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Abstract

Prognostics and health management (PHM) has attracted increasing attention

in modern manufacturing systems to achieve accurate predictive maintenance

that reduces production downtime and enhances system safety. Remaining use-

ful life (RUL) prediction plays a crucial role in PHM by providing direct evidence

for a cost-effective maintenance decision. With the advances in sensing and

communication technologies, data-driven approaches have achieved remarkable

progress in machine prognostics. This paper develops a novel data-driven ap-

proach to precisely estimate the remaining useful life of machines using a hybrid

deep recurrent neural network (RNN). The long short-term memory (LSTM)

layers and classical neural networks are combined in the deep structure to cap-

ture the temporal information from the sequential data. The sequential sensory

data from multiple sensors data can be fused and directly used as input of the

model. The extraction of handcrafted features that relies heavily on prior knowl-

edge and domain expertise as required by traditional approaches is avoided. The

dropout technique and decaying learning rate are adopted in the training pro-

cess of the hybrid deep RNN structure to increase the learning efficiency. A

comprehensive experimental study on a widely used prognosis dataset is car-

ried out to show the outstanding effectiveness and superior performance of the

proposed approach in RUL prediction.
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1. Introduction

The reliability and availability of the manufacturing systems are crucial in

maintaining the system productivity and safety [1]. Great efforts have been al-

located in the investigation of maintenance policies of the machines and equip-

ment [2]. The development of smart manufacturing has brought even higher5

requirements regarding the accuracy and efficiency of the maintenance actions

[3]. The traditional corrective maintenance or preventive maintenance strategy

can barely satisfy the new requirements [4]. The corrective maintenance leads

to significant interruption of the production due to the occurrence of the failure.

The preventive maintenance can cause a notable increase in maintenance costs10

with unnecessary maintenance actions. On the other hand, the prognostic and

health management (PHM) has shown promising capabilities in providing pre-

cise maintenance decisions through estimating and predicting the conditions of

the running machinery [5]. It can prevent both system failures and unnecessary

maintenance to reduce the overall cost [6].15

Remaining useful life (RUL) estimation is the core task in prognostics. The

current approaches for RUL prediction can be categorized into three classes:

model-based methods, data-driven methods, and hybrid approaches [7]. Model-

based RUL prediction methods can be precise if the physical model of the degra-

dation can be accurately derived. However, with the increased complexity of20

modern machines and components, the accurate failure models are difficult to

build. On the other hand, with the advances in sensor technology, communica-

tion technology, especially the industrial internet of things [8], condition moni-

toring and intelligent analysis system as described in Fig. 1 has been developed

for various industrial machinery such as wind turbine [9], high speed railway25

[10], airplane [11], etc. With the fast development and the increasing applica-

tions of IIOT in advanced manufacturing and smart factories, a large amount of
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Figure 1: Data-driven machine condition monitoring system.

monitoring and operation data of the machines are available in further analysis

for fault diagnosis and prognosis. Hybrid approaches aim at combining model-

based and data-driven methods to overcome the limitations of the individual30

methods [12]. However, it is still based on the availability of the analytical

model [13]. Therefore, data-driven approaches have become more effective and

preferable in many applications [14].

To discover the relation between the sensory data and the RUL of the moni-

tored machines, various data-driven approaches incorporating machine learning35

techniques such as artificial neural networks (ANNs), support vector regression

(SVR), and random forest (RF) have been developed. Tian [15] developed an

ANN-based RUL prediction with two hidden layers. The vibration signals were

used to the degradation process of the bearings. Features were first extracted

from the vibration signals. Then Weibull failure rate function was utilized to40

fit the data. Their approach outperformed the model with one hidden layer
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because of the improved capability in nonlinearity modeling. Nieto et al. [16]

proposed an RUL prediction method based on hybrid particle swarm optimiza-

tion (PSO) and SVR. In their study, the PSO technique was used to optimize

the hyperparameters corresponding to the best SVR model for the RUL pre-45

diction. Khlif et al. [17] developed a RUL estimation approach based on SVR.

A direct relation between sensor values or health indicators was modeled using

SVR. Wu et al. [18] trained a predictive model based on RFs that achieved

an accurate prediction of tool wear in milling processes. They achieved better

prediction performance than traditional approaches using ANN and SVR.50

The traditional machine learning-based approaches usually contain the step

of handcrafted feature extraction from the sensory data. This step is labor ex-

tensive as adequate prior knowledge and domain expertise are needed. In recent

years, deep learning techniques have made extraordinary progress in many ap-

plications due to its powerful capability of end-to-end learning. The deep struc-55

ture can autonomously learn the representative features through the training

process. Different types of deep neural networks have been successfully applied

in various classification and regression tasks e.g., computer vision [19], natural

language processing (NLP) [20], bioinformatics [21], etc. Recently, researchers

in the prognosis area have also applied deep learning methods to machine fault60

diagnostics and prognostics [22, 23, 24, 25]. Zhang et al. [26] developed a prog-

nosis approach based on multiobjective deep belief networks (DBNs). Multiple

DBNs were evolved simultaneously subject to accuracy and diversity as two

conflicting objectives. RUL prediction can be achieved by the final model with

the combination of the evolved DBNs. Xia et al. [27] proposed an RUL predic-65

tion method by introducing a hierarchical deep neural network (DNN). Different

health stages were first classified using DNN. RUL prediction models on different

health stages were constructed with several shallow neural networks. However,

the temporal correlation of the degradation data was not fully utilized in this

approach. Also, the DNN approaches often have issues of high computational70

cost and overfitting due to the huge number of model parameters.

The recurrent neural network (RNN) has been successfully applied in many
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sequential data classification or regression tasks such as NLP, music generation,

speech recognition, etc., due to its capability of modeling time dependency [28].

The shared weights of RNN can also decrease the requirement of computational75

power as well as the chance of overfitting. Researchers have also tried RNN

in prognostics [29]. However, the standard RNN comes with the problem of

gradient vanishing during the training process. Therefore, it is difficult to model

dependence over a long time that limits the application of standard RNN in

prognosis. A variant structure of RNN, the long short-term memory (LSTM)80

is designed to discover time dependence of a long time by incorporating several

gate functions [30]. In order to capture the temporal information from the

degradation process and to utilize the raw sensory data directly, in this paper,

we develop a data-driven prognosis model using a hybrid network with deep

LSTM and classical neural networks. It uses the raw sensory data to achieve85

the RUL prediction. The main contributions of this paper are listed as follows.

(1) A prognosis approach using the hybrid deep LSTM network is proposed.

On one hand, temporal correlation in the sequential sensory data is captured

by the deep LSTM network. On the other hand, the classical neural network

layers enhance the capability of modeling nonlinearity between the different90

sources of data. The hybrid approach developed shows improved performance

over existing approaches in RUL prediction.

(2) The proposed method can work on the raw sensory data directly without

any handcrafted feature extraction. The deep structure can learn the features

automatically during the training process. It can be applied where few prior95

knowledge or domain expertise is available.

(3) The typical problem of deep neural network method, overfitting, is pre-

vented by incorporating the dropout technique. Also, the training efficiency is

improved by using the decaying learning rate.

The rest of the paper is organized as below. Section II introduces the knowl-100

edge of RNN including its structure and training scheme. Also, the algorithm

of LSTM is discussed with a detailed presentation of its internal operations.

Section III presents the proposed RUL prediction approach using hybrid deep
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LSTM. The overall procedure is first given followed by the detailed demonstra-

tion of the model structure. The experimental study is discussed in Section105

IV. The benchmark prognosis dataset, the NASA Commercial Modular Aero-

Propulsion System Simulation (C-MAPSS) dataset is used to test the proposed

approach. The proposed method shows excellent performance in RUL predic-

tion. Section V makes a conclusion of this work and presents possible future

work.110

2. Background

2.1. Recurrent Neural Network

The recurrent neural network (RNN) is a deep neural network structure

with a loop inside [31]. The recurrent connection can store the information

from the previous inputs within the network hidden states. Therefore, RNN115

can effectively model sequential data with temporal dependence. A typical

structure of the RNN is shown in Fig. 2.

The sequential data x ∈ Rp×T is inputted into the RNN model. Data at

each of the T time steps contains p elements. The output is y. st ∈ Rn is

the intermediate hidden state at time step t that is dependent on the current120

input xt and the hidden state of the previous time step st−1. n is the number

of hidden units of the RNN network. The detailed procedure of obtaining the

hidden state can be seen in Fig. 3. The hidden state can be seen as the memory

of the network that stores the information captured by all the previous steps.

The hidden state value at time step t can be calculated using the following125

equation.

st = f(V xt +Wst−1 + bs) (1)

Here, f is the activation function. V ∈ Rn×p is a weighting matrix that

operates on the original input forming the input to the hidden state. W ∈ Rn×n

is a weighing matrix between hidden states that controls the memory of the

network. bs ∈ Rn×1 a bias vector. Therefore, the current hidden state depends130
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Figure 2: A typical structure of the RNN.

Figure 3: Operations in the RNN model.

on the current input and the previous hidden state containing the memory of

the previous information.

The training of a RNN is similar to the training of the traditional fully con-

nected neural network using backpropagation. Here, unlike the traditional neu-

ral network, the RNN model shares the same parameters across all time steps.135

Therefore, the gradient depends on not only the current time step but also all

the previous time steps. This backpropagation method is named backpropaga-

tion through time (BPTT). However, the basic RNN model has a problem of

vanishing gradient. When the model is trained using BPTT, the gradient of the

error with respect to previous inputs can vanish quickly. Therefore, the basic140

RNN can hardly model long term dependency because of this problem.

2.2. Long Short-Term Memory

The long short-term memory network (LSTM) is a variant version of RNN.

LSTM replaces the simple hidden state calculation with several gate functions
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Figure 4: Operations in the LSTM model.

[32]. This mechanism permits the LSTM to capture long term dependency in145

the temporal sequential data. The operations in the LSTM model are shown in

Fig. 4.

Compared with classical RNN, the LSTM network introduces a new flow,

the cell state mt ∈ Rn shown at the top of the cell structure in Fig.4. LSTM

has the capability of adding or removing information to the cell state. The150

cell state maintains the memory of the LSTM. The three gates that control the

information flow in LSTM include the input gate it ∈ Rn, the forget gate ft ∈

Rn, and the output gate ot ∈ Rn. The input gate adjusts the level of information

from the current input xt and the previous hidden state st−1 will be inputted

into the current state. The forget gate controls how much information from155

the previous cell state mt−1 will be maintained. The output gate controls how

much information will be passed to the current hidden state st. The operations

of these gates are as follows:

it = σ(Vixt +Wist−1 + bi) (2)

ft = σ(Vfxt +Wfst−1 + bf ) (3)

ot = σ(Voxt +Wost−1 + bo) (4)
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where the parameters Vi, Vf , Vo ∈ Rn×p; Wi, Wf , Wo ∈ Rn×n; bi, bf , bo

∈ Rn×1. σ is the sigmoid activation function.160

Then, the cell state and hidden state are obtained by using the following

equations.

gt = tanh(Vmxt +Wmst−1 + bm) (5)

mt = ft ◦mt−1 + it ◦ gt (6)

st = ot ◦ tanh(mt) (7)

where Vm ∈ Rn×p; Wm ∈ Rn×n; bm ∈ Rn×1. tanh is the hyperbolic tangent

activation function. ◦ is element-wise multiplication.

The training of LSTM can be done using the BPTT by minimizing the165

objective function on a set of training sequences. The gradients of weights and

biases can be calculated at all time steps. Then, with the classical optimization

algorithms e.g. Stochastic Gradient Descent, Adam or RMSprop, the optimal

parameters can be obtained.

3. Methodology170

In this section, the proposed RUL estimation approach based on hybrid

deep LSTM is introduced. The deep network is composed of both LSTM layers

that capture the temporal information and the classical neural network layers

that bring the enhanced capability of modeling non-linearity of the degradation

process. The developed hybrid deep neural network model can precisely predict175

the RUL of the monitored machinery after training the model with the training

dataset. The collected data is used as input of the model without any manual

feature extraction.
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Figure 5: Flowchart of the proposed approach for RUL estimation.

3.1. Proposed approach

The proposed RUL prediction method aims at providing accurate RUL pre-180

diction through autonomous feature extraction from the historical and online

monitoring data. The overall flowchart of the developed approach for RUL es-

timation is shown in Fig. 5. The four main steps of the proposed approach

include data acquisition, data cleaning, deep LSTM model building, and online

RUL prediction. The detailed procedure of each step is explained as follows.185

(1) Data acquisition

In this step, different types of sensors, e.g. accelerometer, acoustic emission

sensor, thermometer, microphone, etc. can be used to acquire the run to failure
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signals from the same type of machinery. The selection of sensors is based on the

domain knowledge on which sensory data is closely correlated to the degradation190

process of the monitored machinery. A certain amount of run to failure data of

the monitored machinery is needed. The acquired sensory data will be used to

train the RUL prediction model.

(2) Data cleaning

The data collected in real applications can be noisy and may contain some195

errors or missing values. Also, the scale of data from different types of sensors

can vary significantly. Therefore, data cleaning is necessary and important for

further processing. Here, the z-score normalization is used to normalize the data

so that the collected data have zero mean and unit variance. The normalization

can be achieved using the following equation.200

xi
′ =

xi − µi

σi
(8)

Here, xi
′ is the normalized data. xi is the measurement data from the i-th

sensor. µi is the mean value of the measurement. σi is the standard deviation.

(3) Deep LSTM model building

In this step, a hybrid deep neural network with LSTM layers and classic

neural network layers are constructed. We take advantage of the LSTM with its205

nature of modeling sequential data and the capability of modeling non-linearity

from classic fully connected layers. With the deep structures, the network

can use the raw sensory data to extract representative features automatically

through the training process. Therefore, manual feature extraction, which re-

lied heavily on the expertise and prior knowledge in traditional approaches, can210

be avoided. Also, sensor fusion can be achieved with the proposed model by

fusing the data directly at the data level. After data cleaning, the data collected

from multiple sources at each time cycle are treated as different features of the

input to the LSTM layer. The fused input can increase the accuracy of the RUL

prediction compared with using data from one source. The historical data of215

the degradation process will be used to train the model. In this paper, Adam
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optimizer is used due to the better performance in deep learning applications

compared with other optimizers such as the traditional stochastic gradient de-

scent method [33]. To increase learning efficiency, the decaying learning rate

is used here by adjusting the learning rate through the training process. The220

learning rate is reduced by a certain portion after every n epochs using the

following equation.

Ri = R0 × ρi (9)

where i ∈ [1, 2, ..., N/n) and N is the number of total epochs. R0 is the

initial learning rate. Ri is the learning rate for the training after n × i epochs

and before n× (i+ 1) epochs. ρ ∈ (0, 1) is a dropping factor. The learning rate225

is decaying during the training process that can give better training results.

(4) Online RUL prediction

After the training of the deep LSTM model, the RUL prediction for the

running machinery is carried out with the corresponding sensory data. The

estimated RUL can provide significant information for the decision making of230

proper maintenance actions. In our approach, the online monitoring data can

be used to further improve the deep LSTM model by fine-tuning the model

with newly collected data. The RUL prediction model can then be continuously

enhanced.

3.2. Deep LSTM-based RUL prediction235

In our proposed approach, a hybrid deep structure is constructed to model

the degradation process of the rotating machinery. With the capability of cap-

turing temporal dependency, LSTM layers are used. After each layer of the

LSTM, a fully connected layer is added. The hybrid building block can take

advantage of the two types of layers. The number of the building blocks can be240

determined by starting with a small number until the network starts to overfit

the training data which means the testing accuracy starts to decrease with a

more complex model. Finally, a fully connected and regression layer is added to

12



Figure 6: Network Structure of the Deep LSTM.

predict the RUL of the rotating machinery. The detailed structure of the net-

work is shown in Fig.6. The parameters to determine for the network structure245

include the number of hybrid building blocks, the number of hidden units in

LSTM layers, and the number of units in the fully connected layers. The grid

search strategy can be used to determine these parameters.

Overfitting can be a problem in the training of many DNN models that

can cause unsatisfactory performance. In this paper, the dropout technique250

is utilized to prevent overfitting. In each fully connected layer in the hybrid

building block, dropout is triggered during the training process. A certain
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amount of neurons of the layer are temporarily removed to form a reduced

network. It is achieved by assigning zero value to the randomly selected feature

map elements. In the testing step after obtaining the trained model, the dropout255

mechanism is switched off. Dropout has been successfully applied to decrease

the chance of overfitting.

4. Experimental Study

In this section, RUL prediction using the proposed hybrid deep LSTM ap-

proach is evaluated using a widely tested benchmark dataset. The results of260

RUL prediction using the proposed method are compared with those obtained

by existing state-of-art approaches. The experiment study demonstrates the

effectiveness of the proposed method.

4.1. Data Description

The NASA Commercial Modular Aero-Propulsion System Simulation (C-265

MAPSS) dataset is used in this paper with simulated turbofan engine degrada-

tion data [34]. It contains four sub-datasets with different operating conditions

and fault modes. Each sub-dataset includes training dataset and testing dataset.

The training dataset is composed of run-to-failure sequential data collected from

21 sensors. The detailed information about the sensors can be referred to in [34].270

The engine operates normally at the beginning with certain degrees of initial

wear. The sensors record the data of the engine until the fault develops to a

system failure. In the test dataset, the sensory data of the system prior to the

system failure are recorded. The task is to estimate the RUL of the engine in

the testing dataset. Therefore, in the testing dataset, the actual RUL of each275

data sample is provided to check the result of the proposed method. Table 1

lists the details of the dataset. About 50% of the total samples are designed for

training in this dataset. The rest of the samples are used for testing.
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Table 1: Details of the C-MAPSS dataset

Sub-data det FD001 FD002 FD003 FD004

Training sample 100 260 100 249

Testing sample 100 259 100 248

Operation condition 1 6 1 6

Fault mode 1 1 2 2

4.2. Experiment Environment and Network Structure

The experiment is carried using a computer with the following configuration:280

Intel Core i7-4790K(4.00GHz) CPU, 16GB RAM, NVIDIA GeForce GTX 1080

GPU, Microsoft Windows 7 Enterprise. Matlab 2018a is used as the program-

ming tool to code the proposed algorithms.

In this paper, the structure of the hybrid deep LSTM network is determined

by the method of grid search. The hyper parameters that need to be figured285

out are the number of hybrid building blocks, the number of hidden units in

the LSTM layer, and the number of units in the fully connected layer. In this

experiment, to avoid a huge grid search space, we assign the same number of

hidden units in different LSTM layers. We vary the number of hybrid building

blocks from 1 to 6, the number of hidden units in LSTM layers from 16, 32, 64 to290

128, the number of units in the fully connected layer from 16, 32, 64 to 128. Ten-

fold cross validation is used to train each structure using the training dataset

of the first sub-dataset. The average training time of the most complicated

network structure, six building blocks with 128 hidden units in LSTM layers

and 128 units in a fully connected layer, is 336.5 seconds. RUL prediction of295

the test data is then performed. The root mean square error (RMSE) of the

RUL prediction, as given in Equation 10, is selected as the metric to evaluate

the performance.

RMSE =

√√√√ 1

n

n∑
i=1

(R̂ULi −RULi)
2

(10)
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Table 2: Experiment results of the RUL prediction

Sub-data det RMSE RMSE

Mean STD

FD001 14.57 1.04

FD002 23.20 1.73

FD003 14.92 2.26

FD004 28.72 1.26

where n is the number of test samples. R̂ULi is the estimated RUL of the

i-th sample and RULi is the actual RUL.300

Among all the combinations of the hyperparameters, the network structure

with three hybrid building blocks with 128 hidden units in LSTM layers and

128 nodes in the fully connected layers achieved the best results. The corre-

sponding average training time of this model is 125.7 seconds. Therefore, in

this experiment, this structure is selected and used to test all the sub-datasets.305

4.3. RUL Prediction Using the Proposed Method

In this section, the evaluation of the performance of the proposed RUL pre-

diction method is presented. The network structure determined in the previous

section is tested on all the testing data from the four sub-datasets. The final

results are compared with the results using the existing data-driven approaches.310

In this study, 10 trials are carried out using the proposed approach. To

reduce randomness, the averaged result is used to evaluate the performance.

Table 2 lists the mean value and standard division (STD) of the RMSE on the

four sub-datasets. The RUL prediction using the proposed method achieves

satisfactory results on both FD001 and FD003 sub-datasets. The RMSE for the315

two cases are 14.57 ± 1.04 and 14.92 ± 1.26. The prediction errors on FD002

and FD004 sub-datasets are higher. The reason is that these two sub-datasets

contain more operating conditions and fault scenarios but less training samples

per case.
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The RUL prediction result of the last recorded life cycle on the testing data320

from the dataset FD001 is shown in Fig.7. Each black dot in Fig.7 is the actual

final RUL of each test sample. We sort the 100 testing samples by the actual final

RUL values for clearer visualization. The result shows that the RUL estimated

by the proposed approach are generally close to the actual RUL values. From

Fig. 7, the prediction of RUL has comparatively larger variations for the RUL325

in the middle range. Because the degradation of the system is slow in this range

and then accelerate. The significant change brings difficulty for the deep learning

model to learn the sharp change with a limited amount of training samples. Fig.

8 plots the RUL prediction results of the entire life cycles. In this paper, the

maximum value of RUL was clipped at 125. This step makes the network330

to learn from the sequence data more when the engines are close to failing,

which has significantly increased the overall prognosis results reported in many

literatures [35] [36]. Four degradation test samples from the sub-dataset FD001

are selected to visualize the performance of the developed approach. The result

shows that the proposed method can generally make a satisfactory prediction335

over the entire degradation process. From Fig.8 we can see that the proposed

model provides an accurate prediction for the early stage of the degradation

as shown in the third subplot and the flat part in the other three subplots.

Some errors can be found in the middle periods. Also, in the later stage of the

degradation, the RUL prediction has a small variation with the actual value.340

The prognosis performance in the late phase of the machinery is significant to

arrange a proper maintenance action to maintain the system reliability and to

reduce the overall cost. The proposed approach achieves superior performance

in the RUL prediction of the late phase. Here, some of the RUL predictions are

above the actual value and some go under the actual value. One main reason is345

the inaccuracy of the trained model. The other reason can be the sensing error

in the sensory data.

The comparison of RUL prediction results between the proposed method

and the existing data-driven approaches is conducted. Fig.9 presents the com-

parison of the proposed method with other approaches including support vector350
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Figure 7: Final RUL value prediction result on the sub-dataset FD001.

Figure 8: Examples of RUL prediction on the sub-dataset FD001.

machine(SVM) [37], support vector regression [12], random forest [26], convo-

lution neural network (CNN) [38], deep belief network (DBN) [26], and regular

LSTM [39]. The proposed approach achieved the best performance. The pre-

diction result of DBN approach is very close to the proposed method. However,

18



Figure 9: Comparison of RUL predictions on the sub-dataset FD001.

the DBN model did not consider the temporal correlation of the sensory data355

in prognosis. Besides, the shared parameters of LSTM structure can reduce

the requirement of computational power and decrease the chance of overfit-

ting. The developed hybrid deep LSTM approach can be applied directly to the

raw sequential data. It overcomes the disadvantages of most of the traditional

data-driven prognosis methods where manual feature extraction is needed. The360

hybrid deep neural network structure can learn the representative features from

the raw sensory data directly through the training process. Therefore, the pro-

posed approach can be applied more widely to machines and components where

limited prior knowledge is available.

5. Conclusion365

In summary, this paper presents a hybrid deep LSTM approach for machin-

ery prognosis. In the hybrid deep neural network, the LSTM layers and the

classic neural network layers can capture the information in the sequential sen-

sory data. Besides, the proposed approach achieves sensor fusion by fusing the
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data from multiple sensors at the data level. The fused data form the input of370

the model that enhances prognosis performance. The developed method intakes

the raw sensory data directly to train the RUL prediction model. Manual feature

extraction in most of the traditional data-driven prognosis approaches which re-

quires much prior knowledge and heavy domain expertise can be avoided. To

improve the effectiveness of the training process, this paper adopts the dropout375

technique to prevent overfitting. The decaying learning rate is also used during

the training process to increase training efficiency. A comprehensive experimen-

tal study is carried out to evaluate the proposed prognosis approach by using

the benchmark C-MAPSS dataset. The results show that the prognosis perfor-

mance is satisfactory using the proposed method. The comparison between the380

hybrid deep LSTM method and other state-of-art data-driven methods shows

the outstanding performance of the developed approach in RUL prediction. Due

to the end-to-end learning capability, the developed method can be applied to

wide categories of machines and components where limited prior knowledge and

domain expertise are available. Future work includes the investigation of the385

proposed method on the prognosis of machines under more complicated load or

working conditions as well as different fault modes. With more sensory data

under various operation conditions and fault modes, different types of hybrid

deep LSTM models can be evaluated. Also, for the spacial information from the

sensory data, the use of the convolution neural network layers into the hybrid390

structure can be considered to better capture the spacial information.
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