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Abstract

Multi-state models for event history analysis most commonly assume the process is Markov. This

article considers tests of the Markov assumption that are applicable to general multi-state models. Two

approaches using existing methodology are considered; a simple method based on including time of entry

into each state as a covariate in Cox models for the transition intensities and a method involving detecting

a shared frailty through a stratified Commenges-Andersen test. In addition, using the principle that under

a Markov process the future rate of transitions of the process at times t > s should not be influenced

by the state occupied at time s, a new class of general tests is developed by considering summaries from

families of log-rank statistics where patients are grouped by the state occupied at varying initial time s.

An extended form of the test applicable to models that are Markov conditional on observed covariates

is also derived. The null distribution of the proposed test statistics are approximated by using wild

bootstrap sampling. The approaches are compared in simulation and applied to a dataset on sleeping

behaviour.

The most powerful test depends on the particular departure from a Markov process, although the

Cox-based method maintained good power in a wide range of scenarios. The proposed class of log-rank

statistic based tests are most useful in situations where the non-Markov behaviour does not persist, or

is not uniform in nature across patient time.

1 Introduction

Multi-state models provide a flexible framework for modelling event history data (Andersen and Keiding,

2002; Cook and Lawless, 2018). A multi-state model involves a stochastic process that can occupy one
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of a number of possible states, which may for instance represent different stages of a chronic disease. The

process is defined by the transition intensities, which govern the instantaneous risk of moving between states.

In their most general form the transition intensities can be any function of the past history of the process.

However, most commonly the process is assumed to be Markov or Markov conditional on observed covariates,

meaning that the transition intensities are a function only of the current state occupied, time and possibly

covariates, but no other part of the history. The advantage of assuming a Markov process is that, through

the Kolmogorov forward equations, the transition probabilities can be linked to the transition intensities by a

product limit relation. Non-parametric estimates of the transition probabilities can be obtained by applying

that relation to non-parametric estimates of the transition intensities, leading to the Aalen-Johansen (AJ)

estimator (Aalen and Johansen, 1978).

Recently there has been substantial interest in the development of non-parametric estimators of the

transition probabilities in multi-state models that remain valid without requiring a Markovian assumption.

Meira-Machado and others (2006); Allignol and others (2014); de Uña-Álvarez and Meira-Machado (2015)

focussed on estimators for the three state progressive illness-death model. Titman (2015) proposed a general

estimator based on constructing survival or competing risks processes. Putter and Spitoni (2018) proposed a

simpler estimator, the landmark Aalen-Johansen estimator (LMAJ), which also has slightly better efficiency.

In practice, it is not generally possible to know in advance whether the Markov assumption is appropriate

for a particular dataset. While the LMAJ may be applied, it will be less efficient and hence have a greater

mean squared error than the standard AJ estimator in cases where the Markov assumption is valid or close

to valid. Therefore, it is of practical importance to be able to test the Markov assumption.

For the progressive three-state illness-death model, Rodŕıguez-Girondo and de Uña-Álvarez (2012) have

developed local and global tests of Markovianity based upon the observed Kendall’s τ correlation between

the time to illness and time to death among patients in the illness state at a given time. Recently Chiou

and others (2018) developed tests for dependent truncation, allowing for the possibility of non-monotonic

dependence that are also applicable to the progressive illness-death model. However, for more general multi-

state models to our knowledge existing testing procedures are limited to ad hoc approaches, for instance

including a specific aspect of the history, such as the entry time of a state of interest, in a model for the

transition intensities (Kay, 1986). The stratified version of the score test of Commenges and Andersen (1995)

can also be used to detect non-Markov behaviour induced by a shared frailty term affecting all, or a subset

of the transition intensities.

The purpose of this paper is to develop methods for testing the Markov assumption that are applicable
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to general multi-state models under right-censoring, and have adequate power under a range of biologically

plausible violations of the Markov assumptions. The remainder of the paper is organized as follows: Section 2

provides general notation for the multi-state processes to be considered and outlines two existing approaches

for general tests. Section 3 proposes a general test based on families of log-rank statistics. Section 4 presents

a simulation study of the performance of the tests in a range of scenarios. Section 5 applies the tests to a

data set on sleeping behaviour. The paper concludes with a discussion.

2 Approaches to general testing

Let {Xi(t), t ≥ 0} denote the multi-state process for subject i = 1, . . . , n, where Xi(t) ∈ {1, . . . , R}. Also

let Yi(t) be the at risk indicator for the process. We assume all patients are observed from time 0. The

transition intensities between states are defined as

αlm(t;Ht) = lim
δt↓0

P (X(t+ δt) = m|X(t−) = l,Ht)
δt

,

for l 6= m ∈ {1, . . . , R}, where Ht represents the history of X(t) up to but not including time t. Note that

direct transitions between some pairs of states may not be possible, in which case αlm(t;Ht) is zero for all

times and past histories. Under a Markov assumption, the transition intensities simplify to αlm(t;Ht) =

αlm(t). Covariates can be accommodated through proportional intensities assumptions such that

αlm(t; zi) = αlm0(t) exp(βlmzi), (2.1)

where zi is a vector of explanatory variables for subject i and αlm0(t) is a baseline intensity function. The

case in which the baseline intensity functions are taken to be non-parametric functions of time is often

referred to as a Cox-Markov model (Meira-Machado and others, 2009).

In the remainder of the section, two approaches to testing of the Markov assumption for general Markov

or Cox-Markov models, using existing methodology are outlined.

2.1 Cox modelling approach

A simple to implement method of testing the Markov assumption is to include the most recent time of entry

into state l, denoted tl, as a covariate within Cox proportional hazard models for the transition intensities

out of state l, such that αlm(t;Ht) = αlm(t; tl) = αlm0(t) exp(θlmtl), for a model that otherwise has no

covariates and αlm(t;Ht, zi) = αlm(t; tl, zi) = αlm0(t) exp(θlmtl + βlmzi) for a model which is otherwise

Cox-Markov (Kay, 1986; Meira-Machado and others, 2006).
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Since αlm0(t) exp(θlmtl) can be rewritten as αlm0(t) exp(θlmt) · exp(−θlm(t− tl)), if the baseline hazard

is unspecified and θlm 6= 0, a non-homogeneous semi-Markov model arises where the transition intensities

depend multiplicatively on both patient time t and time in the current state t− tl. It is therefore reasonable

to expect that the approach will be most effective if the violation of Markovianity is of this specific form.

The Markov assumption is tested through a likelihood ratio test of the null hypothesis θlm = 0, to provide

a test specific to a given transition, or θ = 0 for a global test across all transition intensities.

Throughout this paper we only consider using time of entry into the current state when using Cox

modelling to test the Markov assumption. In principle, other summaries of the past history, such as the

first time of entry into state l, or the number of previous visits to state l, can be used in addition to, or in

place of tl, to allow direct testing of other types of departure from a Markov process. However, choosing the

appropriate summaries may be difficult without specific substantive knowledge of the process to be modelled.

2.2 Stratified Commenges-Andersen test

A non-Markov process can be induced by assuming there exist unobserved frailty terms, interpretable as

the effects of unmeasured or unmeasurable explanatory variables, which are shared across the transitions of

the multi-state model. Commenges and Andersen (1995) devised a score test of homogeneity for survival

data. While this test was originally designed to detect heterogeneity in clustered survival data, the stratified

version of the test, where in this case the different transition intensities are treated as separate strata, can

be used as a test of homogeneity and hence the Markov assumption in Markov or Cox-Markov multi-state

models. See Putter and van Houwelingen (2015) for more discussion on the role of frailties in “explaining”

non-Markovianity in multi-state models.

In constructing the score test, the transition intensities for subject i are assumed to be of the form

αlmi(t; zi) = αlm0(t) exp(σεi+βlmzi), where the εi are i.i.d. random variables with an unspecified distribution

with mean 0 and variance 1. Hence a shared multiplicative frailty model with factor exp(σεi) is assumed.

The test is then a score test of the null hypothesis σ = 0, corresponding to zero variance, versus an alternative

σ > 0. Full details of the form of the test in the context of a multi-state model are given in Section S1 of

the Supplementary Material.

The stratified version of the test is implemented within the R package frailtyEM (Balan and Putter,

2019). Note that this approach has the advantages of not requiring a frailty model to be fitted and not

requiring a specific parametric form for the frailty distribution.

The assumption of the same frailty effect on every transition intensity is often not realistic. For instance,
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we would not generally expect the same frailty effect to apply to forward direction transitions compared to

backward transitions. The problem can be alleviated to some extent if a subset of transitions, T , can be

identified for which a similar frailty effect would be expected. The test statistic would then be based only

on data from transitions in T , where the formulae above remain unchanged except summations are with

respect to l,m such that (l,m) ∈ T .

While not pursued here, in principle the set of transition intensities could be organized into several

disjoint subsets (e.g. forward transitions, backward transitions etc.). Under the null hypothesis of a Markov

process, the statistics are asymptotically independent and standard normal and hence a χ2 statistic can be

devised to jointly test each subset of transitions.

3 Log-rank based statistics

3.1 Local test

The construction of the LMAJ motivates the development of alternative tests of the Markov assumption.

Suppose initially that interest lies in assessing the validity of transition probability estimates from a specific

start time s and state j. Two groups of subjects can be identified as S = {i : Xi(s) = j, Yi(s) = 1} and

Sc = {i : Xi(s) 6= j, Yi(s) = 1}. Under the LMAJ estimator, only the subjects in S would contribute to the

estimate, whereas the AJ estimator would use both sets of subjects. Moreover, under a Markov process, the

transition intensities of the process for t > s will be the same in both groups. This property motivates a

local test of Markovianity constructed by considering various log-rank statistics grouping by membership in

S.

The transition probabilities Pj(s, t) = (Pj1(s, t), . . . , PjR(s, t))′ for t > s are functions of the transition

intensities αlm(t) for l ∈ Rj , where Rj represents the set of states that are reachable from state j. For each

such transition intensity, interest lies in testing H0 : αlm(t|X(s) = j) = αlm(t|X(s) 6= j), for t ≥ s versus

a general alternative. These hypotheses can be tested by defining δ
(j)
i (s) = I(Xi(s) = j) to be a group

indicator with respect to the state of interest j. A log-rank statistic for each transition l→ m is then of the

form

U (j)
s (l,m) =

n∑
i=1

∫ τ

s

{
δ

(j)
i (s)−

∑
k δ

(j)
k (s)Ykl(t)∑
k Ykl(t)

}
dN

(lm)
i (t), (3.1)

where Yil(t) = I(Xi(t−) = l)Yi(t) is the at risk indicator of transition l → m for subject i and τ is the

maximum time of follow-up. Note that such a statistic will be uniformly 0 unless state l is also reachable

if Xi(s) 6= j. Hence the test is defined for transitions from state l ∈ Rj
⋂
Rjc where Rjc =

⋃
j′ 6=j Rj′ , i.e.
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transitions from states l that can be reached from state j and at least one other state j′ 6= j.

The standardized statistics Ū
(j)
s (l,m) = U

(j)
s (l,m)/

√
V̂ar(U

(j)
s )(l,m), where V̂ar(U

(j)
s ) will be given in

(3.3), can be compared to a N(0, 1) distribution to assess each individual hypothesis. Moreover, a local

test of the Markov property can thus be constructed by combining the log-rank statistics. Under the null

hypothesis each of the log-rank statistics (3.1) are asymptotically independent so, for instance, a chi-squared

statistic can be computed based on
∑
Ū js (l,m)2 where the sum is over all l,m where a direct l → m is

possible and l ∈ Rj
⋂
Rjc . A test based on the maximum of the individual statistics would also be possible,

but is not pursued here.

3.2 Global test

The local test statistics can be computed at any time within the follow up period leading to a family of

statistics. As such, s is now considered to vary across some interval s ∈ [t0, tmax] ⊂ [0, τ ], which represents

the period of follow-up in which the Markov property is to be tested. Then, under a null hypothesis H0 :

αlm(t|X(s) = j) = αlm(t|X(s) 6= j) for all t0 ≤ s ≤ tmax, s ≤ t ≤ τ , the process {Ū (j)
s (l,m), s ∈ [t0, tmax]}

converges to a zero mean Gaussian process with a covariance function that can be consistently estimated.

This motivates the development of ‘global’ tests based on summary statistics of {Ū (j)
s (l,m), s ∈ [t0, tmax]},

for instance sups∈[t0,tmax] |Ū
(j)
s (l,m)|,

∫ tmax

t0
|Ū (j)
s (l,m)|ds or more generally

∫ tmax

t0
w(s)|Ū (j)

s (l,m)|ds, for some

weight function w(s), which test the dependence of αlm(t) on occupancy in state j for the l→ m transition

over the full range of follow-up. Note also that for a fixed j, the processes Ū
(j)
s (l,m) and Ū

(j)
s (l′,m′), where

l 6= l′ or m 6= m′, are asymptotically independent. Thus the individual supremum or integrated statistics

may be combined to provide an overall test of dependence of the transition intensities on occupation in

state j at previous times. Moreover, this also provides an overall test for consistency of the AJ estimator of

Pj(s, t). Note that the local log-rank test statistic in (3.1) will be undefined or unstable in time periods in

which very few patients are either in, or not in, the qualifying state j. As such, [t0, tmax] should be chosen to

avoid periods, typically at the beginning or end of follow-up, where this may occur. Alternatively, weights

w(s) can be chosen to downweight such periods. This issue is discussed further in Section 3.7.

3.3 Null distribution of the statistic

To determine the null distribution of the proposed statistics, consider first the log-rank statistic for a specific

transition (l → m), from a fixed starting time s and state of interest j. In order to simplify the notation,

for the remainder of this section, unless otherwise specified, dependence on (l,m) of the various quantities
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will be suppressed, such that Ni(t) be the counting process for (l → m) transitions for subject i by time t,

including the possibility of multiple transitions of the same type and Yi(t) = Yil(t) be the at risk indicator

of l→ m for subject i. The asymptotic covariance between the statistics (3.1) at time points s and s′ where

s ≤ s′ is given by

Cov(U (j)
s , U

(j)
s′ ) =

∑
i

∫ τ

s′
Yi(t)

{
δ

(j)
i (s)−

∑
k δ

(j)
k (s)Yk(t)∑
k Yk(t)

}{
δ

(j)
i (s′)−

∑
k δ

(j)
k (s′)Yk(t)∑
k Yk(t)

}
dÂ(t), (3.2)

where Â(t) =
∫ t

0

∑
k dNk(u)/

∑
k Yk(u) is the Nelson-Aalen estimator.

At each unique transition time t(k) ≥ s, the number of patients at risk can be summarized as nk =∑
i Yi(t(k)) comprised of nk = nk11 + nk01 + nk10 + nk00 where nk11 =

∑
i Yi(t(k))δ

(j)
i (s)δ

(j)
i (s′), nk01 =∑

i Yi(t(k))(1− δ
(j)
i (s))δ

(j)
i (s′), nk10 =

∑
i Yi(t(k))δ

(j)
i (s)(1− δ(j)

i (s′)) and nk00 =
∑
i Yi(t(k))(1− δ

(j)
i (s))(1−

δ
(j)
i (s′)). An estimate of the covariance for a given dataset is then (for s ≤ s′)

Ĉov(U (j)
s , U

(j)
s′ ) =

∑
k:t(k)≥s′

nk11nk00 − nk01nk10

n2
k

.

When s = s′ the formula reduces to the standard asymptotic approximation for the variance term in the

log-rank statistic

V̂ar(U (j)
s ) =

∑
k:t(k)≥s

nk11(nk − nk11)

n2
k

. (3.3)

Under the null hypothesis, {Ū (j)
s , s ∈ [t0, tmax]} converges to a zero mean Gaussian process with covariance

function Cov(U
(j)
s , U

(j)
s′ )/

√
Var(U

(j)
s )Var(U

(j)
s′ ).

3.4 Computation of the null distribution

The value of Ū
(j)
s for the (l → m) transition may change at any time of entry into state l, and any time

of exit or censoring from state l. As such, it is computationally expensive to determine Ū
(j)
s at all times.

Instead, a grid of times, s1, . . . , sL, at which the statistic is to be computed can be pre-specified and the

statistic taken as maxl Ū
(j)
sl or L−1

∑
l |Ū

(j)
sl |. The asymptotic null distribution can then be approximated

by simulating from the multivariate normal distribution that arises if the Gaussian process is evaluated at

the grid points s1, . . . , sL.

However, a better small sample approximation can be obtained by using a wild bootstrap (Lin and

others, 1993) in which the increments of the martingale processes are multiplied by i.i.d. random variables,

Gih, i = 1, . . . , n, h = 1, . . . , Ni(τ), with mean 0 and variance 1. Beyersmann and others (2013) found

better small sample results using centered Poisson random variables, rather than standard normal weights.
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Hence for an original realization of (3.1)

u(j)
s =

n∑
i=1

Ni(τ)∑
h=Ni(s)+1

(
δ

(j)
i (s)−

∑
k δ

(j)
k (s)Yk(tih)∑
k Yk(tih)

)
,

the wild bootstrap version would be

u(j)∗
s =

n∑
i=1

Ni(τ)∑
h=Ni(s)+1

(
δ

(j)
i (s)−

∑
k δ

(j)
k (s)Yk(tih)∑
k Yk(tih)

)
Gih,

where tih corresponds to the hth l→ m transition time for subject i.

3.5 Extension to Cox-Markov models

An analogous test is possible for Cox-Markov multi-state models where the process is Markov conditional

on observed covariates that have a proportional effect on the transition intensities, as defined in (2.1). The

log-rank test of a difference between two groups can be derived through the score test of a Cox proportional

hazards model with a single binary covariate. Hence the test statistic U
(j)
s given in (3.1) is the score statistic

of the covariate δ
(j)
i (s) using data at times t > s. In the presence of additional covariates z with associated

coefficients β0, the score statistic becomes

U (j)(s;β0) =
∑
i

∫ τ

s

{
δ

(j)
i (s)− ∆̄(j)

s (t;β0)
}
dNi(t),

where

∆̄(j)
s (t;β0) =

∑
k δ

(j)
k (s)Yk(t) exp(β0zk)∑
k Yk(t) exp(β0zk)

,

which provides a statistic for testing the hypothesis H0 : αlm(t; z|X(s) = j) = αlm(t; z|X(s) 6= j) for t ≥ s.

In practice, β0 will be unknown and instead U (j)(s; β̂) is used, where β̂ is the maximum partial likelihood

estimate of β0.

Let Mi(t) = Ni(t)−
∫ t

0
Yi(u) exp(β0zi)α0(u)du denote the martingale process associated with patient i.

Using arguments similar to those in Lin and others (1993), n−1/2U (j)(s; β̂) is asymptotically equivalent to

the process n−1/2Ũ (j)(s;β0), where

Ũ (j)(s;β0) =

n∑
i=1

∫ τ

s

{
δ

(j)
i (s)− ∆̃(j)

s (t;β0)
}
dMi(t)

−
n∑
k=1

∫ τ

s

{
δ

(j)
k (s)− ∆̃(j)

s (t;β0)
}{

zk − Z̃(t;β0)
}
Yk(t) exp(β0zk)α0(t)dt

× I(β0)−1
n∑
i=1

∫ τ

0

{
zi − Z̃(t;β0)

}
dMi(t),
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where ∆̃
(j)
s (t;β0) is the limit of ∆̄

(j)
s (t;β0), Z̃(t;β0) is the limit of Z̄(t;β0) =

∑n
k=1 Yk(t)zk exp(β0zk)∑n
k=1 Yk(t) exp(β0zk) and I(β0)

is the Fisher information associated with β using all event time data.

The asymptotic equivalence of the two processes allows a wild bootstrap technique to be applied to

approximate the distribution of summaries of the process. Again using i.i.d. random variables, Gih, a wild

bootstrap replication of the process can be obtained via:

Û (j)(s; β̂) =

n∑
i=1

Ni(τ)∑
h=Ni(s)+1

{
δ

(j)
i (s)− ∆̄(j)

s (tih; β̂)
}
Gih

− h(j)(s, β̂)

n∑
i=1

Ni(τ)∑
h=1

{
zi − Z̄(tih; β̂)

}
Gih, (3.4)

where

h(j)(s, β̂) =

n∑
k=1

∫ τ

s

{
δ

(j)
k (s)− ∆̄(j)

s (t, β̂)
}{

zk − Z̄(t; β̂)
}
Yk(t) exp(β̂zk)dÂ(t; β̂)× I(β̂)−1

and Â(t; β̂) =
∫ t

0

∑
k dNk(u)∑

k Yk(u) exp(β̂zk)
is the Breslow estimator of the baseline cumulative intensity.

To produce a test statistic directly analogous to that of the case with no covariates, we work with an

approximately standardized process Ū (j)(s; β̂) = U (j)(s; β̂)/

√
V (j)(s; β̂) where

V (j)(s; β̂) =

n∑
i=1

∫ τ

0

({
δ

(j)
i (s)− ∆̄(j)

s (t, β̂)
}
I(t > s)

−h(j)(s, β̂)
{

zi − Z̄(t; β̂)
})2

Yi(t) exp(β̂zi)dÂ(t; β̂).

Provided there are separate estimates β̂lm for each transition intensity (l → m), the test statistics may

be considered to be asymptotically independent under the null. The tests then proceed in a similar way as

in the case of no covariates. An extension to the case where there are common β that act upon more than

one transition intensity (Putter and others, 2007) is possible, but is beyond the scope of the current paper.

3.6 Transition specific statistic

When a multi-state model has several states, there will often be more than two qualifying states, j, which

are relevant to a specific transition intensity, e.g. l → m. If interest lies in determining whether the

Markov property holds generally, then multiple indicators, δi(s)
(j) = I(Xi(s) = j) may be defined for each

j ∈ R∗l , where R∗l is the set of states from which l is reachable. For each j we can define a score statistic,

U (j)(s, β̂), as defined before. Let U(s; β̂) be a vector whose jth element corresponds to U (j)(s, β̂), for

j ∈ R∗l , and let Ψ be the square singular matrix whose (j, j′) element corresponds to the covariance between

U (j)(s, β̂) and U (j′)(s, β̂). Asymptotically under the null hypothesis, U(s; β̂) has mean zero and hence
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K(s; β̂) = U
′

(r)Ψ
−1
(r,r)U(r) is asymptotically χ2

r∗−1, where r∗ = |R∗l |, U(r) denotes the vector U(s; β̂) with

the rth element removed and Ψ(r,r) represents Ψ with the rth row and column removed. The element r can

be chosen arbitrarily from the state space {1, . . . , R}. Section S2 of the Supplementary Material gives the

form of Ψ.

A global test for the l → m transition can be constructed by considering an appropriate summary, such

as the mean or maximum, of K(s; β̂) along (t0, tmax]. The null distribution of the global test statistic may

again be approximated by a wild bootstrap applying the same set of multipliers {Gih} to each of the score

functions as defined in (3.4). The statistics, K(lm)(s, β̂lm), relating to different transitions l → m are again

asymptotically independent if the process is Markov and separate β̂lm’s are estimated for each transition

intensity. An overall test for the whole process can be defined by combining the individual summaries in

some way, for instance through the maximum, mean or weighted mean.

3.7 Choice of summaries and weights

As noted above, the processes Ū (j)(s; β̂) and K(s; β̂) may be summarized through absolute mean, absolute

maximum statistics or weighted absolute mean statistics. For unweighted mean or maximum statistics it

will generally be necessary to truncate the range of times s, for which Ū (j)(s; β̂) or K(s; β̂) is calculated,

to exclude times in which few patients are at risk or where most or all patients are in one qualifying state.

Equally, for a weighted statistic such time points should also be down-weighted. In the Supplementary

Material, Section S6, it is argued that

rj(s) =

√
dj(s)n

(1)
j (s)n

(0)
j (s)

n
(1)
j (s) + n

(0)
j (s)

, (3.5)

where n
(1)
j (s) =

∑
i δ

(j)
i (s)Yi(s), n

(0)
j (s) =

∑
i(1− δ

(j)
i (s))Yi(s) and dj(s) = N̄(τ)− N̄(s), can be used either

as the weight function or as a criterion for deciding at which time point to truncate the test range. When

used as weight function in
∫ τ
t0
rj(s)|Ū (j)(s; β̂)(l,m)|ds or in the weighted chi-square overall test statistic, we

propose to first standardize rj(s) such that
∫ τ
t0
rj(s) = τ − t0, even though it will have no effect on the

resulting test statistics.

Let Ū
(j)
lm and K̄lm denote the preferred summary statistic in each case. An overall statistic for state j

may be constructed by taking either a maximum value statistic U∗ = maxl,m Ū
(j)
lm or a mean value statistic

U∗ = N−1
T

∑
l,m Ū

(j)
lm , where NT is the number of statistics to be combined. However, some transitions

may be more represented in the data, so it may be better to consider a weighted mean value, such as

U∗ =
∑

l,m nlmŪ
(j)
lm∑

l,m nlm
, where nl,m is the total number of l→ m transitions observed within the dataset.
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1. Healthy 2. Illness

3. Death

Figure 1: State diagram of the reversible illness-death model

The same principles could also be applied when combining the transition specific statistics K(s; β̂).

However, the size of the set R∗l may vary for different l. As such, some method of p-value combination

is perhaps the most convenient approach. For instance, a weighted Pearson combination rule of the form

K∗ = −
∑
l,m wlm log p∗lm where p∗lm is the p-value associated with the summary of the l → m and wl,m

is some associated weight. Sensible choices of weights would either be constant weights, or else to take

wlm = nlm.

4 Simulation study

In this section a simulation study is conducted to evaluate the performance of the existing and proposed

statistics for realistic sample sizes, under a range of scenarios.The simulations concentrate on the case of

a three-state illness-death model, shown in Figure 1 where recovery is possible (state 1 = healthy, state

2 = illness, state 3 = death). The process has four distinct transition intensities (α12, α13, α21, α23). All

transitions can occur at time t if X(s) ∈ {1, 2}; as such for each of the transitions, the associated log-rank

process Ū (2)(s), which takes j = 2 as the qualifying state, is sufficient to test the Markov property. Six main

scenarios are considered. The first four are (a) a Markov scenario to allow assessment of control of Type I

error, (b) a homogeneous semi-Markov (or clock reset) model, (c) a shared frailty model where the frailty

affects all transitions, and (d) a shared frailty model where the frailty effect acts differently for the backward

‘illness’ to ‘healthy’ transition.
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Scenario (e) is designed to illustrate a scenario where the Cox-based test will perform poorly and assumes

it is the duration in the previous state, rather than duration in the current state, that drives the transitions

out of each state. However, the intensities are chosen in such a way that the current duration in the

state has no marginal effect (see Section S3 in the Supplementary Material for details). In scenario (f) the

non-Markovian behaviour is governed by the state occupied at time t = 3, with all intensities changing if

X(3) = 1, which is a situation where the log-rank based test will perform optimally.

In addition, a Cox-Markov model scenario is generated where there is a single time fixed covariate with

a standard normal distribution that is assumed to be known to affect the 1→ 2 and 2→ 1 transitions only,

with β12 = 1 and β21 = −1. This Cox-Markov case is carried out for n = 100 and n = 500. In Section S4 of

the Supplementary Material additional simulations are performed on a three-state recurrent process, similar

to that of the application in Section 5 to investigate the performance of the transition specific statistic.

For each scenario, we consider n = 100 and n = 500 subjects and a 50% probability of starting in state

1 as opposed to state 2 at time 0. The data are assumed to be continuously observed up to independent

random right-censoring at time Ci where Ci ∼ U(5, 25). In all cases except scenario (f), the baseline

intensities are taken to be Weibull, with shape parameters α = (1.2, 0.8, 1.4, 1.0) and rate parameters λ =

(0.18, 0.03, 0.25, 0.1), for transitions 1 → 2, 1 → 3, 2 → 1, and 2 → 3, respectively. These intensities are

shown in Figure S3 in the Supplementary Material. For the shared frailty models, the frailties ui are gamma

distributed with mean 1 and variance 0.5. For scenario (c) each intensity is multiplied by the same factor ui.

For scenario (d) each intensity is multiplied by ui, except the 2→ 1 intensity, which is multiplied by 1/
√
ui.

For the pathological non-Markov case, scenario (f), the shape parameters are unchanged with respect to the

previous scenarios, but rate parameters are λ = (0.18, 0.03, 0.25, 0.1) for t < 3 and for t ≥ 3 if X(3) 6= 1, while

λ = (0.27, 0.06, 0.15, 0.2) if t ≥ 3 and X(3) = 1. For the non-Markov scenarios with n = 500, the parameters

governing the non-Markov behaviour are scaled by 1/
√

5 to make the power approximately comparable to

the n = 100 case.

In all cases, the global statistic for Ū (2)(s) is computed on a fixed grid of points s at increments of 0.1.

Six ways of generating an overall statistic are considered: the summary statistics, Ū2
lm, are taken to be either

a maximum absolute value or mean absolute value based on a fixed time range [0.5, 10], or weighted using

(3.5) using all follow-up times, and in each case the overall statistic is constructed either as the mean of

the summary statistics or as a weighted mean. Note that, since patients start in state 1 or state 2 with

probability 0.5, there is not a problem with imbalance between groups at early follow-up times in this case.

At t = 10, on average around 45 patients are still at risk and there will be patients at risk in both state 1

12



and state 2 in the vast majority of simulated datasets.

4.1 Simulation results

To indicate the degree of bias in the transition probability estimates arising in the non-Markov scenarios,

Figure S2 in the Supplementary material presents the average estimates of transition probabilities using the

standard Aalen-Johansen estimator (AJ) and using the landmark Aalen-Johansen estimator, based on three

different starting times (s = 3, 6, 9).

Figure 2 shows the empirical distribution of p-values over 5000 simulation replicates for the proposed log-

rank based test, as well as the Cox proportional hazards based test using the time of entry into the current

state as a covariate, and the Commenges-Andersen test, for each of the six scenarios. Table 1 presents the

empirical power for the different tests based on a nominal 5% Type I error, under the six scenarios considered.

For scenario (d), the Commenges-Andersen test statistic using just the forward transitions is also presented

(denoted Sub C-A).

In the Markov case, scenario (a), both variants of the wild bootstrap test statistic give reasonably close

to nominal 5% Type I error. However, the statistic based on absolute maximum value has a distribution

of p-values further from uniform. When n = 100, the test statistics are conservative, with empirical type I

errors ranging from 3.3% to 4.5% for a nominal 5% rate. This behaviour disappears when n = 500. The

null behaviour of the Cox-Markov variant of the test behaves similarly, with the test being slightly more

conservative than the case without covariates when n = 100, but with good performance for n = 500.

For the semi-Markov case, scenario (b), the Cox test has substantially better power than either log-rank

based statistics. The test based on the mean absolute value has slightly higher power than the absolute

maximum. The Commenges-Andersen test has essentially no power to detect a difference, which is perhaps

not surprising since each transition within a patient is still independent within the model.

For scenario (c), the shared frailty with common multiplicative frailty effect on all transitions, the Cox

test does substantially better than either of the log-rank function based tests. In this case, the absolute

maximum version is more powerful than the absolute mean based test. The Commenges-Andersen test

greatly outperforms the others, having more than 99% power.

When the shared frailty has differing effects for the forward compared to backward transitions, scenario

(d), the respective performances of the Cox test and log-rank function based tests are more similar, with

the weighted absolute mean variant outperforming the Cox test. The absolute mean version performs better

than the absolute maximum. Despite a shared frailty, the Commenges-Andersen test based on all transitions
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Table 1: Empirical power of tests for nominal 5% Type I error under different scenarios. Mean, Max and

WMean refer to absolute mean, absolute maximum (within the range [0,10]) and weighted mean statistics

(using the full follow-up time) to compute each Ū
(j)
lm . Equal combination refers to computing U∗ by a simple

mean of the individual statistics. Weighted combination refers to using a weighted mean based on the total

number of observation transitions of each type. ∗Power is 0.7012 if the subset version of C-A is applied.

∗∗Power is 0.9634 if the subset version of C-A is applied. Deviations from Markov have been scaled in the

n = 500 case to produce approximately comparable power.

Equal combination Weighted combination

Scenario Mean Max WMean Mean Max WMean Cox C-A

(a)

Markov (n = 100) 0.0326 0.0346 0.0344 0.0428 0.0446 0.0478 0.0550 0.0494

Markov (n = 500) 0.0500 0.0496 0.0480 0.0534 0.0540 0.0552 0.0514 0.0506

Cox-Markov (n = 100) 0.0356 0.0334 0.0258 0.0382 0.0398 0.0260 0.0508 0.0486

Cox-Markov (n = 500) 0.0488 0.0480 0.0414 0.0464 0.0504 0.0366 0.0494 0.0516

(b)
Semi-Markov (n = 100) 0.1498 0.1344 0.1490 0.1756 0.1492 0.1826 0.5846 0.0598

Semi-Markov (n = 500) 0.1856 0.1398 0.1994 0.2062 0.1542 0.2212 0.6164 0.0690

(c)
Shared frailty1 (n = 100) 0.4454 0.3602 0.4618 0.5546 0.4972 0.5824 0.8650 0.9972

Shared frailty1 (n = 500) 0.5148 0.4066 0.5628 0.6142 0.5078 0.6508 0.9754 1.0000

(d)
Shared frailty2 (n = 100) 0.4844 0.3674 0.4912 0.5804 0.4706 0.5926 0.5200 0.2426∗

Shared frailty2 (n = 500) 0.7658 0.6294 0.8104 0.8158 0.7038 0.8534 0.7382 0.4176∗∗

(e)
Duration (n = 100) 0.1978 0.1234 0.2060 0.1854 0.1168 0.1892 0.0794 0.0508

Duration (n = 500) 0.2112 0.1664 0.2270 0.1710 0.1390 0.1816 0.0668 0.0502

(f)
Pathological (n = 100) 0.4970 0.6390 0.4216 0.5884 0.7294 0.5368 0.0688 0.0568

Pathological (n = 500) 0.6786 0.8104 0.5938 0.7138 0.8494 0.6556 0.0750 0.0510
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has substantially lower power than either the Cox test or the log-rank based tests, implying that it is strongly

affected by contrary frailty effects. However, if the Commenges-Andersen test is applied only to the subset

of transitions for which the positive dependence applies (i.e. 1 → 2, 1 → 3 and 2 → 3), then a test more

powerful than the log-rank based test is again obtained.

For scenario (e), the previous duration dependent case, the log-rank based tests perform substantially

better than the Cox test, which has very modest power, and the Commenges-Andersen test, which has

essentially a uniform distribution of p-values. In this case, the power of the absolute mean statistic is

superior to the absolute maximum.

The pathological non-Markov case, scenario (f), is the setting where the proposed log-rank test would

be expected to perform best. The extent to which it outperforms the Cox test is nevertheless impressive.

Neither the Cox nor the Commenges-Andersen tests have any discernible power to detect the non-Markov

behaviour, whereas both log-rank based tests have at least 50% power. The maximum absolute based test

performs somewhat better than using the mean.

In all non-Markov scenarios except (f), using a weighted absolute mean statistic based weighting by (3.5)

resulted in a more powerful test than using equal weights over the range s ∈ [0.5, 10]. However, the weighted

test remains conservative for the Cox-Markov model even when n = 500.

Figure S4 in the Supplementary Material gives the empirical distribution of p-values using transition

count weighted combinations. In the null Markov case, the resulting p-values have distributions closer to a

uniform distribution. For scenarios (c), (d) and (f), weighting by number of transitions improves the power

of the log-rank based tests, whereas for (b) and (e) the power is the same or slightly worse. Broadly similar

results were seen for scenarios (b)-(f) using n = 500 rather than n = 100. Figures S5 and S6 give the

corresponding plots of distribution of p-values using weighted and unweighted combinations, respectively.

5 Application

We illustrate our methods using data on sleeping behaviour collected at the Max-Planck Institute for Psy-

chiatry in Munich as part of a larger study on sleep withdrawal. The data were also analysed in Yassouridis

and others (1999) and Kneib and Hennerfeind (2008). The sleep process is recorded for 70 subjects every

30 seconds by electroencephalographic (EEG) measurements from the moment of first falling asleep until

finally waking up, which are afterwards classified into three states: 1. Awake, 2. non-REM sleep, 3. REM

sleep. Transitions between any pair of distinct states are possible, leading to a total of six possible transi-
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tions. The multi-state process is highly dynamic: a total of 4637 transitions were observed, the majority

from Awake to non-REM sleep (1660) and from non-REM sleep to Awake (1368). Figures S7 and S8 in the

Supplementary Material show the non-parametric estimates of the cumulative intensities of all transitions,

and the Aalen-Johansen estimates of the state occupation probabilities, respectively.

It is expected that inter-individual differences in transition intensities (frailties) will play a dominating role

in this multi-state process. This suspicion is confirmed by the Commenges-Andersen test (p ≈ 5 ·10−45), and

by the log-rank tests developed in this paper also yielding extremely significant deviations from Markovianity

(the corresponding log-rank process plots are given in Figures S10 and S11 in the Supplementary Material).

We therefore sought for evidence for departures from Markovianity beyond these inter-individual differences

in transition intensities. A rigorous analysis of this question would be outside the scope of this paper; since the

objective is to illustrate the log-rank tests developed in this paper, we took the following pragmatic approach.

Following the ideas of Kneib and Hennerfeind (2008) we started by fitting a frailty model with independent

frailties for each subject by transition combination. As in Kneib and Hennerfeind (2008) the frailties were

all taken to be independent; probably this is sub-optimal, but it is outside the scope of this paper to attempt

to fit correlated frailty models. The empirical Bayes estimates for each subject by transition combination

were then calculated and their logarithm was used as offsets in the log-rank test statistics. In simulations

presented in Section S4 of the Supplementary Material, substituting the estimated frailties is observed to

lead to a conservative test. This is because each patient’s martingale process will satisfy Mi(τ) ≈ 0 and

hence U
(j)
s will tend to be less variable than if the true frailty were known.

The correlations between the transition-specific frailty estimates were generally positive; the correlation

between the log empirical Bayes estimates for non-REM to REM and REM to non-REM was 0.57, between

non-REM to REM and REM to Awake was 0.40; between Awake to REM and REM to Awake was also 0.40;

the rest of the correlations were between -0.28 and 0.37. Figure S9 in the Supplementary Material shows

histograms and scatterplots of the transition-specific empirical Bayes frailty estimates.

When discussing the results of the log-rank tests we will concentrate on the transition from Awake to

non-REM sleep and the transition back from non-REM sleep to Awake. Figure 3 shows in solid black the

log-rank test statistic process {Ū (j)
s (l,m), s ∈ [t0, τ ]}, for (l,m) = (1, 2), i.e. for the transition from Awake

to non-REM sleep, for an equally spaced grid of time points s from t0 = 1 minute to τ = 8 hours. The trace

is shown for each of the qualifying states j. In grey are the first 50 of 1000 wild bootstrap traces; the inner

black dotted lines are the pointwise 2.5% and 97.5% quantiles of the wild bootstrap traces, while the outer

black dotted lines are plus and minus the 95% quantile of the wild bootstrap replicates of the supremum
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Table 2: Summary log-rank test statistics (associated p-values) for two selected transitions

Awake → non-REM sleep

Awake non-REM REM Overall

Unweighted 1.50 (0.000) 1.07 (0.004) 1.01 (0.002) 5.23 (0.000)

Proposed

weighted 1.48 (0.000) 1.04 (0.007) 1.06 (0.013) 4.16 (0.001)

Supremum 6.34 (0.003) 5.26 (0.008) 4.59 (0.025) 40.23 (0.003)

non-REM sleep → Awake

Awake non-REM REM Overall

Unweighted 1.13 (0.003) 0.91 (0.127) 0.80 (0.172) 3.48 (0.001)

Proposed

weighted 1.05 (0.021) 0.84 (0.315) 0.85 (0.280) 2.28 (0.132)

Supremum 6.64 (0.001) 6.75 (0.002) 3.27 (0.254) 53.91 (0.001)

of |Ū (j)
s |. We consider the following three summary statistics of these processes: the unweighted average∫ τ

t0
|Ū (j)
s (l,m)|ds, the proposed weighted average

∫ τ
t0
w(s)|Ū (j)

s (l,m)|ds, with w(s) defined as in (3.5), and

the supremum statistic sups∈[t0,τ ] |Ū
(j)
s (l,m)|. Table 2 shows the results of the log-rank tests with these

three summary statistics, together with the overall chi-square test statistic. The general picture arising from

these tests is quite clear; for the transition from Awake to non-REM sleep, irrespective of the summary

test statistic and of the qualifying state the Markov assumption after having accounted for the frailties is

rejected. The only exception is for the weighted summary statistic and qualifying state 2, non-REM sleep.

Interestingly, in contrast to the simulation study except for the pathological case, the results for the

weighted summary statistic are less significant than for the unweighted ones. This is even clearer for the

backward transition from non-REM sleep to Awake. The log-rank test statistics in Figure S12 in the

Supplementary Material show that the clearest departures from Markovianity appear towards the end of the

sleeping period. The supremum test statistics confirm the statistical significance of these departures from

Markovianity for s > 7, except for REM sleep as qualifying state. The average based test statistics generally

fail to pick up this behaviour, with only the unweighted test statistic for qualifying state 1, Awake, reaching

statistical significance. Again the weighted average test statistics are systematically less significant than the

unweighted average. An explanation can be found from a plot of the proposed weights for the transition
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non-REM to Awake, and qualifying states Awake and non-REM, shown in Figure S13 of the Supplementary

Material, after s=6 for both qualifying states w(s) steadily decreases towards 0, and the weights are near

zero when the log-rank test statistics in Figure S12 are largest.

6 Discussion

When applying multi-state models in practice, it is important to check the Markov assumption. Many

violations of the Markov assumption can be anticipated: a transition intensity can depend on the sojourn

time or frailty can be present. For irreversible illness-death models a general test of the Markov assumption is

available (Rodŕıguez-Girondo and de Uña-Álvarez, 2012), but otherwise only ad hoc tests for certain aspects

of non-Markovianity exist. This paper has provided approaches of testing the most common departures of

Markovianity, the Cox modelling approach and the stratified Commenges-Andersen test, and has proposed

a general class of log-rank type test statistics that have adequate power against a range of alternatives.

In the absence of prior knowledge on the likely violation from a Markov process, we recommend to

use the transition-specific chi-square test statistic of Section 3.6 for each transition, where weights for each

qualifying state, as defined in Section 3.7, are used. An adjustment for multiple testing based on the number

of transitions is appropriate. Since the original Markov model is defined in terms of, broadly separate,

models for the transition intensities, the tests can inform a researcher on which transitions may require more

complicated modelling. In the event of a significant test result for a given intensity, the log-rank process plots

can give some indication of the possible nature of the problem. Figure S15 in the Supplementary Material

gives the mean and standard deviation of Ū statistics over time for a selection of the simulation scenarios. If

the overall statistic for transition l → m is significant and the log-rank statistics given occupancy in state l

have the same sign for all, or most, of the time range, it might indicate a persistent semi-Markov type effect

similar to the assumption of a Cox model with time of entry into the state as a covariate. In contrast if

there is only a persistent effect for part of the time scale, as is the case for Awake → non-REM given Awake

in the sleep example (Figure 3), then this indicates a more localized effect e.g. that if a subject is awake

at some point after 6 hours since sleep onset then it will have an effect on their ability to fall back to sleep

whereas no such tendency is apparent in the first part of the night. Frailty effects are harder to diagnose as

they may exhibit patterns to the mean similar to a semi-Markov effect. However, the presence of frailty may

have the effect of increasing the general variability of the log-rank process, as can be seen in the respective

log-rank processes for the sleep dataset, with and without accounting for frailties (Figures 3 and S10).
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We expect testing on a transition-specific basis to have adequate power to detect the most common

departures of Markovianity; our application showed the supremum version to be more significant than

the weighted summary statistic, but it should be noted that this is after having accounted for the more

dominating – and more common – departure from Markovianity due to frailty. The test can be used as a

pre-test to determine whether to use Aalen-Johansen (AJ), valid under the Markov assumption, or more

robust approaches like the landmark Aalen-Johansen (LMAJ) estimator, to calculate transition probabilities.

It should be noted in this context that even when the Markov assumption is not satisfied, the AJ estimator

may have smaller mean squared error than the LMAJ estimator, as shown in simulation studies (Putter and

Spitoni, 2018). It is the familiar bias-variance trade-off, where for smaller sample size variance tends to

dominate – in favour of AJ – and for larger sample size bias tends to dominate – in favour of LMAJ. Using

this work as a pre-test fits in nicely within this framework; larger sample size will have more power to detect

violations of the Markov assumption, suggesting to use robust methods. More work is needed to study how

this works out in practice.

7 Software

The R code for implementing the proposed test on a simulated dataset similar to the data analysed in Section

5 is available at https://github.com/andrewtitman/MarkovTest.
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(c) Shared frailty − common effects
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(e) Duration dependent case
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(f) Pathological non−Markov
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Figure 2: Empirical distribution of p-values for the six scenarios using unweighted combinations of the

log-rank statistics when n = 100.
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Figure 3: Log-rank process for the transition from Awake to non-REM sleep
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