x =

k
∑

r=0

(−1)r

r!

∫

I

dσ γµνa1...ar0...0(σ) (∂a1 · · ·∂ar φµν) (23)

See proof number 1 in the appendix.
We still impose the symmetry conditions (19) and (20) on the γ’s so that

γµνρ1...ρk = γνµρ1...ρk = γµν(ρ1...ρk) (24)

The relationship between the γµνa1...ar0...0 and ζµνρ1...ρk is given by comparing (18) and (23) for an
adapted coordinate system

γµνa1...ar0...0 =
1

(k − r)!
∂r−k
0 ζµνa1...ar0...0 (25)

See proof number 2 in the appendix.
In an adapted coordinate system, the γµνa1...ar0...0 are uniquely determined by the distribution.

The gauge freedom of the ζµνa1,...ar0...0 in this case arising from the arbitrary constants when inte-
grating (25) with respect to σ.

With respect to this coordinate system, one can partition the multipoles into a monopole, a pure
dipole, a pure quadrupole and so on. However this is a coordinate dependent splitting and these
terms will mix when changing the coordinate system. The coordinate transformation for quadrupoles
is given in (76)-(78). Although they involve up to k derivatives of the coordinate transformation,
they do not require any integrals.
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2.3 Squeezed tensors

In an adapted coordinate system, one can construct a one parameter family of regular stress-energy
tensors T µν

ε from a given stress-energy tensor T µν such that in the weak limit T µν
ε → T µν at ε → 0

to order k. Since we are using adapted coordinates, we write (σ, z) = (σ, z1, z2, z3). We set

T µν
ε (σ, z) =

1

ε3
T µν

(

σ,
z

ε

)

(26)

We assume that T µν has compact support in the transverse planes. I.e. for each σ, there is a function
R(σ) such that

T µν(σ, z) = 0 for gab z
a zb > R(σ) (27)

This guarantees that all the moments, are finite.
This leads to

T µν
ε (σ, z) = γµν0...0 δ(3)(z) + ε γµνa0...0 ∂aδ

(3)(z) + ε2 γµνab0...0 ∂a∂bδ
(3)(z) + · · · (28)

where

γµν0...0(σ) =

∫

R3

d3z T µν
(

σ, z
)

, γµνa0...0(σ) = −

∫

R3

d3z za T µν
(

σ, z
)

,

γµνab0...0(σ) =

∫

R3

d3z za zb T µν
(

σ, z
)

etc.

(29)

See proof number 3 in the appendix. Thus there is an intimate relationship between the components
of a distribution and the moments of a regular stress-energy tensor. Here the zeroth order gives the
monopole, the first order the dipole and so on. This split is with respect to the chosen adapted
coordinate system and these will mix under a coordinate transformation.

2.4 The Dixon approach

The alternative approach, largely developed by Dixon [4] uses the covariant derivative and a choice
of a vector field Nµ(σ) along the worldline Cµ. This we will call the Dixon vector. This vector is
required to be not orthogonal to the worldline Cµ, i.e.

Nµ Ċ
µ 6= 0 (30)

As long as the worldline C is timelike, a natural choice of the Dixon vector is Ċ, i.e. Nµ = gµν Ċ
µ but

this is not the only choice. Having chosen Nµ, the Dixon representation of a multipole is defined by
its action on the test tensor φµν as

∫

M

T µν φµν d
4x =

k
∑

r=0

(−1)r
1

r!

∫

I

ξµνρ1...ρr(σ)
(

∇c1 · · ·∇crφµν

)
∣

∣

C(σ)
dσ (31)

where we demand that the components ξµνρ1...ρk are orthogonal to the vector Nµ

Nρj ξ
µνρ1...ρk = 0 (32)

for j = 1, . . . , k. The covariant derivatives do not commute, as they give rise to curvature terms
and lower the number of derivatives. Therefore we again assume that ξµνρ1...ρk are symmetric in the
relevant indices.

ξµνρ1...ρk = ξµν(ρ1...ρk) (33)
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speed of light [1]
dxµ [L]
gµν [1]

Ċ [L−1]

Ċµ [1]
∂µ [L−1]

δ(4)
(

x− C(σ)
)

[L−4]
mass m [M ]

T µν [M L−3]
test tensor φµν [L−1]
dipole displacement Xµ [ML]
dipole 3–momentum P µ [M ]
dipole spin Sµν [ML]
ζµνρi1 ...ρik [M Lk]
ξµνρi1 ...ρik [M Lk]
γµνai1 ...aik0...0 [M Lk]

Table 3: List of units for quantities, in terms of mass M and length L. The speed of light is 1.

Dixon [4, See equations (4.18), (7.4), (7.5)] writes the distribution for the electric current J µ in
terms of the covariant derivatives of a distribution. We can extend this to the stress-energy tensor
T µν via

T µν =

k
∑

r=0

1

r!
∇ρ1 · · ·∇ρr

∫

I

ξµνρ1...ρr(σ) δ(4)
(

x− C(σ)
)

dσ (34)

Since T µν is a tensor density this enables us to throw the covariant derivative over onto the test
tensor. This follow since if vµ is a vector density (of the correct weight) then ∇µ v

µ = ∂µ v
µ.

From (34) we can use the Dixon vector to perform the Dixon split in order to take an arbitrary
kth order multipole and split it into a monopole part, a dipole part and so on. Thus we set

T µν =
k

∑

r=0

T µν

(r) where T µν

(r) =
1

r!
∇ρ1 · · ·∇ρr

∫

I

ξµνρ1...ρr(σ) δ(4)
(

x− C(σ)
)

dσ (35)

In section 6.7 we present a coordinate free approach to performing this split.
Both the Ellis and Dixon approaches have advantages and disadvantages and these are listed in

table 2.

3 Summary of the monopole and dipole stress-energy ten-

sors.

3.1 The monopole

From (17) with k = 0 we have the gravitational monopole

T µν =

∫

I

ζµνδ
(

x− C(τ)) dτ (36)

The requirement to be a stress-energy tensor (6),(7) implies that C satisfies the pre-geodesic equation

Ċν∇νĊ
µ = κpre(σ) Ċ

µ (37)

and

T µν =

∫

I

mpre(σ) Ċ
µ Ċν δ

(

x− C(σ)
)

dσ (38)

where

ṁpre + κprempre = 0 (39)

12



Here the overdot refers to differentiation with respect to differentiation with respect to σ. If σ is
proper times so that

gµν Ċ
µ Ċν = −1 (40)

then κpre = 0 and (37) gives the geodesic equation

DĊµ

dσ
= 0 (41)

where D
dσ

represents the covariant derivative along the worldline, i.e.

DXµ

dσ
= Ẋµ + Γµ

νρX
ν Ċρ (42)

In this case we replace mpre with m in (38). If m > 0 then we can associate it with the mass of the
source. Thus (38) becomes

T µν = m

∫

I

Ċµ Ċν δ
(

x− C(σ)
)

dσ (43)

Thus there remain just one ODE for the remaining component, namely ṁ = 0. There are no
additional free components. See table 1. However as stated in the introduction, we do not impose
the geodesic equation for the subsequent dipole and quadrupoles terms.

3.2 The dipole

Setting k = 1 in (17) gives the dipole

T µν =

∫

I

ζµνρ ∂ρδ
(

x− C(σ)
)

dσ (44)

where the symmetry condition (6) implies ζµνρ = ζνµρ. We observe that, whereas the components
ζµνρ uniquely specify T µν , the contrast is not true. That is given T µν the gauge freedom in ζµνρ given
by

ζµνρ → ζµνρ +MµνĊρ (45)

where Mµν =Mνµ are any set of constants. See proof number 4 in the appendix.
In addition the ζµνρ are not tensorial quantities but have a coordinate transformation which in-

volves a derivatives of the Jacobian matrix and an integral. Given two coordinate systems (x0, . . . , x3)
and (x̂0, . . . , x̂3) then

ζ̂ µ̂ν̂ρ̂ = J µ̂
µJ

ν̂
ν J

ρ̂
ρ ζ

µνρ − ˆ̇C ρ̂

∫ σ

∂ρ(J
µ̂
µJ

ν̂
ν ) ζ

µνρ dσ′ (46)

where

J µ̂
µ =

∂x̂µ̂

∂xµ
(47)

Here the freedom to choose the arbitrary constant of integration in (46) is equivalent to the gauge
freedom (45). In adapted coordinates (11) then (22) and (23) become

T µν = γµν0δ(3)(z) + γµνa ∂aδ
(3)(z) where γµν0 = ζ̇µν0 and γµνa = ζµνa (48)
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Fortunately for the dipole the requirements (6) and (7) restrict the components ζµνρ so much that
T µν can be written solely in terms of tensor quantities

T µν =

∫

I

P̂ (µ Ċν) δ
(

x− C(σ)
)

dσ +∇ρ

∫

I

Ŝρ(µ Ċν) δ
(

x− C(σ)
)

dσ (49)

where P̂ µ and Ŝµν + Ŝνµ = 0 satisfy the Matterson-Papapetrou-Tulczyjew-Dixon equations

DŜµν

dσ
= P̂ νĊµ − P̂ µĊν and

DP̂ µ

dσ
= 1

2
Rµ

νρκ Ċ
ν Ŝκρ (50)

To interpret (49) as a Dixon representation of a Dipole requires we find a vector Nρ such that
Nρ Ŝ

ρ(µ Ċν) = 0.
Clearly we can replace the covariant derivatives with partial derivatives and Christoffel symbols

to give the representation of the dipole

T µν =

∫

I

(

P̂ (µ Ċν) + Ŝρ(ν Γµ)
ρκ Ċ

κ
)

δ
(

x− C(σ)
)

dσ +

∫

I

Ŝρ(µ Ċν) ∂ρ δ
(

x− C(σ)
)

dσ (51)

However this is not the Ellis representation which is given by (44) where

ζµνρ = Ŝρ(µ Ċν) + Ċρ

∫ σ (

P̂ (µ Ċν) + Ŝρ(ν Γµ)
ρκ Ċ

κ
)

dσ′ (52)

So that in the adapted coordinates (48) we have

γµν0 = P̂ (µ δ
ν)
0 + Ŝρ(ν Γµ)

ρ0 + ∂0(Ŝ
0(µ δ

ν)
0 ) and γµνa = Ŝa(µ δ

ν)
0 (53)

Recall that Kµ is a Killing vector if

∇µKν +∇νKµ = 0 (54)

Then QK is a conserved quantity, where

QK = γµ00Kµ − γµ0a ∂aKµ (55)

See proof number 14 in the appendix. From (53) we have

QK = P̂ µKµ +
1
2
Ŝµν ∇ν Kµ (56)

See proofs numbers 6-7 in the appendix.

The situation is simplified in the case when C is a geodesic. In this case we can use the Dixon
representation with Nµ = Ċµ.

T µν =

∫

I

(

mĊµ Ċν + P (µ Ċν)
)

δ
(

x− C(σ)
)

dσ +∇ρ

∫

I

(

XρĊµ Ċν + Sρ(µ Ċν)
)

δ
(

x− C(σ)
)

dσ

(57)
where

Ŝµν = Sµν −XµĊν +XνĊµ and P̂ µ = P µ +mĊµ (58)

See proof number 5 in the appendix. These quantities have intuitive meaning. See Table 3 for the
units associated with each component.

• The rest mass m.

• A displacement vector Xµ with Xµ Ċ
µ = 0.

• The rate of change of the displacement vector P µ with Pµ Ċ
µ = 0.
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• A spin tensor Sµν with Sµν + Sνµ = 0 and Ċµ S
µν = 0

These satisfy

ṁ = 0 ,
DXµ

dσ
= P µ ,

DP µ

dσ
= 1

2
Rµ

νρκ Ċ
ν Sκρ +Rµ

νρκ Ċ
ν ĊρXκ ,

DSµν

dσ
= 0 (59)

Counting the number of components we see there are 10 ODEs, which completely specify the
dynamics of the components of the dipoles. Thus there are no additional free components. The 10
components can be loosely counted as follows: One component is the rest mass. Three displacement
vectors which specify the “centre of mass” from the position of the dipole and another three represent
the velocity of the centre of mass. Finally three components are referred to as the spin. These
statements make more sense if we assume that the spacetime has Killing symmetries.

As we see below, the same situation does not occur for the quadrupoles. The conditions (6) and
(7) do not completely determine the dynamics of all the components, it is not possible to write all
the components in terms of tensors, and there is no concept of mass.

A particular case of the dipole is when Sµν = 0, which is compatible with its dynamic equation
(59). We call this case a semi-dipole. The notion of semi-dipoles and semi-quadrupoles is purely
geometric and is addressed in section 6.6.

4 The quadrupole stress-energy tensor.

Setting k = 2 in (17) gives the formula for a quadrupole.

T µν =
1

2

∫

I

ζµνρκ(σ) ∂ρ∂κδ
(

x− C(σ)
)

dσ (60)

so that the action on the test tensor φµν is given by

∫

R4

T µν φµν d
4x =

1

2

∫

I

ζµνρκ(σ)
(

∂ρ∂κφµν

)
∣

∣

C(σ)
dσ (61)

From (6) we impose

ζµνρκ = ζνµρκ (62)

and due to the commutation of partial derivatives we also set

ζµνρκ = ζµνκρ (63)

Like the ζµνρ, the ζµνρκ are not uniquely specified by the T µν , with the gauge freedom

ζµνρκ → ζµνρκ +Mνµ Ċ(ρCκ) + M̂µν(ρ Ċκ) (64)

where Mνµ and M̂µνρ are arbitrary constants. See proof number 8 in the appendix.
As in [14], under change of coordinate (x0, . . . , x3) to (x̂0̂, . . . , x̂3̂) we have have a complicated

transformation involving derivatives and integrals

ζ̂ µ̂ν̂ρ̂κ̂ = ζµνρκ J µ̂ν̂
µν J

ρ̂
ρ J

κ̂
κ − 1

2
ˆ̇C
ρ̂
∫ σ

ζµνρκ
(

J µ̂ν̂
µν (∂ρ J

κ̂
κ ) + 2 ∂ρ (J

µ̂ν̂
µν ) J

κ̂
κ

)

dσ′

− 1
2
ˆ̇C
κ̂
∫ σ

ζµνρκ
(

J µ̂ν̂
µν (∂ρ J

ρ̂
κ) + 2 ∂ρ (J

µ̂ν̂
µν ) J

ρ̂
κ

)

dσ′

+ 1
2
ˆ̇C
κ̂
∫ σ

ˆ̇C
ρ̂
∫ σ′

ζµνρκ ∂ρ ∂κ
(

J µ̂ν̂
µν

)

dσ′′ dσ′ + 1
2
ˆ̇C
ρ̂
∫ σ

ˆ̇C
κ̂
∫ σ′

ζµνρκ ∂ρ ∂κ
(

J µ̂ν̂
µν

)

dσ′′ dσ′

(65)
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where J µ̂
µ is given by

J µ̂
µ =

∂x̂µ̂

∂xµ
(66)

and

J µ̂ν̂
µν = J µ̂

µ J
ν̂
ν (67)

See proof number 9 in the appendix. It is not necessary to give the lower limits of the integrals at
these are incorporate in gauge freedom (64). However we do need to enforce the symmetry on the
indices ρ̂κ̂ ↔ κ̂ρ̂. It is necessary to check that (67) is consistent with the gauge freedom (64). See
proof number 10 in the appendix.

As stated in the introduction the quadrupole is greatly simplified if we choose adapted coordinates
given in (11), so that Ċµ = δµ0 . Equation (60) can now be written in terms of components γµνρκ

T µν(σ, z) = γµν00(σ) δ(3)(z) + γµν0a(σ) ∂aδ
(3)(z) + 1

2
γµνab(σ) ∂a∂bδ

(3)(z) (68)

so that from (23) becomes

∫

M

T µν φµν d
4x =

∫

I

(

γµν00 φµν − γµν0a (∂aφµν) +
1
2
γµνab(∂a∂b φµν)

)

dσ (69)

Here again we impose

γµνρκ = γνµρκ and γµνρκ = γµνκρ (70)

In adapted coordinates, the components γµνρκ are uniquely determined from T µν , so there is no gauge
freedom, as in (64). In this coordinate system we can still express T µν in terms of (60), and the
relationship between γµνρκ and ζµνρκ is given by

γµν00 = 1
2
ζ̈µν00, γµνa0 = ζ̇µνa0 and γµνab = ζµνab (71)

which is consistent with (64). This follows from (25).
It is now much easier to express the differential and algebraic equations on the components arising

from the divergenceless conditions (7).

γ̇µ000 = −Γµ
νρ γ

ρν00 + (∂aΓ
0
νρ) γ

ρν0a − 1
2

(

∂b∂aΓ
0
νρ

)

γρνab (72)

γ̇µ00a = −γµa00 − Γµ
νρ γ

ρν0a + (∂bΓ
µ
νρ) γ

ρνba (73)

γ̇µ0ab = −2γµ(ba)0 − Γµ
νρ γ

cbab (74)

together with the algebraic equation

γµ(abc) = 0 (75)

See proof number 11 in the appendix.
We can now count the number of components of the quadrupole. From (72)-(74) we have 40

first order ODEs. However not all the components are determined by these ODEs. From (70) we
start with 100 components. The algebraic equation (75) gives 40 independent equations so that
there are 60 independent components. Thus 40 are determined by ODEs and the remaining 20
are free components. As stated in the introduction these free components need to be replaced by
constitutive equations. However the choice of constitutive equations depends on a choice of a model
for the material. An example of such constitutive equations is given in section 5 below.
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Under change of adapted coordinate (σ, z1, z2, z3) to (σ̂, ẑ1, ẑ2, ẑ3) we have

γ̂µ̂ν̂âb̂ = J µ̂ν̂
µν J

â
a J

b̂
b γ

µνab (76)

γ̂µ̂ν̂â0̂ = J µ̂ν̂
µν J

â
a γ

µνa0 +
(

J µ̂ν̂
µν J

0̂
b J

â
a γ

µνab
)

˙− 1
2

(

J â
ab J

µ̂ν̂
µν + J â

a ∂bJ
µ̂ν̂
µν + J â

b ∂aJ
µ̂ν̂
µν

)

γµνab (77)

γ̂µ̂ν̂0̂0̂ = J µ̂ν̂
µν γ

µν00 + J µ̂ν̂
µν J

0̂
c γ̇

µνa0 +
(

(J µ̂ν̂
µν J 0̂

c )̇− ∂cJ
µ̂ν̂
µν

)

γµνc0

+ 1
2

(

(J µ̂ν̂
µν J 0̂

d J
0̂
c ) γ

µνcd
)

¨−
((

1
2
J 0̂
cdJ

µ̂ν̂
µν + J 0̂

d ∂cJ
µ̂ν̂
µν

)

γµνcd
)

˙+ (1
2
∂c∂dJ

µ̂ν̂
µν ) γ

µνcd (78)

where

J µ̂
νρ = ∂νJ

µ̂
ρ =

∂2x̂µ̂

∂xν∂xρ
(79)

See proof number 12 in the appendix. Although this may be considered more complicated than (65)
it does not involve any integrals. We have assumed that σ and σ̂ parameterise the same points on
the worldline C. Thus on the worldline J µ̂

0 = δµ̂0 . However this does not imply J µ̂
ν0 = 0.

4.1 The static semi-quadrupole and the free components

To get an intuition about the free components, consider to dynamic equations (72)-(75) on a flat
Minkowski background with Cartesian coordinates (t = z0, z1, z2, z3) = (t, z) and with the worldline
at z = 0. Thus we can set t = σ so that C0(t) = t and Ca(t) = 0. The dynamic equations (72)-(75)
become

γ̇µ000 = 0 (80)

γ̇µ0a0 = −γµa00 (81)

γ̇µ0ba = −2γµ(ab)0 (82)

γµ(abρ) = 0 (83)

As a further simplification, consider only the semi-quadrupole. This is when

γµabρ = 0 (84)

According to table 1 there should be 22 ODE components and 6 free components. This arises since
(84) implies γa0bρ = 0 which kills all but 6 of the ODEs in (82). See proof number 13 in the appendix.
Also see section 6.6 for full details.

The general solution is given by

γ0000 = m, γa000 = P a, γ00a0 = Xa − t P a,

γ00ba = κba(t), γb0a0 = Sba − 1
2
κ̇ba(t), γba00 = 1

2
κ̈ba(t), γρba0 = 0

(85)

where the 10 constants m,P a, Xa, Sab with Sab + Sba = 0 and the six free components κba(t) with
κba(t) = κab(t). Here we interpret m as the total mass, P a as the momentum and Sba as the spin.
The six free components κab(t) are the moments of inertia. Since there are 22 ODEs there should
be 22 constants of integration. As well as the 10 already given, the remaining 12 are the six initial
conditions for κab(0) and for κ̇ab(0).

Consider the components of T µν as arising from squeezing a regular stress-energy tensor T µν(t, z)
as in section 2.3. Thus

γµν00 =

∫

R3

T µν(t, z)d3z, γµνa0 =

∫

R3

T µν(t, z) za d3z, γµνab =

∫

R3

T µν(t, z) za zb d3z,

(86)
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Comparing (85) and (86) we see

m =

∫

R3

T 00(t, z)d3z, P a =

∫

R3

T a0(t, z)d3z, Xa = t P a +

∫

R3

T 00(t, z)za d3z,

Sba =

∫

R3

z[a T b]0(t, z)d3z, κab =

∫

R3

za zb T 00(t, z)d3z,

(87)

For example let P a = 0 and Sab = 0 then

m =

∫

R3

T 00(t, z) d3z, κab(t) =

∫

R3

za zb T 00(t, z) d3z (88)

Since κab(t) are free components we can choose any T µν(t, z) we like so long as its total integral is
m and they are sufficiently symmetric that P a = 0 and Sab = 0 hold. For example if T µν(t, z) is
symmetric about the three directions za. This explains why we can choose to have a distribution of
matter which separates and then coalesces as in figure 1.

4.2 Conserved quantities

Recall that a killing vector (54), leads to a conserved quantity in the dipole case. The same is true
for quadrupole. In an adapted coordinate system (σ, z1, z2, z3) then the conserved quantity QK is
given by

QK = γµ000Kµ − γµ0a0∂aKµ +
1
2
γµ0ab∂a∂bKµ (89)

See proof number 14 in the appendix.
It is worth exploring the conserved quantities on the static semi-quadrupole given by (85). In

Minkowski spacetime there are 10 Killing vectors.

• Mass or Energy: for K0 = 1, Ka = 0 we have QK = m.

• Momentum: for K0 = 0, and for some a, Ka = 1 and Kb = 0 for b 6= a then QK = pa.

• Angular momentum and spin: let K0 = 0, K1 = z2, K2 = −z1 and K3 = 0. We have

QK = γ1000K1 + γ2000K2 + γ2010∂1K2 + γ1020∂2K1

= p1 z2 − p2 z1 +
(

S12 − κ̇12(t)
)

−
(

S21 − κ̇21(t)
)

= S12

• Boost: Let K0 = z1, K1 = t + t0, K2 = 0 and K3 = 0 for some fixed t0. Then

QK = γ0000K0 + γ1000K1 + γ0010∂1K0 = mz1 + P 1 (t+ t0) + (X1 − t P 1) = X1 + t0 P
1

Thus the 10 Killing symmetries of Minkowski spacetime correspond directly to the 10 constant of
the solution to static semi-quadrupole. This also gives a new interpretation to the three somewhat
obscure conserved quantities corresponding to the three boosts. Namely for the boost about the
point z = 0 and t = t0 then QK is the displacement vector at the time t0.

5 Non-divergent dust model of a quadrupole and the corre-

sponding constitutive relations.

The familiar dust model is given in terms of a scalar density ̺ and a vector field Uµ with gµν U
µ Uν =

−1. The stress-energy tensor density is given by

T µν = ̺Uµ Uν µ (90)
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where µ =
√

− det(gµν). Then the divergenceless condition implies that the Uµ are geodesics

Uµ ∇µ U
ν = 0 (91)

and the flow ̺ is conserved

Uµ(∂µ̺) = 0 (92)

Furthermore let us assume that the dust is non divergent, so that it preserves the measure, i.e.

Uµ ∂µµ = 0 (93)

In order to create a squeezed tensor T µν
ε from T µν we need a choose a coordinate system. It is

natural to choose the coordinate adapted to Uµ so that Uµ = δµ0 . This gives ˙̺ = 0 so that we can
write ̺ = ̺(z). Likewise we have a = a(z). Hence

T µν(σ, z) = ̺(z) δµ0 δ
ν
0 a(z) (94)

We require that ̺(z) = 0 for large z. From (29) we see

γµν00(σ) = δµ0 δ
ν
0

∫

R3

d3z ̺(z) a(z),

γµνa0(σ) = −δµ0 δ
ν
0

∫

R3

d3z za ̺(z) a(z),

γµνab(σ) = δµ0 δ
ν
0

∫

R3

d3z za zb ̺(z) a(z)

(95)

Since both ̺ and a are independent of σ we have the dynamic equations

γ̇µν00 = 0, γ̇µνa0 = 0 and γ̇µνab = 0 (96)

These are consistent with the dynamic equations (72)-(74) since in the adapted coordinate system
the geodesics equation becomes Γµ

00 = 0.
Equation (96) completely defines the dynamics. However, our goal is use use (96) to inspires

the constitutive relations in the case when we are not modelling a non-divergent dust, so that the
(72)-(74) hold. One option is to require that some of the free components are in fact constants. This
is challenging because we need to be consistent with (72)-(74).

As a simple example, consider the static semi-quadrupole given by (85). The non-divergent dust
constitutive relations would make κab(t) a constant. It would also make P a = 0. This replaces (85)
with

γ0000 = m, γa000 = 0, γ00a0 = Xa,

γ00ba = κba, γb0a0 = Sba, γba00 = 0, γcba0 = 0
(97)

6 The coordinate free and metric free approach to quadrupoles.

In [14] the authors present a coordinate free definition of submanifold distributions, also known as
deRham currents, in terms of the deRham push forward and then actions of the standard operations.

Since we are using coordinate free notation we write a vector field as V ∈ ΓTM. Here TM is
the tangent bundle of spacetime and ΓTM refers to sections of the tangent bundle. A vector a point
p ∈ M we write V ∈ TpM. A vector field and vectors at a point are differential operators and we
write the action of a vector on a scalar field as V 〈f〉. The bundle of p–forms is written ΛpM so a
p–form field is written α ∈ ΓΛpM.

Given a coordinate system (x0, . . . , x3) then we write V = V µ∂µ. Here ∂µ are basis vectors and
V µ are indexed scalar fields. For 1–forms α ∈ ΓΛ1M we can write α = αµ dx

µ where again αµ are
indexed scalar fields.
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6.1 The two types of ∇

In the literature on general relativity and differential geometry, there are two convention used when
referring to the covariant derivative. One is typically used when using index tensor notation, the
other when one is using coordinate free notation. Usually one has simply to choose one convention
present all the results in that. We have done this up to know using index notation. However in this
section we wish to present a coordinate free definition of all the objects. As a result it is necessary
to use both definitions of the covariant derivatives, sometimes in the same expression. So to avoid
confusion, from now one we introduce two different symbols.

The covariant derivative which we have used up to this point and which “knows” about the index
of an object we write ∇µ. Acting on the indexed scalar fields V µ then

∇µV
ν = ∂µ(V

ν) + V ρ Γν
ac (98)

I.e. the Christoffel symbols are tied to the indexes. By contrast the coordinate free covariant
derivative is written ∇V where V ∈ ΓTM. In this case the Christoffel symbol satisfies

Γµ
νρ ∂µ = ∇∂ν∂ρ (99)

This covariant derivative knows about the tensor structure, but not the indexes. Thus

∇UV
µ = U〈V µ〉 (100)

The two covariant derivatives are related via the following

∇U(V ) = Uν(∇νV
µ)∂µ (101)

since

∇U(V ) = ∇U(V
µ ∂µ) = U〈V µ〉∂µ + Uν V µ

∇∂ν∂
µ = U〈V µ〉∂µ + Uν V µΓρ

µν∂ρ

= Uν
(

∂ν〈V
µ〉+ V ρΓµ

νρ

)

∂µ = Uν(∇νV
µ)∂µ

In the coordinate definition of the Dixon quadrupole, setting k = 2 in (34), we see there is
an operator ∇µ∇ν . This is tensorial with respect to the indices µ and ν. To give coordinate free
definition we define for any tensor S,

∇
2
U,V S = ∇U ∇V S −∇∇UV S (102)

This definition can be extended to arbitrary order. This is clearly tensorial in U , but is also tensorial
(also known as f-linear) with respect to V . Thus

∇
2
(fU),V S = ∇

2
U,(fV )S = f∇2

U,V S (103)

See proof number 15 in the appendix.
The relationship between ∇

2
U,V and ∇µ∇ν is given by

∇
2
U,VW = Uν V ρ

(

∇ν ∇ρW
µ
)

∂µ (104)

for any vector W µ. See proof number 16 in the appendix.

6.2 Defining distributional forms

Following Schwartz, we define a distributional p–form by how acts on a test (4−p)–form ϕ ∈ ΓΛ4−pM ,
i.e. with (4−p)–form with compact support [14]. Given α ∈ ΓΛpM is a smooth p−form, we construct
a regular distribution αD via

αD[ϕ] =

∫

M

ϕ ∧ α (105)
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The definition of the wedge product, Lie derivatives, internal contraction and exterior derivatives on
distributions are defined to be consistent with (105). Thus for a distribution Ψ we set

(Ψ1 +Ψ2)[ϕ] = Ψ1[ϕ] + Ψ2[ϕ] , (β ∧Ψ)[ϕ] = Ψ[ϕ ∧ β] , (dΨ)[ϕ] = (−1)(3−p)Ψ[dϕ] ,

(ivΨ)[ϕ] = (−1)(3−p)Ψ[ivϕ] and (LvΨ)[ϕ] = −Ψ[Lvϕ]
(106)

for v ∈ ΓTM. Given C : I → M, is a closed embedding. The push forward with respect to C of a
p–form, α ∈ ΓΛpI is given by the distribution

(

Cς(α)
)

[ϕ] =

∫

I

C⋆(ϕ) ∧ α (107)

where ϕ is a test form of degree 0 or 1. This has degree deg
(

Cς(α)
)

= 3 + α. A general form
distribution is then given by acting (106) on Cς(α).

The order of a multipole is defined as follows. If

Ψ[λk+1ϕ] = 0 for all λ ∈ ΓΛ0M and ϕ ∈ Γ0Λ
1M such that C⋆(λ) = 0 (108)

then we say that the order of Ψ is at most k. Since we impose that λ vanishes on the image of C,
this implies that we need to differentiate the argument λk+1ϕ at least k + 1 times for Ψ[λk+1ϕ] 6= 0.
We say dipoles have order at most one and quadrupoles have order at most two. Therefore the terms
in a dipole have at most one derivative, and those in a quadrupole at most two. This is consistent
with the fact that the set of quadrupoles include all dipoles.

The deRham push forward is compatible with the exterior derivative

dCς(α) = Cς(dα) (109)

and the internal contraction for tangential fields

iw Cς(α) = Cς(iv α) where w ∈ ΓTM, v ∈ ΓTI, C⋆(v|σ) = w|C(σ) for all σ ∈ I (110)

These enable one to manipulate distributions, for example by finding the change of coordinates,
without having to act on the test tensors.

6.3 The stress-energy 3–forms

In this section, we exploit the fact the although the stress-energy forms are 3–forms and have a
similar structure to the electromagnetic current 3–form.

The stress-energy form τ is a map which takes a 1–form α ∈ ΓΛ1M and gives a deRham current
3–form τα over the worldline C.

α 7→ τα (111)

The map (111) is not tensorial but does satisfy

τ(α+β) = τα + τβ and τ(fα)[θ] = τα[fθ] (112)

for any test 1–form θ.
Observe that the stress-energy 3–forms take a 1–form α to give a 3–form. This is contrary to

the usual definition where we take a vector v to give the 3–form τv. The advantage of (111) is that
we do not need a metric to defined the stress-energy 3–forms or the symmetry and divergenceless
conditions (114) and (115) below. This is useful if we wish to consider connections which are not
metric compatible.

Using τα we define a tensor valued distribution τ which takes a tensor of type (0,2) as an argument.
This is defined as

τ [θ ⊗ α] = τα[θ] (113)

21



The stress-energy tensor is symmetric (6) and divergenceless (7). The symmetry condition is given
by

τ [β ⊗ α] = τ [α ⊗ β] (114)

and the divergenceless condition is given by

Dτ = 0 (115)

where

(Dτ)[θ] = −τ [Dθ] (116)

and

(Dθ)(U, V ) = (∇V θ)(U) (117)

Using a coordinate system, we can convert the map (111) into indexed 3–forms via

τµ = τdxµ (118)

The relationship between the stress-energy forms and the tensor density T µν is given by

∫

I

T µν φµν d
4x = τµ[φµν dx

ν ] (119)

Using this coordinate system, (114) becomes

dxµ ∧ τ ν = dxν ∧ τµ (120)

and (115) becomes

dτµ + Γµ
νρ dx

ρ ∧ τ ν = 0 (121)

See proof number 17 in the appendix.

6.4 Killing forms and conservation

Killing forms (54) can be written in a coordinate free way. The 1–form α ∈ ΓΛ1M is Killing if

(∇V α)(V ) = 0 (122)

for all vectors V ∈ ΓTM. From (121) and (120) we have

dτα = d(αµ τ
µ) = dαµ ∧ τ

µ + αµ ∧ dτ
µ = (∂ραµ) dx

ρ ∧ τµ − Γµ
νραµ dx

ρ ∧ dτ ν = ∇ραν dx
ρ ∧ dτ ν

= 1
2
(∇ραν −∇ναρ) dx

ρ ∧ dτ ν

Hence if α ∈ ΓΛ1M is a Killing 1–form then from (54) dτα = 0. This gives an alternative method of
proving (89).

6.5 Defining and extraction of components

Using (60) and (119) we deduce in an arbitrary coordinate system

τµ = 1
2
iν Lρ LκCς(ζ

µνρκdσ) (123)
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where iν = i∂ν and Lρ = L∂ρ . See proof number 18 in the appendix. In an adapted coordinate system
(11) then (68) implies

τµ = iν Cς(γ
µν00 dσ) + iν LaCς(γ

µν0a dσ) + 1
2
iν La LbCς(γ

µνab dσ) (124)

See proof number 19 in the appendix. As stated the advantage of using an adapted coordinate system
is that the γµνρκ are unique. We can extract the values of the γµνρκ by acting on test forms.

γµν00(σ) = lim
ǫ→0

τµ[dxν ψǫ,σ] , γµν0a(σ) = lim
ǫ→0

τµ[za dxν ψǫ,σ] , γµνab(σ) = lim
ǫ→0

τµ[za zb dxν ψǫ,σ]

(125)

where

ψǫ,σ(σ
′, z) = ǫ−1 ψ1((σ − σ′)/ǫ)ψ1

(

(z1)2 + (z2)2 + (z3)2
)

and ψ1 : R → R is a bump function. I.e. a test function with which is flat about 0.

6.6 Semi-dipoles and semi-quadrupoles

Having defined the quadrupoles in a coordinate free manner, one can identify properties which can
be defined without reference to a coordinate system. In [14] we defined the semi-dipole and semi-
quadrupole electromagnetic 3–form. The semi-dipole corresponded to the purely electric quadrupole.
One can likewise define the semi-dipole and semi-quadrupole stress-energy distributions. In this case
we say that τα is an semi-multipole of order at most ℓ if

τα[λ
ℓdµ] = 0 for all λ, µ ∈ ΓΛ0M such that C⋆(λ) = C⋆(µ) = 0 (126)

We observe that the semi-dipole (ℓ = 1) corresponds to the case when the spin tensor is Sba = 0.
The semi-quadrupole (ℓ = 2), does not have a natural interpretation, but is used as a quadrupole
with fewer components.

When we apply this to the quadrupole (124) we see that the semi-quadrupole is given by

τµ = iν Cς(γ
µν00 dσ) + iν La Cς(γ

µν0a dσ) + 1
2
La Lb Cς(γ

µ0ab) (127)

This gives 22 ODE components and 6 free components as indicated in table 1. We presented the
general solution for the static semi-quadrupole in section 4.1.

6.7 The coordinate free definition of the Dixon split only using N and

the connection

We have defined the stress-energy distribution without reference to a coordinate system. When
writing this in terms of coordinates (123) and (29) we see that this corresponds directly to the Ellis
representation of the multipoles. Here we show how to perform the Dixon split (35) which separate
the multipoles into different orders with respect to a 1–form N along the curve. We show this by
separating the quadrupole into a pure Dixon quadrupole term, a pure Dixon dipole term and a
monopole term. The pattern however is clear. The Dixon split (35) requires defining τ(0), τ(1) and
τ(2) such that an arbitrary quadrupole

τ = τ(0) + τ(1) + τ(2) (128)

Using (119) to convert these into T µν

(r) so that T µν = T µν

(0) + T µν

(1) + T µν

(2) where

τ(0)[φ] =

∫

M

T µν

(0) φµν d
4x =

∫

I

ξµν(σ)φµν(σ) dσ , (129)

τ(1)[φ] =

∫

M

T µν

(1) φµν d
4x =

∫

I

ξµνρ(σ) (∇ρφµν)|C(σ) dσ , (130)

τ(2)[φ] =

∫

M

T µν

(2) φµν d
4x =

∫

I

ξµνρκ(σ) (∇ρ∇κφµν)|C(σ) dσ (131)

23



The Dixon split is with respect to a 1–form, as opposed to a vector along C. This is in order to
avoid requiring the metric. The one requirement is that the 1–form N combined with the vector Ċ
is nowhere zero. I.e.

N(Ċ) 6= 0 (132)

In order to perform the Dixon split, it is necessary to define a radial vector fields. We say that
R ∈ ΓTM is Radial (2 second order) with respect to C and N ∈ ΓρΛ

1M if for all p = C(σ)

R|p = 0, (∇VR)|p = V |p and
(

∇
2
U,VR

)
∣

∣

p
= 0 (133)

for all vectors U, V ∈ TM such that N(V ) = N(U) = 0. In appendix A.5 we express the components
of R with respect to a coordinate system, which is adapted both for C and N .

Using this radial vector, the Dixon split (128) is given by

τ(0)[φ] = τ [φ −∇Rφ+ 1
2
∇2

R,Rφ] (134)

τ(1)[φ] = τ [∇Rφ−∇2
R,Rφ] (135)

τ(2)[φ] = τ [1
2
∇2

R,Rφ] (136)

where φ is an type (0,2) test tensor. See proofs numbers 22-24 in the appendix. The advantage of
this definition is that one can now show how the Dixon components mix when one changes N .

7 Discussion and outlook.

We have derived a number of key results about the distributional quadrupole stress-energy tensor,
in particular the existence of the free components, which require additional constitutive relations to
prescribe. An example of these constitutive relations is given. We have also given the coordinate
transformation of the quadrupole components, the conserved quantities in the presence of a Killing
vector, a definition of semi-quadrupoles and a coordinate free definition of the Dixon split.

The understanding of the quadrupole stress-energy tensor distribution is important for the study
of gravitational wave sources, as well as being interesting in its own right. Many features arise at
the quadrupole level, which were not present at the dipole level. In particular the non tensorial
nature of the components and the existence of free components. These free components imply that
it is not possible to know everything about a quadrupole simply from the initial conditions. There
is clearly much research that needs to be done to find appropriate constitutive relations to replace
the free components with ODEs or algebraic relations. One would expect different constitutive
relations for a gravitationally bound object such as two orbiting point masses, a non gravitationally
bound object such a rotating asteroid and an object where both gravitational and non gravitational
forces are important such as a star. In section 5 we present only a very simple constitutive relation
corresponding to a dust model. As presented this is only valid for a semi-quadrupole in Minkowski
spacetime. With increasing sensitivity of gravitational wave astronomy one can hope to test the
different constitutive relations using experimental data.

Although the observation of the need for constitutive relations for the quadrupole on a prescribe
worldline is new, there are other cases where the need for constitutive relations has been observed.
For example [7], they are needed to determine how dipoles or quadrupoles effect the worldline. There
are other situations where one can expect constitutive relations will be needed. In future work we
intend to look at the dynamics of charged multipoles in an electromagnetic field. One would expect
in this case that constitutive relations are also needed, especially since a dipole has nine components,
but the electromagnetic current, which provides the force and torque, has only six components.
These constitutive relations describe the differences between the charge distribution and the mass
distribution in the dipole. The situation has an additional challenge in that the electromagnetic field
blows up on the worldline. This poses another question that has been tackled by many authors: how
does a dipole respond to its own electromagnetic field [15, 16, 17].
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We have detailed the nature of the Ellis representation of the quadrupole. As well as the differen-
tial equations, we have given the gauge freedom, the change of coordinates, the adapted coordinates
and the change of coordinates for adapted coordinates. It is natural to ask what new features will
arise for sextipoles. One will expect that the gauge freedom for sextipoles will include a term with
ĊµCν

∫ σ
Cρ dσ′.

Having definitions which are coordinate free can be very useful. They make it clear which objects
are coordinate dependent and which are truly geometric. Ironically, one principle use is to make it
easier to derive the correct coordinate transformation. Although the Ellis representation of multipoles
is easy to define in a coordinate free manner, here we have derived a coordinate free define of the
Dixon split (134)-(136).

Although spacetime is endowed with both a metric and a connection, there is much research into
which objects can be defined without such structures. In some cases this is a philosophical question,
posing whether the electromagnetic field is more fundamental than the gravitational field [18]. In
other cases it is useful for asking how does an object depend on a metric or a connection. This is
necessary when doing variations with respect to the metric. It is important therefore that a general
multipole does not require any additional structure beyond that defining a general manifold for its
definition. This means that one can define multipoles on other manifolds such as the tangent bundle
or jet bundles. Such an approach may also give an insight into prescribing constitutive relations,
say for a plasma. Of course a connection is required to demand the stress-energy distribution is
covariantly conserved, but there is no requirement to demand that such a connection is Levi-Civita.
All the coordinate free presentation from section 6 does not require a metric, so one can choose a
metric compatible or a non metric compatible connection. We have demanded that the connection is
torsion free. On the whole this is to simplify the equations so that we do not have to write down all
the torsion components and their derivatives. One can reproduce the results with these extra terms.
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Appendix

A Details of the proofs

A.1 Proofs from introductory sections

Proof number 1: Proof of (23) and (25).

∫

M

T µν φµν d
4x =

∫

I

dσ

∫

space

d3z
(

k
∑

r=0

1

r!
γµνa1...ar0...0 ∂a1 · · ·∂ar δ

(3)(z)
)

φµν

=

k
∑

r=0

(−1)r

r!

∫

I

dσ

∫

space

d3z γµνa1...ar0...0 (∂a1 · · ·∂ar φµν) δ
(3)(z)

=

k
∑

r=0

(−1)r

r!

∫

I

dσ γµνa1...ar0...0 (∂a1 · · ·∂ar φµν)
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Proof number 2: Proof of (25).
∫

M

T µν φµν d
4x = (−1)k

1

k!

∫

I

ζµνρ1...ρk
(

∂ρ1 · · ·∂ρkφµν

)

=

k
∑

r=0

(−1)k
1

k!

k!

r!(k − r)!

∫

I

ζµνa1...ar0...0
(

∂a1 · · ·∂ar∂
k−r
0 φµν

)

=
k

∑

r=0

(−1)r
1

r!(k − r)!

∫

I

(∂k−r
0 ζµνa1...ar ,0...0)

(

∂a1 · · ·∂arφµν

)

Hence comparing with (23) gives (25).

Proof number 3: Proof of (28) and (29). This follows from setting wa = za/ε and Taylor expanding
around ε = 0 we have
∫

R4

T µν
ε (σ, z)φµν(σ, z) dσ d

3z

=

∫

R

dσ

∫

R3

d3z T µν
ε (σ, z)φµν(σ, z)

=

∫

R

dσ

∫

R3

d3z
1

ε3
T µν

(

σ,
z

ε

)

φµν(σ, z)

=

∫

R

dσ

∫

R3

d3w T µν
(

σ,w
)

φµν(σ, εw)

=

∫

R

dσ

∫

R3

d3w T µν
(

σ,w
)

φµν(σ, 0) + ε

∫

R

dσ

∫

R3

d3w T µν
(

σ,w
)

wa
(

∂aφµν

)

(σ, 0)

+ ε2
∫

R

dσ

∫

R3

d3w T µν
(

σ,w
)

wawb
(

∂a ∂bφµν

)

(σ, 0) + · · ·

=

∫

R

dσγµν0...0 φµν |C(σ) − ε

∫

R

γµνa0...0dσ
(

∂aφµν

)
∣

∣

C(σ)
+ ε2

∫

R

γµνab0...0dσ
(

∂aφµν

)
∣

∣

C(σ)
+ · · ·

A.2 Proofs about the dipole

Proof number 4: Proof of (45). Substituting (45) into (44) we have

T µν → T µν +

∫

I

MµνĊρ∂ρδ(x− C(τ)) dσ = T µν +

∫

I

Mµν d
dσ
δ(x− C(τ)) dσ

= T µν +

∫

I

d
dσ

(

Mµνδ(x− C(τ))
)

dσ = T µν

Thus (45) is a gauge freedom. To show it is the maximum freedom consider working in adaptive
coordinates. It is clear that the freedom (45) is precisely equivalent to the freedom to choose ζµν0

given γµν0. For details of why this is the maximum gauge freedom see proofs number 9 and 10.

Proof number 5: Relationship between (59) and (50). In this proof we refer to the two equations in
(50) as (50.1) and (50.2) and likewise for (59.1) to (59.4). From (58) and (41) we have

DŜµν

dσ
− P̂ νĊµ + P̂ µĊν

=
DSµν

dσ
−
DXµ

dσ
Ċν −XµDĊ

ν

dσ
+
DXν

dσ
Ċµ +XνDĊ

µ

dσ
− (P ν +mĊν)Ċµ + (P µ +mĊµ)Ċν

=
DSµν

dσ
−

(DXµ

dσ
− P µ

)

Ċν +
(DXν

dσ
− P ν

)

Ċµ

27



Hence (59.2) and (59.4) imply (50.1). By contrast from (50.1) we can project out (59.2) and (59.4)
using Ċµ.

Likewise from (58) we have

DP̂ µ

dσ
− 1

2
Rµ

νρκ Ċ
ν Ŝκρ =

DP µ

dσ
+
Dm

dσ
Ċµ +m

DĊµ

dσ
− 1

2
Rµ

νρκ Ċ
ν
(

Sκρ −XκĊρ +XρĊκ
)

=
DP µ

dσ
+ ṁĊµ − 1

2
Rµ

νρκ Ċ
ν Sκρ −Rµ

νρκ Ċ
ν XκĊρ

Thus (59.1) and (59.3) imply (50.2). By contrast from (50.2) we can project out (59.1) and (59.3)
using Ċµ.

Proof number 6: Proof of (56). From (50) we have

∂0Ŝ
µν =

DŜµν

dσ
− Γµ

0ρ Ŝ
ρν − Γν

0ρ Ŝ
µρ = P̂ νĊµ − P̂ µĊν − Γµ

0ρ Ŝ
ρν − Γν

0ρ Ŝ
µρ

= P̂ νδµ0 − P̂ µδν0 − Γµ
0ρ Ŝ

ρν − Γν
0ρ Ŝ

µρ

so

∂0Ŝ
0µ = P̂ µ − P̂ 0δµ0 − Γ0

0ρ Ŝ
ρµ − Γµ

0ρ Ŝ
0ρ

From (53) we have

γµ00 = P̂ (µ Ċ0) + Ŝρ(0 Γµ)
ρκ Ċ

κ + ∂0(Ŝ
0(µ Ċ0))

= 1
2

(

P̂ µ + P̂ 0δµ0 + Ŝρ0 Γµ
ρ0 + Ŝρµ Γ0

ρ0 + ∂0(Ŝ
0µ)

)

= 1
2

(

P̂ µ + P̂ 0δµ0 + Ŝρ0 Γµ
ρ0 + Ŝρµ Γ0

ρ0 + P̂ µ − P̂ 0δµ0 − Γ0
0ρ Ŝ

ρµ − Γµ
0ρ Ŝ

0ρ
)

= P̂ µ + Ŝρ0 Γµ
ρ0

and

γµ0a = 1
2
Ŝaµ + 1

2
Ŝa0δµ0

From (54) we have

0 = ∇aK0 +∇0Ka = ∂aK0 + ∂0Ka − 2Γµ
a0Kµ

Hence from (55) we have

QK = γµ00Kµ − γµ0a ∂aKµ =
(

P̂ µ + Ŝρ0 Γµ
ρ0

)

Kµ −
1
2

(

Ŝaµ + Ŝa0δµ0
)

∂aKµ

= P̂ µKµ + Ŝρ0 Γµ
ρ0Kµ −

1
2
Ŝaµ ∂aKµ −

1
2
Ŝa0 ∂aK0

= P̂ µKµ + Ŝρ0 Γµ
ρ0Kµ −

1
2
Ŝaµ ∂aKµ +

1
2
Ŝa0 ∂0Ka − Ŝa0Γµ

a0Kµ

= P̂ µKµ +
1
2
Ŝµa ∂aKµ +

1
2
Ŝµ0 ∂0Kµ = P̂ µKµ +

1
2
Ŝµν ∂νKµ = P̂ µKµ +

1
2
Ŝµν ∇νKµ

Proof number 7: Proof that QK in (56) is conserved. Since Kµ is killing we have

∇µ∇νKρ = Rκ
µνρKκ

From (56) and (50) we have

Q̇K =
DQK

dσ
=
DP̂ µ

dσ
Kµ + P̂ µ Ċν∇νKµ +

1
2

DŜµν

dσ
∇ν Kµ +

1
2
Ŝµν Ċρ∇ρ∇ν Kµ

= 1
2
Rµ

νρκ Ċ
ν ŜκρKµ + P̂ µ Ċν∇νKµ +

1
2

(

P̂ νĊµ − P̂ µĊν
)

∇νKµ +
1
2
Ŝµν Ċρ∇ρ∇νKµ

= 1
2
Rµ

νρκ Ċ
ν ŜκρKµ +

1
2
Ŝµν ĊρRκ

ρνµKκ = 0
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A.3 Proofs about the quadrupole

Proof number 8: Proof of (64). Similarly to the proof of (45), we have

∫

I

Mµν Ċ(ρCκ)∂ρ∂κδ
(

x− C(σ)
)

dσ =

∫

I

Mµν CκĊρ ∂ρ∂κδ
(

x− C(σ)
)

dσ

=Mµν

∫

I

Cκ d

dσ

(

∂κδ
(

x− C(σ)
)

)

dσ

=Mµν

∫

I

d

dσ

(

Cκ∂κδ
(

x− C(σ)
)

)

dσ −Mµν

∫

I

Ċκ∂κδ
(

x− C(σ)
)

dσ

= −Mµν

∫

I

d

dσ
δ
(

x− C(σ)
)

dσ = 0

and
∫

I

M̂µν(κĊρ) ∂ρ∂κδ
(

x− C(σ)
)

dσ =

∫

I

M̂µνκĊρ ∂ρ∂κδ
(

x− C(σ)
)

dσ

= M̂µνκ

∫

I

d

dσ

(

∂κδ
(

x− C(σ)
)

)

dσ = 0

To see why this incorporates all the gauge freedom we use the adapted coordinates system.
Assume T µν is given. From (125) we know that the components γµνρκ are unique, i.e. have no gauge
freedom. Integrating (71) we have

ζµνρκ → ζµνρκ + σMνµ δρ0 δ
κ
0 + M̂µν(κδ

ρ)
0

which is (64) in adapted coordinates. Hence (64) is incorporates all gauge freedom, in adapted
coordinates. Now for a general coordinates system we use (65). We see in the proof 10 below, that
(65) is consistent with the gauge freedom. Thus there are no additional gauge freedom in a general
coordinate system.

Proof number 9: Proof of (65). Using (61) we have

∫

I

ζ̂ µ̂ν̂ρ̂κ̂
(

∂ρ̂ ∂κ̂ φ̂µ̂ν̂

)
∣

∣

C(σ)
dσ =

∫

R4

T̂ µ̂ν̂ φ̂µ̂ν̂ d
4x̂ =

∫

R4

T µν φµν d
4x =

∫

I

ζµνρκ
(

∂ρ ∂κ φµν

)

dσ

=

∫

I

ζµνρκ ∂ρ ∂κ
(

J µ̂ν̂
µν φ̂µ̂ν̂

)

dσ

=

∫

I

ζµνρκ
(

∂ρ ∂κ
(

J µ̂ν̂
µν

)

φ̂µ̂ν̂ + 2 ∂ρ
(

J µ̂ν̂
µν

)

∂κ φ̂µ̂ν̂ + J µ̂ν̂
µν ∂ρ ∂κ φ̂µ̂ν̂

)

dσ

Take each of the terms in turn. For the third term we have
∫

I

ζµνρκ J µ̂ν̂
µν ∂ρ ∂κ φ̂µ̂ν̂ dσ =

∫

I

ζµνρκ J µ̂ν̂
µν ∂ρ (J

κ̂
κ ∂κ̂ φ̂µ̂ν̂) dσ

=

∫

I

ζµνρκ J µ̂ν̂
µν

(

(∂ρ J
κ̂
κ ) ∂κ̂ φ̂µ̂ν̂ + J κ̂

κ ∂ρ ∂κ̂ φ̂µ̂ν̂

)

dσ

=

∫

I

ζµνρκ J µ̂ν̂
µν (∂ρ J

κ̂
κ ) ∂κ̂ φ̂µ̂ν̂ dσ +

∫

I

ζµνρκ J µ̂ν̂
µν J ρ̂

ρ J
κ̂
κ ∂ρ̂ ∂κ̂ φ̂µ̂ν̂ dσ

=

∫

I

ζµνρκ J µ̂ν̂
µν (∂ρ J

κ̂
κ )

(
∫ σ

ˆ̇C
ρ̂

∂ρ̂ ∂κ̂ φ̂µ̂ν̂ dσ
′

)

dσ +

∫

I

ζµνρκ J µ̂ν̂
µν J ρ̂

ρ J
κ̂
κ ∂ρ̂ ∂κ̂ φ̂µ̂ν̂ dσ

= −

∫

I

(
∫ σ

ζµνρκ J µ̂ν̂
µν (∂ρ J

κ̂
κ ) dσ

′

)

ˆ̇C
ρ̂

∂ρ̂ ∂κ̂ φ̂µ̂ν̂ dσ +

∫

I

ζµνρκ J µ̂ν̂
µν J ρ̂

ρ J
κ̂
κ ∂ρ̂ ∂κ̂ φ̂µ̂ν̂ dσ
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For the second term we have
∫

I

ζµνρκ ∂ρ
(

J µ̂ν̂
µν

)

∂κ φ̂µ̂ν̂ dσ =

∫

I

ζµνρκ ∂ρ
(

J µ̂ν̂
µν

)

J κ̂
κ ∂κ̂ φ̂µ̂ν̂ dσ

=

∫

I

ζµνρκ ∂ρ
(

J µ̂ν̂
µν

)

J κ̂
κ

(
∫ σ

ˆ̇C
ρ̂

∂ρ̂ ∂κ̂ φ̂µ̂ν̂ dσ
′

)

dσ

= −

∫

I

(
∫ σ

ζµνρκ ∂ρ
(

J µ̂ν̂
µν

)

J κ̂
κ dσ

′

)

ˆ̇C
ρ̂

∂ρ̂ ∂κ̂ φ̂µ̂ν̂ dσ

For the first term we have
∫

I

ζµνρκ ∂ρ ∂κ
(

J µ̂ν̂
µν

)

φ̂µ̂ν̂ dσ =

∫

I

ζµνρκ ∂ρ ∂κ
(

J µ̂ν̂
µν

)

(
∫ σ

ˆ̇C
ρ̂

∂ρ̂ φ̂µ̂ν̂ dσ
′

)

dσ

= −

∫

I

(
∫ σ

ζµνρκ ∂ρ ∂κ
(

J µ̂ν̂
µν

)

dσ′

)

ˆ̇C
ρ̂

∂ρ̂ φ̂µ̂ν̂ dσ

= −

∫

I

(
∫ σ

ζµνρκ ∂ρ ∂κ
(

J µ̂ν̂
µν

)

dσ′′

)

ˆ̇C
ρ̂ (

∫ σ

∂ρ̂
ˆ̇C
κ̂

∂κ̂ φ̂µ̂ν̂ dσ
′
)

dσ

=

∫

I

(
∫ σ ( ∫ σ′

ζµνρκ ∂ρ ∂κ
(

J µ̂ν̂
µν

)

dσ′′
)

ˆ̇C
ρ̂

dσ′

)

ˆ̇C
κ̂

∂ρ̂ ∂κ̂ φ̂µ̂ν̂ dσ

=

∫

I

(

ˆ̇C
κ̂
∫ σ (

ˆ̇C
ρ̂
∫ σ′

ζµνρκ ∂ρ ∂κ
(

J µ̂ν̂
µν

)

dσ′′
)

dσ′

)

∂ρ̂ ∂κ̂ φ̂µ̂ν̂ dσ

Thus adding these terms together we have

∫

I

ζ̂ µ̂ν̂ρ̂κ̂
(

∂ρ̂ ∂κ̂ φ̂µ̂ν̂

)

dσ =

∫

I

ζµνρκ
(

∂ρ ∂κ
(

J µ̂ν̂
µν

)

φ̂µ̂ν̂ + 2 ∂ρ
(

J µ̂ν̂
µν

)

∂κ φ̂µ̂ν̂ + J µ̂ν̂
µν ∂ρ ∂κ φ̂µ̂ν̂

)

dσ

= −

∫

I

(
∫ σ

ζµνρκ J µ̂ν̂
µν (∂ρ J

κ̂
κ ) dσ

′

)

ˆ̇C
ρ̂

∂ρ̂ ∂κ̂ φ̂µ̂ν̂ dσ +

∫

I

ζµνρκ J µ̂ν̂
µν J ρ̂

ρ J
κ̂
κ ∂ρ̂ ∂κ̂ φ̂µ̂ν̂ dσ

− 2

∫

I

(
∫ σ

ζµνρκ ∂ρ
(

J µ̂ν̂
µν

)

J κ̂
κ dσ

′

)

ˆ̇C
ρ̂

∂ρ̂ ∂κ̂ φ̂µ̂ν̂ dσ

+

∫

I

(

ˆ̇C
κ̂
∫ σ (

ˆ̇C
ρ̂
∫ σ′

ζµνρκ ∂ρ ∂κ
(

J µ̂ν̂
µν

)

dσ′′
)

dσ′

)

∂ρ̂ ∂κ̂ φ̂µ̂ν̂ dσ

=

∫

I

(

ζµνρκ J µ̂ν̂
µν J ρ̂

ρ J
κ̂
κ − ˆ̇C

ρ̂
∫ σ

ζµνρκ J µ̂ν̂
µν (∂ρ J

κ̂
κ ) dσ

′ − 2 ˆ̇C
ρ̂
∫ σ

ζµνρκ ∂ρ
(

J µ̂ν̂
µν

)

J κ̂
κ dσ

′

+ ˆ̇C
κ̂
∫ σ (

ˆ̇C
ρ̂
∫ σ′

ζµνρκ ∂ρ ∂κ
(

J µ̂ν̂
µν

)

dσ′′
)

dσ′

)

∂ρ̂ ∂κ̂ φ̂µ̂ν̂ dσ

Hence (65) follows by symmetrising ρ̂ and κ̂.

Proof number 10: Proof that the change of coordinates (65) is consistent with the gauge freedom (64).
First observe that the lower limits in (65) correspond to the to the gauge freedom (64) for ζ̂ µ̂ν̂ρ̂κ̂.

It is necessary to establish that, the Gauge freedom (64) for ζµνρκ when substituted into (65)
does not effect the value of ζ̂ µ̂ν̂ρ̂κ̂. This is achieved by setting ζµνρκ = Mνµ Ċ(ρCκ) + M̂µν(ρ Ċκ), i.e.
ζµνρκ is equivalent to zero, and checking that ζ̂ µ̂ν̂ρ̂κ̂ = 0. As they are independent, we can consider
the two terms Mνµ Ċ(ρCκ) and M̂µν(ρ Ċκ) separately.
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For the case ζµνρκ =Mνµ Ċ(ρCκ) we have for the fifth term on the right hand side of (65)

∫ σ
ˆ̇C
κ̂
∫ σ′

Ċ(ρCκ) ∂ρ ∂κ
(

J µ̂ν̂
µν

)

dσ′′ dσ′ =

∫ σ
ˆ̇C
κ̂
∫ σ′

ĊρCκ ∂ρ ∂κ
(

J µ̂ν̂
µν

)

dσ′′ dσ′

=

∫ σ
ˆ̇C
κ̂
∫ σ′

Cκ d

dσ′′

(

∂κ J
µ̂ν̂
µν

)

dσ′′ dσ′

=

∫ σ
ˆ̇C
κ̂
∫ σ′

d

dσ′′

(

Cκ∂κ J
µ̂ν̂
µν

)

dσ′′ dσ′ −

∫ σ
ˆ̇C
κ̂
∫ σ′

Ċκ∂κ J
µ̂ν̂
µν dσ

′′ dσ′

=

∫ σ
ˆ̇C
κ̂

Cκ∂κ J
µ̂ν̂
µν dσ′ −

∫ σ
ˆ̇C
κ̂
∫ σ′

d

dσ′′
J µ̂ν̂

µν dσ
′′ dσ′

=

∫ σ
ˆ̇C
κ̂

Cκ∂κ J
µ̂ν̂
µν dσ′ −

∫ σ
ˆ̇C
κ̂

J µ̂ν̂
µν dσ

′

=

∫ σ
ˆ̇C
κ̂

Cκ∂κ J
µ̂ν̂
µν dσ′ −

∫ σ

ĊκJ κ̂
κ J

µ̂ν̂
µν dσ

′

=

∫ σ

ĊκJ κ̂
κC

ρ∂ρ J
µ̂ν̂
µν dσ′ − CκJ κ̂

κ J
µ̂ν̂
µν +

∫ σ

Cκ d

dσ′
(J κ̂

κ J
µ̂ν̂
µν ) dσ

′

Since
∫ σ

ĊκCρ J µ̂ν̂
µν ∂ρ J

κ̂
κ dσ

′ =

∫ σ

ĊκCρ J µ̂ν̂
µν ∂κ J

κ̂
ρ dσ

′ =

∫ σ

ĊρCκ J µ̂ν̂
µν ∂ρ J

κ̂
κ dσ

′

we have for the second term on the right hand side of (65)
∫ σ

Ċ(ρCκ)
(

J µ̂ν̂
µν (∂ρ J

κ̂
κ ) + 2 ∂ρ (J

µ̂ν̂
µν ) J

κ̂
κ

)

dσ′

= 1
2

∫ σ

ĊρCκ
(

J µ̂ν̂
µν (∂ρ J

κ̂
κ ) + 2 ∂ρ (J

µ̂ν̂
µν ) J

κ̂
κ

)

dσ′ + 1
2

∫ σ

ĊκCρ
(

J µ̂ν̂
µν (∂ρ J

κ̂
κ ) + 2 ∂ρ (J

µ̂ν̂
µν ) J

κ̂
κ

)

dσ′

= 1
2

∫ σ

ĊρCκ
(

J µ̂ν̂
µν (∂ρ J

κ̂
κ ) + 2 ∂ρ (J

µ̂ν̂
µν ) J

κ̂
κ

)

dσ′ + 1
2

∫ σ

ĊκCρ J µ̂ν̂
µν (∂ρ J

κ̂
κ ) dσ

′

+

∫ σ

ĊκCρ ∂ρ (J
µ̂ν̂
µν ) J

κ̂
κ dσ

′

=

∫ σ

ĊρCκ
(

J µ̂ν̂
µν (∂ρ J

κ̂
κ ) + ∂ρ (J

µ̂ν̂
µν ) J

κ̂
κ

)

dσ′ +

∫ σ

ĊκCρ ∂ρ (J
µ̂ν̂
µν ) J

κ̂
κ dσ

′

=

∫ σ

CκĊρ ∂ρ
(

J µ̂ν̂
µν J

κ̂
κ

)

dσ′ +

∫ σ

ĊκCρ ∂ρ (J
µ̂ν̂
µν ) J

κ̂
κ dσ

′

=

∫ σ

Cκ d

dσ′

(

J µ̂ν̂
µν J

κ̂
κ

)

dσ′ +

∫ σ

ĊκCρ ∂ρ (J
µ̂ν̂
µν ) J

κ̂
κ dσ

′

Thus taking the difference between these two terms gives
∫ σ

ˆ̇C
κ̂
∫ σ′

Ċ(ρCκ) ∂ρ ∂κ
(

J µ̂ν̂
µν

)

dσ′′ dσ′ −

∫ σ

Ċ(ρCκ)
(

J µ̂ν̂
µν (∂ρ J

κ̂
κ ) + 2 ∂ρ (J

µ̂ν̂
µν ) J

κ̂
κ

)

dσ′

=

(
∫ σ

ĊκJ κ̂
κC

ρ∂ρ J
µ̂ν̂
µν dσ′ − CκJ κ̂

κ J µ̂ν̂
µν +

∫ σ

Cκ d

dσ′
(J κ̂

κ J µ̂ν̂
µν ) dσ

′

)

−

(
∫ σ

Cκ d

dσ′

(

J µ̂ν̂
µν J

κ̂
κ

)

dσ′ +

∫ σ

ĊκCρ ∂ρ (J
µ̂ν̂
µν ) J

κ̂
κ dσ

′

)

= −CκJ κ̂
κ J

µ̂ν̂
µν

Hence the sum of half the first term, with the second and fifth terms of (65) we have

1
2

(

Mνµ Ċ(ρ Cκ)
)

J µ̂ν̂
µν J

ρ̂
ρ J

κ̂
κ + ˆ̇C

κ̂
∫ σ′

(

Mνµ Ċ(ρ Cκ)
)

∂ρ ∂κ
(

J µ̂ν̂
µν

)

dσ′′ dσ′

−

∫ σ
(

Mνµ Ċ(ρCκ)
)

(

J µ̂ν̂
µν (∂ρ J

κ̂
κ ) + 2 ∂ρ (J

µ̂ν̂
µν ) J

κ̂
κ

)

dσ′ = 0
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Likewise for the sum of half the first term, with the third and fourth terms of (65). Hence setting
ζµνρκ =MνµĊ(ρCκ) we have ζ̂ µ̂ν̂ρ̂κ̂ = 0.

Repeating for ζµνρκ = M̂µν(ρ Ċκ), we have for the fifth term in (65)

∫ σ
ˆ̇C
κ̂
∫ σ′

(

M̂µν(ρ Ċκ)
)

∂ρ ∂κ
(

J µ̂ν̂
µν

)

dσ′′ dσ′ = M̂µνρ

∫ σ
ˆ̇C
κ̂
∫ σ′

d

dσ′′

(

∂κJ
µ̂ν̂
µν

)

dσ′′ dσ′

= M̂µνρ

∫ σ
ˆ̇C
κ̂
(

∂κJ
µ̂ν̂
µν

)

dσ′

while for the second term in (65)
∫

I

(

M̂µν(ρ Ċκ)
)

(

J µ̂ν̂
µν (∂ρ J

κ̂
κ ) + 2 ∂ρ (J

µ̂ν̂
µν ) J

κ̂
κ

)

dσ′

= 1
2
M̂µνρ

∫

I

Ċκ
(

J µ̂ν̂
µν (∂ρ J

κ̂
κ ) + 2 ∂ρ (J

µ̂ν̂
µν ) J

κ̂
κ

)

dσ′ + 1
2
M̂µνκ

∫

I

Ċρ
(

J µ̂ν̂
µν (∂ρ J

κ̂
κ ) + 2 ∂ρ (J

µ̂ν̂
µν ) J

κ̂
κ

)

dσ′

= M̂µνρ

∫

I

Ċκ J κ̂
κ (∂ρ J

µ̂ν̂
µν ) dσ

′ + M̂µνκ

∫

I

Ċρ
(

J µ̂ν̂
µν (∂ρ J

κ̂
κ ) + ∂ρ (J

µ̂ν̂
µν ) J

κ̂
κ

)

dσ′

= M̂µνρ

∫

I

ˆ̇C
κ̂

(∂ρ J
µ̂ν̂
µν ) dσ

′ + M̂µνκ

∫

I

d

dσ′

(

J µ̂ν̂
µν J

κ̂
κ

)

dσ′

= M̂µνρ

∫

I

ˆ̇C
κ̂

(∂ρ J
µ̂ν̂
µν ) dσ

′ + M̂µνκ J µ̂ν̂
µν J

κ̂
κ

Hence when ζµνρκ = M̂µν(ρ Ċκ) then ζ̂ µ̂ν̂ρ̂κ̂ = 0.

Proof number 11: Proof of (72)-(75). From (8) we have for any test vector θν

0 =

∫

M

(∇µT
µν) θν d

4x =

∫

M

(

∂µT
µν + Γν

µρT
µρ
)

θν d
4x =

∫

M

T µν
(

Γρ
µν θρ − ∂µθν

)

d4x

=

∫

M

(

γµν00 δ(3)(z) + γµν0a ∂aδ
(3)(z) + 1

2
γµνab ∂a∂bδ

(3)(z)
)

(

Γρ
µν θρ − ∂µθν

)

d4x

=

∫

I

dσ
(

γµν00
(

Γρ
µν θρ − ∂µθν

)

− γµν0a ∂a
(

Γρ
µν θρ − ∂µθν

)

+ 1
2
γµνab∂a∂b

(

Γρ
µν θρ − ∂µθν

)

)

=

∫

I

dσ
(

γµν00 Γρ
µν θρ − γaν00 ∂aθν + γ̇0ν00 θν

− γµν0a ∂a
(

Γρ
µν θρ

)

+ γbν0a ∂a∂bθν − γ̇0ν0a ∂aθν

+ 1
2
γµνab∂a∂b

(

Γρ
µν θρ

)

− 1
2
γcνab∂a∂b∂cθν +

1
2
γ̇0νab∂a∂bθν

)

=

∫

I

dσ
(

γµν00 Γρ
µν θρ − γaν00 ∂aθν + γ̇0ρ00 θρ

− γµν0a (∂aΓ
ρ
µν) θρ − γµν0a Γρ

µν ∂aθρ + γbν0a ∂a∂bθν − γ̇0ν0a ∂aθν

+ 1
2
γµνab

(

∂a∂bΓ
ρ
µν

)

θρ + γµνab
(

∂aΓ
ρ
µν

) (

∂bθρ
)

+ 1
2
γµνabΓρ

µν∂a∂bθρ

− 1
2
γcνab∂a∂b∂cθν +

1
2
γ̇0νab∂a∂bθν

)

=

∫

I

dσ

(

θρ

(

γµν00 Γρ
µν + γ̇0ρ00 − γµν0a (∂aΓ

ρ
µν) +

1
2
γµνab

(

∂a∂bΓ
ρ
µν

)

)

− ∂aθρ

(

γaρ00 + γµν0a Γρ
µν + γ̇0ρ0a − γµνba

(

∂bΓ
ρ
µν

)

)

+ ∂a∂bθρ

(

γbρ0a + 1
2
γµνabΓρ

µν +
1
2
γ̇0ρab

)

− 1
2
γcνab∂a∂b∂cθν

)

The terms with θρ, ∂aθρ, ∂a∂bθρ and ∂a∂b∂ρθρ are independent. In section 6.5 we give values of θµ
which demonstrate this. From this we get (72)-(75). Note we must take the symmetric part with
respect to b, a.
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Proof number 12: Proof of (76)-(78). This follows from substituting (71) into (65).

We set (x0, . . . , x3) = (σ, z1, z2, z3) and (x̂0̂ . . . x̂3̂) = (σ̂, ẑ1̂, ẑ2̂, ẑ2̂) into (65) and use the fact that
ˆ̇C
µ̂

= δµ̂0 . Hence (76) follows directly.
For (77) we have from (65)

ζ̂ µ̂ν̂ĉ0̂ = ζµνρκ J µ̂ν̂
µν J

ĉ
ρ J

0̂
κ − 1

2
ˆ̇C
ĉ
∫ σ

ζµνρκ
(

J µ̂ν̂
µν (∂ρ J

0̂
κ) + 2 ∂ρ (J

µ̂ν̂
µν ) J

0̂
κ

)

dσ′

− 1
2
ˆ̇C
0̂
∫ σ

ζµνρκ
(

J µ̂ν̂
µν (∂ρ J

ĉ
κ) + 2 ∂ρ (J

µ̂ν̂
µν ) J

ĉ
κ

)

dσ′

+ 1
2
ˆ̇C
0̂
∫ σ

ˆ̇C
ĉ
∫ σ′

ζµνρκ ∂ρ ∂κ
(

J µ̂ν̂
µν

)

dσ′′ dσ′ + 1
2
ˆ̇C
ĉ
∫ σ

ˆ̇C
0̂
∫ σ′

ζµνρκ ∂ρ ∂κ
(

J µ̂ν̂
µν

)

dσ′′ dσ′

= ζµνρκ J µ̂ν̂
µν J

ĉ
ρ J

0̂
κ − 1

2

∫ σ

ζµνρκ
(

J µ̂ν̂
µν (∂ρ J

ĉ
κ) + 2 ∂ρ (J

µ̂ν̂
µν ) J

ĉ
κ

)

dσ′

Thus from (71)

γ̂µ̂ν̂ĉ0̂ =
˙̂
ζ µ̂ν̂ĉ0̂ = (ζµνρκ J µ̂ν̂

µν J
ĉ
ρ J

0̂
κ )̇−

1
2
ζµνρκ

(

J µ̂ν̂
µν J

ĉ
ρκ + 2 ∂ρ (J

µ̂ν̂
µν ) J

ĉ
κ

)

= (ζµν00 J µ̂ν̂
µν J

ĉ
0 J

0̂
0 )̇ + (ζµνc0J µ̂ν̂

µν J
ĉ
c J

0̂
0 )̇ + (ζµν0c J µ̂ν̂

µν J
ĉ
0 J

0̂
c )̇ + (ζµνcd J µ̂ν̂

µν J
ĉ
c J

0̂
d )̇

− 1
2
ζµν00

(

J µ̂ν̂
µν J

ĉ
00 + 2 ∂0 (J

µ̂ν̂
µν ) J

ĉ
0

)

− 1
2
ζµνc0

(

J µ̂ν̂
µν J

ĉ
c0 + 2 ∂c (J

µ̂ν̂
µν ) J

ĉ
0

)

− 1
2
ζµνc0

(

J µ̂ν̂
µν J

ĉ
c0 + 2 ∂0 (J

µ̂ν̂
µν ) J

ĉ
c

)

− 1
2
ζµνcd

(

J µ̂ν̂
µν J

ĉ
cd + 2 ∂c (J

µ̂ν̂
µν ) J

ĉ
d

)

= (ζµνc0 J µ̂ν̂
µν J

ĉ
c )̇ + (ζµνcdJ µ̂ν̂

µν J
ĉ
c J

0̂
d )̇

− ζµνc0
(

J µ̂ν̂
µν J

ĉ
c0 + J̇ µ̂ν̂

µν J
ĉ
c

)

− 1
2
ζµνcd

(

J µ̂ν̂
µν J

ĉ
cd + 2 ∂c (J

µ̂ν̂
µν ) J

ĉ
d

)

= ζ̇µνc0 J µ̂ν̂
µν J

ĉ
c + (ζµνcdJ µ̂ν̂

µν J
ĉ
c J

0̂
d )̇−

1
2
ζµνcd

(

J µ̂ν̂
µν J

ĉ
cd + 2 ∂c (J

µ̂ν̂
µν ) J

ĉ
d

)

= γµνc0 J µ̂ν̂
µν J

ĉ
c + (γµνcd J µ̂ν̂

µν J
ĉ
c J

0̂
d )̇−

1
2
γµνcd

(

J µ̂ν̂
µν J

ĉ
cd + 2 ∂c (J

µ̂ν̂
µν ) J

ĉ
d

)

In order to show (78) we have from (65)

ζ̂µν0̂0̂ = (J µ̂ν̂
µν J

0̂
ρ J

0̂
κ) ζ

µνρκ −

∫ σ (

(∂κJ
0̂
ρ ) J

µ̂ν̂
µν + J 0̂

ρ ∂κJ
µ̂ν̂
µν + J 0̂

κ ∂ρJ
µ̂ν̂
µν

)

ζµνρκ dσ′

+

∫ σ

dσ′

∫ σ′

∂ρκJ
µ̂ν̂
µν ζ

µνρκ dσ′′

where ∂ρκ = ∂ρ∂κ. Hence

γ̂µ̂ν̂0̂0̂ = 1
2

ˆ̈
ζ µ̂ν̂0̂0̂

= 1
2

(

(

(J µ̂ν̂
µν J 0̂

κ J
0̂
ρ ) ζ

µνρκ
)

¨−
(

((∂κJ
0̂
ρ )J

µ̂ν̂
µν + J 0̂

ρ ∂κJ
µ̂ν̂
µν + J 0̂

κ ∂ρJ
µ̂ν̂
µν )ζ

µνρκ
)

˙+ ∂ρκJ
µ̂ν̂
µν ζ

µνρκ
)

(137)
It is important to establish that all the ζµνρκ on the right hand side of (137) can be replaced
by the corresponding γµνρκ without using integrals. However since from (71) γµν00 = 1

2
ζ̈µν00 and

γµνa0 = ζ̇µνa0 we need to expand (137) to confirm that no terms ζµν00, ζ̇µν00 or ζµνa0 exist on the
right hand side.
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γ̂µ̂ν̂0̂0̂ = 1
2

(

(J µ̂ν̂
µν J 0̂

κ J
0̂
ρ ) ζ

µνρκ
)

¨−
(

(

1
2
J 0̂
ρκ J

µ̂ν̂
µν + J 0̂

κ ∂ρJ
µ̂ν̂
µν

)

ζµνρκ
)

˙+ (1
2
∂ρκJ

µ̂ν̂
µν )ζµνρκ

= 1
2

(

(J µ̂ν̂
µν J 0̂

0 J
0̂
0 ) ζ

µν00
)

¨+
(

(J µ̂ν̂
µν J 0̂

c J
0̂
0 ) ζ

µνc0
)

¨+ 1
2

(

(J µ̂ν̂
µν J 0̂

d J
0̂
c ) ζ

µνcd
)

¨

−
(

(

1
2
J 0̂
00 J

µ̂ν̂
µν + J 0̂

0 ∂0J
µ̂ν̂
µν

)

ζµν00
)

˙−
(

(

J 0̂
0c J

µ̂ν̂
µν + J 0̂

c ∂0J
µ̂ν̂
µν + J 0̂

0 ∂cJ
µ̂ν̂
µν

)

ζµνc0
)

˙

−
(

(

1
2
J 0̂
cdJ

µ̂ν̂
µν + J 0̂

c ∂dJ
µ̂ν̂
µν

)

ζµνcd
)

˙

+ (1
2
∂00J

µ̂ν̂
µν ) ζ

µν00 + (∂0cJ
µ̂ν̂
µν ) ζ

µνc0 + (1
2
∂cdJ

µ̂ν̂
µν ) ζ

µνcd

= 1
2
(J µ̂ν̂

µν ζ
µν00)̈ +

(

(J µ̂ν̂
µν J 0̂

c ζ
µνc0

)

¨+ 1
2

(

(J µ̂ν̂
µν J 0̂

d J
0̂
c ) ζ

µνcd
)

¨−
(

J̇ µ̂ν̂
µν ζ

µν00
)

˙

−
(

(

J 0̂
0c J

µ̂ν̂
µν + J 0̂

c J̇
µ̂ν̂
µν + ∂cJ

µ̂ν̂
µν

)

ζµνc0
)

˙−
(

(

1
2
J 0̂
cd J

µ̂ν̂
µν + J 0̂

d ∂cJ
µ̂ν̂
µν

)

ζµνcd
)

˙

+ 1
2
J̈ µ̂ν̂

µν ζ
µν00 + (∂cJ̇

µ̂ν̂
µν ) ζ

µνc0 + (1
2
∂cdJ

µ̂ν̂
µν ) ζ

µνcd

= 1
2
J̈ µ̂ν̂

µν ζ
µν00 + J̇ µ̂ν̂

µν ζ̇
µν00 + 1

2
J µ̂ν̂

µν ζ̈
µν00

+ J̈ µ̂ν̂
µν J 0̂

c ζ
µνc0 + J µ̂ν̂

µν J 0̂
c00 ζ

µνc0 + J µ̂ν̂
µν J 0̂

c ζ̈
µνc0 + 2J̇ µ̂ν̂

µν J 0̂
c0 ζ

µνc0 + 2J̇ µ̂ν̂
µν J 0̂

c ζ̇
µνc0 + 2J µ̂ν̂

µν J 0̂
c0 ζ̇

µνc0

+ 1
2

(

(J µ̂ν̂
µν J 0̂

d J
0̂
c ) ζ

µνcd
)

¨− J̈ µ̂ν̂
µν ζ

µν00 − J̇ µ̂ν̂
µν ζ̇

µν00

−
(

J 0̂
00c J

µ̂ν̂
µν + 2J 0̂

0c J̇
µ̂ν̂
µν + J 0̂

c J̈
µ̂ν̂
µν + ∂0cJ

µ̂ν̂
µν

)

ζµνc0 −
(

J 0̂
0c J

µ̂ν̂
µν + J 0̂

c J̇
µ̂ν̂
µν + ∂cJ

µ̂ν̂
µν

)

ζ̇µνc0

−
(

(

1
2
J 0̂
cdJ

µ̂ν̂
µν + J 0̂

d ∂cJ
µ̂ν̂
µν

)

ζµνcd
)

˙

+ 1
2
J̈ µ̂ν̂

µν ζ
µν00 + (∂cJ̇

µ̂ν̂
µν ) ζ

µνc0 + (1
2
∂cdJ

µ̂ν̂
µν ) ζ

µνcd

= 1
2
J µ̂ν̂

µν ζ̈
µν00 + J µ̂ν̂

µν J 0̂
c ζ̈

µνc0 + 2J̇ µ̂ν̂
µν J 0̂

c ζ̇
µνc0 + 2J µ̂ν̂

µν J 0̂
c0 ζ̇

µνc0 + 1
2

(

(J µ̂ν̂
µν J 0̂

d J
0̂
c ) ζ

µνcd
)

¨

−
(

J 0̂
0c J

µ̂ν̂
µν + J 0̂

c J̇
µ̂ν̂
µν + ∂cJ

µ̂ν̂
µν

)

ζ̇µνc0 −
(

(

1
2
J 0̂
cd J

µ̂ν̂
µν + J 0̂

d ∂cJ
µ̂ν̂
µν

)

ζµνcd
)

˙+ (1
2
∂cdJ

µ̂ν̂
µν ) ζ

µνcd

= J µ̂ν̂
µν γ

µν00 + J µ̂ν̂
µν J

0̂
c γ̇

µνa0 +
(

(J µ̂ν̂
µν J 0̂

c )̇− ∂cJ
µ̂ν̂
µν

)

γµνc0

+ 1
2

(

(J µ̂ν̂
µν J 0̂

d J
0̂
c ) γ

µνcd
)

¨−
((

1
2
J 0̂
cd J

µ̂ν̂
µν + J 0̂

d ∂cJ
µ̂ν̂
µν

)

γµνcd
)

˙+ (1
2
∂cdJ

µ̂ν̂
µν ) γ

µνcd

Proof number 13: Proof of (85). For the semi-quadrupole, (83) is automatically satisfied. Equations
(80)-(82) become

γ̇0000 = 0, γ̇a000 = 0, γ̇00a0 = −γ0a00, γ̇0(ba)0 = −γba00, γ̇0[ba]0 = 0,

γ̇00ba = −γ0(ab)0, 0 = γ̇0cba = −γc(ab)0

It may appear that we have not stated anything about (γcab0−γcba0). However due to the symmetry
of γcab0 we have

γcab0 − γcba0 = γacb0 − γbca0 = −γabc0 + γbac0 = 0

Thus from the last equation above we have γcba0 = 0. Setting γ00ba = κab(σ) we have γ0(ba)0 = κ̇ab

and γba00 = κ̈ab. The remaining constants in (85) are then set.
Since there are 22 ODEs, one may expect 22 constants instead of 10. However the remaining 12

arise from the initial values of κab and κ̇ab.

Proof number 14: Proof of (55) and (89). Let ϕ be a test function. Thus

∫

M

∇µ(T
µν Kν)ϕd

4x =

∫

M

(∇µT
µν Kν + T µν ∇µKν ϕ)d

4x = 0
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from (6), (7) and (54). Since T µν is a tensor density then so is T µνKν . Hence

0 =

∫

M

∇µ(T
µν Kν)ϕd

4x =

∫

M

T µν Kν ∇µϕd
4x =

∫

M

T µν Kν ∂µϕd
4x

=

∫

I

(

γµν00Kν∂µϕ− γµν0a ∂a(Kν∂µϕ) +
1
2
γµνab∂a∂b (Kν∂µϕ)

)

dσ

=

∫

I

(

∂µϕ
(

γµν00Kν − γµν0a ∂aKν +
1
2
γµνab∂a∂bKν

)

)

dσ + higher derivatives of ϕ.

=

∫

I

(

∂0ϕ
(

γ0ν00Kν − γ0ν0a ∂aKν +
1
2
γ0νab∂a∂bKν

)

)

dσ

+

∫

I

(

∂cϕ
(

γcν00Kν − γcν0a ∂aKν +
1
2
γcνab∂a∂bKν

)

)

dσ + higher derivatives of ϕ.

= −

∫

I

(

ϕ ∂0
(

γ0ν00Kν − γ0ν0a ∂aKν +
1
2
γ0νab∂a∂bKν

)

)

dσ + higher derivatives of ϕ.

= −

∫

I

(

ϕ Q̇K

)

dσ + higher derivatives of ϕ.

Thus since we can extract the different derivatives of ϕ we have Q̇K = 0.
Clearly for dipoles we have γ0νab = 0 and have (55).

A.4 Proofs for section 6

Proof number 15: Proof of (103).

∇
2
U,fV S = ∇U ∇(fV )S −∇∇U (fV )S = ∇U (f∇V S)−∇(f∇UV+U〈f〉V )S

= f∇U ∇V S + U〈f〉∇V S − f∇∇UV S − U〈f〉∇V S = f∇2
U,V S

Proof number 16: Proof of (104).

∇
2
U,VW = ∇U ∇VW −∇∇UVW = Uν∇ν (∇VW )µ∂µ − (∇UV )

ρ(∇ρW
µ)∂µ

= Uν∇ν (V
ρ∇ρW

µ)∂µ − Uν(∇νV
ρ)(∇ρW

µ)∂µ

= Uν
(

∇ν (V
ρ∇ρW

µ)− (∇νV
ρ)(∇ρW

µ)
)

∂µ

= Uν V ρ
(

∇ν ∇ρW
µ
)

∂µ

Proof number 17: Proof of (121). Let θ be a test 1–form then

(Dθ)(U, V ) = (∇V θ)(U) = Uν(∇V θ)ν = Uν V µ∇µθν = (∇νθµ) (dx
ν ⊗ dxµ)(U, V )

hence

Dθ = (∇νθµ) (dx
ν ⊗ dxµ)

Thus

Dτ [θ] = −τ [Dθ] = −τ [(∇νθµ) (dx
ν ⊗ dxµ)] = −τµ[(∇νθµ) dx

ν ] = −τµ[(∂νθµ − Γρ
νµθρ) dx

ν]

= −τµ[∂νθµ dx
ν − Γρ

νµθρ dx
ν ] = −τµ[∂νθµ dx

ν ] + τµ[Γρ
νµθρ dx

ν ] = −τµ[dθµ] + Γρ
νµ dx

ν ∧ τµ[θρ]

= dτµ[θµ] + Γρ
νµ dx

ν ∧ τµ[θρ] =
(

dτρ + Γρ
νµ dx

ν ∧ τµ
)

[θρ]
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Proof number 18: Proof of (123). From (119) and (61) we have

τµ[φµν dx
ν ] = 1

2
iα Lρ LκCς(ζ

µαρκdσ)[φµν dx
ν ] = 1

2
Lρ LκCς(ζ

µαρκdσ)[iα φµν dx
ν ]

= 1
2
δναLρ LκCς(ζ

µαρκdσ)[φµν ] =
1
2
Lρ LκCς(ζ

µνρκdσ)[φµν ]

= 1
2
Cς(ζ

µνρκdσ)[∂ρ ∂κφµν ] =
1
2

∫

I

ζµνρκ (∂ρ ∂κφµν) dσ =

∫

I

T µν φµν d
4x

from (61).

Proof number 19: Proof of (124).

τµ[φµν dx
ν ] = iαCς(γ

µα00 dσ)[φµν dx
ν ] + iα La Cς(γ

µα0a dσ)[φµν dx
ν ]

+ 1
2
iα La Lb Cς(γ

µαab dσ)[φµν dx
ν ]

= Cς(γ
µν00 dσ)[φµν ] + La Cς(γ

µν0a dσ)[φµν ] +
1
2
La LbCς(γ

µνab dσ)[φµν ]

= Cς(γ
µν00 dσ)[φµν ]− Cς(γ

µν0a dσ)[∂aφµν ] +
1
2
Cς(γ

µνab dσ)[∂a∂b φµν ]

=

∫

I

γµν00 φµν dσ −

∫

I

γµν0a (∂aφµν)dσ + 1
2

∫

I

γµνab(∂a∂b φµν) dσ

=

∫

I

(

γµν00 φµν − γµν0a (∂aφµν) +
1
2
γµνab(∂a∂b φµν)

)

dσ

Proof number 20: Proof of (127) and Semi-quadrupole counting. A simple application using λ = λ1+
λ2 and λ = λ1 − λ2 implies we can replace (126) for ℓ = 2 with (126) with τα[λ1λ2da] = 0 where
C⋆(λ1) = C⋆(λ2) = C⋆(a) = 0.

In an adapted coordinate system (σ, z1, z2, z3) apply this to the test form za zb dzc in (124) we
see that this leads to the equation

γµcab = 0 (138)

and hence (25).
We can now count the number and type of components. The dynamic equation (72) and (73)

remain unchanged but (74) becomes

γcb0a = −Γc
00 γ

00ab and γ̇00ab = −2γ0(b0)a − Γ0
00 γ

00ab

since the symmetry condition (70) implies γc0ab = γ0cab = 0. Thus we have 4+12+6=22 ODEs.
Starting with the 100 components given after applying (70) we have 9×6 = 54 constraints coming

from (127) plus 18 constraint-es coming from the first equation above. This leaves 28 components
left. Of these 22 are given by the ODEs and 6 are free.

A.5 Lemmas and proofs associated with the Dixon split

In this section we work in a coordinate system (σ, z1, z2, z3), which is adapted both for C and N , so
that N = N0dσ with N0 6= 0. We see that if N(V ) = 0 then we can replace V µ with V a. Likewise
we can replace ξµνρκ with ξµνab since ξµν0a = ξµνa0 = 0.

In this coordinate system a radial vector R has the properties

Rµ|p = 0, ∂µR
0|p = 0, ∂µR

a|p = δaµ, ∂0∂µR
ν |p = 0,

∂b∂cR
0|p = −2Γa

bc and ∂b∂cR
a|p = −Γa

bc

(139)

36



for any p = C(σ). This can be expressed as

R0 = −zbzc Γ0
bc ∂0 +O(z3) and Ra = za − 1

2
zbzc Γa

bc +O(z3) (140)

or alternatively as

R = za ∂a − zbzc Γ0
bc ∂0 −

1
2
zbzc Γa

bc ∂a +O(z3) (141)

where O(z3) is any function (or vector) of (σ, z1, z2, z3) which is at least cubic in its za arguments.

Proof number 21: Proof of (139). In the adapted coordinate system, assume first that Rµ satisfies
(139) and that U, V satisfy N(U) = N(V ) = 0, so U0 = V 0 = 0.

Clearly from either (133.1) or (139.1) we have R|p = 0. Here (133.1) refers to the first equation
in (133).

(

∇VR− V
)µ∣
∣

p
=

(

V ν∂ν(R
µ) + V νRρΓµ

νρ − V µ
)
∣

∣

p
=

(

V a(∂a(R
µ)− δµa )

)
∣

∣

p

Thus (133.2) is equivalent to (139.2), (139.3). From (139.2) and (139.3) we have (139.4)
From (133.2) we have, (implicitly evaluating at p),

∇b(∇cR
a) = ∂b(∇cR

a) + (∇cR
d)Γa

bd − (∇dR
a)Γd

bc

= ∂b∂cR
a + ∂b(R

e Γa
ce) + (∂cR

d)Γa
bd +ReΓd

ceΓ
a
bd − (∂dR

a)Γd
bc − ReΓa

deΓ
d
bc

= ∂b∂cR
a + δeb Γ

a
ce + δdcΓ

a
bd − δadΓ

d
bc = ∂b∂cR

a + Γa
cb + Γa

bc − Γa
bc

= ∂b∂cR
a + Γa

cb

and

∇b(∇cR
0) = ∂b(∇cR

0) + (∇cR
d)Γ0

bd − (∇dR
0)Γd

bc = ∂b∂cR
0 + ∂b(R

e Γ0
ce) + Γ0

bc

= ∂b∂cR
0 + ∂b(R

e) Γ0
ce + Γ0

bc = ∂b∂cR
0 + 2Γ0

bc

Thus

∇
2
U,VR = V µUν(∂µ∂νR

a + Γa
cb)∂a + V µUν(∂µ∂νR

0 + 2Γa
cb)∂0

= V aU b(∂b∂cR
a + Γa

cb)∂a + V aU b(∂b∂cR
0 + 2Γa

cb)∂0

Hence (133.3) if and only if (139.5) and (139.6)

Proof number 22: Proof of (136). In the adapted coordinate system and evaluating at C(σ) we have

ξµν(RαRλ ∇α∇λφµν) = 0

Thus the monopole term (129) does not contribute to τ(2). Likewise

ξµνρκ∇ρ(R
αRλ ∇α∇λφµν) = 0

so the dipole term (130) does not contribute to τ(2). Finally we have

ξµνρκ∇ρ∇κ(R
αRλ ∇α∇λφµν) = ξµνab∇a∇b(R

αRλ ∇α∇λφµν) = ξµνab(∂a∂b(R
αRλ)∇α∇λφµν)

= ξµνab(δαa δ
λ
b + δλaδ

α
b )(∇α∇λφµν) = 2ξµνab(∇a∇bφµν) = 2ξµνρκ(∇ρ∇κφµν)

(142)

Thus τ(2) is given by (136).
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Proof number 23: Proof of (135). Since

ξµν(Rα ∇α φµν − RαRλ ∇α∇λφµν) = 0

the monopole term does not contribute to τ(1). Also

∇a∇b (R
α∇α φµν) = ∇a

(

(∇bR
α)∇α φµν

)

+∇a

(

Rα∇b∇α φµν

)

= (∇a∇bR
α)∇α φµν + (∇bR

α)∇a∇α φµν + (∇aR
α)∇b∇α φµν + Rα∇a∇b∇α φµν

= δαb ∇a∇α φµν + δαa∇b∇α φµν = ∇a∇b φµν +∇b∇a φµν

Hence

ξµνρκ∇ρ∇κ (R
α∇α φµν) = ξµνab ∇a∇b (R

α∇α φµν) = ξµνab
(

∇a∇b φµν +∇b∇a φµν

)

= 2ξµνab(∇a∇bφµν) = 2ξµνρκ(∇ρ∇κφµν)
(143)

Thus using (142) we see

ξµνρκ∇ρ∇κ (R
α∇α φµν −RαRλ ∇α∇λφµν) = 0

Thus the quadrupole term (131) does not contribute to τ(1). Finally

ξµνρ ∇ρ(R
α∇α φµν) = ξµνa∇a(R

α∇α φµν) = ξµνa (∇aR
α)∇α φµν = ξµνa δαa ∇α φµν

= ξµνa∇a φµν = ξµνρ ∇ρ φµν

(144)

Thus τ(1) is given by (135).

Proof number 24: Proof of (134). From (142) and (143) we have

ξµνρκ ∇ρ∇κ (φµν − Rα∇α φµν +
1
2
RαRλ ∇α∇λφµν) = 0

Thus the quadrupole term (131) does not contribute to τ(0). Using (144) we have

ξµνρ ∇ρ(φµν −Rα∇α φµν +
1
2
RαRλ ∇α∇λφµν) = 0

so the dipole term (130) does not contribute to τ(0). Finally

ξµν (φµν −Rα ∇α φµν +
1
2
RαRλ∇α∇λφµν) = ξµν φµν

so τ(0) is given by (134).
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