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Abstract: Global insect decline impacts ecosystem resilience; pollinators such as honeybees (Apis 

mellifera L.) have suffered extensive losses over the last decade, threatening food security. Research 

has focused discretely on in-hive threats (e.g., Nosema and Varroa destructor) and broader external 

causes of decline (e.g., agrochemicals, habitat loss). This has notably failed to translate into 

successful reversal of bee declines. Working at the interdisciplinary nexus of entomological, social 

and ecological research, we posit that veterinary research needs to adopt a “One-Health” approach 

to address the scope of crises facing pollinators. We demonstrate that reversing declines will require 

[1] integration of hive-specific solutions, [2] a reappraisal of engagement with the many 

stakeholders whose actions affect bee health, and [3] recontextualising both of these within 

landscape scale efforts. Other publications within this special issue explore novel technologies, 

emergent diseases and management approaches; our aim is to place these within the “One-Health” 

context as a pathway to securing honeybee health. Governmental policy reform offers a particularly 

timely pathway to achieving this goal. Acknowledging that healthy honeybees need an 

interdisciplinary approach to their management will enhance the contributions of veterinary 

research in delivering systemic improvements in bee health. 
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1. Introduction 

Honeybee (Apis mellifera L.) populations have been in decline in many parts of Europe and North 

America since the start of the millennium [1,2]. Much of the discussion around bee decline has 

focused on external factors like chemical pesticides, land use change, diseases and pests [3]. Other 

internal physiological traits such as host gut microbiota, immune response or genetic variation have 

also been implicated [4–6]. To date the vast majority of this research was carried out by entomologists, 

physiologists and ecologists, but not veterinary researchers. Veterinary engagement with honeybees 

has been limited, save for a handful of papers focusing on disease incidence and management [7,8]. 

As this special issue highlights, veterinary science is increasingly required to engage with honeybee 

health. Adopting an interdisciplinary approach both for practical animal health purposes like 

prescribing antibiotics for use in hives because they are food producing animals [9], for food security 

and because honeybees are an indicator species for the wider health of the environment [10,11]. Here 

we explore the potential for veterinary science to rise to the challenge of ongoing bee declines through 

the One-Health approach. 

The One-Health concept has been discussed since the mid-2000s, as an initiative between the 

medical and veterinary fields, acknowledging the need for a greater focus on zoonoses in the wake 
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of the SARS outbreak and avian influenza outbreaks. Adopted by the WHO, OIE and FAO, as well as 

veterinary and medical societies around the world [12], the concept emphasises the interconnectedness of 

human, animal and environmental health, noting in particular that human health depends on a healthy 

and functioning ecosystem [13]. Although there are discussions about the different terms describing this 

interconnectedness (for example ‘One-Health’, ‘EcoHealth’, ‘Planetary Health’, [14]), they share a 

common focus on encouraging disciplines like medicine, veterinary science, ecological and environmental 

science to start collaborating across disciplinary boundaries. Although the focus has been on zoonotic 

diseases, the One-Health approach emphasises a holistic understanding to tackle challenges [13], and is 

therefore highly relevant for discussions about honeybee health.  

Honeybees are closely linked to human well-being, through pollination of wild and agricultural 

plants, and through honey production [15]. They provide an important example of the need for 

interdisciplinary engagement over health, as their health is determined by many factors within the 

landscape, within human society and within the hive. In the UK, where the research underpinning 

this article took place, honeybees are primarily managed by beekeepers: wild colonies predominantly 

died out from the 1980s following the invasion of the infectious mite Varroa destructor [16], although 

there are still feral honeybee colonies present in the landscape [17]. The UK landscape is heavily 

agricultural, with arable and grazing land use covering 72% of the landscape. Honeybees co-exist 

with diseases and pest species, ranging from viruses to bacteria and Acari (see Box 1).  

In this regard, the co-existence of disease-causing organisms and a species of human importance is 

not unusual—all domestic animals, and indeed humans, have a high incidence of potentially pathogenic 

organisms on their body [18]. What is important from a health perspective is understanding the 

relationships between the species present, and the context in which they are co-habiting. Hinchliffe et al. 

[19] argue that farm animal health is not a simple binary between healthy and unhealthy, where the 

definition of ‘healthy’ implies an absence of disease, but rather a result of the interactions between host, 

micro-organisms, environment, host immune system, management practices, and so forth [19]. The 

distinction between healthy and unhealthy is perhaps better described as a ‘borderland’ rather than a 

‘borderline’, acknowledging that outbreaks of disease are rarely the result of incursions of a parasite or 

pest from outside into a ‘healthy’ area, but rather caused by a shift in the relationships between host, 

microorganism, management practices, host immune system and so on. This understanding of disease 

emphasises that diseases are endemic and co-generated [20]. 

Hinchliffe [20] suggests that addressing animal health issues requires a transdisciplinary 

approach to understanding disease, drawing in particular on knowledge from veterinarians, stock-

people and farmers. Such an understanding of disease is vital to understanding the concept of health 

in honeybees. This paper explores three different groups of factors, operating at different scales, 

which, independently or in combination, can tip the balance of bee health into a condition of ‘healthy’ 

or ‘unhealthy’. We consider how bee health is managed in hive-scale factors, human-scale factors and 

landscape-scale factors (Figure 1). Following critiques of One-Health initiatives to date [13,21,22], we 

actively engage with the environmental factors affecting honeybee health, and with the social science 

analyses [23]. We conclude by reflecting on the future for honeybee health, arguing that a One-Health 

approach could provide a useful framework for the many, diverse researchers, policy-makers and 

practitioners currently seeking to support healthy honeybee populations. 

2. Materials and Methods  

This paper draws on three projects on honeybee health that all used mixed methods, and were 

inspired by a transdisciplinary research perspective (Figure 1). Mixed methods research engages with 

multiple data types and different worldviews; our research suggests that this is necessary for 

improving bee health. Authors 1 and 2 worked in Lancashire, UK, with local hobbyist beekeepers, 

and in Herefordshire, UK, with a commercial beekeeper. Author 3 worked across the UK with 

commercial and hobby beekeepers, many of whom were nationally respected writers and lecturers 

on bee health. Authors 1 and 3 also interviewed policy-makers, scientific and academic experts, and 

bee health experts. Methods used in the authors’ research included interviews, participant 

observation [24], in-hive and laboratory experiments [25], archival analysis and document analysis [26]. 
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Archives and documents can provide temporal and/or contextual richness to otherwise singular 

understandings of bee health and decline [27,28]. By drawing together research and understandings about 

bee health from these diverse perspectives, the authors are well placed to present bee health in its full 

complexity. 

3. Hive-Scale Factors 

Most direct human–honeybee contact occurs at the hive, which is a highly complex environment. 

Honeybee hives are rich in bacterial, viral and insect diversity, co-existing within and on honeybees (Box 

1). Beekeeping practices oriented towards health management and ‘biosecurity’ are often focused on 

individual beekeepers’ hives, and those within flying range of the bees—up to 10 km from the hive. 

Security against diseases and pests has predominantly relied on creating barriers and spatial separations 

between livestock, pathogens and vectors of pathogens, and dividing them into categories such as healthy 

and diseased and then endeavouring to control movement across barriers [12]. Barriers include physical 

management practices, for example the use of disinfectant to stop pathogens being transported on clothes 

or vehicles, and legal/policy barriers, including legislation on movement, and surveillance of at-risk sites 

or animals [29]. Current beekeeping biosecurity advice focuses on good husbandry to maintain strong 

colonies that can resist infection or invasion [30], and specific management techniques designed to avoid 

the arrival of, or spread of, diseases, i.e., techniques that create a barrier around colonies and apiaries, 

known as ‘barrier management methods’. 

However, honeybees pose three specific management challenges to beekeepers and others 

tasked with monitoring and managing their health. First, honeybees are semi-domesticated animals: 

though beekeepers manage honeybee colonies, they are reliant on the open environment for large 

parts of their lives. Foraging excursions are inherently hazardous: bees interact with individuals from 

other colonies, and potentially transmit diseases and pests by arriving back to the wrong hive [31]; 

robbing other hives for food [32]; visiting plants previously visited by infected bees [33], and simply 

through life history traits such as mass mating where many individuals from different hives 

congregate at once [34]. These communal behaviours emphasise the challenges facing beekeepers and 

others responsible for healthy honeybee populations, and make clear the need for more 

interdisciplinary, flexible approaches to understanding and managing health.  

Second, unusually in a veterinary context, the unit of management and treatment in the case of 

honeybees is the colony, not the individual animal—with colonies being composed of between 10,000 

and 40,000 individuals, depending on the time of year. Honeybee colonies are highly tolerant of 

diseases: their behaviour is characterised by temporal polyethism, or age-dependent division of 

labour [35], and the age at which they transition between tasks depends on the condition of the colony 

and the individuals. Bees suffering from disease outbreaks or other physical challenges transition 

more quickly than healthy bees through to the most hazardous tasks such as out-of-hive foraging, 

reflecting the shorter longevity of these tasks [36]. An example where this is an issue is the parasitic 

mite Varroa destructor, which has a well-documented negative effect on honeybees. Its direct 

parasitism causes loss of haemolymph and body fat, reduced longevity and other issues, and it is a 

vector for viruses (Table 1), which then further damage the individual bees [37]. There are treatments 

available for Varroa, although none are perfect and some can also weaken bees [38].  

Managing Varroa and its effects on honeybees raises the third challenge: honeybee managers 

are seeking to manage a species with which we share few characteristics. Even for mammalian 

livestock, it is difficult to measure what animals experience, although veterinarians and animal 

scientists have developed a series of parameters to measure nutrition, health, physical comfort and 

behavior, which can be interpreted to give an idea of the mental state of an animal [39]. 

Communication with insects is even more challenging, and although some honeybee 

communications have been decoded [40], judging the physical and emotional states of honeybees 

remains a challenge. Parasite and pathogen challenges like the negative direct and indirect effects of 

Varroa, require beekeepers to be skilled observers of their colonies [24], using proxy measures within 

the hive such as amount of brood as signs of stress [41].  



Vet. Sci. 2020, 7, x 4 of 14 

 

Managing bee health therefore involves a constant process of negotiation between actions that 

might benefit a colony and actions that might put it at risk. Rather than treating all pathogen and pest 

species present within a single hive, it may be more useful to work within a conceptual framework 

of “tipping points”, where attention is focused only on levels of a disease or pest that pose sufficient 

threat [20]. This more holistic approach to health management is somewhat practiced within the 

beekeeping community under the term “integrated pest management” (IPM). IPM within a 

beekeeping context pushes for intense monitoring of pests and parasites, allowing action beyond 

prescribed tipping points of symptoms or density of parasites.  

Beekeepers, and bee inspectors charged with managing bee health adopt IPM techniques that 

seek to treat all aspects of bee lives, rather than working in isolation on single pathogen or pest 

species. IPM retains a hive-level focus, and does not engage directly with factors operating at a 

landscape-scale, such as forage availability or pesticide use, nor with economic issues like trade in 

bees (a classic source of infection of novel parasites and pathogens). Beekeepers and inspectors 

seeking to create resilient, healthy colonies therefore struggle to create the ideal conditions for healthy 

bees—one with plentiful, nutritious food across a season, and with limited chemicals, and where 

threats of novel pests and parasites are kept to a minimum.  

4. Human-Scale Factors 

Many of the factors causing bee decline occur within the hive. Beekeepers are responsible for 

monitoring hive health, as well as liaising with others whose actions affect bees, including farmers 

and bee inspectors. Beekeepers’ knowledge and practices are central to any efforts to reverse bees’ 

decline. The role of beekeepers in monitoring and ensuring honeybee health serves as a linkage 

between hive-based factors, and wider landscape scale factors affecting bees. Beekeepers’ 

observations must be a cornerstone of any efforts to maintain species wellbeing, if they are to succeed 

[42,43]. There is often a tension between scientific assessment of bee health, and beekeepers’ practical 

engagement with their colonies. This is rooted in fundamentally different ways of gaining knowledge 

about bees and the wider world [44]. Much of our current knowledge of bee health is generated via 

an epidemiological model, while beekeepers’ knowledge is the result of a highly situated, locally 

generated knowledge [45]. This combines practical husbandry and direct observation, often resulting 

from generations of beekeeping in the same local landscape, as well as the more formal scientific 

knowledge that is the cornerstone of veterinary analysis of animal health. Beekeepers note how their 

practice results in them ‘seeing like a bee’ (e.g., interpreting the landscape’s challenges and 

opportunities in terms of their colonies) [26].  

Within the UK, national bee inspectors are tasked with inspecting colonies for foulbrood 

diseases, as well as providing beekeepers with information and education on bee health. While the 

bee inspectorate is overseen by the governmental Animal and Plant Health Agency (APHA), and 

inspections are carried out according to strict epidemiological standards, which are primarily focused 

on observing colonies for foulbrood diseases (Box 1), the education and outreach aspect of the 

position is rooted in personal working relationships with individual beekeepers.  

While beekeepers are responsible for the immediate health of their bees, some beekeeping practices 

may be ultimately contrary to the short, and long term, health of bees. Characteristics of bees that may be 

attractive to beekeepers, such as high productivity, a low tendency to swarm, and being easy to handle 

and manipulate, may be ultimately counter to bees’ welfare [41,46]. Over the past decade, concern about 

the negative effects of various in-hive treatments for Varroa has led to an increase in beekeepers practicing 

treatment-free beekeeping [47,48]. This approach can be highly problematic for the wider beekeeping 

community, as Varroa infestation has been widely associated with colony death [49], and the spread of 

infection between neighbouring colonies through robbing and drifting [50], or even to non-Apis 

pollinators [51] (see Towards an Integrated Approach to Honeybee Health). 

Hobby and professional beekeepers often have opposing perspectives on what are acceptable 

risks to their bees, and the timescale and nature of necessary human interventions. While most 

beekeepers express a deep sense of stewardship and responsibility to their bees’ welfare, they have 

differing interpretations of what this involves [49]. For example, some beekeepers carry out their own 
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bee breeding programmes, in an effort to move away from a reliance on chemical treatments for 

Varroa [52]. Although the treatment of Varroa is a volatile debate amongst the beekeeping community 

[49], the question of how beekeepers can manage Varroa whilst minimising the damaging side effects 

of miticides [53] highlights the human scale of factors affecting bee health. While beekeepers stay 

informed of innovative developments in veterinary understandings of bee health, and new in-hive 

treatments and management practices to combat the relentless onslaught of various infections [26], 

they also note the inadequacy of relying on such an approach. Others argue that their own husbandry 

can only go so far; ultimately, systemic change in landscape management is necessary to ensure bee 

health [26]. To this end, some beekeepers focus on negotiating with other land managers, upon whose 

land bees may be placed, and often educating them about best practice for pollinators. Some 

interviewees noted what they perceived as a discrepancy between land managers’ formal adherence 

to agri-environment schemes designed to enhance forage and habitat for bees, and actual significant 

landscape enhancement. Incorporating the locally situated knowledge of beekeepers into land 

management strategy will be necessary to assure bee health. 

Formal scientific understanding of bee health is primarily relied upon by policy-makers in 

efforts to address pollinator decline, with beekeepers’ experiential and observational knowledge 

often being dismissed as anecdotal [54]. Although it can be challenging to incorporate such diversity 

of views, it is central to successful conservation movements [55]. As bee decline affects biodiversity, 

strategies from other conservation efforts are relevant [56,57]. Scientific assessments of landscape 

effects have successfully been applied alongside beekeepers’ knowledge, leading to a broader, more 

nuanced understanding of complex environmental synergies [46]. A One-Health perspective 

facilitates constructive engagement with seemingly disparate understandings of bee health, and 

enables the insights of the full, heterogeneous beekeeping community, as well as bee scientists, 

veterinarians, and farmers, to be combined. By considering bee decline within a One-Health 

framework, we can also address the shared challenges to human, bee, and wider environmental 

health created by the industrial food system [58]. It is clear that in-hive challenges, which are 

observed by both beekeepers, and by qualified external observers such as bee inspectors, are 

exacerbated by challenges in the wider environment [1,59]. The next section considers the landscape-

level factors affecting bee health, and how the colony itself can and does work to avoid ill health. 

5. Landscape-Scale Factors 

A number of factors relevant to honeybee health operate at a landscape-scale. These factors are very 

large-scale, hard to see, slow-moving changes with an inherently shifting baseline [59]. We explore two 

key landscape-scale factors in the rest of this section: nutrition and agricultural intensification. 

The first factor is nutrition, specifically the availability of forage (nectar and pollen sources) 

within the landscape. Foraging by pollinators is demonstrably affected by the land use composition 

around them [60,61]. Honeybees are generalists, employing a patch-based foraging strategy [62]. 

Landscape heterogeneity is directly related to the amount, richness and diversity of pollen that bees 

forage [63], and honeybees benefit from more diverse, heterogeneous landscapes [25,64]. 

All animals, even invertebrates, have an optimal diet that maximizes their fitness (or health), 

known as the “intake target” [65]. These diets are typically referred to in terms of a protein: 

carbohydrate ratio; research indicates that diets with an excess of protein (P:C ratio >5:1) can result 

in significantly shortened lifespans [66]. More moderate P:C ratios (~2:1) are generally associated with 

enhanced resistance to bacterial and viral pathogens. When given a choice of what to eat, insects are 

able to adapt what they eat depending on their state of health [67]. Honeybees are specially adapted 

to forage over a huge range (up to 10 km on a single flight), selecting what they bring back to the hive 

based on the colony’s fitness. However, if this range is saturated with a single floral species, as can 

be the case in some agricultural land, then this choice may be taken away from the foragers, hindering 

their ability to reach their preferred intake target. 

The link between nutritional diversity and richness and pollinator fitness is well established; 

high quality diets have benefits to immune responses, reproduction and adult survival [68]. Although 

there is a lack of direct experimental data supporting dietary adaptation in honeybees, our current 
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understanding is that honeybees that are under duress from pests or pathogens will consume a higher 

protein diet, whereas healthy bees may eat higher carbohydrate diets to enable greater exploitation 

of their environment. The nutritional status of honeybee populations has been shown to vary 

consistently with landscape type, with, for example, urban and forest environments being positive 

for honeybee nutrition [25,64,69]. In the UK, rural landscapes are dominated by agricultural land 

uses. Here, honeybees are most important for human well-being given their role in providing 

pollination services, yet these are sites of significant pressure on pollinators [70]. Agricultural habitats 

provide significant but time-limited nutritional resources, with extensive areas of single-crop arable 

farming flowering at once but only for a short time, negatively impacting nutritional diversity [71].  

The second landscape-scale factor is also a result of agricultural intensification: the effects on 

honeybee health of pesticide use. The breadth and scope of knowledge on the damaging effects of 

chemical pesticides on honeybees is remarkable. Not only do insecticidal pesticides cause significant 

damage to honeybees [72], we are now beginning to appreciate the effects of herbicides and 

fungicides [73,74]. Given the volumes of fungicides and herbicides applied in agricultural landscapes, 

it is likely we are only beginning to appreciate the importance of the results of this emergent research. 

While beekeepers are key stakeholders responsible for ensuring bee health [75], and have historically 

provided evidence of pesticide risks to bees [26], in practice agrochemical risk and application is 

assessed and controlled by scientists and farmers, who may not be assessing bee health in the same 

way as beekeepers, or have the same priorities in land management [44,54].  

6. Towards an Integrated Approach to Honeybee Health 

We have shown how honeybees live in a complex social–ecological system, influenced by highly 

varied forms of human management, from the hive- to landscape-scale. The One-Health concept can 

effectively bridge these different sectors and scales, focusing as it does on interdisciplinary 

approaches to understanding health. In this paper, we have considered research from animal and 

human geography, microbiology, ecology, entomology, nutrition and many other disciplines (Figure 

1). When considered together, the result is a clearer understanding of the many factors that influence 

honeybee health. Zinsstag [76] argue for a systemic approach to understanding health within social–

ecological systems at a time of global change. There are many other factors that influence bee health, 

which we have not explored here, especially seasonal and climatic changes. Disruption of seasonal 

patterns can have serious knock-on effects to pollinators, particularly through changing forage plant 

phenology [59]. As we have previously discussed, disruption to foraging on a landscape scale can 

have significant negative consequences for honeybee health; complicating this, disruption on a 

temporal scale through climate change would clearly have even further negative consequences. The 

factors we have discussed will continue to shift and interact with other influences, forcing honeybees 

to adapt and change to maintain good health. To maintain honeybee health, these adaptations must 

be understood and supported by those most closely involved with their daily management, i.e. 

beekeepers and bee inspectors. 

Beekeepers’ knowledge is applied at the interface between landscape and hive-scale factors, and 

has a great potential role in supporting a One-Health approach. One way to understand this role is 

as a form of citizen science (CS). CS projects have become an important method of increasing 

engagement between practitioners and researchers, and enriching policy [77,78]. The dominant 

model of CS with beekeepers was characterised by experiments that were designed by formal 

scientists, with beekeepers incorporated as data collectors, and requested to submit fairly basic 

information (e.g., annual colony losses, honey production) [43,79]. Several of these projects have been 

run for many years, generating key baseline information (BIP, BeeBase, and CoLOSS). As these 

projects have evolved, further questions have been incorporated into the surveys, exploring the 

knowledge and practices of beekeepers, and how these influence colony survival [49].  

Alternative CS models emphasise collaborative and co-created approaches, which allow for a 

higher degree of scientific engagement with beekeepers’ knowledge [80]. Volunteers and other 

‘amateurs’ have a significant role to play in environmental monitoring; unfortunately, this is 

frequently underutilised due to their being outside formal scientific communities [81]. Beekeeping is 
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often an intergenerational practice, carried out by highly skilled, environmentally observant 

individuals. This, coupled with the habit of keeping hive records, and notes of other relevant factors 

to bee health and productivity, can generate detailed information on landscape-level changes to 

forage. Sufficiently detailed records also represent a bank of data on in-hive factors, including 

medication histories, queen breeding histories, and more. These observations can contribute to a 

multiple evidence based approach to policy development [55]. 

The UK’s exit from the European Union will bring changes to environmental and agricultural policy, 

with potentially far-reaching effects on honeybee health. Reflecting on how best to develop new policies 

that support honeybee health is important, especially given the investment to date in honeybee health in 

the UK through the Insect Pollinator Initiative and more [82]. While landscape-scale factors are beyond 

most veterinary medical research, honeybees, much like all wild animals, operate at this scale. Historically, 

the EU has used agri-environment schemes that support the development of rural areas, to reverse the 

decline in pollinator biodiversity and their associated agro-ecosystems, and to protect biodiversity and 

ecosystem function. The Common Agricultural Policy (CAP) supported localised greening measures, 

such as crop diversification, protection of permanent grassland from conversion to arable and the 

implementation of ecological focus areas. These aim to improve pollinator resilience and help combat 

losses [3]. Reviews of the overall success of CAP have suggested the results have been limited due to the 

nature of payments focusing on land ownership, rather than environmental intent. Consequently, the 

effects on landscapes have been less than effective [83]. New land management policies should 

incorporate factors supporting honeybee health at all scales. 

The UK Government Agriculture Bill 2020 is centered on the new Environmental Land 

Management system (ELMs). This will determine subsidies based on “public pay for public goods” 

(UK Gov., 2020), adopting a natural capital valuation approach. When considering honeybees, due 

to the effective area to forage in and the context of the ‘pollinator movement hypothesis’ [84], 

cooperative habitat management at the landscape scale has more evident and immediate benefits to 

these mobile ecosystem service providers [85]. Future land management strategies should consider 

implementation at the inter-farm level, highlighting the importance of complementarity of resources. 

Practical impacts from national policy initiatives have consistently struggled to reach beyond 

localised effects [86]. Action to counter pollinator decline has frequently manifest in ways which are 

seen as piecemeal, and motivated by an effort to appeal to public interest, rather than fundamentally 

addressing landscape-scale challenges to bee health [87]. 

Cost-effectiveness in ecosystem conservation can be achieved through the implementation of 

multi-functionality or “stacking” services to maximise output from minimal input [88]. Applying a 

multi-functional ecosystem service framework may result in exponentially greater, synergistic and 

efficient use of limited resources [85,89], but equally, requires the understanding and approval of 

practitioners, and an incentive to elicit environmental change. Though lacking under CAP, ELMs 

may suitably address this necessity, though this proposal remains in the consultation phase and is 

unlikely to show demonstrable results for the near future. 

There is a worrying dissonance between agricultural policies, and the ecological status of 

honeybees [90]. Wider research on conservation policy notes the importance, and benefits, of 

integrating the knowledge and concerns of disparate communities [91]. A top-down policy approach 

will not prove an effective pathway towards integrating a One-Health concept into bee health, and 

efforts at inclusion must be carefully assessed to assure they move beyond rhetoric [92]. The One-

Health paradigm supports community-led, bottom-up approaches that link vets, beekeepers, 

landowners and policy makers. Such an approach has the capacity to engage with diverse factors 

affecting decision-making in animal husbandry, such as a sense of community responsibility, and a 

belief, or lack thereof, in individual capacity to affect change [93]. While this model has been gaining 

traction throughout the veterinary community, and raises important points about the 

transdisciplinary nature of contemporary zoonotic infections, there is a risk that this perspective still 

tends to overlook relational realities, as well as their socio-economic and cultural settings [20]. These 

are the locally specific, subjectively experienced factors that can give rise to differing interpretations 

of bee health and how best to ensure a colony’s wellbeing.  
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The public and policy responses to honeybee decline in recent years reflect an awareness of the 

interwoven fates of humans and pollinators (albeit with some rhetorical misunderstandings, as noted 

by [94]). This awareness is emblematic of other interspecific global challenges that are being tackled 

via the One-Health approach [95]. A One-Health approach to bee health highlights the need to 

incorporate landscape-scale factors alongside other factors functioning at the hive-, and the human- 

scale. Unravelling their effects on honeybees requires research across many disciplines, including, 

but not limited to, nutrition, pollination ecology, microbiology, neuroscience, and agronomy. This 

emphasises that conceptualising “health”, simply as presence/absence of disease, is insufficient for 

understanding pollinator fitness (Table 1). Successfully applying a One-Health model to bee health 

will require active engagement with diverse and, at times, antagonistic parties, many of whose 

actions are driven by wider economic forces. If applied within the One-Health model, veterinary 

knowledge can make a strong contribution to reversing honeybee decline. 

Honeybee health cannot be separated from the health of the environment that surrounds them [25]. 

A single health issue for honeybees, e.g., the presence/absence/treatment of a mite, can make an entire 

agricultural and food system dependent on their pollinating and honey-producing activities vulnerable 

[59]. Furthermore, this risks adopting an “Apis-centric” perspective on pollinator conservation. Though 

honeybees are highly efficient pollinators, they are by no means the only active player in this system [96]. 

Honeybee pathogens have also demonstrated the potential for zoonotic transfer to non-Apis pollinators 

when visiting the same flower patches [51]. Consequently, as well as considering honeybee health in a 

holistic manner, we must also consider knock-on impacts of treatment regimens and fitness assessments 

on to non-target species. Adopting a One-Health approach, deliberately seeking to bridge across the 

diverse sectors that affect bee lives, is therefore crucial.  
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Figure 1. Factors influencing honey bee health at different scales. While factors at differing scales have 

predominant impacts on honeybee health, points of overlap illustrate the need for a One-Health 

approach to address challenges to honeybee health. 

Table 1. Microbial, parasitic and commensal organisms associated with honeybees. 

Organism Type of relationship Reference 

Lactobacillus spp. Firm-4  

Symbiotic/commensal – collectively, these species 

form the ‘core microbiome’ of the honeybee’s gut 
[97,98] 

Lactobacillus spp. Firm-5 

(phylum Firmicutes) 

Bifidobacterium spp. (phylum 

Actinobacteria) 

Snodgrassella alvi 

Frischella perrara 

Gilliamella apicola 

Bartonella apis 

Alpha 2.1 (phylum 

Proteobacteria) 

Black queen cell virus 

Viral pathogen [99,100] 

Lake Sinai virus 

Deformed wing virus B 

(VDV1) 

Acute bee paralysis virus 

Chronic bee paralysis virus 

Sacbrood virus 

Deformed wing virus A 

Aphid lethal paralysis virus 

Israeli acute paralysis virus 

Iridescent invertebrate virus 

IV 

Kashmir bee virus 

Varroa destructor Parasitic mite, viral vector [32] 

Frischella perrara 

Bacterial pathogen/commensal  [101,102] 

Paenibacillus larvae (c.a. 

American Foulbrood) 

Melissococcus plutonius (c.a. 

European foul brood) 

Nosema ceranae 

Intestinal parasites [102] 
Nosema apis 

Crithidia 

Acarapis woodi 
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