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1. Introduction

Numerous time series studies have been conducted on the
determinants of lottery sales in various countries (see e.g. Beenstock
and Haitovsky (2001), Cook and Clotfelter (1993), Walker and Young
(2001) and Forrest et al. (2002)). The majority of the literature has been
concerned to estimate the impact of either jackpot size or the expected
price of the lottery on lottery sales. The typical empirical finding, ceteris
paribus, has been that lottery sales vary inverselywith the expectedprice
of the lottery ticket and positively with the size of the jackpot. However
the jackpot size appears to have a much greater statistical impact than
expected price. This has given rise to the suggestion that lottery sales
exhibit irrational behavior of agents, sometimes called lotto mania.

A feature of the reported studies is that the estimated relationships
are not based on models of agents that can both generate gambling at
actuarially unfair odds and also explain the preference of many agents
for lottery tickets involving a number of prizes. As noted by Walker
and Young (2001) some researchers employ the jackpot size as the
sole explanatory variable in regression analysis. This raises the
questions of why lottery operators do include smaller prizes and
why they fail to further decrease the odds of winning an increased
jackpot, proportionately, in order to increase profits.

Onemodel that can explain gambling at actuarially unfair odds and
also explain the preference of many agents for lottery tickets
involving a number of prizes is Cumulative Prospect Theory (CPT) of
Tversky and Kahneman (1992). This non-expected utility model
embodies probability distortion, and can therefore explain the
preference of many agents for multiple prize lottery tickets (see
Quiggin (1991)). It has been employed to explain the choices made
between safe and risky outcomes in numerous experiments. See e.g.
Tversky and Kahneman (1992) and Scott (2006). From a theoretical
perspective CPT has been employed to explain, for example, the
equity risk premium puzzle (Benartzi and Thaler (1995)). Conse-
quently it appears of interest to determine its implications for the
specification and interpretation of the lottery sales reduced form
equations estimated in empirical work. That is the purpose of this
letter.

In Section 1, we simulate data from the value maximizing stake
function of a representative CPT agent gambling on a one prize lottery.
We employ this data to run regressions of the type run on multiple
prize lotteries and illustrate the misleading nature of the implications
that could flow. Given these results we consider the implications for
reduced form equations that endeavour to explain sales of multiple
prize lotteries. The letter concludes with a brief conclusion.

2. Section 1: Optimal staking on lotteries in a CPT framework

Defining reference point utility as zero, expected value in the CPT
model, for a gamble with one known outcome, is given by

Eu = w pð ÞUg soð Þ−w 1−pð ÞUl sð Þ ð1Þ
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Fig. 1. Optimal stake μ=0.5.
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where p is the objective probability, ois the odds, s is the stake, Ug(so)
is the value derived from the gain, Ul(s) is the disutility derived from
the loss and w+(p) and w−(1−p) are the respective weighting
functions over gains and losses.

We employ the expo-power function of Saha (1993) as our
parametric choice of value function. The expo-power function nests
the power value function of Tversky and Kahneman but resolves a
number of theoretical and empirical objections to that specification.1

Substitution of the expo-power value functions in Eq. (1) gives us

Eu = wþ pð Þ 1−e−rα soð Þn� �
−w− 1−pð Þk 1−e−αsn

� �
ð2Þ

where r,α, n and k are positive constants.
With n≤1 the agent is risk averse over gains and risk loving over

losses as hypothesized by Tversky and Kahneman and nests the power
value function specification of Tversky and Kahneman as α→0 (by
L'Hopital's Rule) or the exponential function, n=1.

We assume that the probability weighting function over gains,
w+(p), and losses, w−(1−p), are given by the parametric forms
assumed by Tversky and Kahneman (1992):

wþ pð Þ = pδ

pδ + 1−pð Þδ� �1δ ð3Þ

and over losses

w− 1−pð Þ = 1−pð Þρ

pρ + 1−pð Þρ½ �
1
ρ

ð4Þ

where δ,ρ are positive constants. For δ,ρb1 we have over weighting of
low probabilities and underweighting of large probabilities.

Differentiation of Eq. (2) with respect to stake size gives us the
optimal stake size, s, as

s =
ln

wþ pð Þron
w− 1−pð Þk
α ron−1ð Þ

2
6664

3
7775

1
n

ð5Þ

The second order condition for a maximum is ron−1N0.
We define the expected return (λ) from a one unit stake gamble on

the one prize lottery as

λ = po− 1−pð Þ ð6Þ

Letting μ=1+λ, the expectedprice of a lottery ticket is 1−(1+λ)=
1−μ

From Eq. (6) odds, o, are given by

o =
μ
p
−1 ð7Þ

The variance of expected return,σ2, for this one prize lottery is
given by

σ2 = p o−λð Þ2 + 1−pð Þ −1−λð Þ2 ð8Þ
1 For example in experiments where agents choose between a ‘safer’ and ‘more
risky’ gamble many report that risk aversion increases sharply as payoffs are increased.
See e.g. Holt and Laury (2002) who employ the expo-power function. Also De Giorgi
and Hens (2006) demonstrate that the power value function leads to the non-
existence of equilibria in some applications in portfolio theory. They suggest the
exponential function, as an alternative, which is nested by the expo-power function
employed above. Peel and Law (2008) provide an application to some other forms of
gambling.
Which from Eqs. (7) and (8) implies that

p =
μ2

μ2 + σ2 ð9Þ

From inspection of the determinants of the optimal stake size (Eq.
(5)) we see that it depends, non-linearly, on the objective probability
and the odds. Consequently it immediately follows from Eqs. (7) and
(9) above that the optimal stake can be written solely as a
complicated non linear function of any two of the expected price of
a lottery ticket, the variance of expected returns or the odds.

For instancewriting on solely as a function of μand σ2 we obtain the
expression on = μ + σ2

μ −1
h in

: This term appears in the denominator
and its logarithm in the numerator of the optimal stake (Eq. (5)). The
ratio of the probability weighting functions in Eq. (5) is also a complex
function of μ and σ2.

To illustrate the implications of themodel for stake size we assume
that a representative KT agent is described by the following
parameters;

δ=0.61, ρ=0.69, n=0.88, α=0.0001, r=5 and k=11.25.
These parameter values give us near identical outcomes over small
stakes and a wide range of odds as in the original power function
specification of Tversky and Kahneman (1992). However the bounded
value functions imply different behavior over large enough odds.

In Figs. 1 and 2 we plot the optimal stake as a function of objective
probability for these parameter values when λ=-0.5 and-0.55. We
observe from the figures that the optimal stake exhibits a maximum.
The maximum reflects the interplay of probability distortion and
boundedness of the value function. Essentially as the odds become
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Fig. 2. Optimal stake μ=0.55.



Table 1
Least squares regressions for simulated data and its determinants.

Dependent
variable

Constant log (1−μ) log σ2 log (o)
�
R2

s −0.0295
(0.0021)⁎

−0.0215
(0.0015)⁎

−0.0231
(0.0017)⁎

0.0229
(0.0017)⁎

0.817

s −0.0002
(3*10−5)⁎

−0.00098
(3.1*10−5)⁎

−4.4*10−5

(2.23*10−6)⁎
0.427

Number of observations=1908. White Heteroskedastic-consistent standard errors in
parenthesis.
⁎ Significant at the 1% of significance.

3 This is the implicit approach followed by some researchers, e.g. Beenstock and
Haitovsky (2001).

4 The first three central moments for a unit stake are defined as

λ = p3x + p2 1−pð Þy + p 1−pð Þz− 1−pð Þ
σ2 = p3 x−λð Þ2 + p2 1−pð Þ y−λð Þ2 + p 1−pð Þ z−λð Þ2 + 1−pð Þ −1−λð Þ2
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large enough (lower probabilities) utility satiation, due to the
assumption of boundedness, implies a lower optimal stake. As
probabilities become larger, (lower odds), the upward distortion of
probabilities diminishes and ultimately reverses so that positive
subjective expected returns are reduced, ultimately becoming
negative, so that stake size ultimately becomes zero.

We employed the parameters above to generate 1708 data points
for the optimal stake of an agent. We first assume that the expected
returnλ, is equal to −0.5, using 854 probabilities that lay between
3.49 10−7 and 0.004 and which were uniformly distributed across
this range. We then repeated this exercise for the same probability
range assuming the expected return is −0.55. The change to a higher
expected return mimics the effect of a roll over in a lottery.

Employing the simulated data we report in Table 1 the results
obtained from the regression of the level of the optimal stake on the
logarithm of expected price, the logarithm of variance and the
logarithm of odds.2

All variables are significant at the 1% probability level. The regression
results seem to imply that higher expected price, (lower expected
return) or higher variance reduces stake size (sales) whilst a greater
jackpot size, (odds), increases sales. The empirical results appear
consistentwith “lottomania”, an inference that is incorrect in thismodel.

3. Section 2. Lottery Tickets with more than one payoff

We continue to assume that an agent, described by CPT, makes an
optimal stake decision when deciding to purchase lottery tickets since
the implications are similar if we considered it as a discrete decision,
namely to purchase zero, one, two or more tickets. To simplify the
analysis, though the implications are quite general, we assume the
prizes are knownprior to purchase but somechange fromdraw todraw.
Consider a lotterywith a threevariable prizes. The lotteryhas a structure
where balls are drawn sequentially from three urns which contain
exactly one thousand numbered balls. In order to proceed to a higher
prize you have to obtain a correct ball or number in the previous urn.

The expected value of this lottery under CPT, assuming the agent
purchases less tickets than the minimum prize size, z, is given by, (see
Tversky and Kahneman (1992)).

Eu = wþ sp3
� �

U x + 1−sð Þ + wþ sp3 + sp2 1−pð Þ
� �

−wþ sp2 1−pð Þ
� �n o

×U y + 1−sð Þ

+ wþ sp3 + sp2 1−pð Þ + sp 1−pð Þ
� �

−wþ sp3 + sp2 1−pð Þ
� �n o

× U z + 1−sð Þ−w− 1−psð ÞU sð Þ ð10Þ

where the prizes are such that xNyNz and p is the probability of
drawing a number, 1

1000 in this example.
The optimal stake can be obtained from Eq. (10) by differentiation.

However it is easy to see that it does not have a closed form solution
for the expo-power function or in fact any standard parametric form
2 We repeated the same exercise employing the logarithm of stake and the results
have the same implications. (available on request).
of the value function. The implicit form of the optimal stake function
is, of course, given by

s = f p; x; y; zð Þ ð11Þ

so that optimal stake depends on the probabilities of winning and the
different prize sizes.

Naturally if a researcher estimates a lottery equation which is
based on Eq. (11) but only includes the jackpot size then clearly the
jackpot can be significant, without implying lotto mania, since it is the
most important determinant of the reduced form and may be “acting
as a proxy for itself”. It would appear that previous studies are subject
to this criticism since some studies only include the jackpot size.

An alternative approach is to substitute for the prizes x, y and z in Eq.
(11) in terms of the central moments, (defined for a one unit stake),
expected return, variance and skewness. One could then include the
jackpot as an additional regressor. It should be insignificant if the
moments included substitute appropriately for the prizes in Eq. (11).3

However, as with the one prize lottery considered in the previous
section, there is a complex relationshipbetween theprizes,x, y and z and
the higher order centralmoments towhich closed form solutions do not
exist.4 Consequently themoments includedmy not capture the reduced
form as well as inclusion of the jackpot and a few other moments.

4. Conclusions

We have illustrated some of the implications of CPT for aggregate
studies of lottery sales.Wedemonstratedwhy thefindingof significance
of jackpot size in the reduced form lottery sales equations reported in
the literature may not reflect lotto mania. There is an observational
equivalence of reduced forms implied by models such as CPT and those
that purport to demonstrate lotto mania. As a consequence of the
complex mapping from prizes to higher central moments in the lotto
game it would appear that the structural interpretation of important
policy parameters in previous studies, such as the elasticity of saleswith
respect to expected price or jackpot size is problematic.
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