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Abstract: Smart or stimuli-responsive materials are an emerging class of materials used for tissue
engineering and drug delivery. A variety of stimuli (including temperature, pH, redox-state, light,
and magnet fields) are being investigated for their potential to change a material’s properties,
interactions, structure, and/or dimensions. The specificity of stimuli response, and ability to
respond to endogenous cues inherently present in living systems provide possibilities to develop
novel tissue engineering and drug delivery strategies (for example materials composed of stimuli
responsive polymers that self-assemble or undergo phase transitions or morphology transformations).
Herein, smart materials as controlled drug release vehicles for tissue engineering are described,
highlighting their potential for the delivery of precise quantities of drugs at specific locations and
times promoting the controlled repair or remodeling of tissues.

Keywords: stimuli-responsive materials; tissue engineering; drug delivery; biomaterials;
thermoresponsive; pH-responsive; light-responsive; redox-responsive

1. Introduction

The United States Food and Drug Administration (FDA) defined regenerative medicine as the
capacity to facilitate regeneration of parts of the human body, where cells and tissues can be engineered
to grow healthy, functional organs to replace diseased ones; new genes can be introduced into the body
to combat disease; and adult stem cells can generate replacements for cells that are lost due to injury or
disease; tissue engineering and regenerative medicine aim to replace/regenerate tissues from cells and
biomaterials [1]. In the case of biomaterials, they can be processed into nanocarriers [2], hydrogels [3,4],
and films [5] for drug delivery, wound healing [5,6], tissue engineering, and cell therapy, leading to
many emerging and promising regenerative approaches for the treatment of diseases or injuries.

The number of publications in materials science has increased dramatically in recent years, in line
with the introduction of new biomaterials and devices to diagnose and treat diseases, aiming to
improve our quality of life and contribute to the steady increase in life expectancy (Figure 1).
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Figure 1. Number of publications on related topics in the Web of Science database with respect to 
time. 

Different biomaterials possess different physical and chemical properties and can be processed 
into a variety of shapes (e.g., films, foams, gels, and particles) [7,8]. They can be used on their own or 
as part of composites/hybrids in order to impart other functionality and tune their bulk properties, 
and their surface properties can be tailored through a variety of surface modification techniques 
[9–11]. The ability of a material to respond to different stimuli is related to their physico-chemical 
characteristics [12–16]. Taking advantage of such features with the recent developments in 
technology, we expect to be able to control the interaction between the biomaterial and its contents 
(e.g., cells, drugs) and surrounding environment in response to various stimuli (including but not 
limited to pH, temperature, redox potential, magnetic fields, and light) [12,13,17,18]. 

Stimuli-responsive materials have numerous applications in the biomedical field, from drug 
delivery systems to diagnostics and treatment. The delivery of drugs and genes requires the 
pharmaceutical compound or gene to reach the site of action at the right time and at an appropriate 
concentration, traversing obstacles like biological barriers, enzymatic or hydrolytic degradation, and 
solubility. More often than not, secondary effects arise from non-specific interactions with cells and 
tissues, so that vehicles that react to specific stimuli would be promising carriers for the targeted 
delivery of drugs and genes [19,20]. Tissue engineering also faces numerous challenges such as a 
paucity of renewable sources of functional cells that are immunologically compatible; a lack of 
suitable materials with the desired chemical composition, mechanical properties, and biological 
function; and an inability to generate large, vascularized tissues that can easily integrate into the 
circulatory system of the host with the inherently complexity of native tissues architecture, some of 
which can be addressed through the utilization of smart responsive biomaterials [21]. In this context, 
stimuli-responsive nanomaterials have received great attention. Significant progress has been made 
to tailor nanoparticles with stimuli-responsive properties, which have potential for future therapies 
for human or veterinary applications. Size, shape, and surface functionalization, as well as 
modifications, are necessary for active targeting or stimulus-responsive drug release [22]. 

The stimuli can be internal or external, meaning that they can build up at the site of action or 
that they could be applied externally to achieve the desired effect. For example, redox conditions 
and pH vary in the different tissues and between intracellular and extracellular compartments. The 
properties of redox polymers (ionic, electrical, optical, mechanical, or chemical) change depending 
on their oxidation state, offering potential for inclusion in actuators, biosensors, and drug delivery 
systems [23] The review of Guo and coworkers summarized the state-of-the-art of knowledge on 
reduction/oxidation responsive polymeric drug carriers (specifically focusing on functional groups 
employed for this end goal) [24]. Drug delivery and tissue engineering strategies based on 
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Different biomaterials possess different physical and chemical properties and can be processed into
a variety of shapes (e.g., films, foams, gels, and particles) [7,8]. They can be used on their own or as part
of composites/hybrids in order to impart other functionality and tune their bulk properties, and their
surface properties can be tailored through a variety of surface modification techniques [9–11]. The ability
of a material to respond to different stimuli is related to their physico-chemical characteristics [12–16].
Taking advantage of such features with the recent developments in technology, we expect to be
able to control the interaction between the biomaterial and its contents (e.g., cells, drugs) and
surrounding environment in response to various stimuli (including but not limited to pH, temperature,
redox potential, magnetic fields, and light) [12,13,17,18].

Stimuli-responsive materials have numerous applications in the biomedical field, from drug
delivery systems to diagnostics and treatment. The delivery of drugs and genes requires the
pharmaceutical compound or gene to reach the site of action at the right time and at an appropriate
concentration, traversing obstacles like biological barriers, enzymatic or hydrolytic degradation,
and solubility. More often than not, secondary effects arise from non-specific interactions with cells
and tissues, so that vehicles that react to specific stimuli would be promising carriers for the targeted
delivery of drugs and genes [19,20]. Tissue engineering also faces numerous challenges such as a
paucity of renewable sources of functional cells that are immunologically compatible; a lack of suitable
materials with the desired chemical composition, mechanical properties, and biological function; and an
inability to generate large, vascularized tissues that can easily integrate into the circulatory system of
the host with the inherently complexity of native tissues architecture, some of which can be addressed
through the utilization of smart responsive biomaterials [21]. In this context, stimuli-responsive
nanomaterials have received great attention. Significant progress has been made to tailor nanoparticles
with stimuli-responsive properties, which have potential for future therapies for human or veterinary
applications. Size, shape, and surface functionalization, as well as modifications, are necessary for
active targeting or stimulus-responsive drug release [22].

The stimuli can be internal or external, meaning that they can build up at the site of action or that
they could be applied externally to achieve the desired effect. For example, redox conditions and pH
vary in the different tissues and between intracellular and extracellular compartments. The properties
of redox polymers (ionic, electrical, optical, mechanical, or chemical) change depending on their
oxidation state, offering potential for inclusion in actuators, biosensors, and drug delivery systems [23]
The review of Guo and coworkers summarized the state-of-the-art of knowledge on reduction/oxidation
responsive polymeric drug carriers (specifically focusing on functional groups employed for this end
goal) [24]. Drug delivery and tissue engineering strategies based on electroactive materials represents
an innovative field of research [25]. The effects of electrical stimulation on cell growth and differentiation
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and tissue growth has led to interest in using piezoelectric scaffolds for tissue repair [26], influenced by
the inherent piezoelectric properties of bone [27], and studies showing enhanced bone regeneration
in response to the use of piezoelectric biomaterials [28]. Consequently, piezoelectric materials have
begun to find a variety of biomedical applications, including drug delivery and tissue engineering
applications [29–31]. Of particular interest is the ability of smart polymers to differentiate between the
redox potential in tumors and normal tissues (with the former exhibiting 4-fold higher glutathione
concentrations), or respond to the presence of reactive oxygen species (ROS), believed to play a role in
diseases like cancer, heart injury, and arteriosclerosis [24]. Similarly, pH responsive polymers bearing
ionizable acidic/basic residues can be employed in drug/gene delivery, sensors, and membranes [32].
They are of interest as it has been shown that the pH is altered in pathological conditions such as cancer,
inflammation, and infection and their ability to respond to changes in the pH by undergoing changes
in surface activity, chain conformation, solubility, and configuration has led to the development of
several drug delivery systems and wound dressings [33–35]. For instance, the variability of pH values
between 5.6 and 7.0 in tumor masses has inspired the development of new pH-responsive materials [36].
The pH spectrum observed in different sites within the body in physiological conditions also provides
attractive targets for use in biomedicine [37], wherein pH-responsive carriers may be able to target
a specific area in the body and release their bioactives with a high therapeutic impact and minimal
side-effects [38].

To generate magnetically responsive materials, magnetic nanoparticles can be incorporated into
scaffolds for drug delivery, tissue regeneration, and artificial muscles. Through the application of a
magnetic field, the nanoparticles are able to transmit a force to the surrounding material and/or cells
triggering a response. Mechanical stimulation resulting from the deformation of the magnetic scaffold
can lead, for example, to an increase in GAG expression and stimulate differentiation of stem cells
to chondrocytes for cartilage repair, promote axonal extension and cell migration to guide neuronal
regeneration or induce localized hyperthermia in cancer therapy [39]. In addition, light is an attractive
source to trigger a response, as its intensity and wavelength can be controlled to impact specific
areas of tissue. Light responsive moieties can then be incorporated into the structure of polymeric
materials or molecules bearing light responsive groups can be introduced into a non-light responsive
material to induce the release of pharmaceutical compounds or cause shape changes upon exposure
to light [40]. Furthermore, thermoresponsive polymers that react to temperature enable the use of
polymer networks for the release of drugs at specific temperatures [41]. These materials have been
extensively reviewed [42,43], particularly thermoresponsive polymers with interesting lower critical
solution temperature (LCST) and upper critical solution temperature (UCST) behaviors in water, the
chemical and physicochemical characteristics, and their uses and applications as drug delivery systems,
hydrogels, and surfaces for cell growth, among other biomedical applications [42]. Alternatively to the
design, mechanism, and behavior of thermoresponsive materials and their combination with other
features, namely pH-thermoresponsive or photothermoresponsive materials among others, and their
applications in different fields of biomedicine [43], and to complement the existing literature, in this
review, we will focus on natural and synthetic thermoresponsive polymers and the results of their
application in vitro and in vivo as biomedical materials.

Interestingly, polymers can be further engineered to tune the response to various stimuli. There are
different strategies of molecular design for the incorporation of appropriate responsive building
blocks [44]. Moreover, the integration of polymers with different functional groups has allowed the
development of multi stimuli-responsive materials [12]. These properties would be further employed
to trigger the release of therapeutic molecules in biological environments with different characteristics.
Thus, the precise and controlled drug delivery of multi stimuli-responsive carriers may provide new
treatment options [45].

Recent articles tend to focus on a particular material, such as nanogels [46], hydrogels [47,48],
peptide-based materials [49], and synthetic polymers [50], or examine the major advances on the
use of a specific external stimulus including pH, temperature, light, electric field, magnetic field,
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and ultrasound, in the design of smart materials for medical applications. This review focuses
on the materials employed in the design of redox, pH, magnetic field, temperature, and light
responsive biomaterials. Recent applications and future perspectives of different stimuli-responsive
biomaterials, especially used as delivery systems of bioactive molecules and tissue engineering scaffolds,
are covered. This article thereby provides an overview of the latest advances in the development of
multifunctional and stimuli-responsive scaffolds for biomedical applications focusing on drug delivery
and tissue regeneration.

2. pH-Responsive Materials

In diseased, inflamed, and infected tissues, the pH may be decreased due to dysregulated
metabolism or irregular angiogenesis, which cause the rapid shortage of oxygen and nutrients, that
results in a shift toward glycolytic metabolism [51]; consequently, variations of the pH in different
organs, tissues, and intracellular compartments can be considered during the design of nanomaterials
with the ability to release a therapeutic agent at a target site in response to pH [52].

The pH of extracellular organelles and the bloodstream is typically 7.4, while the pH is 1–3 in
the stomach and 6.6–7.5 in the duodenum and ileum of the gastrointestinal tract. The range of pH
of the intracellular subendosomal and lysosomal organelles is 5.5–6.8 and 4.5–5.5, respectively [53].
Consequently, there is a broad range of pH values within the human body in physiological or
pathological states which can be considered when developing stimuli-responsive delivery systems.
Differences in the pH can lead to the modification of crosslinking processes (important for injectable
hydrogels and self-healing materials); the protonation or deprotonation of acidic/basic groups can
generate distinct interactions between a therapeutic agent and a material causing a defined release
profile, potentially in a particular tissue/cell.

Hydrogels can be engineered so that their physicochemical properties such as their stiffness,
degradation, and porosity can directly influence the fates of the encapsulated cells including their
migration, proliferation, differentiation, and communication. Furthermore, stimuli-responsive
hydrogels could improve the in vivo therapeutic efficacy and also provide new therapeutic
pathways [54]. The delivery of therapeutic molecules in nanocarriers to target cells and tissues
is also important in tissue regeneration. The delivery of genetic material has the potential to promote
the functions of target cells through plasmid DNA and related constructs, or downregulate functions
by the reduction/silencing actions. Additionally, a drug in a nanocarrier has the capability to reduce
the quantity that is required for achieving therapeutic efficacy, possibly avoiding toxic side effects [55].
Moreover, such carriers can achieve an effective site-specific delivery of drugs or growth factors by
exploiting physiological conditions (e.g., pH) in vivo [56], increasing the possibilities of an improved
regeneration process or drug therapy. Infected tissues often have an acidic environment, however, it is
important to note that the pH of cutaneous wounds is dynamic and displays a good correlation with
the stage of the wound healing process (Figure 2), the inflammation stage is acidic, granulation shifts
to an alkali pH, and the remodeling phase returns the skin to its initial pH [57].

To obtain pH-responsive wound dressings, materials are crosslinked by three polymerization
methods: a step growth thiol-ene photoclick reaction, a chain growth by UV polymerization, and mixed
mode of the step growth and chain growth mechanisms, to generate materials where the crosslinking
density, mechanical and swelling properties could change with the different cross-linking mechanisms.
The resultant hydrogels exhibited tunable mechanical properties, swelling ratios, and pH sensitivities
without affecting their degradation behavior or their in vitro cytocompatibility with NIH/3T3 fibroblasts,
suggesting that these hydrogels may be useful as stage-responsive wound dressings [58].

One of the principal challenges in wound healing is the lack of cell recruitment, cell infiltration,
and vascularization. Scaffolds which can expand according to the pH may modify oxygen
and nutrient transport and cell density, enhancing cell deposition and survival. Consequently,
they developed pH-responsive HEMA (2-hydroxyethyl methacrylate)/DMAEMA (dimethylaminoethyl
methacrylate) scaffolds via photopolymerization at different molar ratios (10/90, 20/80, or 30/70,
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mol/mol). They observed that the swell ratio increased with the density of protonated amine groups in
DMAEMA. Indeed, the 30/70 scaffold expanded ≈80% in comparison to HEMA at pH 5.5. The swelling
behavior of the pH-responsive scaffolds under acidic conditions resulted in an increased oxygen
penetration and cell infiltration, which was confirmed by finite element modelling. Furthermore,
their results suggested that the 30/70 scaffold could lead to a pro-healing milieu of cytokines and
growth factors that could result in significant levels of granulocyte tissue formation and vascularization
relative to HEMA [59].
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Reprinted by permission from Springer Nature, Arch Dermatol Res, in [57], Copyright (2006).

Materials that have ionizable groups are the major candidates for the development of pH sensitive
materials, and it is possible to select less conventional strategies to prepare this kind of material.
Mesoporous bioglass (MBG) can be used as pH-responsive carriers. The MBG was loaded with
metformin hydrochloride (MH) as a model drug and SBF (simulated body fluid) was added at different
concentrations and periods of time to cap the pores of the MBG with hydroxyapatite (HAp) and
restrict the release of MH. The authors observed that the surface area, pore volume, and pore size
decreased after drug loading and HAp mineralization. Moreover, with a longer mineralization time
and a higher ion concentration, the pore also decreased, suggesting that a longer mineralization time
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and a higher ion concentration could benefit the HAp mineralization. Due to the degradation of the
HAp of the pH-responsive carrier in acid environments, it was observed that the release profile of
MH was modified by the mineralization time and the ion concentration of media while the drug
loading efficiency remained constant in every condition. This indicates that this pH responsive material
developed is a promising carrier of therapeutic agents involved in the treatment of inflammatory sites
and tumors [60].

Infections in tissues slow regeneration processes. As mentioned before, the pH in a tissue with an
infection is commonly decreased, and multifunctional-therapeutic three-dimensional (3D) scaffolds
can be used for the management of bone infection and to support tissue regeneration. They prepared a
nanocomposite formed by nanocrystalline apatite embedded into a mesostructured SiO2–CaO–P2O5

glass wall (MGHA) by rapid prototyping. The scaffolds were loaded with levofloxacin, a quinolone that
has different protonation states (cationic, zwitterionic, and anionic states) according to the pH, each one
with distinct interactions between the levofloxacin (levo) and the silanol groups of the mesoporous
matrix. Indeed, these interactions resulted in different in vitro release profiles. Their findings revealed a
significantly higher release in an acidic pH environment (pH 5.5 and 6.7) than physiological conditions
(pH 7.4), which followed a slow and sustained drug release. To analyze the possibilities of the scaffold
for the treatment and prevention of bone infection, an evaluation of the multifunctional capability was
performed by in vitro co-culture assays of MC3T3-E1 osteoblast-like cells/S. aureus in the MGHA and
MGHA-Levo 3D scaffold surfaces. The confocal images obtained after 6 h of culture indicated the
absolute absence of bacterial population adhered to the material surface and osteoblasts were attached
and growing. The adequate cell colonization of the MGHA-Levo scaffold and the addition of the
quinolone in the material which could prevent a possible infection indicate promising features in these
potential therapeutic platforms (Figure 3) [61].Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 7 of 42 
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Figure 3. In vitro competitive co-culture MC3T3-E1/S. aureus after 6 h, 24 h and 3 days of incubation
onto MGHA and MGHA-Levo 3D scaffolds. Material refraction in green, preostoblastic nuclei and
bacteria in blue (DAPI) and actin-fibrous of preosteoblast cytoplasm in red (phalloidin). Reprinted from
reference [61], Copyright (2018), with permission from Elsevier.

The construction of stimuli responsive materials by hydrophilic modification, bioconjugation,
or targeting functionalization, with a detailed safety-analysis in small or large animal models could be
a method to overcome common barriers like chronic toxicity, long-term stability, the understanding of
their biological and physiochemical properties, biodistribution, circulation properties, and targeting
efficacy in vivo [62]. In this context, a pH-responsive anti-microbial peptide-mediated liposomal
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delivery system was developed as a carrier of antagomir-10b and paclitaxel (PTX) for the treatment
of murine metastatic mammary tumor models. The antagomirs are a kind of single-stranded RNA
analogues that are chemically modified, conjugated with cholesterol to enhance their stability and
functioned by hybridizing and repressing the activity of a mature miRNA [63], and the drug paclitaxel
is a well-known cytotoxic reagent. They used a pH-dependent antimicrobial peptide named [D]-H6L9
reported previously [64], and tethered it on the surface of liposomes. The histidines in D-H6L9 which
have a pKa around 6.5, could be protonated in an acidic tumor environment (which can be as low as 6.0)
and a strong membrane lytic effect could thus be activated, leading to the escape of liposomes from the
lysosomes and the decrease of antagomir-10b expression. The in vivo and ex vivo fluorescence imaging
showed that the [D]-H6L9 modified cationic liposome (D-Lip) could reach 4T1 tumors indicating a
good targeting efficacy in vivo of antagomir-10b and PTX. These results imply that D-lip could be a
promising vehicle for the management of metastatic tumors [65] (Figure 4).
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Figure 4. Representative in vivo (A) and ex vivo (B) images of 4T1 tumor-bearing BALB/C mice 24 h
after injection of Cy5 labeled antagomir-10b-loaded liposomes. The black arrows in (A) indicated the
location of tumors. Reprinted from [65], Copyright (2015), with permission from Elsevier.

Hydrogen bonds can be used to tune non-covalent intermolecular interactions in a pH responsive
fashion, which is potentially useful for the preparation of self-healable hydrogels for drug delivery and
soft tissue regeneration. Self-healing pH-sensitive hydrogels based on cytosine (C) and guanosine (G)
modified hyaluronic acid (HA) via hydrogen bonding, with 1,6-hexamethylenediamine (HMDA) as a
bridging unit between the nucleobase and HA. The polymer self-aggregation in these types of hydrogels
has been attributed to environmental factors such as pH and temperature, transforming them in good
variables for the design of new scaffolds or drug delivery systems. Indeed, the authors observed in
their microstructure analysis that a higher gelator concentration and a stronger hydrogen bonding
between guanosine and cytosine units resulted in the formation of gels with smaller pore diameters.
They studied their pH-sensitivity and observed that all three types of hydrogels can be formed only
at pH 6–8; logically, the hydrogels with lower concentrations degraded faster than the hydrogels of



Int. J. Mol. Sci. 2020, 21, 4724 8 of 39

the higher concentration, however, all the hydrogels had good stability at physiological conditions
showing their potential for use in the future as drug carriers or tissue engineering materials [66].

Sometimes, single responsiveness is not able to achieve the desired goals in a physiological or
pathological microenvironment. To optimize, multi-stage pH responsiveness materials are emerging.
These materials are engineered with different components, which have different sensitivity to pH
changes [45], for example, electrospun core–sheath fibers with controlled multi-pH responses within
the physiological pH range [67]. This and related research aim to produce new multi-stimuli-responsive
materials with active components for drugs or even sensors for targeted disease providing a real-time
sensing of various threats. Possibly in the future, these materials will be included in the field of tissue
engineering due to their high clinical potential. These materials which are intended to “sense” the
surrounding physiological environments and enable on-demand release of encapsulated therapeutic
cargos into highly specific targets may optimize the actual therapies in a clinically relevant way. Table 1
summarizes key examples of pH responsive materials.

Table 1. List of representative articles employing pH responsive materials.

Stimulus Material Drug Reference

pH Chitosan hydrogels Anti-inflammatory
factors and antibiotics [58]

HEMA (2-hydroxyethyl
methacrylate)/DMAEMA

(dimethylaminoethyl methacrylate
[59]

Mesoporous bioglass (MBG) with
hydroxyapatite (HAp)

Metformin
hydrochloride (MH) [60]

Mesoporous ceramics with
hydroxypatite (HAp) Levofloxacin (Levo) [61]

Liposomes Antagomir-10b y
Paclitaxel (PTX) [63–65]

Hydrogels based on cytosine (C) and
guanosine (G) modified hyaluronic acid

(HA) via hydrogen bonding, with
1,6-hexamethylenediamine (HMDA)

[66]

3. Thermoresponsive Materials

Thermoresponsive materials change their physical properties or present conformational changes in
response to temperature variations. These materials are used for biomedical applications including drug
delivery and tissue engineering among many others [68–72]. However, the transition-state temperature
depends on the solvent interaction with the polymer and the hydrophilic/hydrophobic balance.
Polymer thermoresponsive properties can be changed by adding reactants to the polymer/solvent
system. Some additives are co-polymers, surfactants, co-solvents, plasticizers, and salts. Therefore,
additives can alter the solvent quality and therefore can alter the polymer–solvent interactions [73–76].

In this section, we will consider two major groups of materials categorized as natural or synthetic
based on their origin. Thermoresponsive materials can also be classified according to their response
to temperature changes: polymers that become insoluble above a critical temperature called lower
critical solution temperature (LCST) and polymers that become insoluble below a critical temperature
called upper critical solution temperature (UCST) [77]. Natural thermoresponsive polymers are,
for example, gelatin, agarose, and pectin, whereas synthetic polymers include poly(N-alkyl substituted
acrylamides), poly(N-vinyl-alkyl-amides), poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene
glycol) copolymer (PEG–PPG–PEG), poly(ethylene glycol)-poly(d,l-lactic acid)-poly(ethylene glycol)
copolymer (PEG–PLLA/PDLA–PEG), among many others.
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3.1. Natural Thermoresponsive Materials

An extensively researched thermoresponsive natural polymer is gelatin. At temperatures below
25 ◦C, gelatin solutions with sufficiently high concentrations solidify due to the formation of a
sample spanning three-dimensional network. When the temperature is raised above approximately
30 ◦C this rigid three-dimensional network melts. To achieve a good thermoresponsive material
for wound healing and tissue engineering, the sol-gel transition temperature must be near body
temperature. In several works this temperature (37 ◦C) is achieved by adding other polymers or
plasticizers [77]. Polydiolcitrate-gelatin based scaffolds with thermoresponsive properties are a
potential delivery system for bone formation from BMP9-transduced mesenchymal stem cells [78].
PNIPAAm/gelatin nanofibers for thermoresponsive drug release of doxorubicin were developed
using 1-ethyl-3-(3-dimethyl-aminopropyl)-1-carbodiimide hydrochloride and N-hydroxysuccinimide
as crosslinking agents [79]. Moreover, gelatin nanoparticles were synthesized for doxorubicin drug
delivery [80].

A promising new thermoresponsive material for tissue engineering and bone reparation are
chitosan/β-glycerophosphate based hydrogels. Chitosan is a polymer consisting of glucosamine
and N-acetylglucosamine, obtained by deacetylation of chitin present in shells of shrimp and other
crustaceans. Chitosan itself is not a thermoresponsive material. Thermoresponsive behavior can be
achieved by the addition of β-glycerophosphate. Chitosan/β-glycerophosphate based biomaterials
present a LCST near body-temperature. At room temperature the mixture is in liquid state and when
this mixture’s temperature reaches body temperature it forms gels. However, this thermoresponsive
behavior can be controlled by the addition of copolymers or manipulating the reactant proportions.
Thermosensitive chitosan/β-glycerophosphate hydrogels can be used for the sustained delivery of
venlafaxine hydrochloride [81]. Thermosensitive chitosan/collagen/β-glycerophosphate hydrogels
can be used for soft tissue regeneration: the optimal sol-gel transition temperature could be
achieved by adjusting the chitosan/collagen ratio, and the incorporation of β-glycerophosphate
increased the biocompatibility towards L929 cells [82]. Thermosensitive injectable hydrogels
composed of chitosan/β-glycerophosphate/hydroxyapatite have osteogenic properties, bone induction,
bone conductibility, good cellular compatibility, and uniform pore structure to support the adhesion,
growth, and osteogenic differentiation of human dental pulp stem cells generating a potentially useful
bone tissue engineering material [83].

Cellulose is a linear homopolymer polysaccharide consisting of D-glucopyranose units joined
together by β(1→4-glycosidic) bonds. Extensive intramolecular and intermolecular hydrogen bonding
present in cellulose leads to its insolubility in water. Various cellulose derivatives have been prepared
by etherification of the hydroxyl groups of cellulose producing water-soluble derivatives such as
methyl cellulose and hydroxypropylmethyl cellulose. Methyl cellulose is a cellulose derivative that
has been widely investigated for drug delivery, tissue engineering, and biomedical applications.
It has thermoreversible gelation properties in aqueous solutions, with a LCST of 60–80 ◦C, although,
by the addition of copolymers its value can be diminished. HPMC is a partly O-methylated and O-(2-
hydroxypropylated) cellulose. The presence of methoxy residues are responsible for gelation but the
hydroxypropyl residues have been reported to alter its sol-gel transition temperature.

Thermoresponsive hydrogels based on methyl cellulose for cell-sheet engineering via 3D-printing
can be tuned to display LCSTs near body temperature [84]. Methyl cellulose-based thermoreversible
hydrogels (optionally including type-I collagen to improve cell proliferation and growth) can support
the adhesion and growth of stem cells in culture [85]. Thermosensitive and mucoadhesive eyedrops
containing platelet lysate (a hemoderivative rich in growth factors) for the treatment of corneal lesions
by employing hydroxypropylmethyl cellulose associated with chondroitin-6-sulphate sodium, where
the addition of chondroitin-6-sulphate sodium resulted in a LCST between 32 and 35 ◦C [86].

Elastin-like polypeptides (ELP) were designed after elastin and more specifically its precursor
tropoelastin. Tropoelastins are water-soluble proteins that are cross-linked to form the insoluble
elastin found in the extracellular matrix. Different kinds of topologies of elastin are also responsible
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for cell adhesion, proliferation, and/or differentiation. These materials have two big advantages:
their biocompatibility and their practical synthesis. Conventional peptide synthesis is currently too
expensive to produce ELPs in bulk quantities, and the best current route is recombinant production,
yielding ELPs that exhibit LCST phase behavior (below their LCST an ELP is soluble in aqueous
solution and above this temperature the ELP forms insoluble coils); and the molecular weight and
concentration of polypeptides can alter their LCST [87].

3.2. Synthetic Thermoresponsive Materials

The most well-known thermoresponsive polymers are based on PNIPAAm (Figure 5),
a poly(N-alkyl substituted acrylamide). PNIPAAm presents adjustable water solubility upon heating
and cooling processes, having a reversible phase transition from a hydrophilic coil state to a hydrophobic
globule state near body temperature (LCST near 30–37 ◦C). PNIPAAm based polymers are widely
used for biomedical purposes such as drug delivery, tissue engineering, and gene therapy (e.g.,
thermoresponsive polyplex micelles with PEG shells and PNIPAAm layers to protect DNA cores
for gene therapy) [88]. Thermoresponsive polymer-coated magnetic nanoparticles loaded with an
anti-cancer drug (doxorubicin) using magnetic drug targeting followed by simultaneous hyperthermia
and drug release [89]. A bioink for articular cartilage was synthesized by mixing PNIPAAm grafted
hyaluronan with methacrylated hyaluronan to develop high-resolution layer-by-layer printed scaffolds
with good viability [90]. Encapsulation of human adipose-derived stem cells (ASCs) in hydrogels,
further confirms that the AHA-g-PNIPAAm copolymers preserved the viability of the entrapped cells,
thus were non cytotoxic. The swelling equilibrium, enzymatic degradation, and cytocompatibility of
copolymer hydrogels were dependent upon weight ratios of PNIPAAm. Encapsulated human ASCs
possessed spherical morphology and demonstrated that the AHA-g-PNIPAAm copolymer hydrogel
allowed cell survival. Furthermore, preliminary in vivo studies in mouse of the AHA-g-PNIPAAm
copolymer hydrogel with PNIPAAm (53%) demonstrated biocompatibility. These studies indicate that
the thermosensitive AHA-g-PNIPAAm hydrogels have potential application in adipose regeneration,
as well as in other soft tissue engineering applications [91].Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 11 of 42 
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Hydrogels have shown great potential for tissue engineering applications mainly due to their ability
to encapsulate living cells within 3-dimensional, biomimetic microenvironments. Hybrid scaffolding
systems that include a thermosensitive hydrogel, poly(ethylene glycol)-poly(N-isopropylacrylamide)
(PEGPNIPAAm), and a biodegradable polymer, poly(e-caprolactone) (PCL) were both electrospun
into a microfibrous self-supporting hybrid scaffold. The reverse thermosensitivity of PEG-PNIPAAm
allowed its hydration and dissolution upon cell seeding within a scaffold of PCL microfibers while
maintaining the overall hydrogel shape at room temperature. Cell encapsulation occurs after a
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subsequent elevation of the temperature to 37 ◦C, which induced the hydrogel’s phase transition to a
gel state. The hybrid material promoted chondrogenic differentiation of human mesenchymal stem
cells (hMSCs) based on chondrocytic gene and protein expression, and the resulted superior viscoelastic
properties of the constructs. These authors provided a way to create a scaffold that enables a facile,
single-step cell seeding process to inoculate cells with the potential for cartilage tissue engineering
applications [92]. A hybrid natural-synthetic thermoresponsive material to treat cartilage disfunctions
by using chitosan (CS) and PNIPAAm (CS-g-PNIPAAm) was used as a carrier for proliferation and
differentiation of mesenchymal stem cells (MSCs). Different microstrip widths were produced to
mimic the superficial zone of natural cartilage and evaluate cellular alignment and elongation. After 28
days incubation in chondrogenic medium, encapsulated MSCs within the hydrogel incremented the
secretion of glycosaminoglycans (GAGs) and collagen. Histological and immunohistochemical analysis
confirmed chondrogenic differentiation. Moreover, cells encapsulated within 50 mm wide microstrips
were aligned in a more organized way than those in unpatterned supports. The authors conclude that
the cell shape and organization of the microengineered supports resembled the superficial zone of
cartilage, while the unpatterned constructs mimicked the middle zone [72].

Many researchers have employed nonlinear PEG-based thermoresponsive polymers as an
alternative to poly-N-isopropyl acrylamide. The great interest in PEG-based thermosensitive
materials is mainly due to the possibility of creating more sophisticated structures, of tuning the
transition temperature, and other characteristics such as water-solubility and biocompatibility [72].
Thermosensitive hydrogels based on polyisocyanopeptide (PIC) are interesting because they are liquid
below 16 ◦C and form gels above room temperature. The mechanical properties and architecture of
PIC gels are similar to collagen and fibrin, including the characteristic stiffening response at high
strains. Their thermoresponsive behavior is reversible and they are biocompatible due to enhanced
cell binding capabilities. A recent work compared full thickness dorsal skin wounds in mice treated
with PIC gel and PIC-RGD (arginyl-glycyl-aspartic acid peptide, abbreviated to RGD or GRGDS)
gel after 3 and 7 days. Equal wound closure rates were found in all groups without foreign body
reactions. Moreover, there were no significant differences in myofibroblasts, epithelial migration
and macrophages levels, collagen expression, and blood vessels. The authors conclude that these
biomimetic PIC hydrogels could be suitable for development into wound dressings [93]. PIC materials
would be tailored to meet different requirements of cells by tuning the stiffness or through the grafting
of the polymer with short GRGDS peptides using click chemistry. These peptides mimic the binding
sites of certain integrins making the hydrogels biocompatible. As a result of the optimization of the
PIC polymer properties, they found the optimal concentration of the GRGDS ligand conjugated with
the polymer and the ideal stiffness of the hydrogel for efficient cell, tissue, and organ development.
Furthermore, it was demonstrated in this work that endothelial cells, fibroblasts, adipose-derived
stem cells, and melanoma cells, do survive, thrive, and differentiate in the optimized PIC hydrogels,
and these hydrogels. Moreover, the formation of structures like blood capillaries was observed
in vitro [94].

The development of 3D scaffolds that mimic the biological behavior and organization of the missing
organ is important to support the physiological function of tissue in the implanted site. Indeed, the use
of 3D bioprinting technology in the field of tissue engineering serves as a powerful tool for building
tissue and organ structures. A thermoresponsive water-based biodegradable polyurethane dispersion
(PU2) that forms gels near 37 ◦C avoids the use of the potentially toxic crosslinkers. The stiffness of
the hydrogel was tuned adjusting the solid content of the dispersion. Neural stem cells (NSCs) were
embedded into the polyurethane dispersions before gelation. The NSCs in PU2 hydrogels had excellent
proliferation and differentiation. Furthermore, NSC-laden PU2 hydrogels injected into the zebrafish
embryo neural injury model could rescue the function of impaired nervous system, meaning that the
function of adult zebrafish with traumatic brain injury was rescued after implantation of the 3D-printed
NSC-laden PU2 constructs [95]. Hydrogels based on methacrylated hyaluronic acid (HAMA) and
methacrylated poly[N-(2-hydroxypropyl)methacrylamide mono/dilactate] (pHPMAlac)/polyethylene
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glycol (PEG) triblock copolymers, with optimized bioactivity, mechanical and thermoresponsive
properties, embedded chondrocytes and enhanced printability were recently reported to optimize
cartilage-like tissue formation. Moreover, mechanical reinforcement was achieved co-printing this with
polycaprolactone (PCL). Their results show that HAMA concentrations have a dose-dependent effect
on the cartilage matrix production by chondrocytes. HAMA concentrations (0.25%–0.5%) increased
cartilage-like matrix production compared to HAMA-free hydrogels, while HAMA concentrations
(1%) induced undesirable fibrocartilage production. In parallel, the increase in HAMA concentration
correlates well with increase in the material stiffness. These results suggest an optimal hydrogel
composition of 19.5% pHPMA-lac-PEG with 0.5% HAMA. This formulation increased cartilage
matrix production, limited fibrocartilage formation, and possessed a medium/high Young’s modulus.
Moreover, it is adequate for the 3D printing applications. Hydrogel/PCL co-printing enabled the
generation of complex 3D constructs with mechanical stiffness in the range of native cartilage. However,
the final construct properties are influenced by the coprinting procedure, highlighting the crucial role
of the print settings [96].

Bone tissue engineering requires three main constituents: osteogenic factors, osteoprogenitor cells,
and osteoinductive/osteoconductive scaffolds. Osteogenic progenitors’ cells are derived from
multipotent mesenchymal stem cells (MSCs), which can be obtained from various tissues,
including adipose tissue. A citrate-based thermoresponsive hydrogel (PPCNg) and added graphene
oxide, obtaining an injectable thermoresponsive hydrogel (GO-P). They demonstrated that cells survive
and proliferate in the thermoresponsive hybrid material. In addition, their hybrid material induces
alkaline phosphatase activity, BMP9-induced expression of osteogenic regulators and bone markers,
and VEGF in MSCs. Moreover, in vivo analysis suggests that BMP9-transduced MSCs entrapped in
the GO-P hydrogel form highly vascularized and mineralized trabecular bone (Figure 6). All together,
these results highlight the potentialities for bone regeneration of the GO-P hydrogel as a novel injectable
scaffold with osteoinductive and osteoconductive properties [73].Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 13 of 42 
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Figure 6. Osteoinductive and osteoconductive activities of the GO-P hybrid scaffold in vitro. (A) AdGFP
or AdBMP9-infected iMADs were mixed with PPCNg (a) or GO-P (b) and examined at 48 h after
infection under bright field (BF) or GFP fluorescence microscope (GFP). Representative images are
shown. (B,C) ALP activity analysis. AdGFP or AdBMP9-transduced iMADs were mixed with PPCNg
or GO-P and seeded in 24-well plates. ALP staining was carried out on day 5 (B), while quantitative ALP
assay was conducted at 3, 5, and 7 days after infection (C). All assays were done in triplicate. * p < 0.05
and ** p < 0.01 when compared to respective GFP groups. Reproduced from [73]. Copyright© 2018
American Chemical Society.
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Poly(N-vinyl caprolactam) (PVCL) is a biocompatible polymer employed in hydrogels production.
Although, PVCL hydrogels are usually non-porous structures with poor mechanical properties.
Thus, different cross-linkers are added with consequences in the toxicity. An alternative to improve
the mechanical properties is the production of nanocomposites. In this sense, a biocompatible
thermoresponsive poly(N-vinyl caprolactam)/clay nanocomposite (PVCL-Clay) hydrogel with
improved mechanical properties was developed. Moreover, a macroporous structure was achieved
introducing emulsions with N-vinyl caprolactam (VCL) monomer as templates and clay nanosheets as
stabilizers. The 3D PVCL nanocomposite was cross-linked by the clay nanosheets. The nanocomposite
exhibits improved mechanical properties in comparison to PVCL hydrogels cross-linked by
N,N′-methylene diacrylamide. The prepared PVCL-Clay nanocomposite possesses thermoresponsive
properties with a phase transition temperature of 35 ◦C and allows cell culture [97].

As highlighted, the applications and materials used to create thermoresponsive biomaterials are
extremely wide and this section shows some of the wide spectrum of different techniques available.
Table 2 summarizes key examples of thermoresponsive materials.

Table 2. List of representative articles employing thermoresponsive materials.

Stimulus Material Drug Reference

Temperature Biodegradable citrate-based,
poly(polyethyleneglycol
citrate-co-N-isopropylacrylamide) (PPCN) mixed
with gelatin (PPCNG)

BMP9 (growth
differentiation factor)

[78]

1-ethyl-3-(3-dimethyl-aminopropyl)-1-carbodiimide
hydrochloride and N-hydroxysuccinimide

Doxorubicin (DOX) [79]

Nanoparticles based on gelatin, poly(lactide) and
1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine
(DPPE) (gelatin-co-PLA-DPPE)

Doxorubicin (DOX) [80]

Chitosan/β-glycerophosphate Venlafaxine
hydrochloride

[81]

Chitosan/collagen/β-glycerophosphate [82]
Chitosan/β-glycerophosphate/hydroxyapatite [83]
Methyl cellulose [84]
Methyl cellulose and Collagen [85]
Hydroxypropylmethyl cellulose associated with
chondroitin-6-sulphate sodium

[86]

Polypeptides (ELP) [87]
poly(N-alkyl substituted acrylamide) PNIPPAm Doxorubicin (DOX) [88]
PNIPPAm with methacrylated hyaluronan [89]
PEG and PNIPPAm DNA [90]
Hyaluronic acid-g-poly(N-isopropylacrylamide)
and PNIPAAm (AHA-g-PNIPAAm)

[91]

Chitosan (CS) and poly(ethylene
glycol)-poly(N-isopropylacrylamide)
(PEGPNIPAAm)

Mesenchymal stem cells
(MSCs)

[72]

Polyisocyanopeptide (PIC) [93,94]
Polyurethane dispersion (PU2) Neural stem cells (NSCs) [95]
Methacrylated hyaluronic acid (HAMA),
methacrylated
poly[N-(2-hydroxypropyl)methacrylamide
mono/dilactate] (pHPMAlac)/polyethylene glycol
(PEG) and polycaprolactone (PCL)

[96]

Poly(polyethyleneglycol
citrate-co-N-isopropylacrylamide) (PPCN) mixed
with gelatin (PPCNG) and Graphene oxide

MSCs with BMP9 [73]

Poly(N-vinyl caprolactam) (PVCL) with Clay
nanocomposite

[97]
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4. Light-Responsive Materials

The strategy of constructing light-responsive smart biomaterials is very attractive to fabricate
complex scaffolds for controlling cellular behavior for functional tissue regeneration and stimulating
the release of encapsulated compounds [40,98–100]. The light stimulus offers some advantages over
other stimuli, because it can be imposed instantly and delivered in exact amounts with high precision,
providing spatial and temporal control with less invasive techniques [101,102].

Light is an excellent trigger as its intensity and wavelength can be remotely and accurately
controlled, quickly switched, and easily focused into specific areas with a resolution of 1 µm.
Different wavelengths from UV to NIR have been employed as stimuli. UV light is widely employed in
stimuli responsive materials but could be harmful and cannot penetrate deeply into tissues. In contrast,
NIR appears to be more suitable for biomedical applications, especially, because NIR is less energetic,
causes less damage to biological tissues and can penetrate deeper in the tissues. An interesting review
highlights recent biomedical applications of NIR sensitive materials [103].

The spatiotemporal tunability provided by photoreactions has been widely used in different
kinds of architecture for both engineer smart therapeutic delivery and creates dynamic cell culture
platforms that better mimic living tissues [99]. Light-responsive systems can be classified according
to the photochemical reaction involved (Figure 7) [104], photoisomerization, where light induces
structural changes; photothermal, where the absorbed photon energy is dissipated via vibrational
motion; photocleavage, in which the incident light can break covalent bonds; or photopolymerization,
where the crosslinking of a composite occurs in situ with light.

Photomediated isomerization is the reversible conformational change caused by UV and visible
light irradiation, where no chemical bonds are broken. The most commonly used moieties for
photoisomer ization reactions are based on azobenzenes [105] and spiropyrans [106]. Photoexcitation
of azobenzenes under UV light (365 nm) induces a transition from the trans to the cis form that has
been used to destabilize different drug delivery carriers such as micelles [107], dendrimers [108],
and liposomes [109]. The cis conformation disrupts the packing of these assemblies by a steric effect
and increase in polarity, a long cis lifetime is desired to extend the effect of the light stimulation favoring
the release of the encapsulated drugs. It has been shown that when an azobenzene derivative is
inserted into liposomes, the trans−cis isomerization of the azobenzene group can induce defects in
bilayers that lead to the release of the entrapped payload [110–112]. Azobenzene-glycolipids that were
embedded into HSPC/DSPG/Chol liposomes to control temporarily and quantitatively drug release by
light stimuli [112], were shown to keep the entrapped drug stable in the dark but release nearly 100%
of cargos instantaneously with UV irradiation. It is also possible to make fluidphase photosensitive
nonphospholipid liposomes formed by decyl-azobenzyl-triethylammonium and cholesterol sulfate, as a
promising approach to control multidose release by photocycling between the cis and trans azobenzene
isomers [113]. This distinct composition confers to these photosensitive nonphospholipid vesicles
some advantages over conventional phospholipid-based liposomes, like enhanced impermeability and
more chemical stability.

Apart from liposomes, micelles containing photoisomerizable moieties have also been
developed [114,115]. For example, photoresponsive micelles of polyglycerol incorporating
spiropyran [115] self-assemble into light-responsive micelles where the hydrophobic spiropyran
isomerizes to hydrophilic merocyanine upon exposure to UV irradiation, leading to the disassembly of
the micelle structures and allowing the release of the hydrophobic content. Besides, this interconversion
between the closed spiropyran form and the open merocyanine was successfully used in the building
up of a new concept of drug delivery based on smart nematic liquid crystal microspheres [116].
Spiropyran molecules bound to a specific therapeutic drug photoisomerize to merocyanine and
the combination of merocyanine-drug molecules can translocate across the liquid crystal barrier.
The unique properties of liquid crystalline materials give spiropyran doped liquid crystal vehicles
many advanced optical characteristics that provide a new approach to sophisticated delivery of active
therapeutics in a time-specific and stimuli-specific manner.
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The reversible photoisomerization behavior of the aforementioned moieties has also been applied
for engineering advanced smart biointerfaces for functional tissue regeneration. Polymers and
hydrogels have been widely used as biomaterials for the fabrication of medical devices
and tissue engineering scaffolds [117,118], as they provide biocompatibility, biodegradability,
mechanical properties, hydrophobicity, and crystallinity that are crucial to allow tissue growth.
An interesting material was developed by coating strawberry-like silica Janus particles with
spiropyran-containing polymer brushes for controlling cell capture and release by UV and visible-light
irradiation [119]. This hydrophobic coating showed high efficiency to cell capture due to the specific
interaction between the hydrophobic ring-closed of spiropyran form and cell surface fibronectin
protein [120]. After UV light irradiation, nearly 94% of captured cells were released from the coatings
because of the weak interaction merocyanine-cell fibronectin protein. In this way, the strategy of
constructing light-responsive composite coatings provides an inspiration for the design of smart
biomaterials for regenerative medicine. In a related manner, azobenzene-containing photoresponsive
materials have been used as cell culture supports, opening up new possibilities in the study of the
processes involved in the dynamic cell–material interaction and in cell-cell signaling [121–123].
Polyacrylamide hydrogels that incorporate an azobenzene molecule for the photoswitchable
manipulation of primary human mesenchymal stem cells have been extensively studied for their
potential application in tissue engineering and regenerative medicine [124]. They demonstrated the
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potential of this material as a minimally invasive method to study mechanotransduction and modulate
the behavior of mesenchymal stem cells through the alteration of substrate mechanics in response to
light stimulation.

Photothermal reactions have also been extensively used to control drug delivery and stimulate
tissue reconstruction through the interaction between a plasmonic material and light irradiation [125].
Typically, when conductive materials absorb incident photons, this energy becomes local heating
which in turn stimulates drug release. This method has been demonstrated for various light-absorbing
moieties, such as molecular dyes [126,127], metallic particles [128], and plasmon resonant gold
nanoparticles [129–131]. The most commonly reported hybrid platforms for photothermal effect induced
controllable drug delivery include colloidal gold encapsulated in liposomes [132]. Gold nanoparticles
are popular because they are inert, nontoxic, and have tailorable optical and photothermal properties
depending on their size, shape, and surface chemistry [130]. They strongly absorb photons in the
Near-Infrared Radiation (NIR) region of the spectrum that are turned into heat by the plasmonic
effect of the nanoparticles: the absorbed photons are transformed into phonons, followed by a
phonon–phonon relaxation, resulting in an increase of the temperature of the system and by conduction
to its surroundings, producing local heat [133].

Taking advantage of these photothermal properties of gold nanoparticles, Lajunen and coworkers
formulated biocompatible liposomes with star or rod shaped gold nanoparticles that showed a
controlled content release in the cell cytosol after exposure to visible and NIR light [134]. Compared to
other studies on light activated liposomes based on the UV light, the lipid formulations they used
not only represent an improvement in safety but also enable more efficient light induced drug
release. This technology is an attractive option for the treatment of pathological conditions that
benefit from specific control of location and timing of the drug release. Another approach to
light-activated drug delivery by photothermal heating triggered by near-infrared light was based
on the co-delivering of low-temperature-sensitive liposomes with multibranched gold nanoantennas
(MGNs) [129]. Co-delivering liposomes and nanoantennas has several advantages over encapsulating
the gold nanoantennas within the vesicles: it allows loading a higher amount and a broader range of
drugs into the liposomes; the size of the liposomes can be controlled; and co-delivery also enables more
nanostructures to be localized in a specific place for enhanced photothermal transduction and drug
delivery from liposomes. The synergistic therapeutic effect of mild hyperthermia (≈42 ◦C) of MGNs
with drug delivery from the liposomes here presented will facilitate targeted treatment of multiple
diseases by providing a controlled release and minimizing off-target toxicity.

Gold nanoparticles synthesized in a collagen protein hydrogel through a
biomineralization-triggered self-assembly yielded light-stimulated protein-based delivery
vehicles [135]. The incorporation of gold nanoparticles was able to bridge the collagen fibers,
avoiding the use of toxic cross-linkers and thus enhanced the hydrogel strength and stability against
higher denaturation temperature. This functional collagen-based hydrogel resulted advantageous
as an in vivo injectable material for biomedical applications because it has good biocompatibility
and biodegradability, their mechanical properties make it an ideal injectable hydrogel for tissue
engineering, and the photothermal responsive behavior is promising for alternative light-actuated
drug delivery platforms.

The photothermal stimulation strategy has also been applied to control cellular mechanisms
for the creation of new platforms with possible applications in tissue engineering. As an example,
Martino and coworkers studied the photo-modulation of Human Embryonic Kidney 293 cells grown
onto conjugated poly(3-hexylthiophene) thin film [136]. They demonstrated that NIR light absorption
by the semiconducting polymer leads to the generation of local heating of the cellular environment
that affects the electrical properties and conductance of the ion channels present in the cell membrane.
This photoexcitation of living cells mediated by polymer absorption appears as a promising tool that
can be developed into a platform for cell light-control with many biomedical applications.
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Photocleavage is another common approach that has been widely employed in light-induced drug
delivery [137]. Photoreactions that involve photocleavage occur when a covalent bond is broken by
light irradiation to facilitate the release of the encapsulate molecules [138]. In one case, drug molecules
directly attached to a carrier by photocleavable linkers are released when the linkers are cleaved
upon light irradiation. Otherwise, photoresponsive moieties are incorporated in the drug carrier and,
after the light stimuli, the groups are cleaved, and the drug carrier is broken, causing the therapeutic
content to be released. These systems usually use UV and high-energy visible light that have sufficient
energy per photon to break covalent bonds. However, these short wavelengths suffer a serious
drawback for in vivo application because they cannot penetrate deeply into most tissues due to light
scattering and absorbance by intrinsic biological chromophores. Consequently, various strategies have
been recently employed to replace UV and visible light with NIR light, which achieves greater tissue
penetration [139,140].

The most commonly used photocleavable molecule is the ortho-nitrobenzyl (o-nitrobenzyl)
moiety [141], for example, micelles based on poly(S-(o-nitrobenzyl)-L-cysteine)-b-poly(ethylene glycol)
block copolymers to drug delivery [142]. After irradiation at about 310 and 350 nm, the o-nitrobenzyl
groups were gradually photocleaved and the self-assembled micelles became smaller until they
completely cleaved, allowing the encapsulated drug released in a controlled manner by changing
the light irradiation time. This work provides an attractive strategy not only for the development of
photoresponsive polypeptide-based block copolymers but also for the fabrication of photo-stimulated
nanomedicine therapies.

The nitrobenzyl group has also been incorporated into liposomes for drug delivery [143–145]:
the hydrolysis of o-nitrobenzyl upon light irradiation results in the separation of hydrophilic and
hydrophobic groups from the amphiphilic phospholipid, causing membrane destabilization and
consequent drug release. Liposomes with photocleavable properties could be formed in situ through
the grafting of an o-nitrobenzyl-containing azide tail precursor and an alkyne-functionalized lysolipid
through the copper-catalyzed azide–alkyne cycloaddition reaction [143]. Photolysis of the included
o-nitrobenzyl group changed the molecular structure of the photolabile phospholipids, inducing an
increase of the phase transition and permeability of the lipid membrane, and subsequently provoking
disruption of the liposome structure and cargos release. This in situ liposome production method
combines the design of the precursor and click reaction to prepare photo-responsive liposomes for
drug delivery.

As light offers precise real-time spatial and temporal control, there is considerable interest
in photodegradable hydrogels as 3D carriers for cells and delivery of therapeutic molecules for
applications ranging from wound healing and tissue regeneration to disease treatment [146–148].
As a potential alternative to the previously reported nitrobenzyl-based systems, coumarin-based
photodegradable hydrogel platforms have been developed [149–151]. Coumarin derivatives provide
favorable advantages over nitrobenzyl-based linkers, such as high absorption efficiencies, fast cleavage
rates, red shift in its degradation wavelengths and affinity for multiphoton-induced reactions [152].
Coumarin moieties can be used to manipulate poly(ethylene glycol) (PEG)-based hydrogel materials at
365 and 405 nm (like nitrobenzyl groups) but also at longer wavelengths between 720 and 860 nm,
producing biologically benign byproducts upon photocleavage [149]. Moreover, a short photocage
bromohydroxycoumarin crosslinker was used to create light-degradable hydrogels and nanogels [150].
They have shown that the coumarin-based crosslinker breaks by intramolecular cyclization in response
to UV and NIR light, enabling rapid degradation of polyacrylamide gels and releasing of small payloads
such as iron oxide nanoparticles, a model protein (BSA) and murine mesenchymal stem cells. All of
this new versatile chemistry of hydrogels is promising for future tissue engineering studies focused
on spatiotemporal patterning of cellular microenvironments, as well as for transport of bioactive
molecules in living systems and cell delivery implants for regenerative medicine.

Fabrication of hydrogels and polymers in situ is also attractive for tissue engineering
because this allows to form complex shapes that adhere and conform to tissue structures [153].
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One advantageous strategy that enables in situ formation of crosslinked polymers and hydrogels is
the photopolymerization [117,118]. Photopolymerization allows the initiation and propagation
of polymerization of networks in situ, creating covalently crosslinked hydrogels, through the
exposure of a photosensitive system composed of unsaturated prepolymers, photoinitiators,
and other compounds such as cells and therapeutic molecules, to UV or visible light (Figure 8).
The photopolymerization technique has several advantages over conventional polymerization
techniques. Firstly, photopolymerization provides tailored temporal and spatial control over the
gelation process, occurs at fast curing rates at room or physiological temperature and is a non-invasive
method. Moreover, it can be achieved within minutes employing cytocompatible photoinitiators
under biocompatible reaction conditions [154,155]. This rapid process provides facile control over
the spatiotemporal formation of the gel at relevant length scales, which is important not only to
induce the hydrogel crosslinking, but also to introduce specific biochemical functionalities in 3D
environments [156].
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Photopolymerization has been applied to develop a biosynthetic soft tissue replacement composed
of PEG and hyaluronic acid (HA) that can be injected and photocrosslinked in situ with transdermal
light exposure [157], thereby enabling soft tissue reconstruction by implantation into the damaged site,
manipulation into a desired shape, and then crosslinking in situ with light. For this, the authors designed
an array of light-emitting diodes that could penetrate up to 4 mm of human skin without any painful
side effects. The implanted photocrosslinked PEG-HA in rats presented a dose-dependent relationship
with PEG concentration and were able to maintain near their original volume for up to 491 days.
The polymer was also tested in humans to confirm the feasibility of the transdermal photocrosslinking
approach for implantation in soft tissues of the abdomen. Although an inflammatory response was
observed surrounding the materials, this new photocrosslinkable biosynthetic polymer and transdermal
crosslinking method is an interesting paradigm for soft tissue contouring and reconstruction.

Some other photocrosslinked hydrogels apart from being suitable for tissue regeneration, are also
promising for drug delivery, for example, photocrosslinkable hyperbranched polyesters (HPE)
hydrogels with sustained drug release characteristics for cellular therapies [158]. The encapsulation
of dexamethasone acetate into the HPE and functionalization with acrylate moieties resulted in the
formation of hydrogels with a highly porous interconnected structure and mechanically tough network.
The feasibility of using these HPE networks for cellular therapies was then investigated by evaluating
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drug release, cell adhesion, spreading, and proliferation on hydrogel surface. They demonstrated that
HPE hydrogels had a sustained release of entrapped dexamethasone acetate over a period of eight
days and the highest crosslinked HPE hydrogels had higher cell adhesion, spreading, and proliferation
compared to soft and compliant HPE hydrogels. They further showed that cells readily adhered and
proliferated on hydrogel sheets to form a uniform cell layer that covered the entire hydrogel surface,
demonstrating their potential use for cellular therapies.

Many promising advances in the development of light-responsive biomaterials have been
highlighted. The use of externally manipulated light offers excellent spatial and temporal control for
drug delivery and engineering 3D microenvironments for tissue regeneration. In photo-controlled
technologies, a variety of light-induced reactions, such as photopolymerization, photoisomerization,
and photodegradation, are employed to promote the release of encapsulated drugs and synthesize
or introduce changes in hydrogel networks. These technologies are very attractive to manipulate
biomaterials features in real time providing further control over cell functions, tissue restoration,
and delivery of therapeutics. Table 3 summarizes key examples of light responsive materials.

Table 3. List of representative articles employing light responsive materials.

Stimulus Material Drug Reference

Light Azobenzene-glycolipid into liposome [112]
Liposomes formed by
decyl-azobenzyl-triethylammonium and
cholesterol sulfate

Hydrophobic content [113]

Micelles of polyglycerol using spiropyran Hydrophobic content [115,116]
Polyacrylamide-based hydrogel with azobenzene Mesenchymal stem cells [124]
Colloidal gold encapsulated in liposomes [132]
Liposomes with multibranched gold nanoantennas [129]
poly(3-hexylthiophene) [136]
Micelle from
poly(S-(o-nitrobenzyl)-L-cysteine)-b-poly(ethylene
glycol) block copolymers

[142]

The nitrobenzyl group incorporated into liposomes [143,145]
Poly(ethylene glycol) (PEG)-based hydrogel [149]
PEG and hyaluronic acid (HA) [157]
Polyesters hydrogels [158]

5. Redox-Responsive Materials and Electroactive Polymers

Redox-responsive polymeric materials can respond to biological stimuli generated by the presence
of oxidants or reductants in the media and changes in the redox conditions or by the application
of an external voltage. The chemical groups which are involved in their redox responsive ability
include disulfide bonds, organometallic compounds, viologens, or tetrathiafulvalene. Their biomedical
applications in the design of artificial muscles and self-healing materials as well as their delivery
properties, mainly for the treatment of cancer, will be discussed in the following section. The application
of electroactive polymers with tissue regeneration purposes will also be discussed.

5.1. Polymers Containing Disulfide Bonds

This group of polymers is mainly utilized to controlled drug delivery in tumor cells making
it possible to control the destiny of the drug which remains inactive in systemic circulation and
releases in response to a redox stimulus at the desired sites. For the stimuli responsive controlled
delivery, it is considered that the intracellular concentration of reduced substances, mainly glutathione,
is approximately 10 mM, but it is only 1−10 µM in fluids outside cells, such as plasma. Glutathione in
the cytoplasm takes part in the oxidation of the thiol groups of proteins. It is a tripeptide with a central
cysteine which can be in a reduced (GSH) or oxidized form where it forms a dimer with a cysteine
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from another glutathione molecule (denoted GSSG) [159]. In addition, the intracellular glutathione
concentration is altered in cancer cells compared to normal tissues [160,161].

For this reason, the synthesis of polymers carrying disulfide bonds is utilized as a strategy
for the delivery of antitumoral drugs. For example, a glycolipid-like copolymer based on chitosan
oligosaccharide and stearic acid was obtained where the authors incorporated the drug doxorubicin
(DOX) attached to the copolymer via a disulfide linkage. These micelles were able to respond to the
reductive intracellular microenvironment of tumor cells releasing the drug due to cleavage of disulfide
linkers [162]. Other studies performed with the same chemotherapeutic agent used a biocompatible
and biodegradable redox sensitive polymersome nanosystem which was based on a polyethylene glycol
modified polycaprolactone copolymer with a disulfide linkage in between [163]. Polymersomes are
formed through the self-assembling of amphiphilic polymers in aqueous media. They possess a
hydrophobic membrane with an aqueous center. This structure allows the incorporation and transport
of both hydrophilic and hydrophobic therapeutic agents. Moreover, the membrane can be grafted with
different ligands for targeted drug delivery and to introduce stimuli responsive properties. In this way,
it is possible to develop polymerosomes that respond to chemical, physical, and biological stimuli [164].

In some materials, it is not necessary to introduce chemical modifications that provide the disulfide
bridges, but because of the very nature of the polymers, they can be present in the structure and
available for the redox stimuli. This is the case of keratin which contains abundant polar side chains
made of disulfide, carboxyl, and amino groups. Keratin nanoparticles exhibited a pH/reduction
dual-responsive characteristic as well as charge reversibility under a tumor microenvironment of low
pH and high GSH levels [165]. Similarly, keratin grafted poly(N-(2-hydroxypropyl)methacrylamide)
copolymer micelles were synthesized for the delivery of DOX making use of the thiol groups of keratin
and the amphiphilicity of the graft copolymers to achieve a controlled release of the drug sensitive to
GSH levels [166].

While the literature on the use of disulphide bond-carrying compounds in the delivery of
drugs for cancer treatment is vast [167,168], less information is available about their application for
regenerative medicine.

5.2. Ferrocene Containing Polymers

Other polymers contain ferrocene as the key component of their redox responsiveness. These are a
group of metal-containing polymers with high chemical stability which in principle can be obtained in
two ways: incorporating covalently bound ferrocene into the polymer in the main chain (backbone) or
by attachment of ferrocenyl units to pendant groups adjacent to the polymer backbone. The main aspects
of their synthesis and structure can be found in recent reviews for both types of polymers [169,170].
As we mentioned before, herein we will focus on their application as redox-sensitive biomaterials or
nanosystems intended for drug delivery.

Self-healing materials have gained increased importance in the development of biomaterials.
The self-healing process is possible thanks to the introduction of reversible covalent bonds
or non-covalent interactions such as hydrogen bonds, hydrophobic, ionic, or host–guest
interactions [171,172]. Hydrogels incorporating covalent bonds tend to suffer less degradation and
longer function times than hydrogels obtained with non-covalent interactions. The host–guest
interaction has been described for the obtaining of self-healing materials which have the unique
property of self-repair after physical, chemical, or mechanical damage to recover their original
properties. Poly(acrylic acid) modified with cyclodextrins (pAA-CDs) was used as a host polymer and
pAA with ferrocene (pAA-Fc) was used as a guest polymer with the aim to obtain this kind of material.
The authors found that adding NaClO to the hydrogel decreased its viscosity while continuous addition
of GSH to the sol recovered the elasticity, reverting it back to the hydrogel state due to the high affinity
of β-CD for the reduced state of the Fc and the low affinity express for the oxidized state of the Fc group
(Fc+). In the same way, the electrochemical oxidation of the pAA-6βCD/pAA-Fc hydrogel decreased
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the elasticity. They also observed the self-healing properties of the materials due to the Fc and β-CD
moieties, which form an inclusion complex on the cut surfaces of hydrogels [173].

Other materials which do not contain ferrocene in their composition have also been explored
as self-healing polymers. For example, hydrogels composed of poly (1-vinyl-2-pyrrolidinone)
modified with O-carboxymethyl chitosan and acrylamide, which would have potential applications
in regenerative medicine and wound dressing as they observed that two gel pieces of this material
could be merged into an integrated one through hydrogen bonding between amides, hydroxyls,
and carboxylic groups. Moreover, they focused on accelerating the healing rate of the hydrogels based
on the introduction of electrospun cross-linked nanofiber networks containing redox initiators as the
healing layer and observed that this layer initiated cross-linking reactions which further form more
hydrogel networks [174].

In the field of drug delivery, ferrocene complexes with cyclodextrins have been studied.
The hydrophobic cavity of cyclodextrins (CD) is known to form relatively stable inclusion complexes
with hydrophobic and size compatible molecules like ferrocene. This methodology has been used by
some authors to develop nanocapsules of ferrocene/β-CD-grafted polymers demonstrating that their
permeability could be regulated by applying an electrochemical stimulus that changed the stability of
the host–guest pairs, thus changing the capsule wall structure [175].

5.3. Viologens

Polymers which can be modified in a reversible way by oxidation/reduction reactions of the
material can be used for the design of artificial muscles. In this case, the change in the redox state of
the polymer components consequently produces a reversible change in its volume. The reversible
volume change is similar to the one that takes place in the natural muscles during the contraction/

relaxation process and can be translated in controllable movements.
Viologens are dialkyl-4,4′- and 2,2′-bipyridiniums compounds which have an electroactive

behavior and they have been used in the synthesis of artificial muscles. In their work, the driving
force for network reorganization was the reduced electrostatic repulsion and exclusion of water and
counteranions from the material after chemical reduction of the viologen subunits and formation of
radical cations. They found that the degree and rate of actuation was markedly improved as more
viologen subunits were present and that the process was reversible with a reduction of 9% of the
original volume after a few hours [176]. The synthesis of such materials is shown in Figure 9.

As it has been previously described for ferrocene displaying materials, the presence
of viologen-cyclodextrin complexes is a very useful strategy for host–guest interactions.
Inclusion complexes of β-CD and methyl viologen (MV) as a stimuli-responsive supramolecular
bond for the cross-linking of acrylamide gel networks has been studied. They confirmed that the
association and dissociation between CD and MV in the polymer chains occurred in response to a
redox reaction and that affected the macroscopic properties of the gel, such as viscosity. Furthermore,
they compared the properties of single-network, where both CD and MV were present in the same
polymeric network, or double-network gels, where CD and MV were included and associated in
different polymeric networks [177].
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reaction vessel. (b) The synthetic cycle begins (green box) with a BIPY end-capped HEG 
(HEG-BIPY2+), and the oligomer is grown iteratively, with only intermittent precipitations in 
MeCN:PhMe, followed by centrifugation in order to isolate each product. At any point in the cycle, 
the BIPY end-capped precursor can be removed and (ii) functionalized with terminal azide groups 
(red box) through the excessive addition (35 equiv, MeCN, 130 °C, 20 h) of a tosylated diethylene 
glycol possessing one azide at its terminus (Tos-DEG-N3). (c) Synthesis of the click-based hydrogel 
involves 2 equiv of bis-azide-terminated linkers, where 95 mol % of the 2 equiv is composed of 
polyethylene glycol (PEG-N3) and 5 mol % consists of the oligoviologen (nV(2n) +-N3), to 1 equiv of 
the tetra-alkyne cross-linker (TAXL). Published in [176]. Copyright© 2017 American Chemical 
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Figure 9. (a) An iterative synthesis was used to prepare each even-numbered (n = 2, 4, 6, 8, and 10)
oligoviologen by (i) alternating between the excessive addition (20 equiv) of tosyl end-capped
hexaethylene glycol (HEG-Tos) and 4,4′-bipyridine (BIPY) in MeCN at 130 ◦C for 12–16 h in a closed
reaction vessel. (b) The synthetic cycle begins (green box) with a BIPY end-capped HEG (HEG-BIPY2+),
and the oligomer is grown iteratively, with only intermittent precipitations in MeCN:PhMe, followed by
centrifugation in order to isolate each product. At any point in the cycle, the BIPY end-capped
precursor can be removed and (ii) functionalized with terminal azide groups (red box) through the
excessive addition (35 equiv, MeCN, 130 ◦C, 20 h) of a tosylated diethylene glycol possessing one
azide at its terminus (Tos-DEG-N3). (c) Synthesis of the click-based hydrogel involves 2 equiv of
bis-azide-terminated linkers, where 95 mol % of the 2 equiv is composed of polyethylene glycol
(PEG-N3) and 5 mol % consists of the oligoviologen (nV(2n) +-N3), to 1 equiv of the tetra-alkyne
cross-linker (TAXL). Published in [176]. Copyright© 2017 American Chemical Society.

5.4. Tetrathiafulvalene

Tetrathiafulvalene (TTF) and its derivatives have been investigated as conducting materials
which are excellent π-electron donors used in the design of stimuli responsive materials. TTFs can
be oxidized reversibly under their exposure to an appropriate oxidant and/or reducing agent.
Three oxidization states are present in TTFs, the neutral TTF (TTF0), which exists under ambient
conditions, the cation-radical (TTF+•), and the dication (TTF2+) state that are prepared by chemical or
electrochemical oxidation of the neutral compounds [178].
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TTFs are commonly used as molecular redox switches with the aim to generate and control
molecular motion. A recent review about artificial molecular machines, which are intended to convert
energy into directional mechanical motion on the nanoscale, describes the use of TTFs [179]. TTF has
also been used in the development of drug delivery vehicles. The synthesis of a series of PAMAM
dendrimers with TTF groups covalently modified at the periphery was studied. Upon redox stimulus,
the terminal TTF groups transform to the oxidized form TTF+•, which can further interact with
cucurbiturils, macrocyclic molecules that behave like molecular capsules, forming inclusion complexes
at the periphery of dendrimers. The formation of these complexes after chemical oxidation loosens the
structure of the nanospheres and initiates the release of cargo [180]. Amphiphilic polymers featuring a
redox active TTF hydrophobic unit and a temperature-sensitive hydrophilic poly(NIPAM) shell which
self-associated to form micelles. These micelles were therefore sensitive to both temperature and
chemical oxidation of the TTF moiety to a more hydrophilic dicationic state [181].

5.5. Electroactive Polymers for Tissue Regeneration

Electroactive hydrogels are mostly used in electroactive tissues like nerves, cardiac tissue, or
skeletal muscles. They respond to changes in the electrical field to which they are exposed and are
expected to support the contraction-relaxation episodes of these kinds of tissues which could cause
hydrogel disruption. They are promising materials in the biomedical field to regenerate damaged
tissues as the employment of electrical signals, which are the main physical stimuli present in the
human body, can modulate cell proliferation and differentiation [25,182] and potentially also deliver
drugs in a controlled way [183,184].

Conductive materials have been used mainly as a support for cells and their application in tissue
engineering has been extensively studied [185–187]. However, the objective of this section is to describe
their application in stimuli-responsive biomaterials and not only their use in a passive way as scaffolds.
They are electrically conductive with chemical structures characterized by alternating single and
double bonds with overlapping pi-bonds which allow the free movement of electrons to give them a
conductive behavior. The electronic jumps between chains are facilitated thanks to the presence of
dopant agents.

Polypyrrole (PPy) is a popular choice of conductive polymer for biomedical purposes as it
shows excellent biocompatibility and can be electrochemically modulated. For example, it has been
investigated as an in vitro system to study the presentation of cytokines to hematopoietic cells. In this
work, interleukin IL-3, known to affect hematopoiesis, has been immobilized on polypyrrole films to
study its effect on a bone marrow-derived progenitor cell line and a difference in cell viability was
observed between the oxidized (0.2 V, oxidation) or reduced (0.7 V, reduction) states. It was believed
that the conformational changes between a collapsed or fully extended protein structure altered the
receptor/IL-3 interaction and were responsible for the differences in cell viability after application of an
external voltage [188].

Apart from PPy, the other two most investigated conductive polymers are polyaniline (PANI)
and poly (3,4-ethylenedioxythiophene) (PEDOT) [189]. PEDOT, as well as other conductive polymers,
was used in several works in combination with electrical stimulation to enhance cell alignment
and differentiation. It has been reported the design of an electrical stimulation device using
PEDOT:polystyrene-sulfonate (PSS) which was inkjet printed onto a gelatin substrate to guide
myotubes alignment and enhance their differentiation. The authors suggested that having a higher
content of conductive polymer offered a lower resistance to the passage of electrical current and
therefore the risk of overheating, which could damage the cells, was lower [190]. Furthermore,
PEDOT:PSS was used to elongate human neural stem cells through the application of pulsed current
impacting on their differentiation towards neurons and contributing to longer neurites [191].

Piezoelectric polymers are a class of materials that when are subjected to mechanical stress acquire
an electrical polarization evidenced by a difference of potential and electrical charges on their surface.
The inverse phenomenon can also be observed where the material can be deformed under the action of
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an electric field. Among these polymers polyvinylidene fluoride (PVDF) has been widely used for
tissue engineering, for instance, in the treatment of neurodegenerative diseases. As an alternative to
conventional treatments with neurotrophins, Hoop and co-workers have developed a PVDF membrane
to promote neuronal differentiation after stimulation with ultrasound as a non-invasive, spatially
precise, and long-term therapy. They observed a differentiation efficiency comparable to conventional
in vitro differentiation protocols using the nerve growth factor with a neurite outgrowth uniform
in all directions, probably because the piezoelectric stimulation could activate calcium channels in
cells, resulting in an increased cellular Ca2+ content and thus initiating the adenylyl cyclase (AC)
pathway [192]. Ultrasound was also applied to modulate the drug delivery of an anti-restenotic
drug from piezoelectric materials. In this case, the authors fabricated an ultra-thin polymeric film
for the local treatment of restenosis composed of a poly (lactic acid) supporting membrane on which
many polyelectrolyte bilayers containing the drug were deposited. They also added barium titanate
nanoparticles with piezoelectric properties in the film and investigated the influence of ultrasound
stimuli on the drug release [193].

Moreover, electroactive actuators show reversible mechanical deformation in response to electric
fields and have received great attention in the area of robotics, microsensors, and artificial muscles.
Particularly, ionic polymer actuators were formed by a layer of polymer electrolyte sandwiched
in between electrodes and the electromechanical motion in these ionic polymer actuators occurred
through the migration of ions towards oppositely charged electrodes upon the application of an electric
field. Actuators consisting of single-walled carbon nanotube (SWCNT) electrodes and self-assembled
sulphonated block copolymers with the incorporation of ionic liquids. They focused on the development
of low-voltage-driven actuators that could be operable over a long period of time with a small battery
and they observed that these actuators exhibited much better performance than previously reported
ones in terms of long-term durability, large strains, and fast switching response [194] (Figure 10).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 26 of 42 
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Figure 10. Schematic illustration of the internal structure of the actuator as a result of actuation.
The creation of dimensional gradients within the polymer layer was responsible for the fast and efficient
electromechanical deformation of the actuator. Reprinted with permission from [194]. Copyright (2013)
Nature Publishing Group.
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Cardiac patches have also been fabricated by seeding neonatal rat cardiomyocytes onto carbon
nanotube (CNT)-gelatin methacrylate (GelMA) hydrogels. In this case, CNT-GelMA films showed
strong spontaneous and stimulated synchronous beating and the pumping frequency was precisely
controllable by applying an external electric field. These films showed three times higher spontaneous
synchronous beating rates and 85% lower excitation threshold compared to those cultured on pristine
GelMA hydrogels and also enhanced mechanical properties [195].

In conclusion, these smart polymers, in response to an appropriate chemical or electrochemical
stimulus can show different answers like swelling/contraction, bending, change of state, or conductivity
which make them excellent candidates in engineering nanomedicines and for the development of
biomaterials intended to repair or substitute a damage tissue or organ. Table 4 summarizes key
examples of redox-responsive materials.

Table 4. List of representative articles employing redox-responsive materials.

Stimulus Material Drug Reference

Redox Glycolipid, chitosan, and stearic acid Doxorubicin (DOX) [162]
Polyethylene glycol and polycaprolactone Doxorubicin (DOX) [163]
Keratin nanoparticles [165]
Keratin grafted poly(N-(2-hydroxypropy
l)methacrylamide)

Doxorubicin (DOX) [166]

Poly(acrylic acid) modified with cyclodextrins (pAA-CDs) [173]
pAA with ferrocene (pAA-Fc)
Poly (1-vinyl-2-pyrrolidinone) modified with
O-carboxymethyl chitosan and acrylamide

[174]

Ferrocene complexes with cyclodextrins [175]
Oligoviologen [176]
Viologen-cyclodextrin complexes [177]
Polyamidoamine (PAMAM) dendrimers with
tetrathiafulvalene (TTF)

[180]

TTF with poly(NIPAM) [181]
Polypyrrole (PPy) Interleukin IL-3 [188]
Poly (3,4-ethylenedioxythiophene) (PEDOT) and
polystyrene-sulfonate (PSS)

[190,191]

Polymers polyvinylidene fluoride (PVDF) [192]
Poly (lactic acid) and barium titanate nanoparticles [193]
Carbon nanotube (SWCNT) [194]
Carbon nanotube (CNT)-gelatin methacrylate (GelMA) [195]

6. Magnetic Responsive Nanomaterials

Magnetic responsive nanomaterials and particularly magnetic nanoparticles (MNPs) have
interesting features for applications in various fields as a result of many properties, such as high
specific surface area, chemical stability, low intraparticle diffusion rate, high loading capacity,
and superparamagnetism [196,197]. In the biomedical field, and specifically in tissue regeneration,
these kinds of nanoparticles are useful due to their biocompatibility and long-term stability [198].
Furthermore, they have many advantages in terms of penetration and invasiveness since many
materials, especially biological tissues, have a lower absorption capacity for magnetic fields than for
other types of stimuli, like electric fields, making it possible to remotely activate an event at a relevant
distance from the magnet [199].

Magnetic-responsive nanomaterials can be grouped into four types: oxides, coated oxides, metallic,
and coated metal materials [200]. The first group includes iron oxides or ferrite nanoparticles, ordered in
a crystalline state of maghemite or magnetite, which are the most explored. If their size becomes
below 128 nm, they change from having ferro or ferrimagnetic properties to a superparamagnetic state,
preventing self-agglomeration. This subclass of particles is known as superparamagnetic iron oxide
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nanoparticles (SPION) and within them, a subclassification also exists in which if their size is less than
50 nm, they are called ultrasmall superparamagnetic iron oxide nanoparticles (USPION) [201].

Since ferrite surfaces are relatively inert, it is necessary to improve its reactivity using a coating,
generally composed of silica. This surface coating implies several covalent modifications with different
functional groups, using organo-silane molecules. Recently, it was demonstrated that magnetite
nanoparticles (Fe3O4-MNPs) modified with silica by TEOS hydrolysis showed the same spherical
distribution and structure than MNPS. Even so, the net saturation magnetization increased as the
amount of silica was increased on the magnetite nanoparticles [202–204].

In the case of magnetic metallic nanoparticles, these ones have a higher magnetic moment than
oxides. However, they are pyrophoric (which is the capability of self-ignition at temperatures above
55 ◦C), and reactive to oxidizing agents, making it difficult for handling [200]. In this way, to prevent
the disadvantages of metallic nanoparticles, their surface can be passivized, making a protective layer
through different ways, as for example using surfactant agents, polymers, precious metals, or making
a gentle oxidation [196].

Top-down and bottom-up approaches are used routinely to synthesize monodisperse magnetic
nanoparticles with excellent stability with shape-controllable sizes ranging from a few up to tens
of nanometers [205,206]. The methods included in those approaches can be classified in three
groups: physical, chemical, and biological. Among them, chemical methods, which correspond to
a bottom-up approach, can be conducted in gas and wet phases. Sol-gel, co-precipitation method,
hydrothermal synthesis, thermal decomposition, microemulsion, techniques involving the use of high
intensity ultrasound (denominated sonolysis), solvothermal, and electrochemical are the most used
and cited methods, and correspond to wet phase methods [207].

MNPs can be easily functionalized to be used in several biomedical applications [208–212].
A desired property in biocompatible MNPs is a higher hydrophilicity, thus increasing water
solubility [196]. Before surface functionalization, MNPs must be stabilized in nonaqueous solvents
using a hydrocarbon layer, and then, such functionalization can be conducted using different methods.
The most common ones are ligand addition, ligand exchange, and hydrophilic silica coating. In the
ligand addition method, an amphiphilic molecule, that owns a hydrophilic and a hydrophobic group,
is used in order to increase the MNPs water solubility [213]. The ligand exchange way is achieved
through the use of a new type of coordinating group that links tightly to the surface thanks to
chemical bonding and replaces the hydrocarbon layer [214]. Furthermore, this coordinating group
has on the other side a polar group, which allows their solubilization in water (Figure 11). The third
method, the aforementioned silica coating, is the most adequate to obtain a biocompatible, stable,
and hydrophilic property [215]. To achieve this modification, the most common approach is via sol-gel
process, including tetraethyl orthosilicate (TEOS) hydrolysis [203].

As previously mentioned, MNPs have been used in several fields [216]. Some of those fields include
small molecule drug delivery, hyperthermia therapy, gene therapy, cell tracking, and particularly
in tissue engineering [217]. Especially, in bone regeneration, the use of MNPs alone or combined
with a magnetic field is particularly beneficial, because three key factors, which are stem cells,
growth factors, and scaffolds are improved [218,219]. For example, peptide-MNP conjugates for
remote signaling mechano-activation. They demonstrated that remote activation of signaling pathways
in mesenchymal cell progenitors using peptide conjugated MNP can regulate remote controlled
bone tissue formation [220]. Iron oxide MNPs have also been combined with different materials
to potentially be used as a magnetically stimulated system in tissue engineering applications [221].
Combination of MNPs with polysaccharide polymers allows formation of magnetically responsive
hydrogels to improve cell proliferation and adhesion in an external magnetic field. This is promising to
be used in multiple tissues, for example skin, cartilage, muscle, and connective tissue [222]. In another
work, an enzyme-MNP complex was developed to control cell proliferation by an external magnetic
field [223]. This switching cell growth system can be potentially used to control cell responses and
develop interesting biomaterials for tissue regeneration.
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Another important application of superparamagnetic MNPs is to thermally conduct the ablation
of pathological cells, or to induce the thermal release of drugs within composites materials, due to
the capacity of heating up when they are in proximity of an alternating magnetic field [199,224,225].
Furthermore, some MNPs, in particular SPIONs, are widely used in magnetic resonance imaging (MRI)
as contrast agents [216,226,227] or for the treatment of infectious diseases, due their intrinsic activity as
antimicrobial agents [228].

The development of magnetic nanoparticle-based therapies for various biomedical applications
has been discussed. Although magnetic nanoparticles have been widely used in drug delivery and
hyperthermia treatments, recent applications of magnetic nanoparticles have demonstrated their
promise towards decreasing implant infection and increasing tissue growth. Table 5 summarizes key
examples of magnetic responsive materials.

Table 5. List of representative articles employing magnetic responsive materials.

Stimulus Material Drug Reference

Magnetic Peptide-MNPs (magnetic nanoparticles) [220]
Iron oxide MNPs [221]
MNPs with polysaccharide-based polymers [222]
Enzyme-MNP complex [223]
Iron oxide nanoparticles (USPION) [216,226,227]

7. Conclusions

Stimuli-responsive materials have a potentially significant future in drug delivery and tissue
engineering. These modern materials could deliver therapeutic agents with a controlled and sustained
manner. However, there are still several significant challenges to address to uniformly fulfill biosafety
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and efficacy requirements. Different factors such as material composition and surface modifications,
necessary to introduce the responsiveness, have been shown to be important when assessing the
biocompatibility and delivery of drugs. In parallel, the protocol employed to develop these materials
and the scalability are of paramount importance for the successful implementation of this technology.
Even though, while several different stimuli responsive materials and their associated construction
methodology are continuously being developed, the potential to reach a successful implementation
is excellent.

This review highlights some interesting examples from the literature to offer an overview of
the most common stimuli-responsive materials relevant to tissue engineering and drug delivery.
This emerging field of material science has generated considerable and increasing interest during
the past decades. In the particular field of medicinal sciences stimuli-responsive materials offer new
opportunities in the treatment of various conditions. The driving force of these and future developments
is the huge versality of the field in terms of the materials employed and the stimulus applied (i.e., redox,
pH, magnetic, temperature, light) (Figure 12). The criteria for therapeutic applications and stimuli
responsive materials properties are not easily met; however, great progress has been made toward this
end. We believe that future research will capitalize on opportunities to address the challenges of toxicity
posed by some of the components used for stimuli-responsive materials, the development of materials
with biomimetic architectural/topological and mechanical properties, and exploration of new stimuli
to deliver drugs and instruct cell behavior, perhaps also employing multi-stimuli-responsive materials.
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