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Abstract

Lithium metatitianate, Li2TiO3, is a leading candidate for application as a tritium

breeding material in a future fusion reactor. Following transmutation of lithium, the

tritium must escape the crystal in order to be extracted for use in the fusion plasma.

The rate limiting step to tritium release from the Li2TiO3 pebbles is diffusion through

the crystal grains. In this work, the activation barriers for tritium diffusion have been

calculated using density functional theory (DFT). The results show that tritium can

diffuse as an interstitial with a barrier of 0.52 eV. However, when a tritium ion becomes

bound to a lithium vacancy defect, the energy required for either the tritium to detrap

from the vacancy or for the cluster to diffuse increase to >1 eV. Overall, these results

suggest that the introduction of lithium vacancies due to Li burn-up may lead to an

increase in tritium retention in the pebbles.

Introduction

Future fusion reactors will employ the reaction between deuterium and tritium to release

energy for electricity generation. Since there is very limited naturally occurring tritium, it

is expedient to generate it in-situ from the transmutation of lithium using the high energy
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neutron ejected from the D-T reaction. This will be done by surrounding the plasma chamber

with a blanket region containing a lithium breeder material. A number of different blanket

concepts have been proposed, mostly based on either lithium ceramic pebbles or a liquid

lithium lead eutectic.1

To ensure that the fusion process is sustainable it is essential that at least one tritium

is recovered from the blanket for each fusion reaction in the plasma. Due to the inability

to completely surround the plasma with blanket and the permeation of tritium into other

reactor components, a tritium breeding ratio (TBR) greater than 1.1 is necessary.2 In the

case of a solid breeder, the high energy neutrons will penetrate the pebbles leading to tritium

being generated throughout the ceramic matrix. Therefore, it is essential that all tritium

generated can be extracted from the breeder material to ensure the maximum possible TBR.

For recovery this tritium must diffuse to the surface as illustrated in Figure 1. Following

transmutation, the tritium must be accommodated in the ceramic’s microstructure, before

diffusing through the crystal grains until it reaches the grain boundary. It will then diffuse

along the boundary until reaching the pebble surface. Once at the surface, tritium will

undergo isotope exchange reactions with hydrogen in the He purge gas before being recovered.

The rate limiting step to tritium recovery is diffusion in the fuel grains. Multiple peaks

in thermal desorption spectra of neutron irradiated lithium ceramics, show that there are a

number of distinct mechanisms contributing to the tritium release process, with their relative

importance depending on temperature.3,4 Previous studies have used these experimental

observations to infer the specific release mechanisms and what defects are facilitating them,

however, there is no consensus on what these may be. Experimental activation energies

for tritium diffusion vary from 0.63-1.5 eV for Li2TiO3
5–7 . The experimental data shows

a significant variation that is likely due to the different experimental conditions, including

burn-ups, and does not allow the isolation of the individual mechanism for tritium diffusion

and their associated energy.

Previous atomistic simulations have shown that the mode of tritium accommodation in
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Figure 1: Schematic of the tritium release process from lithium ceramic pebbles in breeder
blanket
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Li2TiO3 depends on the stoichiometry of the underlying crystal.8 Under conditions where

there is a lithium excess, the tritium is predicted to sit as an interstitial that bonds to an

oxygen ion, forming a hydroxyl group. The excess positive charge is then compensated by

a variety of different mechanisms, depending on the conditions. Under conditions of lithium

deficiency, such as those anticipated as the ceramic ages, these hydroxyl groups become

bound to lithium vacancy defects forming the {T+1
i : V −1

Li }0 complex.8

As the availability of point defects changes, so too does the tritium diffusion mechanism.

Shi et al. used density functional theory (DFT) to examine the diffusion of charged tritium

interstitials in Li2TiO3.9 They observed that the activation energy for diffusion in the xy-

plane is 0.33 eV, while for tritium to migrate in the z direction the barrier is much higher

at 1.00 eV. This high degree of anisotropy in the tritium mobility arises due to the complex

layered structure exhibited by Li2TiO3. Li et al. have also employed DFT to study tritium

diffusion in Li2TiO3 in the presence of lithium vacancy defects and determined that the

energy barrier for a tritium to escape from the {T+1
i : V −1

Li }0 complex is 0.76 eV.10 This

result implies that as the fuel ages and lithium is burnt up the activation energy for tritium

release will increase. However, these works have neglected the mobility of the lithium vacancy

itself and the possibility that the lithium vacancy may assist tritium diffusion through a co-

operative mechanism. Therefore, the aim of the present work is to re-examine the complex

tritium diffusion mechanisms in Li2TiO3 considering the role of the lithium vacancy.

Crystallography

The β-phase of Li2TiO3 is stable across a wide temperature range of 300◦ C to 1215◦C, as is

seen from the Li2O-TiO2 phase diagram,11,12 while the cubic α and γ-phases are present at

temperatures above and below this range respectively. The structure of β-Li2TiO3 was first

studied by Lang13 and later refined by Kataoka et al.14 using X-ray diffraction of large single

crystals. These works described Li2TiO3 as a distorted rocksalt structure with alternating
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(111) planes of Li6, O6, Li2Ti4 and O6. In the mixed cation layer of Li2Ti4, six Ti ions

surround a Li ion forming a hexagon. At low sintering temperatures a number of different

stacking sequences, corresponding to different space groups, viz. C2/m, C2/c and P3112,

are observed.15 However, in the present work, it is assumed that sintering took place at

high temperature and so only the monoclinic C2/c space group is present. An illustration

of β-Li2TiO3 is presented in Figure 2. The experimental lattice parameters of β-Li2TiO3

according to Kataoka et al. are a = 5.0623 Å, b = 8.7876 Å, c = 9.7533 Å and β =

100.212◦.14

Figure 2: Unit cell of β−Li2TiO3 showing the different ions and their types. The Li, Ti and
O ions are shown as green, yellow and red spheres respectively. The Li6 and Li2Ti4 layers
have been highlighted, and the O ions lie above or below these layers. Also illustrated are
the Ti-Ti bonds in the Li2Ti4 layers with a Li ion in the centre to illustrate the hexagonal
structure.

As shown in Figure 2, there are three symmetrically distinct lithium lattice sites in β-

Li2TiO3. Li1 and Li2 are found in the pure lithium layer, while Li3 is found at the centre of

the Ti hexagons in the mixed cation layer. Therefore, the different positions have different
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nearest neighbour cation environments, as illustrated in Figure 3. In fact, the Li1 and Li2

positions are remarkably similar and have almost identical vacancy formation energies.16 In

the pure lithium layer, a Li1 ion is surrounded by an equal number of Li1 and Li2 ions. By

contrast a Li2 ion is surrounded by Li1 ions only. Due to the relative location of Ti ions

above and below the xy-planes for Ti-Ti and Li-Li bond distances are distorted.

(a) Li1 (b) Li2 (c) Li3

Figure 3: Local environments surrounding the lithium sites in Li2TiO3. Note that the oxygen
ions have been removed to highlight the cation environments around the different lithium
sites.

As β-Li2TiO3 exhibits a distorted rocksalt structure, the lithium ions are octahedrally

co-ordinated with oxygen as illustrated in Figure 4. These oxygen ions have been designated

A - F as illustrated in Figure 4.

(a)

DA

F

C

E

B

(b)

Figure 4: (a) The Li ion is coordinated by six oxygen ions (b) The octahedron formed by
the oxygen ions designated A - F around the Li vacancy.
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Computational Details

All first principles calculations in the present work were based on Density Functional The-

ory17,18 and were performed using the planewave CASTEP simulation package.19,20 The

Generalized Gradient Approximation (GGA) parameterised by Perdew, Burke and Ernzer-

hof (PBE) was used as exchange-correlation functional.21 All calculations were performed

using a supercell containing 2×1×1 replications of the unitcell for a total of 96 atoms. This

relatively small simulation supercell may be susceptible to finite size effects due to the inter-

action of the charged defects with their periodic images.22 However, these finite-size effects

cancel for the calculation of migration barriers. Ultrasoft pseudopotentials were employed

with a planewave cutoff energy cutoff of 600 eV. A Monkhorst-Pack scheme23 was used to

sample the Brillouin zone with a density of 0.06 Å−1 which corresponded to a 2 × 2 × 2

k -point mesh in the 2× 1× 1 supercell. A Methfessel-Paxton smearing width of 0.1 eV was

used.24 To test the efficacy of the model an energy minimisation of the perfect unitcell was

performed and the lattice parameters obtained were a = 5.1186 Å, b = 8.8809 Å, c = 9.8976

Å and β = 100.212◦ in good agreement with the experimental values of Kataoka et al.14

Transition states were determined by performing an energy minimisation of the start and

end structures under constant volume conditions until all forces fell below 0.08 eV/Å. Ac-

tivation energies were calculated using the complete Linear/Quadratic Synchronous Transit

(LST/QST)25 method with default settings as implemented in CASTEP. Note that more

stringent conditions were tested and this did not significantly affect the results.

A complete understanding of the tritium release process from ceramic materials such as

Li2TiO3 requires an examination of all the possible atomic scale hops that may contribute

to the diffusion process. As discussed in the introduction, this is not solely dependent on

the migration barriers for tritium hops themselves, but also other defects that may promote

or hinder tritium diffusion. Previous studies have indicated that the lithium vacancy defect

will play an important role in the tritium release process as the material ages. Therefore,

this study will examine the migration barriers for diffusion of the isolated lithium vacancy
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and tritium interstitial defects as well as the barriers to diffusion of the bound {T+1
i : V −1

Li }0

cluster.

The interstitial sites between the Li and O layers were initially located by performing

geometry optimization calculations with a tritium ion (T+1) initially placed in the vicinity

of the oxygen ions. Once the locations of the initial and final positions of the ions were

identified the LST/QST method was used to calculate the energy barrier between them. A

similar approach was used to locate the tritium interstitial sites within the lithium vacancies.

In this case the positions were located by performing geometry optimization calculations of

tritium ions initially positioned halfway between the vacancy and the oxygen ions.

Results and Discussion

Lithium Vacancy Diffusion

In the first instance the activation energies for diffusion of the lithium vacancy, V1−
Li , defects in

Li2TiO3 were determined. Within the C2/c space group there are three types of lithium site.

Two of these are in the pure lithium layer and the third is at the centre of the Ti hexagons in

the mixed cation layer as illustrated in Figure 3. While there are only three symmetrically

distinct lithium sites present in Li2TiO3, the arrangement of these sites is such that there

are a number of different possible hops between them, as discussed by Kuganathan et al .26

For completeness barriers for all possible pathways between nearest neighbour lithium sites

were calculated. The resulting barriers for Li1 and Li2 vacancy diffusion are presented in

Table 1 and that for Li3 vacancy diffusion are presented in Table 2.

The calculated activation energies are between 0.41 and 0.67 eV, which is in the range of

energies predicted by experiment.27–29 The lowest energy barriers correspond to the vacancy

hopping from the pure Li layer into the mixed cation layer, with the hop from the Li2 site

being very slightly lower in energy than from the Li1 site (0.41 eV compared to 0.45 eV).

The ordering of the hops between the pure lithium and mixed cation layer is in excellent
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Table 2: Calculated intrinsic Li3 vacancy diffusion barriers for the nearest-neighbour (NN)
hops as shown in Figure 3, assuming the vacancy occupies the central ionic position. The
distances presented in the table were calculated from the perfect crystal of Kataoka et al.14
There were three possible hops each in the xy-planes above and below the xy-plane.

Class Pathway d Barrier (eV)
(Å) Forward Reverse

xy-plane above

V1−
Li3 → V1−

Li1 2.91 0.51 0.45

V1−
Li3 → V1−

Li1 2.91 0.51 0.45

V1−
Li3 → V1−

Li2 2.92 0.47 0.41

xy-plane below

V1−
Li3 → V1−

Li1 2.91 0.51 0.45

V1−
Li3 → V1−

Li1 2.91 0.51 0.45

V1−
Li3 → V1−

Li2 2.92 0.47 0.41

agreement with the previous DFT simulations of Islam and Bredow.30 In this previous work

there was only one transition within the pure lithium considered which had an energy of 0.45

eV for the forward process and for the reverse process an energy of 0.5 eV was determined.

These values are slightly lower than those predicted here which are all in the range 0.5-0.67

eV. It should be noted that this previous work examined charge neutral vacancies while here

the fully charged V1−
Li defects are considered and this may account for the small discrepancy.

Mukai et al. calculated barriers of 0.52 eV and 0.53 eV for the V−1
Li3 → V−1

Li1 and V−1
Li2 →

V−1
Li1 hops.29 These values are in excellent agreement with the values of 0.51 eV and 0.54 eV

calculated here. However, for the V−1
Li2 → V−1

Li1 hops, two additional values of 0.57 eV and

0.67 eV were also calculated. Kuganathan et al. predict that the lowest energy process is for

vacancy migration in the pure Li layer with a barrier of 0.39 eV, while the energy to transfer

between the two layers is much higher at 0.65 and 0.67 eV.26 Further barriers for migration

of a lithium vacancy were determined by Vijayakumar et al. who found values in the range

0.2-0.3 eV.31 These last two studies employed empirical pair potentials that are not able to

consider charge transfer during the migration process and are, therefore, likely to be less

reliable than the DFT data presented here.
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Overall, the data suggests that there is a slight anisotropy in the vacancy mediated

diffusion of lithium in Li2TiO3 with diffusion in the z -direction having slightly lower energy

barriers than diffusion in the xy-plane.

Tritium Diffusion

Tritium Diffusion as an Interstitial

This next section considers tritium diffusing as an interstitial defect. As discussed by Shi et

al. there are six symmetrically distinct tritium interstitial sites in Li2TiO3.9 These positions

are illustrated in Figures 5 and 6 and the fractional co-ordinates are presented in Table 3.

In all cases the tritium ions are bonded to oxygen ions in the form of hydroxyl groups as

observed in previous work.8

Table 3: Calculated fractional coordinates of the different types of interstitial sites for tritium
in β-Li2TiO3

Position Site Label Fractional Coordinates (x,y,z) Host Oxygen
1 0.21310, 0.08659, 0.46836 O2

Li6 layer 2 0.44976, 0.26219, 0.46833 O1
3 0.20159, 0.40395, 0.47633 O3
4 0.36446, 0.58707, 0.40740 O2

O6 layer 5 0.26578, 0.32535, 0.59409 O1
6 0.23561, 0.50323, 0.39167 O3

The calculated activation energies and jump distances for the hops between different

tritium interstitial positions are presented in Table 4, where they are compared to the values

of Shi et al .9 For simplicity, the possible diffusion processes are grouped into three distinct

classes, C1, C2 and C3. The first class, C1, involves tritium hopping within the layer of

interstitial positions closest to the Li6 layer encompassing the 1, 2 and 3 tritium sites (see

Figures 5 and 6). The second, C2, class corresponds to the tritium ions hopping from a Li6

to its nearest neighbour O6 layer. The final class, C3, involves processes where the tritium

crosses the mixed cation layer and consequently have larger jump distances.
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Figure 5: 2×1×1 supercell of Li2TiO3 illustrating the location of the tritium interstitial sites.

(a) (b)

Figure 6: Tritium sites near the (a) Li6 and (b) O6 layers
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Table 4: Calculated diffusion path distances, d, and energy barriers for tritium hops be-
tween different interstitial sites in a Li2TiO3 crystal for different classes of independent local
minimum energy paths as defined in Shi et al.9

Diffusion Class Pathway d (Å) Barrier (eV)
Present work Shi et al.9 Present work Shi et al.9

C1 [Li6-Li6]

1↔1 1.77 1.68 0.49 0.33
2↔2 1.77 1.69 0.51 0.33
3↔3 1.98 2.04 0.73 0.55

1→2 (1←2) 1.68 1.58 0.46 ( 0.45 ) 0.29 ( 0.29 )
2→3 (2←3) 1.82 1.73 0.60 ( 0.45 ) 0.47 ( 0.30 )
1→3 (1←3) 1.86 1.80 0.62 ( 0.46 ) 0.48 ( 0.31 )

C2 [Li6-O6]
1→4 (1←4) 1.08 1.15 0.09 ( 0.01 ) 0.10 ( 0.00 )
2→5 (2←5) 1.08 1.15 0.08 ( 0.02 ) 0.09 ( 0.00 )
3→6 (3←6) 1.31 1.41 0.11 ( 0.16 ) 0.11 ( 0.11 )

C3 [O6-Li2Ti4-O6]

6↔6 2.81 2.77 1.07 0.97
5↔5 3.11 3.08 1.05 1.00

4→5 (4←5) 3.15 3.12 0.98 ( 0.98 ) 0.91 ( 0.92 )
4→6 (4←6) 2.99 2.96 1.00 ( 0.96 ) 0.93 ( 0.86 )

Analysis of the data presented in Table 4 shows that while the activation energies pre-

dicted here are mostly higher than those of Shi et al. the overall picture remains the same.

The processes with the lowest activation energies are the rotations around the oxygen ions

of the C2 class, where the barriers can be as low as 0.01 eV. In fact, these barriers are so

low that Shi et al. could not calculate a barrier for the reorientations around the O1 and

O2 ions.9 It is important to note that there must be a barrier as otherwise the interstitial

site itself would not be stable. Shi et al. deduced that tritium sites 4 and 5 were actually

not energy minimums, but cusps along a very flat potential energy surface. For diffusion

around the pure lithium layer (C1 class) the barriers calculated here are 0.15 eV higher in

energy than Shi et al., however, the ordering is identical with the diffusion from the tritium

interstitial site 1 → 2 having the lowest energy barrier of 0.45 eV. This process is incapable

of facilitating bulk diffusion of tritium on its own. The lowest energy pathway to net tritium

diffusion in the xy-plane can be achieved through a combination of 1 → 2, 2 → 2 , 2 → 1

and 1→ 1 processes with an overall activation energy of 0.51 eV. The energy barriers for the

hops across the mixed cation layer have the longest jump distances and, as a consequence,

13



the highest barriers. Table 4 shows that migration from interstitial site 6 → 4 is the lowest

energy process that traverses the mixed cation layer in agreement with Shi et al.9 This is

also the overall barrier to interstitial tritium diffusion in the z -direction. Overall, therefore,

the results presented in Table 4 support the prediction of highly anisotropic tritium diffusion

as an interstitial.

Tritium Diffusion in the Vicinity of Lithium Vacancies

As the burn-up of lithium increases the concentration of lithium vacancy defects in the

ceramic pebbles is anticipated to increase. The lithium vacancy defect is negatively charged

and the tritium interstitials are positively charged therefore the two defects will become

bound due to the Coulomb attraction between them. However, despite being bound to the

vacancy defect the tritium ions remain bonded to the oxygen ions as hydroxyls, with slightly

increased bond lengths. Due to its distorted rocksalt structure, all lithium ions in Li2TiO3

are octahedrally co-ordinated with six oxygen ions surrounding them, each of which could

form a bond with tritium. As illustrated in Figure 3 the lithium ions in the pure lithium

layers have a very similar arrangement of nearest neighbour cations, however, the lithium

in the mixed cation layer has a different local environment. This difference in the nearest

neighbour cations leads to significant differences in the behaviour of tritium in the region

surrounding the vacancy as will be described below.

Figure 7 shows the positions of the tritium interstitial sites surrounding the Li3 site

and how these positions change when the lithium ion is removed. The image shows that the

positions of the tritium sites that are aligned close to the z -axis are relatively unperturbed by

the vacancy, however, the hydroxyl groups that lie closest to the xy-plane become reorientated

such that they point towards the now vacant site. For simplicity it is assumed that as the

position of the hydroxyl groups aligned along z are unperturbed the energy barrier to diffuse

from this site away from the vacancy can be considered to be the interstitial activation

energy as discussed above. A number of barriers for tritium migration to form hydroxyls on
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the second nearest neighbour oxygen sites were considered, however, as their energies are

significantly higher these processes are not discussed further.

(a)

a
f

d

f’

e
bc

c'

e'

b'

a’ d’

(b)

Figure 7: Tritium interstitial site modifications for a Li3 vacancy in the mixed cation layer.
The green and red spheres represent the lithium and oxygen ions while the white spheres
represent the possible tritium interstitial sites. (a) Each of the six oxygen ions bonded to a
lithium ion has two possible tritium interstitial sites. (b) On removing the lithium ion, six
of these sites (a’ - f’) pointing away from the vacancy remain unaffected while the other six
sites (a - f) now point towards the vacancy.

Therefore, it is only necessary to calculate the energy barriers for the reorientation which

can be combined with the interstitial barriers calculated above. Migration barriers to diffu-

sion within the vacancy itself will be considered later. The energy barriers for the reorienta-

tion, diffusion away from the reorientated site and the overall escape are presented in Table

5. Table 5 shows that, for a vacancy on the Li3 site, there are four reorientations that have

an energy barrier in the range 0.54-0.56 eV and the two remaining pathways have higher en-

ergies at 0.74 eV. As evident from the significantly migration energies for the reverse process,

the formation energy of the complex with the hydroxyl pointing away from the vacancy is

higher than when the hydroxyl points directly towards the formerly occupied lattice site.

Once the reorientations have taken place the tritium ions can diffuse as if they were

members of the interstitial C1 class. This is because the de-trapped sites for the Li3 vacancy

remained unaffected due to the presence of the vacancy and are thus equivalent to the
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Table 5: Calculated diffusion path distances, d and energy barriers for trapping and detrap-
ping of a tritium inside a Li3 vacancy.

Pathway d (Å) Barrier (eV) Escape PathwayForward Reverse Escape
a→a’ 1.78 0.55 0.01 1.06 a’(1) →2→2→1→1
b→b’ 1.79 0.54 0.01 1.05 b’(1) →2→2→1→1
c→c’ 1.80 0.56 0.005 1.065 c’(2) →2→1→1→2
d→d’ 1.89 0.74 0.09 1.38 d’(3) →3→1→2→3
e→e’ 1.90 0.74 0.10 1.37 e’(3) →3→1→2→3
f→f’ 1.78 0.56 0.01 1.06 f’(2) →2→1→1→2
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Figure 8: Energy barriers corresponding to the escape route for a tritium trapped in a Li3
vacancy for the pathway a→a’(1) →2→2→1→1 with a total escape barrier of 1.06 eV.
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interstitial tritium sites of types 1, 2 and 3 as shown in Figure 6(a). These barriers are then

combined with the re-orientation energy to give the overall barriers for escape from the Li3

vacancy for each individual pathway. Figure 8 shows the a→a’ pathway where the overall

barrier for escape was calculated as 1.06 eV. The escape barriers are in the range of 1.05-1.38

eV as tabulated in Table 5.

For the Li1 and Li2 vacancies the situation is more complicated. The tritium positions

surrounding an occupied and vacant Li1 site are shown in Figure 9. As was the case for the

Li3 site, there are six nearest neighbours surrounding the Li site. If the Li site is occupied

there are two possible hydroxyl arrangements on each oxygen. Similar to what was observed

for the Li3 site, the hydroxyl positions closest to the xy-plane reorientate to point towards the

vacancy defect. However, whereas in the Li3 case the remaining hydroxyls were relatively

unaffected, for the Li1 and Li2 sites four of these positions no longer form stable defect

sites, while the remaining two stayed very close to their initial positions. The reason for the

different behaviour is the presence of the Ti in the mixed cation layer being on average closer

to the unstable hydroxyl sites. Therefore, in addition to determining the barriers for the

reorientation, the barriers to jumps to the second nearest neighbour sites evident in Figure

9 are also considered.

Irrespective of the pathway taken to escape from positions directly adjacent to the va-

cancy, the tritium will end up in de-trapped positions equivalent to interstitial sites 4 or 5.

The migration barriers for tritium diffusion away from these interstitial sites is through a

combination of C1 and C2 classes (see Table 4) ensuring that the effective barrier for escape

is in the range of 1.1-1.34 eV as tabulated in Table 6. This range of energy barriers is similar

to the ones obtained for the Li3 vacancy. These results suggest that the introduction of Li

vacancies into either the pure lithium or mixed cation layers could have a significant impact

on overall tritium diffusion if the vacancy defects are considered to be immobile.

Table 7 shows the energy barriers for diffusion between the hydroxyl groups pointed

towards the lithium vacancy defects compared to the previous results of Li et al .10 The
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Figure 9: Tritium interstitial site modifications for a Li1 vacancy. (a) Similar to the Li3 case,
each of the six oxygen ions bonded to the lithium ion has two possible interstitial sites that
can accommodate the tritium. However, here only two of these sites point away from the Li
ion (a’ and c’), while two second neighbour sites (g’ and h’) lie in close proximity to the ion.
(b) On removing the Li1 ion, ten out of twelve sites collapse to the six sites pointing towards
the vacancy, while the other two sites (a’ and c’) remain unaffected. Tritium trapped at
sites a and c can reorient to a’ and c’ respectively similar to the Li3 vacancy, while tritium
trapped at other sites can escape via the g’ and h’ sites whichever is nearer. The entire
process is similar in the case of a Li2 vacancy.

Table 6: Calculated diffusion path distances, d and energy barriers for trapping and detrap-
ping of a tritium inside a Li1 vacancy.

Pathway d (Å) Barrier (eV) Escape PathwayForward Reverse Escape
a→a’ 1.66 0.66 0.00 1.10 a’(4)→1 →2→2→1→1→4
b→g’ 2.22 1.25 0.63 1.25 g’(4)→1 →2→2→1→1→4
b→h’ 2.27 1.34 0.75 1.34 h’(5)→2 →2→1→1→2→5
c→c’ 1.74 0.69 0.00 1.14 c’(5)→2 →2→1→1→2→5
d→g’ 2.28 1.25 0.63 1.25 g’(4)→1 →2→2→1→1→4
d→h’ 2.24 1.19 0.60 1.19 h’(5)→2 →2→1→1→2→5
e→h’ 2.19 1.28 0.67 1.28 h’(5)→2 →2→1→1→2→5
f→g’ 2.21 1.26 0.63 1.26 g’(4)→1 →2→2→1→1→4
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results in Table 7 shows that the activation energies for tritium to move around the vacant

site range from 0.66 eV to 1.0 eV. Hops between sites that involve traversing the vacant

lithium site have larger jump distances and are predicted by Li et al. to have significantly

higher barriers. The results presented here also predict very high barriers to traversing

the vacant Li site, however, much lower barriers are predicted to traverse the Li1 and Li2

vacancies. The reason for this is that the LST/QST methodology is detecting mechanisms

that make the tritium diffuse via an intermediate state that is bonded to one of the other

neighbouring oxygen ions. This does not affect the overall observation that tritium will

preferentially diffuse around the periphery of the vacancy rather than crossing the vacant

site.

In general the predicted energies for tritium migration around the lithium vacancy are

higher than those calculated by Li et al. Although it is noted that performing a direct

comparison to these previous results is complicated due to difficulties identifying the corre-

sponding pathways. There are, however, methodological differences that may account for

this difference. In their calculations, Li et al. allowed the simulation supercell to relax

when performing the geometry optimisation of the initial and final structures, while in the

simulations presented here these were fixed to those determined for the perfect cell. The

calculation of volume changes for charged supercells is poorly defined leading to unrealistic

volume changes.32 While the simulations of Li et al. were all charge neutral, that is not

the case here, therefore, to ensure consistency between the results the simulation supercells

remain fixed throughout.

Diffusion of the {T1+
i : V 1−

Li }0 Cluster

The two previous sections have examined how tritium can move as an interstitial and how

it diffuses in the vicinity of a lithium vacancy. In these simulations it is only the movement

of the tritium itself that is considered and the remaining ions in the system are effectively

spectators in the process. In this final section, processes where the presence of the lithium
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vacancy may help to promote tritium diffusion are examined. An example of how this

process may occur is presented in Figure 10, which shows a process whereby the lithium

vacancy with a hydroxyl group bound to it moves to an adjacent lattice site. As clearly

indicated in the diagram the lithium ion moves to the right while the tritium ions moves to

the left. If this is combined with the diffusion around the vacancy, as discussed above, then

it is possible to create a collaborative mechanism that enables macroscopic tritium diffusion

without detrapping of the tritium from the Li vacancy.

(a) (b) (c)

Figure 10: An example of the collaborative diffusion mechanism of the {T1+
i : V 1−

Li }0 cluster.
In this case the system evolves from an initial lattice configuration (a) where a lithium on
an Li1 site moves onto a neighbouring Li1 vacancy containing a tritium, via transition state
(b) to a final state (c) with the simultaneous diffusion of tritium in the opposite direction

The energy barriers for the migration of the different lithium vacancy defects in the

{T1+
i : V 1−

Li }0 cluster are presented in Table 8. From the table it is possible to see that the

lowest energy barrier is for the V−1
Li1 → V−1

Li2 process with an energy of 0.98 eV for the forward

jump and 1.00 eV for the reverse jump. Other barriers are larger with the highest being

for the V−1
Li3 → V−1

Li1 process. Combining the V−1
Li1 → V−1

Li2 process with diffusion barriers for

tritium to move around within the Li1 and Li2 vacancies as shown in Table 7, where, with

the exception of the diagonal jumps within the octahedron, the barriers are always smaller

than 1 eV, gives an overall energy barrier to diffusion of ≈ 1 eV. This barrier is smaller

than the barriers predicted in Tables 5 and 6 for the overall tritium escape from the lithium

vacancy sites and to diffuse as an interstitial. This implies that if a tritium ion does become

bound to a Li1 or Li2 vacancy in the β-Li2TiO3 crystal, the two will diffuse some distance

20



together before the tritium eventually detraps.

Conclusion

Energy barriers for the migration of lithium vacancy defects, tritium and their clusters in

β-Li2TiO3 have been determined using DFT. From the data presented above the following

conclusions can be drawn:

• There is a small anisotropy in the energy barriers for diffusion of the lithium vacancy

defect. For diffusion in the z-direction the lithium vacancy can undergo a series of

Li2→Li3 and Li3→Li2 transitions resulting in an overall barrier of 0.47 eV. This com-

pares with diffusion in the xy-plane, where the minimum barrier is 0.50 eV for Li1→Li1

process.

• For tritium as an interstitial the activation energy for diffusion in the xy-plane has an

overall energy barrier of 0.52 eV. Diffusion in the z-direction would require the tritium

to traverse the mixed cation layer. The barriers to cross this layer are predicted to be

greater than 0.98 eV, therefore, the diffusivity of tritium interstitials in the xy-plane is

expected to be much greater than along z.

• The barriers for a tritium ion to escape from a T0
Li cluster on the Li1 and Li2 sites is

in the range of 1.1 - 1.34 eV and that for the Li3 site it is between 1.05 - 1.38 eV.

• The minimum energy barrier for the co-operative mechanism whereby the V−1
Li and

T 1+
i defects move through the lattice without the tritium de-trapping is found to be

≈1 eV for the V−1
Li1 → V−1

Li2 process. This is smaller than that calculated for escape

from the lithium vacancy sites. Ultimately, this suggests that if a tritium ion becomes

bound to a Li1 or Li2 vacancy, the pair will travel through the lattice together.

• Once bound to a lithium vacancy the energy barrier to further diffusion of the tritium,

whether via de-trapping from the vacancy or diffusing as a cluster, is ≥ 1 eV. This is
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significantly greater than the activation energy for the tritium interstitial (0.47 eV). As

the concentration of lithium vacancies is anticipated to increase as the lithium burn-up

is increased this implies that tritium will become more difficult to extract, leading to

increased tritium retention later in the pebbles’ lifetime.
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Table 7: Calculated diffusion path distances, d, and energy barriers for 15 possible types of
tritium hops around the vacant lithium sites corresponding to Li1, Li2 and Li3 vacancies in
a Li2TiO3 crystal. The first 12 of these paths are tritium hops around the periphery of the
Li vacancy while for the last 3 paths, tritium has to traverse through the vacant lithium site.

Pathway
Li1 Li2 Li3

d Barrier (eV) d Barrier (eV) d Barrier (eV)
(Å) Forward Reverse (Å) Forward Reverse (Å) Forward Reverse

P
re
se
nt

w
or
k

a→c 1.27 0.66 0.66 1.55 0.66 0.68 1.59 0.89 0.89
a→d 1.59 0.98 0.83 1.74 0.93 0.94 1.34 0.81 0.83
a→e 1.45 0.78 0.66 1.33 0.75 0.86 1.63 0.91 0.93
a→f 1.70 1.00 0.87 1.67 0.85 0.96 1.34 0.81 0.82
b→c 1.58 0.82 0.97 1.73 0.92 0.94 1.34 0.81 0.82
b→d 1.37 0.91 0.91 1.53 0.67 0.69 1.62 0.91 0.93
b→e 1.62 0.85 0.87 1.64 0.84 0.96 1.35 0.81 0.83
b→f 1.45 0.79 0.80 1.33 0.73 0.84 1.60 0.88 0.90
c→e 1.71 1.00 0.87 1.69 0.84 0.94 1.35 0.90 0.91
c→f 1.44 0.81 0.67 1.34 0.77 0.86 1.61 0.89 0.90
d→e 1.43 0.80 0.82 1.34 0.77 0.87 1.66 0.96 0.96
d→f 1.64 0.96 0.98 1.66 0.85 0.95 1.35 0.91 0.90
a→b 2.06 1.02 0.88 2.30 0.90 0.89 2.08 3.15 3.15
c→d 2.07 1.03 0.88 2.34 0.90 0.90 2.11 3.17 3.18
e→f 2.34 0.92 0.91 1.93 1.90 1.90 2.13 3.19 3.18

Li
et

al
.1

0

a↔c 1.62 0.71 1.85 0.85
a↔d 1.93 0.96 1.41 0.64
a↔e 1.86 0.80 1.86 0.86
a↔f 1.39 0.63 1.44 0.75
b↔c 1.92 0.95 1.40 0.66
b↔d 1.34 0.45 1.84 0.83
b↔e 1.61 0.62 1.44 0.75
b↔f 1.99 0.97 1.83 0.82
c↔e 1.62 0.62 1.41 0.64
c↔f 1.85 0.74 1.84 0.83
d↔e 1.99 0.98 1.85 0.85
d↔f 1.63 0.61 1.40 0.63
a↔b 2.28 3.07 2.27 2.97
c↔d 2.29 3.11 2.25 2.97
e↔f 2.58 3.00 2.27 2.98
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Table 8: Calculated diffusion energy barriers for collaborative diffusion mechanisms with
simultaneous jumps of Li vacancy and tritium. The alphabets in the brackets represent the
exact tritium sites in the Li vacancy

Pathway Barrier (eV)
Forward Reverse

V−1
Li1 → V−1

Li1 , T(f)0Li1 → T(c)0Li1 1.22 1.36

V−1
Li1 → V−1

Li2 , T(f)0Li1 → T(a)0Li2 0.98 1.00

V−1
Li3 → V−1

Li1 , T(c)0Li3 → T(f)0Li1 1.72 1.58

V−1
Li3 → V−1

Li2 , T(c)0Li3 → T(a)0Li2 1.29 1.15
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